Transcript
  • Research ArticleHardy-Littlewood-Sobolev Inequalities on 𝑝-Adic CentralMorrey Spaces

    Qing Yan Wu and Zun Wei Fu

    Department of Mathematics, Linyi University, Linyi, Shandong 276005, China

    Correspondence should be addressed to Zun Wei Fu; [email protected]

    Received 21 October 2014; Accepted 15 December 2014

    Academic Editor: Yoshihiro Sawano

    Copyright Β© 2015 Q. Y. Wu and Z. W. Fu. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    We establish the Hardy-Littlewood-Sobolev inequalities on 𝑝-adic central Morrey spaces. Furthermore, we obtain the πœ†-centralBMO estimates for commutators of 𝑝-adic Riesz potential on 𝑝-adic central Morrey spaces.

    1. Introduction

    Let 0 < 𝛼 < 𝑛. The Riesz potential operator 𝐼𝛼is defined by

    setting, for all locally integrable functions 𝑓 on R𝑛,

    𝐼𝛼𝑓 (π‘₯) =

    1

    𝛾𝑛(𝛼)

    ∫R𝑛

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›Όπ‘‘π‘¦, (1)

    where 𝛾𝑛(𝛼) = πœ‹

    𝑛/2

    2𝛼

    Ξ“(𝛼/2)/Ξ“((𝑛 βˆ’ 𝛼)/2). It is closely relatedto the Laplacian operator of fractional degree. When 𝑛 > 2and 𝛼 = 2, 𝐼

    𝛼𝑓 is a solution of Poisson equation βˆ’Ξ”π‘’ =

    𝑓. The importance of Riesz potentials is owing to the factthat they are smooth operators and have been extensivelyused in various areas such as potential analysis, harmonicanalysis, and partial differential equations. For more detailsabout Riesz potentials one can refer to [1].

    This paper focuses on the Riesz potentials on 𝑝-adicfield. In the last 20 years, the field of 𝑝-adic numbers Q

    𝑝

    has been intensively used in theoretical and mathematicalphysics (cf. [2–12]). And it has already penetrated intensivelyinto several areas of mathematics and its applications, amongwhich harmonic analysis on 𝑝-adic field has been drawingmore and more concern (see [13–22] and references therein).

    For a prime number 𝑝, the field of 𝑝-adic numbers Q𝑝

    is defined as the completion of the field of rational numbersQ with respect to the non-Archimedean 𝑝-adic norm | β‹… |

    𝑝,

    which satisfies |π‘₯|𝑝= 0 if and only if π‘₯ = 0; |π‘₯𝑦|

    𝑝=

    |π‘₯|𝑝|𝑦|𝑝; |π‘₯ + 𝑦|

    𝑝≀ max{|π‘₯|

    𝑝, |𝑦|𝑝}. Moreover, if |π‘₯|

    𝑝̸= |𝑦|𝑝,

    then |π‘₯ Β± 𝑦|𝑝= max{|π‘₯|

    𝑝, |𝑦|𝑝}. It is well-known that Q

    𝑝

    is a typical model of non-Archimedean local fields. If anynonzero rational number π‘₯ is represented as π‘₯ = 𝑝𝛾(π‘š/𝑛),where 𝛾 = 𝛾(π‘₯) ∈ Z and integers π‘š, 𝑛 are indivisible by 𝑝,then |π‘₯|

    𝑝= π‘βˆ’π›Ύ.

    The space Q𝑛𝑝= Q𝑝× Q𝑝× β‹… β‹… β‹… Γ— Q

    𝑝consists of points

    π‘₯ = (π‘₯1, π‘₯2, . . . , π‘₯

    𝑛), where π‘₯

    π‘—βˆˆ Q𝑝, 𝑗 = 1, 2, . . . , 𝑛. The 𝑝-

    adic norm onQ𝑛𝑝is

    |π‘₯|𝑝:= max1≀𝑗≀𝑛

    π‘₯𝑗

    𝑝, π‘₯ ∈ Q

    𝑛

    𝑝. (2)

    Denote by

    𝐡𝛾(π‘Ž) = {π‘₯ ∈ Q

    𝑛

    𝑝: |π‘₯ βˆ’ π‘Ž|

    𝑝≀ 𝑝𝛾

    } (3)

    the ball of radius 𝑝𝛾 with center at π‘Ž ∈ Q𝑛𝑝and by

    𝑆𝛾(π‘Ž) = 𝐡

    𝛾(π‘Ž) \ 𝐡

    π›Ύβˆ’1(π‘Ž) = {π‘₯ ∈ Q

    𝑛

    𝑝: |π‘₯ βˆ’ π‘Ž|

    𝑝= 𝑝𝛾

    } (4)

    the sphere of radius 𝑝𝛾 with center at π‘Ž ∈ Q𝑛𝑝, where 𝛾 ∈ Z. It

    is clear that

    𝐡𝛾(π‘Ž) = ⋃

    π‘˜β‰€π›Ύ

    π‘†π‘˜(π‘Ž) . (5)

    It is well-known that Q𝑛𝑝is a classical kind of locally

    compact Vilenkin groups. A locally compact Vilenkin group𝐺 is a locally compact Abelian group containing a strictlydecreasing sequence of compact open subgroups {𝐺

    𝑛}∞

    𝑛=βˆ’βˆž

    Hindawi Publishing CorporationJournal of Function SpacesVolume 2015, Article ID 419532, 7 pageshttp://dx.doi.org/10.1155/2015/419532

  • 2 Journal of Function Spaces

    such that (1) βˆͺβˆžπ‘›=βˆ’βˆž

    𝐺𝑛= 𝐺 and ∩∞

    𝑛=βˆ’βˆžπΊπ‘›= 0 and (2)

    sup{order(𝐺𝑛/𝐺𝑛+1

    : 𝑛 ∈ Z)} < ∞. For several decades,parallel to the 𝑝-adic harmonic analysis, a development wasunder way of the harmonic analysis on locally compactVilenkin groups (cf. [23–25] and references therein).

