Transcript
Page 1: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 1

ERTH2020 Introduction to Geophysics

The Electromagnetic (EM) MethodMagnetotelluric (MT)

Page 2: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 2

Magnetotelluric

combination of magnetic and telluric* methods

(Latin β€˜tellΕ«s’ β€˜earth’ β€œEarth current”)

Page 3: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 3

Magnetotelluric

…other scientists Tikhonov (1950) and Rikitake (1951), Kato & Kikuchi (1950).

Page 4: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 4

Induction

I

β€’ DC Resistivity

I

β€’ Induced Polarisation

I

β€’ Inductive EM

R

CL

Equivalent Circuits

Page 5: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 5

DC / IP

Page 6: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 6

Magnetotelluric (Passive EM)

𝐻 𝑧

𝐻 𝑦𝐻 π‘₯

𝐸π‘₯

𝐸𝑦

Page 7: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 7

Goal

πœ•2

πœ•π‘§ 2π…βˆ’iΟ‰ μσ𝐅=0

→𝑝=√ 2ωμσ β‰ˆ500βˆšπ‘‡ πœŒπ‘Ž

Skin Depth (Penetration Depth)

1D diffusion equation

1.

2.

Page 8: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 8

DC Resistivity Induced Polarisation Passive EM Active EM

Method

Direct Electrical Connection (galvanic) No direct electrical connection (inductive)

Injected DC current via electrodesInduced primary magnetic field via natural EM fields

Induced primary magnetic field via loop

Measured

Electrical potential

Decay of electrical potential

Ratio of E and H fields

Secondary magnetic field

(or its decay)

Resistivity Resistivity & Chargeability Conductivity Conductivity

Overview

Page 9: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 9

Contents

β€’ Introductiono Maxwell Equationso Inductiono Sourceso Example

β€’ EM theoryo Divergence & Curlo Diffusion equationo 1D Magnetotellurico Skin Deptho Apparent Resistivity & Phase

β€’ 2D MT Introductiono Example

Page 10: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 10

Electromagnetic Induction

Ampere’s Law (1826)

electric current density (A/m2)magnetic field intensity (A/m)

Faraday’s Law (1831)

magnetic induction (Wb/m2 or T)magnetic field intensity (V/m)

(magneto) quasi-static approximation , i.e. separation of electrical charges occur sufficiently slowly that the system can be taken to be in equilibrium at all times

e.g. http://farside.ph.utexas.edu/teaching/302l/lectures/node70.htmlhttp://farside.ph.utexas.edu/teaching/302l/lectures/node85.html

Page 11: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 11

Electromagnetic Induction

Simpson F. and Bahr K, 2005, p.18

Page 12: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 12

Primary field

Electromagnetic Induction

Plane Wave Source

𝐻 π‘₯

𝐸𝑦

Faraday’s Law

Ampere’s Law

Ohm’s Law𝐻 π‘₯

𝐸𝑦

𝐸𝑦

𝐻 π‘₯

45∘

Page 13: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 13

Magnetotelluric

Sources

Page 14: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 14

Magnetotelluric

Simpson F. and Bahr K, 2005, p.3

Sources

Power spectrum: signal's power (energy per unit time) falling within given frequency bins

Page 15: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 15

Magnetotelluric

Simpson F. and Bahr K, 2005, p.3

Applications

β€’ Mineral exploration

β€’ Hydrocarbon exploration (oil/gas)

β€’ Deep crustal studies

β€’ Geothermal studies

β€’ Groundwater monitoring

β€’ Earthquake monitoring

Page 16: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 16

Magnetotelluric

Hill et al., 2009

Example 2D-MT resistivity model

β€’ White and red dots show the locations of the magnetotelluric measurements; measurement sites shown in red were used for 2D inversion.

β€’ The east–west line (red) shows the profile onto which these measurements were projected. The coloured area shows the region of high conductances. (=conductivity X thickness)

β€’ The green-to-orange transition corresponds to a conductance of 3000 Siemens.

β€’ Locations of MT measurement sites, Mount St Helens and nearby Cascades volcanoes.