    Since Q𝑛𝑝is a locally compact commutative group under

    addition, it follows from the standard analysis that there existsa Haar measure 𝑑π‘₯ on Q𝑛

    𝑝, which is unique up to a positive

    constant factor and is translation invariant.We normalize themeasure 𝑑π‘₯ by the equality

    ∫𝐡0(0)

    𝑑π‘₯ =𝐡0 (0)

    𝐻 = 1, (6)

    where |𝐸|𝐻denotes the Haar measure of a measurable subset

    𝐸 ofQ𝑛𝑝. By simple calculation, we can obtain that

    𝐡𝛾(π‘Ž)𝐻= 𝑝𝛾𝑛

    ,

    𝑆𝛾(π‘Ž)𝐻= 𝑝𝛾𝑛

    (1 βˆ’ π‘βˆ’π‘›

    )

    (7)

    for any π‘Ž ∈ Q𝑛𝑝. We should mention that the Haar measure

    takes value in R; there also exist 𝑝-adic valued measures (cf.[26, 27]). For a more complete introduction to the 𝑝-adicfield, one can refer to [22] or [10].

    On 𝑝-adic field, the 𝑝-adic Riesz potential 𝐼𝑝𝛼[22] is

    defined by

    𝐼𝑝

    𝛼𝑓 (π‘₯) =

    1

    Γ𝑛(𝛼)

    ∫Q𝑛𝑝

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›Ό

    𝑝

    𝑑𝑦, (8)

    where Γ𝑛(𝛼) = (1 βˆ’ 𝑝

    π›Όβˆ’π‘›

    )/(1 βˆ’ π‘βˆ’π›Ό

    ), 𝛼 ∈ C, 𝛼 ΜΈ= 0. When𝑛 = 1, Haran [4, 28] obtained the explicit formula of Rieszpotentials onQ

    𝑝and developed analytical potential theory on

    Q𝑝. Taibleson [22] gave the fundamental analytic properties

    of the Riesz potentials on local fields including Q𝑛𝑝, as well

    as the classical Hardy-Littlewood-Sobolev inequalities. Kim[18] gave a simple proof of these inequalities by using the𝑝-adic version of the Calderón-Zygmund decompositiontechnique. Volosivets [29] investigated the boundedness forRiesz potentials on generalized Morrey spaces. Like onEuclidean spaces, using the Riesz potential with 𝑛 > 2 and𝛼 = 2, one can introduce the 𝑝-adic Laplacians [13].

    In this paper, we will consider the Riesz potentials andtheir commutators with 𝑝-adic central BMO functions on 𝑝-adic central Morrey spaces. Alvarez et al. [30] studied therelationship between central BMO spaces andMorrey spaces.Furthermore, they introduced πœ†-central BMO spaces andcentralMorrey spaces, respectively. In [31], we introduce their𝑝-adic versions.

    Definition 1. Let πœ† ∈ R and 1 < π‘ž < ∞. The 𝑝-adic centralMorrey space οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝) is defined by

    π‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝):= supπ›ΎβˆˆZ

    (1

    𝐡𝛾

    1+πœ†π‘ž

    𝐻

    βˆ«π΅π›Ύ

    𝑓 (π‘₯)π‘ž

    𝑑π‘₯)

    1/π‘ž

    < ∞, (9)

    where 𝐡𝛾= 𝐡𝛾(0).

    Remark 2. It is clear that

    πΏπ‘ž,πœ†

    (Q𝑛

    𝑝) βŠ‚ οΏ½Μ‡οΏ½π‘ž,πœ†

    (Q𝑛

    𝑝) ,

    οΏ½Μ‡οΏ½π‘ž,βˆ’1/π‘ž

    (Q𝑛

    𝑝) = πΏπ‘ž

    (Q𝑛

    𝑝) .

    (10)

    When πœ† < βˆ’1/π‘ž, the space οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛𝑝) reduces to {0}; therefore,

    we can only consider the case πœ† β‰₯ βˆ’1/π‘ž. If 1 ≀ π‘ž1< π‘ž2< ∞,

    by Hölder’s inequality,

    οΏ½Μ‡οΏ½π‘ž2,πœ†

    (Q𝑛

    𝑝) βŠ‚ οΏ½Μ‡οΏ½π‘ž1,πœ†

    (Q𝑛

    𝑝) (11)

    for πœ† ∈ R.

    Definition 3. Let πœ† < 1/𝑛 and 1 < π‘ž < ∞. The spaceCBMOπ‘ž,πœ†(Q𝑛

    𝑝) is defined by the condition

    𝑓CBMOπ‘ž,πœ†(Q𝑛

    𝑝)

    := supπ›ΎβˆˆZ

    (1

    𝐡𝛾

    1+πœ†π‘ž

    𝐻

    βˆ«π΅π›Ύ

    𝑓 (π‘₯) βˆ’ 𝑓

    𝐡𝛾

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    < ∞.

    (12)

    Remark 4. When πœ† = 0, the space CBMOπ‘ž,πœ†(Q𝑛𝑝) is just

    CBMOπ‘ž(Q𝑛𝑝), which is defined in [32]. If 1 ≀ π‘ž

    1< π‘ž2< ∞,

    by Hölder’s inequality,

    CBMOπ‘ž2 ,πœ† (Q𝑛𝑝) βŠ‚ CBMOπ‘ž1,πœ† (Q𝑛

    𝑝) (13)

    for πœ† ∈ R. By the standard proof as that inR𝑛, we can see that𝑓CBMOπ‘ž,πœ†(Q𝑛

    𝑝)

    ∼ supπ›ΎβˆˆZ

    infπ‘βˆˆC(

    1

    𝐡𝛾

    1+πœ†π‘ž

    𝐻

    βˆ«π΅π›Ύ

    𝑓 (π‘₯) βˆ’ π‘π‘ž

    𝑑π‘₯)

    1/π‘ž

    .

    (14)

    Remark 5. Formulas (9) and (12) yield that οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛𝑝) is a

    Banach space continuously included in CBMOπ‘ž,πœ†(Q𝑛𝑝).

    Herewe introduce the𝑝-adicweak centralMorrey spaces.

    Definition 6. Let πœ† ∈ R and 1 < π‘ž < ∞. The 𝑝-adic weakcentral Morrey spaceπ‘ŠοΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝) is defined by

    π‘“π‘ŠοΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝)

    := supπ›ΎβˆˆZ

    (sup𝑑>0π‘‘π‘ž{π‘₯ ∈ 𝐡

    𝛾:𝑓 (π‘₯)

    > 𝑑}𝐻

    𝐡𝛾

    1+πœ†π‘ž

    𝐻

    )

    1/π‘ž

    < ∞,

    (15)

    where 𝐡𝛾= 𝐡𝛾(0).

    In Section 2, we will get the Hardy-Littlewood-Sobolevinequalities on 𝑝-adic central Morrey spaces. Namely, under

  • Journal of Function Spaces 3

    some conditions for indexes, 𝐼𝑝𝛼is bounded from οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝) to

    οΏ½Μ‡οΏ½π‘Ÿ,πœ‡

    (Q𝑛𝑝) and is also bounded from οΏ½Μ‡οΏ½1,πœ†(Q𝑛

    𝑝) to π‘ŠοΏ½Μ‡οΏ½π‘Ÿ,πœ‡(Q𝑛

    𝑝).

    In Section 3, we establish the boundedness for commutatorsgenerated by 𝐼𝑝

    𝛼and πœ†-central BMO functions on 𝑝-adic

    central Morrey spaces.Throughout this paper the letter 𝐢 will be used to denote

    various constants, and the various uses of the letter do not,however, denote the same constant.

    2. Hardy-Littlewood-Sobolev Inequalities

    We get the following Hardy-Littlewood-Sobolev inequalitieson 𝑝-adic central Morrey spaces.

    Theorem7. Let𝛼 be a complex numberwith 0 < Re𝛼 < 𝑛 andlet 1 ≀ π‘ž < 𝑛/Re𝛼, 0 < 1/π‘Ÿ = 1/π‘ž βˆ’ Re𝛼/𝑛, πœ† < βˆ’Re𝛼/𝑛,and πœ‡ = πœ† + Re𝛼/𝑛.

    (i) If π‘ž > 1, then 𝐼𝑝𝛼is bounded from οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝) to οΏ½Μ‡οΏ½π‘Ÿ,πœ‡(Q𝑛

    𝑝).

    (ii) If π‘ž = 1, then 𝐼𝑝𝛼

    is bounded from οΏ½Μ‡οΏ½1,πœ†(Q𝑛𝑝) to

    π‘ŠοΏ½Μ‡οΏ½π‘Ÿ,πœ‡

    (Q𝑛𝑝).

    In order to give the proof of this theorem, we need thefollowing result.

    Lemma 8 (see [22]). Let 𝛼 be a complex number with 0 <Re𝛼 < 𝑛 and let 1 ≀ π‘ž < π‘Ÿ < ∞ satisfy 1/π‘Ÿ = 1/π‘ž βˆ’ Re𝛼/𝑛.

    (i) If 𝑓 ∈ πΏπ‘ž(Q𝑛𝑝), π‘ž > 1, then

    𝐼𝑝

    π›Όπ‘“πΏπ‘Ÿ(Q𝑛

    𝑝)≀ π΄π‘žπ‘Ÿ

    π‘“πΏπ‘ž(Q𝑛

    𝑝), (16)

    where π΄π‘žπ‘Ÿis independent of 𝑓.

    (ii) If 𝑓 ∈ 𝐿1(Q𝑛𝑝), 𝑠 > 0, then

    {π‘₯ ∈ Q

    𝑛

    𝑝:𝐼𝑝

    𝛼𝑓 (π‘₯)

    > 𝑠}𝐻≀ (𝐴

    π‘Ÿ

    𝑓𝐿1(Q𝑛

    𝑝)

    𝑠)

    π‘Ÿ

    , (17)

    where π΄π‘Ÿ> 0 is independent of 𝑓.