Page 17: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 17

Magnetotelluric

Hill et al., 2009

the conductivity anomalies are caused by the presence of partial melt

Example 2D-MT resistivity model after inversion

Page 18: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 18

EM Theory

π›»Γ—π…π›»π‘ˆcurlgradient

(πœ•π‘₯πœ• π‘¦πœ•π‘§)Γ—(𝐹 π‘₯

𝐹 𝑦𝐹 𝑧

)(πœ•π‘₯π‘ˆπœ• π‘¦π‘ˆπœ•π‘§π‘ˆ )

(πœ•π’š 𝐹 π’›βˆ’πœ•π’› 𝐹 π’šπœ•π’› 𝐹 π’™βˆ’πœ• 𝒙𝐹 π’›πœ•π’™ 𝐹 π’šβˆ’πœ• π’š 𝐹 𝒙

)πœ•π‘₯π‘ˆ +πœ•π‘¦π‘ˆ +πœ•π‘§π‘ˆ

𝛻 βˆ™π…divergence

(πœ•π‘₯πœ• π‘¦πœ•π‘§) βˆ™(

𝐹 π‘₯

𝐹 𝑦𝐹 𝑧

)πœ•π’™πΉ 𝒙+πœ•π’š 𝐹 π’š+πœ•π’› 𝐹 𝒛

(vector) (scalar) (vector)

Page 19: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 19

Divergence (Interpretation)

The divergence measures how much a vector field ``spreads out'' or diverges from a given point, here (0,0):β€’ Left: divergence > 0 since the vector field is β€˜spreading out’‒ Centre: divergence = 0 everywhere since the vectors are not spreading out. β€’ Right: divergence < 0 since the vectors are coming closer together

instead of spreading out.

is the extent to which the vector field flow behaves like a source or a sink at a given point. (If the divergence is nonzero at some point then there must be a source or sink at that position)

http://citadel.sjfc.edu/faculty/kgreen/vector/block2/del_op/node5.html

Page 20: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 20

Curl (Interpretation)

The curl of a vector field measures the tendency for the vector field to β€œswirl around”. (For example, let the vector field represents the velocity vectors of water in a lake. If the vector field swirls around, then when we stick a paddle wheel into the water, it will tend to spin.) β€’ Left: curl > 0 (right-hand-rule thumb is up+)β€’ Centre: curl = 0 everywhere since the field has no β€˜swirling’. β€’ Right: curl 0 since the vectors produce a torque on a test paddle

wheel.

describes the infinitesimal rotation of a vector field ( p.s. The name "curl" was first suggested by James Clerk Maxwell in 1871)

http://citadel.sjfc.edu/faculty/kgreen/vector/block2/del_op/node5.html & Wikipedia (Curl)

Page 21: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 21

EM Theory

(Faraday)

𝛻×𝐄=βˆ’ πœ•ππœ•π‘‘

𝛻×𝐇= 𝐉(Ampere)

Time-Domain Maxwell Equations (magneto-quasi-static)

Note the use of the constitutive relations:

𝐁=μ𝐇 𝐉=πœŽπ„πƒ=Ρ𝐄→ 1ΞΌ 𝛻×𝐄=βˆ’ πœ•π‡ πœ•π‘‘

β†’ 1𝜎 𝛻×𝐇=𝐄

first order, coupled PDEs

Also note that generally

ΞΌ=ΞΌ (π‘₯ , 𝑦 . 𝑧 ) 𝜎=𝜎 (π‘₯ , 𝑦 .𝑧 )

Page 22: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 22

EM Theory

(Faraday)

(Ampere)

Time-Domain Maxwell Equations (magneto-quasi-static)

1ΞΌ 𝛻×𝐄=βˆ’ πœ•π‡

πœ•π‘‘

1𝜎 𝛻×𝐇=𝐄

Second order, uncoupled PDEs

to uncouple, take the curl

→𝛻× 1ΞΌ 𝛻×𝐄=βˆ’ πœ• πœ•π‘‘ (𝛻×𝐇 )

→𝛻× 1𝜎 𝛻×𝐇=(𝛻×𝐄 )

Page 23: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 23

EM Theory

Time-Domain Maxwell Equations (magneto-quasi-static)

Second order, uncoupled PDEs

→𝛻× 1ΞΌ 𝛻×𝐄=βˆ’πœŽ πœ•π„πœ•π‘‘

→𝛻× 1𝜎 𝛻×𝐇=βˆ’ΞΌ πœ•π‡ πœ•π‘‘

𝐄 (𝑑 )=𝐄0𝑒𝑖 πœ”π‘‘

𝐇 (𝑑 )=𝐇0π‘’π‘–πœ”π‘‘

Plane wave source sinusoidal time variation

where the angular frequency and the imaginary unit

β€’ Complex numbers arise e.g. from equations such as .