    Proof ofTheorem 7. Let 𝑓 be a function in οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛𝑝). For fixed

    𝛾 ∈ Z, denote 𝐡𝛾(0) by 𝐡

    𝛾.

    (i) If π‘ž > 1, write

    (1

    𝐡𝛾

    1+πœ‡π‘Ÿ

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼𝑓 (π‘₯)

    π‘Ÿ

    𝑑π‘₯)

    1/π‘Ÿ

    ≀ (1

    𝐡𝛾

    1+πœ‡π‘Ÿ

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼(π‘“πœ’π΅π›Ύ

    ) (π‘₯)

    π‘Ÿ

    𝑑π‘₯)

    1/π‘Ÿ

    + (1

    𝐡𝛾

    1+πœ‡π‘Ÿ

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼(π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    π‘Ÿ

    𝑑π‘₯)

    1/π‘Ÿ

    := 𝐼 + 𝐼𝐼.

    (18)

    For 𝐼, since 1/π‘Ÿ = 1/π‘ž βˆ’ Re𝛼/𝑛 and πœ‡ = πœ† + Re𝛼/𝑛, byLemma 8,

    𝐼 = (1

    𝐡𝛾

    1+πœ‡π‘Ÿ

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼(π‘“πœ’π΅π›Ύ

    ) (π‘₯)

    π‘Ÿ

    𝑑π‘₯)

    1/π‘Ÿ

    ≀𝐡𝛾

    βˆ’1/π‘Ÿβˆ’πœ‡

    𝐻

    (βˆ«π΅π›Ύ

    π‘“πœ’π΅π›Ύ

    (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    β‰€π‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝).

    (19)

    For 𝐼𝐼, we firstly give the following estimate. For π‘₯ ∈ 𝐡𝛾,

    by Hölder’s inequality, we have

    𝐼𝑝

    𝛼(π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    =

    1

    Γ𝑛(𝛼)

    βˆ«π΅π‘

    𝛾

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›Ό

    𝑝

    𝑑𝑦

    ≀1

    Γ𝑛(𝛼)

    βˆ«π΅π‘

    𝛾

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’Re𝛼𝑝

    𝑑𝑦

    =1

    Γ𝑛(𝛼)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    βˆ«π‘†π‘˜

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’Re𝛼𝑝

    𝑑𝑦

    =1

    Γ𝑛(𝛼)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    βˆ«π‘†π‘˜

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) 𝑓 (𝑦)

    𝑑𝑦

    ≀1

    Γ𝑛(𝛼)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼)

    (βˆ«π΅π‘˜

    𝑓 (𝑦)π‘ž

    𝑑𝑦)

    1/π‘ž

    π΅π‘˜1βˆ’1/π‘ž

    𝐻

    ≀1

    Γ𝑛(𝛼)

    π‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1+πœ†

    𝐻

    ≀ 𝐢𝐡𝛾

    πœ‡

    𝐻

    π‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝).

    (20)

    The last inequality is due to the fact that πœ† < βˆ’Re𝛼/𝑛.Consequently,

    𝐼𝐼 = (1

    𝐡𝛾

    1+πœ‡π‘Ÿ

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼(π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    π‘Ÿ

    𝑑π‘₯)

    1/π‘Ÿ

    ≀ πΆπ‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝).

    (21)

    The above estimates imply that

    𝐼𝑝

    π›Όπ‘“οΏ½Μ‡οΏ½π‘Ÿ,πœ‡(Q𝑛

    𝑝)≀ 𝐢

    π‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝). (22)

  • 4 Journal of Function Spaces

    (ii) If π‘ž = 1, set 𝑓1= π‘“πœ’π΅π›Ύ

    and 𝑓2= 𝑓 βˆ’ 𝑓

    1; by Lemma 8,

    we have{π‘₯ ∈ 𝐡

    𝛾:𝐼𝑝

    𝛼𝑓1(π‘₯) > 𝑑}

    𝐻

    ≀ 𝐢(

    𝑓1𝐿1(Q𝑛

    𝑝)

    𝑑)

    π‘Ÿ

    = πΆπ‘‘βˆ’π‘Ÿ

    (βˆ«π΅π›Ύ

    𝑓 (π‘₯) 𝑑π‘₯)

    π‘Ÿ

    ≀ πΆπ‘‘βˆ’π‘Ÿπ΅π›Ύ

    (1+πœ†)π‘Ÿ

    𝐻

    π‘“π‘Ÿ

    οΏ½Μ‡οΏ½1,πœ†(Q𝑛𝑝)

    = πΆπ‘‘βˆ’π‘Ÿπ΅π›Ύ

    1+πœ‡π‘Ÿ

    𝐻

    π‘“π‘Ÿ

    οΏ½Μ‡οΏ½1,πœ†(Q𝑛𝑝).

    (23)

    On the other hand, by the same estimate as (30), we have

    𝐼𝑝

    𝛼𝑓2(π‘₯) ≀ 𝐢

    𝐡𝛾

    πœ‡

    𝐻

    𝑓2οΏ½Μ‡οΏ½1,πœ†(Q𝑛

    𝑝). (24)

    Then using Chebyshev’s inequality, we obtain

    {π‘₯ ∈ 𝐡

    𝛾:𝐼𝑝

    𝛼𝑓2(π‘₯) > 𝑑}

    𝐻≀ π‘‘βˆ’π‘Ÿ

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼𝑓2(π‘₯)π‘Ÿ

    𝑑π‘₯

    ≀ πΆπ‘‘βˆ’π‘Ÿπ΅π›Ύ

    1+πœ‡π‘Ÿ

    𝐻

    𝑓2π‘Ÿ

    οΏ½Μ‡οΏ½1,πœ†(Q𝑛𝑝)

    ≀ πΆπ‘‘βˆ’π‘Ÿπ΅π›Ύ

    1+πœ‡π‘Ÿ

    𝐻

    π‘“π‘Ÿ

    οΏ½Μ‡οΏ½1,πœ†(Q𝑛𝑝).

    (25)

    Since𝐼𝑝

    𝛼𝑓 (π‘₯)

    ≀𝐼𝑝

    𝛼𝑓1(π‘₯) +𝐼𝑝

    𝛼𝑓2(π‘₯) , (26)

    we get

    {π‘₯ ∈ 𝐡

    𝛾:𝐼𝑝

    𝛼𝑓 (π‘₯)

    > 𝑑}𝐻≀{π‘₯ ∈ 𝐡

    𝛾:𝐼𝑝

    𝛼𝑓1(π‘₯) >

    𝑑

    2}𝐻

    +{π‘₯ ∈ 𝐡

    𝛾:𝐼𝑝

    𝛼𝑓2(π‘₯) >

    𝑑

    2}𝐻

    ≀ πΆπ‘‘βˆ’π‘Ÿπ΅π›Ύ

    1+πœ‡π‘Ÿ

    𝐻

    π‘“π‘Ÿ

    οΏ½Μ‡οΏ½1,πœ†(Q𝑛𝑝).

    (27)

    Therefore,

    (π‘‘π‘Ÿ{π‘₯ ∈ 𝐡

    𝛾:𝐼𝑝

    𝛼𝑓 (π‘₯)

    > 𝑑}𝐻

    𝐡𝛾

    1+πœ‡π‘Ÿ

    𝐻

    )

    1/π‘Ÿ

    ≀ 𝐢𝑓�̇�1,πœ†(Q𝑛

    𝑝), (28)

    for any 𝑑 > 0 and 𝛾 ∈ Z. This completes the proof.

    For application, we now introduce a pseudo-differentialoperator𝐷𝛼 defined by Vladimirov in [33].

    The operator 𝐷𝛼 : πœ“ β†’ π·π›Όπœ“ is defined as convolutionof generalized functions 𝑓

    βˆ’π›Όand πœ“:

    𝐷𝛼

    πœ“ = π‘“βˆ’π›Όβˆ— πœ“, 𝛼 ΜΈ= βˆ’1, (29)

    where 𝑓𝛼= |π‘₯|π›Όβˆ’1

    𝑝/Ξ“(𝛼) and Ξ“(𝛼) = (1 βˆ’ π‘π›Όβˆ’1)/(1 βˆ’ π‘βˆ’π›Ό).

    Let us consider the equation

    𝐷𝛼

    πœ“ = 𝑔, 𝑔 ∈ E

    , (30)

    where E is the space of linear continuous functionals on Eand here E denotes the set of locally constant functions onQ𝑝. A complex-valued function 𝑓(π‘₯) defined onQ

    𝑝is called

    locally constant if for any point π‘₯ ∈ Q𝑝there exists an integer

    𝑙(π‘₯) ∈ Z such that

    𝑓 (π‘₯ + π‘₯

    ) = 𝑓 (π‘₯) ,

    π‘₯𝑝≀ 𝑝𝑙(π‘₯)

    .

    (31)

    The following lemma (page 154 in [10]) gives solutions of(30).

    Lemma 9. For 𝛼 > 0 any solution of (30) is expressed by theformula

    πœ“ = π·βˆ’π›Ό

    𝑔 + 𝐢, (32)

    where 𝐢 is an arbitrary constant; for 𝛼 < 0 a solution of (30) isunique and it is expressed by formula (32) for 𝐢 = 0.

    Combining with Theorem 7, we obtain the followingregular property of the solution.

    Corollary 10. Let 0 < 𝛼 < 1 and let 1 ≀ π‘ž < 1/𝛼, 0 < 1/π‘Ÿ =1/π‘ž βˆ’ 𝛼, πœ† < βˆ’π›Ό, and πœ‡ = πœ† + 𝛼. If 𝑔 ∈ E ∩ οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝), then

    (i) when π‘ž > 1, (30) has a solution in οΏ½Μ‡οΏ½π‘Ÿ,πœ‡(Q𝑛𝑝),

    (ii) when π‘ž = 1, (30) has a solution inπ‘ŠοΏ½Μ‡οΏ½π‘Ÿ,πœ‡(Q𝑛𝑝).

    3. Commutators of 𝑝-Adic Riesz Potential

    In this section, we will establish the πœ†-central BMO estimatesfor commutators 𝐼𝑝,𝑏

    𝛼of 𝑝-adic Riesz potential which is

    defined by

    𝐼𝑝,𝑏

    𝛼𝑓 = 𝑏𝐼

    𝑝

    𝛼𝑓 βˆ’ 𝐼𝑝

    𝛼(𝑏𝑓) , (33)

    for some suitable functions 𝑓.