β€’ Generally complex numbers have a real and imaginary part and are written as where is the real part and the imaginary part.

β€’ Complex numbers can also be written as

β€’ Compact way to describe waves

Page 24: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 24

EM Theory

Time-Domain Maxwell Equations (magneto-quasi-static)

Second order, uncoupled PDEs

→𝛻× 1ΞΌ 𝛻×𝐄=βˆ’πœŽ πœ•π„πœ•π‘‘ =βˆ’ π‘–πœŽ πœ”π„

→𝛻× 1𝜎 𝛻×𝐇=βˆ’ΞΌ πœ•π‡ πœ•π‘‘ =βˆ’π‘– ΞΌπœ”π‡

𝐄 (𝑑 )=𝐄0𝑒𝑖 πœ”π‘‘

𝐇 (𝑑 )=𝐇0π‘’π‘–πœ”π‘‘

Plane wave source sinusoidal time variation

where the angular frequency and the imaginary unit

β€’ Complex numbers arise e.g. from equations such as .

β€’ Generally complex numbers have a real and imaginary part and are written as where is the real part and the imaginary part.

β€’ Complex numbers can also be written as

β€’ Compact way to describe waves

Page 25: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 25

EM Theory

Frequency Domain Diffusion Equations

Second order, uncoupled PDEs

General equations for inductive EM

→𝛻× 1ΞΌ 𝛻×𝐄+π‘–πœ”πœŽπ„=0

→𝛻× 1𝜎 𝛻×𝐇+𝑖 πœ” μ𝐇=0

Page 26: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 26

EM Theory

1D solution

Diffusion Equations (Frequency Domain)

𝛻×𝛻×𝐅=𝛻 (𝛻 βˆ™π… )βˆ’ (𝛻 βˆ™π›» )𝐅with vector identity

→𝛻 (𝛻 βˆ™π„ )⏞¿ 0

βˆ’ (𝛻 βˆ™π›» )𝐄=βˆ’iωμσ𝐄

→𝛻 (𝛻 βˆ™π‡ )⏟¿ 0

βˆ’ (𝛻 βˆ™π›» )𝐇=βˆ’iΟ‰ μσ𝐇

→𝛻2π„βˆ’iωμσ𝐄=0

→𝛻2π‡βˆ’iΟ‰ μσ𝐇=0

Page 27: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 27

EM Theory

1D solution

𝛻 βˆ™π„=𝟎 𝛻 βˆ™π‡=𝟎Divergence of Ampere’s law

→𝛻 βˆ™π›»Γ—π„=βˆ’π›» βˆ™ πœ•ππœ•π‘‘ =βˆ’ πœ•πœ•π‘‘ (𝛻 βˆ™π)=0

→𝛻 βˆ™π=0 (Gauss law for magnetism, i.e. no magnetic monopoles)

Divergence of Faraday’s law

→𝛻 βˆ™π›»Γ—π‡=𝛻 βˆ™ 𝐉=𝛻 βˆ™ (σ𝐄 )=0𝛻 βˆ™ (σ𝐄)=Οƒ 𝛻 βˆ™π„+𝐄 βˆ™π›» Οƒ=0→σ𝛻 βˆ™π„=βˆ’π„ βˆ™π›»Οƒ

𝛻 Οƒ=0→𝛻 βˆ™π„=0

via Cartesian coordinates

Proof

Page 28: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 28

𝑧<0

𝑧>0

EM Theory

1D solution

→𝛻2π…βˆ’iΟ‰ μσ𝐅=0⇔𝐅=𝐅1𝑒𝑖ωt βˆ’π‘žπ‘§+𝐅2𝑒𝑖ωt+π‘žπ‘§

General solution for second-order PDE:

decreases in amplitude with z

increases in amplitude with z unphysical

Simpson F. and Bahr K, 2005, p.21

Page 29: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 29

EM Theory

1D solution

𝐅=𝐅1𝑒𝑖ωt βˆ’π‘žπ‘§

Taking the second derivative with respect to z

Simpson F. and Bahr K, 2005, p.22

πœ•2

πœ•π‘§ 2𝐅=π‘ž2𝐅1𝑒𝑖ωt βˆ’π‘žπ‘§=π‘ž2𝐅↔

πœ•2

πœ• 𝑧 2π…βˆ’iωμσ𝐅=0

β†’π‘ž=√ 𝑖ωμσ=βˆšπ‘–βˆšΟ‰ ΞΌΟƒ= (1+ 𝑖 ) βˆšΟ‰ΞΌΟƒ /2=βˆšΟ‰ΞΌΟƒ /2+ π‘–βˆšΟ‰ΞΌΟƒ /2Real part Imaginary part

→𝑝=1β„œπ”’ (π‘ž )

=√ 2ωμσ

Skin Depth (Penetration Depth)

Page 30: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 30

EM Theory

1D solution

𝐅=𝐅1𝑒𝑖ωt βˆ’π‘žπ‘§

Taking the second derivative with respect to z

Simpson F. and Bahr K, 2005, p.22

πœ•2

πœ•π‘§ 2𝐅=π‘ž2𝐅1𝑒𝑖ωt βˆ’π‘žπ‘§=π‘ž2𝐅↔

πœ•2

πœ• 𝑧 2π…βˆ’ iωμσ𝐅=0

β†’π‘ž=√ 𝑖ωμσ=βˆšπ‘–βˆšΟ‰ ΞΌΟƒ= (1+ 𝑖 ) βˆšΟ‰ΞΌΟƒ /2=βˆšΟ‰ΞΌΟƒ /2+ π‘–βˆšΟ‰ΞΌΟƒ /2Real part Imaginary part

→𝑝=1β„œπ”’ (π‘ž )

=√ 2ωμσ

Skin Depth (Penetration Depth)

For angular frequency for a half-space with conductivity

Page 31: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 31

EM Theory

1D solution 𝜎=( piecewise ) constant ,πœ‡β‰‘constantπœ‡β†’πœ‡0=4πœ‹ βˆ™10βˆ’7

Simpson F. and Bahr K, 2005, p.22 & http://userpage.fu-berlin.de/~mtag/MT-principles.html

→𝑝=1β„œπ”’ (π‘ž )

=√ 2ωμσ Skin Depth (Penetration Depth)

β‰ˆ 107

4 0

Page 32: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 32

EM Theory

1D solution

Simpson F. and Bahr K, 2005, p.22

π‘ž=βˆšΟ‰ΞΌΟƒ /2+βˆšπ‘–Ο‰ΞΌΟƒ /2

Real part Imaginary part

The inverse of q is the Schmucker-Weidelt Transfer Function

𝐢=1π‘ž=

𝑝2 +𝑖 𝑝2

and𝑝=1β„œπ”’ (π‘ž )

=√2/ωμσ

..has dimensions of length but is complex

The Transfer Function C establishes a linear relationship between the physical properties that are measured in the field.

Page 33: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 33

EM Theory

1D solution

Simpson F. and Bahr K, 2005, p.22

Schmucker-Weidelt Transfer Function

𝐢=1π‘ž=

𝑝2 +𝑖 𝑝2with𝑝=√2/ωμσ

𝐸π‘₯=𝐸1π‘₯𝑒𝑖ωt βˆ’π‘žπ‘§β†’

πœ•πΈπ‘₯

πœ• 𝑧 =βˆ’π‘žπΈπ‘₯

We had with the general solution earlier

Therefore

(𝛻×𝐄 )𝑦=πœ•πΈπ‘₯

πœ• 𝑧 =βˆ’ 𝑖ωμ𝐻 𝑦

However Faraday’s law is

βˆ’π‘–Ο‰ΞΌπ» 𝑦=βˆ’π‘ž 𝐸π‘₯→𝐢= 1π‘ž= 1𝑖ωμ

𝐸π‘₯

𝐻 𝑦=βˆ’ 1

𝑖ωμ𝐸𝑦

𝐻π‘₯

Page 34: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 34

EM Theory

1D solution

Simpson F. and Bahr K, 2005, p.22

Schmucker-Weidelt Transfer Function

𝐢= 1π‘ž= 1𝑖ωμ

𝐸π‘₯

𝐻 𝑦=βˆ’ 1

𝑖ωμ𝐸 𝑦

𝐻 π‘₯

β€’ is calculated from measured and fields (or and ) .β€’ from the apparent resistivity can be calculated:

with q=βˆšπ‘–Ο‰ΞΌΟƒβ†’|π‘ž|2=ωμσ→σ=|π‘ž|2

ωμor ρ= 1

|π‘ž|2ωμ

→ρ=|𝐢|2ωμapparent resistivity

Page 35: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 35

EM Theory

Apparent Resistivity and Phase

Simpson F. and Bahr K, 2005, p.22

πœ™=tanβˆ’1(β„‘π”ͺπΆβ„œπ”’πΆ )phase

πœŒπ‘Ž=|𝐢|2Ο‰ ΞΌapparent resistivity

The phase is the lag between the E and H field and together with apparent resistivity one of the most important parameters in MT

Page 36: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 36

EM Theory

Apparent Resistivity and Phase

Simpson F. and Bahr K, 2005, p.26

For a homogeneous half space:

β€’ diagnostic of substrata in which resistivity increases with depth

β€’ diagnostic of substrata in which resistivity decreases with depth

πœŒπ‘Ž=|𝐢|2Ο‰ ΞΌ πœ™= tanβˆ’1(β„‘π”ͺπΆβ„œπ”’πΆ ) 𝐢=𝑝2 +𝑖 𝑝2

with𝑝=√2/ωμσ

Page 37: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 37

EM Theory

Simpson F. and Bahr K, 2005, p.27

Page 38: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 38

2D-MT Introduction

Simpson F. and Bahr K, 2005, p.27

For this 2-D case, EM fields can be decoupled into two independent modes: β€’ E-fields parallel to strike with induced B-fields perpendicular to strike and in

the vertical plane (E-polarisation or TE mode).β€’ B-fields parallel to strike with induced E-fields perpendicular to strike and in

the vertical plane (B-polarisation or TM mode).

Page 39: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 39

2D-MT Introduction

Simpson F. and Bahr K, 2005, p.30

Page 40: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 40

Numerical Modelling in 2D

2D solution

TE-mode (E-Polarisation)

𝛻 βˆ™ (𝛻𝐸𝒙 )βˆ’π‘–πœ”πœ‡πœŽ 𝐸π‘₯=0

Numerical schemes, e.g.:β€’ Finite Differences β€’ Finite Elements

Escript Finite Element Solver (Geocomp UQ)

Page 41: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 41

Dirichlet boundary conditions via a single analytical 1D solution applied Left and Right; Top & Bottom via interpolation

Οƒ = 10-14 S/m

Οƒ = 0.1 S/m

Οƒ = 0.01 S/m

Numerical Modelling in 2D

Page 42: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 42

Electric Field (Imaginary) Electric Field (Real)

Numerical Modelling in 2D

Page 43: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 43

Apparent Resistivity at selected station (all frequencies)

Numerical Modelling in 2D

Page 44: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 44

σ = 0.4 S/mσ = 0.001 S/m

Οƒ = 10-14 S/m

Οƒ = 0.2 S/m

σ = 0.1 S/mσ = 0.04 S/m

# Zones = 71389

# Nodes = 36343

Numerical Modelling in 2D

Page 45: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 45

Real Part Imaginary Part

Numerical Modelling in 2D

Page 46: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 46

Apparent Resistivity

f = 1 Hz

Numerical Modelling in 2D

r = 2.5 Ξ©mr = 1000 Ξ©m

r = 10 Ξ©mr = 25 Ξ©mSkin-depth

r = 2 Ξ©m

Page 47: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 47

References

Simpson F. and Bahr K.: β€œPractical magnetotellurics”, 2005, Cambridge University Press

Cagniard, L. (1953) Basic theory of the magneto-telluric method of geophysical prospecting, Geophysics, 18, 605–635

Hill G J., Caldwell T.G, Heise W., Chertkoff D.G., Bibby H.M., Burgess M.K., Cull J.P., Cas R.A.F.: "Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data", Nature Geosci., 2009, V2, pp.785

Page 48: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 48

Unused slides

Page 49: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 49

EM Theory

(Faraday)