    Theorem 11. Suppose 0 < Re𝛼 < 𝑛, 1 < π‘ž1< 𝑛/Re𝛼, π‘ž

    1<

    π‘ž2< ∞, and 1/π‘ž = 1/π‘ž

    1+ 1/π‘ž2βˆ’ Re𝛼/𝑛. Let 0 ≀ πœ†

    2< 1/𝑛,

    πœ†1satisfies πœ†

    1< βˆ’πœ†2βˆ’ Re𝛼/𝑛, and πœ† = πœ†

    1+ πœ†2+ Re𝛼/𝑛. If

    𝑏 ∈ πΆπ΅π‘€π‘‚π‘ž2,πœ†2(Q𝑛𝑝), then 𝐼𝑝,𝑏

    𝛼is bounded from οΏ½Μ‡οΏ½π‘ž1 ,πœ†1(Q𝑛

    𝑝) to

    οΏ½Μ‡οΏ½π‘ž,πœ†

    (Q𝑛𝑝), and the following inequality holds:

    𝐼𝑝,𝑏

    π›Όπ‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝)

    ≀ 𝐢 ‖𝑏‖𝐢𝐡𝑀𝑂

    π‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝). (34)

    Before proving this theorem,we need the following result.

    Lemma 12 (see [31]). Suppose that 𝑏 ∈ πΆπ΅π‘€π‘‚π‘ž,πœ†(Q𝑛𝑝) and

    𝑗, π‘˜ ∈ Z, πœ† β‰₯ 0. Then𝑏𝐡𝑗

    βˆ’ π‘π΅π‘˜

    ≀ 𝑝𝑛 𝑗 βˆ’ π‘˜

    β€–π‘β€–πΆπ΅π‘€π‘‚π‘ž,πœ†(Q𝑛𝑝)max {𝐡𝑗

    πœ†

    𝐻

    ,π΅π‘˜πœ†

    𝐻} .

    (35)

  • Journal of Function Spaces 5

    Proof of Theorem 11. Suppose that 𝑓 is a function inοΏ½Μ‡οΏ½π‘ž1,πœ†1(Q𝑛𝑝). For fixed 𝛾 ∈ Z, denote 𝐡

    𝛾(0) by 𝐡

    𝛾. We write

    (1

    𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝,𝑏

    𝛼𝑓 (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    ≀ (1

    𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    (𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    ) (𝐼𝑝

    π›Όπ‘“πœ’π΅π›Ύ

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    + (1

    𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    (𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    ) (𝐼𝑝

    π›Όπ‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    + (1

    𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼((𝑏 βˆ’ 𝑏

    𝐡𝛾

    )π‘“πœ’π΅π›Ύ

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    + (1

    𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼((𝑏 βˆ’ 𝑏

    𝐡𝛾

    )π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    := 𝐽1+ 𝐽2+ 𝐽3+ 𝐽4.

    (36)

    Set 1/π‘Ÿ = 1/π‘ž1βˆ’ Re𝛼/𝑛; then 1/π‘ž = 1/π‘ž

    2+ 1/π‘Ÿ; by

    Lemma 8 and Hölder’s inequality, we have

    𝐽1= (

    1𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    (𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    ) (𝐼𝑝

    π›Όπ‘“πœ’π΅π›Ύ

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    ≀𝐡𝛾

    βˆ’1/π‘ž

    𝐻

    (βˆ«π΅π›Ύ

    𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    π‘ž2

    𝑑π‘₯)

    1/π‘ž2

    β‹… (βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼(π‘“πœ’π΅π›Ύ

    ) (π‘₯)

    π‘Ÿ

    𝑑π‘₯)

    1/π‘Ÿ

    ≀ 𝐢𝐡𝛾

    βˆ’1/π‘Ÿ+πœ†2

    𝐻

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    β‹… (βˆ«π΅π›Ύ

    π‘“πœ’π΅π›Ύ

    (π‘₯)

    π‘ž1

    𝑑π‘₯)

    1/π‘ž1

    ≀ 𝐢𝐡𝛾

    πœ†

    𝐻

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝).

    (37)

    Similarly, denote 1/𝑙 = 1/π‘ž1+ 1/π‘ž

    2; then 1/π‘ž = 1/𝑙 βˆ’

    Re𝛼/𝑛, and by Hölder’s inequality and Lemma 8, we get

    𝐽3= (

    1𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼((𝑏 βˆ’ 𝑏

    𝐡𝛾

    )π‘“πœ’π΅π›Ύ

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    ≀ 𝐢𝐡𝛾

    βˆ’1/π‘ž

    𝐻

    (βˆ«π΅π›Ύ

    (𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    )𝑓 (π‘₯)

    𝑙

    𝑑π‘₯)

    1/𝑙

    ≀ 𝐢𝐡𝛾

    βˆ’1/π‘ž

    𝐻

    (βˆ«π΅π›Ύ

    𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    π‘ž2

    𝑑π‘₯)

    1/π‘ž2

    β‹… (βˆ«π΅π›Ύ

    𝑓 (π‘₯)π‘ž1

    𝑑π‘₯)

    1/π‘ž1

    ≀ 𝐢𝐡𝛾

    πœ†

    𝐻

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝).

    (38)

    To estimate 𝐽2and 𝐽

    4, we firstly give the following

    estimates. For π‘₯ ∈ 𝐡𝛾, by Hölder’s inequality, we obtain

    𝐼𝑝

    𝛼(π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    =

    1

    Γ𝑛(𝛼)

    βˆ«π΅π‘

    𝛾

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›Ό

    𝑝

    𝑑𝑦

    ≀1

    Γ𝑛(𝛼)

    βˆ«π΅π‘

    𝛾

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’Re𝛼𝑝

    𝑑𝑦

    =1

    Γ𝑛(𝛼)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    βˆ«π‘†π‘˜

    𝑓 (𝑦) π‘βˆ’π‘˜(π‘›βˆ’Re𝛼)

    𝑑𝑦

    ≀1

    Γ𝑛(𝛼)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1βˆ’1/π‘ž

    1

    𝐻(βˆ«π‘†π‘˜

    𝑓 (𝑦)π‘ž1

    𝑑𝑦)

    1/π‘ž1

    ≀1

    Γ𝑛(𝛼)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1+πœ†1

    𝐻

    =1

    Γ𝑛(𝛼)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    𝑝(𝛾+1)(π‘›πœ†

    1+Re𝛼)

    1 βˆ’ π‘π‘›πœ†1+Re𝛼

    = 𝐢𝐡𝛾

    πœ†1+Re𝛼/𝑛𝐻

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝),

    (39)

    where the penultimate β€œ=” is due to the fact that πœ†1+Re𝛼/𝑛 <

    βˆ’πœ†2≀ 0. Similarly,

    𝐼𝑝

    𝛼((𝑏 βˆ’ 𝑏

    𝐡𝛾

    )π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    =

    1

    Γ𝑛(𝛼)

    βˆ«π΅π‘

    𝛾

    (𝑏 (𝑦) βˆ’ 𝑏𝐡𝛾

    )𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’π›Ό

    𝑝

    𝑑𝑦

    ≀1

    Γ𝑛(𝛼)

    βˆ«π΅π‘

    𝛾

    𝑏 (𝑦) βˆ’ 𝑏

    𝐡𝛾

    𝑓 (𝑦)

    π‘₯ βˆ’ π‘¦π‘›βˆ’Re𝛼𝑝

    𝑑𝑦

    =1

    Γ𝑛(𝛼)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    βˆ«π‘†π‘˜

    𝑏 (𝑦) βˆ’ 𝑏

    𝐡𝛾

    𝑓 (𝑦) π‘βˆ’π‘˜(π‘›βˆ’Re𝛼)

    𝑑𝑦

    =1

    Γ𝑛(𝛼)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1βˆ’1/π‘ž

    1βˆ’1/π‘ž2

    𝐻

    β‹… (βˆ«π‘†π‘˜

    𝑓 (𝑦)π‘ž1

    𝑑𝑦)

    1/π‘ž1

    (βˆ«π‘†π‘˜

    𝑏 (𝑦) βˆ’ 𝑏

    𝐡𝛾

    π‘ž2

    𝑑𝑦)

    1/π‘ž2

    ≀1

    Γ𝑛(𝛼)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1βˆ’1/π‘ž

    2+πœ†1

    𝐻

    β‹… (βˆ«π΅π‘˜

    𝑏 (𝑦) βˆ’ 𝑏

    𝐡𝛾

    π‘ž2

    𝑑𝑦)

    1/π‘ž2

    ≀1

    Γ𝑛(𝛼)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1βˆ’1/π‘ž

    2+πœ†1

    𝐻

    Γ— [(βˆ«π΅π‘˜

    𝑏 (𝑦) βˆ’ 𝑏

    π΅π‘˜

    π‘ž2

    𝑑𝑦)

    1/π‘ž2

    +π‘π΅π‘˜

    βˆ’ 𝑏𝐡𝛾

    π΅π‘˜1/π‘ž2

    𝐻] .

    (40)

  • 6 Journal of Function Spaces

    Since π‘˜ β‰₯ 𝛾 + 1, by Lemma 12, we haveπ‘π΅π‘˜

    βˆ’ 𝑏𝐡𝛾

    ≀ 𝑝𝑛

    (π‘˜ βˆ’ 𝛾) ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π΅π‘˜πœ†2

    𝐻. (41)

    Thus𝐼𝑝

    𝛼((𝑏 βˆ’ 𝑏

    𝐡𝛾

    )π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    ≀1

    Γ𝑛(𝛼)

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    Γ—

    ∞

    βˆ‘

    π‘˜=𝛾+1

    π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1βˆ’1/π‘ž

    2+πœ†1

    𝐻

    β‹… [π΅π‘˜1/π‘ž2+πœ†2

    𝐻+ 𝑝𝑛

    (π‘˜ βˆ’ 𝛾)π΅π‘˜1/π‘ž2+πœ†2

    𝐻]

    ≀𝐢

    Γ𝑛(𝛼)

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    β‹…

    ∞

    βˆ‘

    π‘˜=𝛾+1

    (π‘˜ βˆ’ 𝛾) π‘βˆ’π‘˜(π‘›βˆ’Re𝛼) π΅π‘˜

    1+πœ†1+πœ†2

    𝐻

    ≀𝐢

    Γ𝑛(𝛼)

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    ∞

    βˆ‘

    π‘˜=𝛾+1

    (π‘˜ βˆ’ 𝛾) π‘π‘˜π‘›πœ†

    = 𝐢𝐡𝛾

    πœ†

    𝐻

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝).