→𝛻 βˆ™π›»Γ—π„=βˆ’π›» βˆ™ πœ•ππœ•π‘‘ =βˆ’ πœ•πœ•π‘‘ (𝛻 βˆ™π)=0

𝛻×𝐄=βˆ’ πœ•ππœ•π‘‘

→𝛻 βˆ™π=0 (Gauss law for magnetism)

via Cartesian coordinates

Page 50: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 50

𝛻×𝐇= 𝐉+ πœ•πƒπœ•π‘‘(Ampere)

EM Theory

→𝛻 βˆ™ 𝐉=βˆ’ πœ•πœ•π‘‘ (𝛻 βˆ™πƒ )

(Gauss law)

→𝛻 βˆ™ 𝐉+𝛻 βˆ™ πœ•πƒπœ• t =𝛻 βˆ™ 𝐉+ πœ•πœ•π‘‘ (𝛻 βˆ™πƒ )=0

however, the rate of change of the charge density ρ equals the divergence of the current density J Continuity equation

→𝛻 βˆ™ 𝐉=βˆ’ πœ•πœ•π‘‘ (𝛻 βˆ™πƒ )=βˆ’ πœ•

πœ•π‘‘ ρ →𝛻 βˆ™πƒ=𝜌

Page 51: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 51

2D-MT Introduction

Simpson F. and Bahr K, 2005, p.28

(Faraday)

(Ampere) 𝛻×𝐇=(πœ•π’š π»π’›βˆ’πœ•π’› πΈπ’šπœ•π’›π» π’™βˆ’πœ• π’™πΈπ’›πœ•π’™π» π’šβˆ’πœ• π’šπΈπ’™

)=(πœ•π’šπ» π’›βˆ’πœ•π’›π» π’šπœ•π’›π» π’™βˆ’πœ•π’šπ» 𝒙

)=Οƒ (πΈπ’™πΈπ’šπΈπ’›

)

𝛻×𝐄=(πœ•π’š πΈπ’›βˆ’πœ•π’› πΈπ’šπœ•π’› 𝐸𝒙 βˆ’πœ•π’™πΈπ’›πœ•π’™πΈπ’š βˆ’πœ•π’šπΈπ’™

)=(πœ•π’š πΈπ’›βˆ’πœ•π’› πΈπ’šπœ•π’› πΈπ’™βˆ’πœ•π’šπΈπ’™

)=βˆ’π‘–πœ”πœ‡ (𝐻𝒙𝐻 π’šπ»π’›

)

TE-mode (E-Polarisation) TM-mode (B-Polarisation)

Οƒ 𝐸 𝒙=πœ•π’šπ» π’›βˆ’πœ•π’›π» π’š

πœ•π’› 𝐸𝒙=βˆ’π‘– πœ”πœ‡π» π’š

πœ•π’š 𝐸𝒙=π‘–πœ”πœ‡π» 𝒛

βˆ’π‘– πœ”πœ‡π» 𝒙=πœ•π’šπΈπ’›βˆ’πœ•π’› πΈπ’š

πœ•π’›π» 𝒙=Οƒ πΈπ’š

πœ•π’š 𝐻𝒙=βˆ’Οƒ 𝐸𝒛

Page 52: The Electromagnetic (EM)  Method Magnetotelluric (MT)

ERTH2020 52

Numerical Modelling in 2D

2D solution

Οƒ 𝐸 𝒙=πœ•π’šπ» π’›βˆ’πœ•π’›π» π’š

πœ•π’› 𝐸𝒙=βˆ’π‘– πœ”πœ‡π» π’š

πœ•π’š 𝐸𝒙=π‘–πœ”πœ‡π» 𝒛

TE-mode (E-Polarisation)

πœ•π’› πœ•π’› 𝐸𝒙=βˆ’π‘–πœ”πœ‡πœ•π’›π» π’š

πœ•π’šπœ• π’šπΈπ’™=π‘–πœ”πœ‡πœ• π’šπ» 𝒛

πœ•π’šπœ• π’šπΈπ’™+πœ•π’›πœ•π’› 𝐸𝒙=𝑖 πœ”πœ‡ (πœ•π‘¦π» π‘§βˆ’πœ•π‘§ 𝐻 𝑦 )=π‘–πœ”πœ‡πœŽ 𝐸π‘₯

𝛻 βˆ™ (𝛻𝐸𝒙 )βˆ’π‘–πœ”πœ‡πœŽ 𝐸π‘₯=0 Scalar PDE of


Recommended