    (42)

    Now by (39) and Hölder’s inequality, we obtain

    𝐽2= (

    1𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    (𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    ) (𝐼𝑝

    π›Όπ‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    ≀ 𝐢𝐡𝛾

    πœ†1+Re𝛼/π‘›βˆ’1/π‘žπ»

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    β‹… (βˆ«π΅π›Ύ

    𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    ≀ 𝐢𝐡𝛾

    πœ†1+Re𝛼/π‘›βˆ’1/π‘ž

    2

    𝐻

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝)

    β‹… (βˆ«π΅π›Ύ

    𝑏 (π‘₯) βˆ’ 𝑏

    𝐡𝛾

    π‘ž2

    𝑑π‘₯)

    1/π‘ž2

    ≀ 𝐢𝐡𝛾

    πœ†

    𝐻

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝).

    (43)

    It follows from (42) that

    𝐽4= (

    1𝐡𝛾

    𝐻

    βˆ«π΅π›Ύ

    𝐼𝑝

    𝛼((𝑏 βˆ’ 𝑏

    𝐡𝛾

    )π‘“πœ’π΅π‘

    𝛾

    ) (π‘₯)

    π‘ž

    𝑑π‘₯)

    1/π‘ž

    ≀ 𝐢𝐡𝛾

    πœ†

    𝐻

    ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝).

    (44)

    The above estimates imply that𝐼𝑝,𝑏

    π›Όπ‘“οΏ½Μ‡οΏ½π‘ž,πœ†(Q𝑛

    𝑝)

    ≀ 𝐢 ‖𝑏‖CBMOπ‘ž2,πœ†2 (Q𝑛𝑝)

    π‘“οΏ½Μ‡οΏ½π‘ž1,πœ†1 (Q𝑛

    𝑝). (45)

    This completes the proof of the theorem.

    Remark 13. Since 𝑝-adic field is a kind of locally com-pact Vilenkin groups, we can further consider the Hardy-Littlewood-Sobolev inequalities on such groups, which ismore complicated and will appear elsewhere.

    Conflict of Interests

    The authors declare that there is no conflict of interestsregarding the publication of this paper.

    Acknowledgments

    This work was partially supported by NSF of China (Grantnos. 11271175, 11171345, and 11301248) and AMEP (DYSP)of Linyi University and Macao Science and TechnologyDevelopment Fund, MSAR (Ref. 018/2014/A1).

    References

    [1] L. Grafakos,Modern Fourier Analysis, vol. 250 ofGraduate Textsin Mathematics, Springer, New York, NY, USA, 2nd edition,2008.

    [2] S. Albeverio and W. Karwowski, β€œA random walk on p-adicsβ€”the generator and its spectrum,” Stochastic Processes and theirApplications, vol. 53, no. 1, pp. 1–22, 1994.

    [3] V.A.Avetisov, A.H. Bikulov, S. V. Kozyrev, andV.A.Osipov, β€œπ‘-adicmodels of ultrametric diffusion constrained by hierarchicalenergy landscapes,” Journal of Physics. A. Mathematical andGeneral, vol. 35, no. 2, pp. 177–189, 2002.

    [4] S. Haran, β€œRiesz potentials and explicit sums in arithmetic,”Inventiones Mathematicae, vol. 101, no. 3, pp. 697–703, 1990.

    [5] A. Khrennikov, p-Adic Valued Distributions in MathematicalPhysics, Kluwer Academic Publishers, Dordrecht, The Nether-lands, 1994.

    [6] A. Khrennikov, Non-Archimedean Analysis: Quantum Para-doxes, Dynamical Systems and Biological Models, Kluwer Aca-demic Publishers, Dordrecht, The Netherlands, 1997.

    [7] A. N. Kochubei, β€œA non-Archimedean wave equation,” PacificJournal of Mathematics, vol. 235, no. 2, pp. 245–261, 2008.

    [8] V. S. Varadarajan, β€œPath integrals for a class of 𝑝-adicSchrödinger equations,” Letters inMathematical Physics, vol. 39,no. 2, pp. 97–106, 1997.

    [9] V. S. Vladimirov and I. V. Volovich, β€œπ‘-adic quantum mechan-ics,” Communications in Mathematical Physics, vol. 123, no. 4,pp. 659–676, 1989.

    [10] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-AdicAnalysis and Mathematical Physics. Volume I, Series on Sovietand East European Mathematics, World Scientific, Singapore,1992.

    [11] I. V. Volovich, β€œπ‘-adic space-time and string theory,”Akademiya Nauk SSSR: Teoreticheskaya i MatematicheskayaFizika, vol. 71, no. 3, pp. 337–340, 1987.

    [12] I. V. Volovich, β€œπ‘-adic string,” Classical and Quantum Gravity,vol. 4, no. 4, pp. L83–L87, 1987.

    [13] S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, β€œHar-monic analysis in the p-adicLizorkinspaces: fractional opera-tors, pseudo-differential equations, p-adic wavelets, Tauberiantheorems,” Journal of Fourier Analysis and Applications, vol. 12,pp. 393–425, 2006.

  • Journal of Function Spaces 7

    [14] N. M. Chuong and H. D. Hung, β€œMaximal functions andweighted norm inequalities on local fields,” Applied and Com-putational Harmonic Analysis, vol. 29, no. 3, pp. 272–286, 2010.

    [15] N. M. Chuong, Y. V. Egorov, A. Khrennikov, Y. Meyer, andD. Mumford, Harmonic, Waveletand p-Adic Analysis, WorldScientific Publishers, Singapore, 2007.

    [16] Y.-C. Kim, β€œCarleson measures and the BMO space on the 𝑝-adic vector space,” Mathematische Nachrichten, vol. 282, no. 9,pp. 1278–1304, 2009.

    [17] Y.-C. Kim, β€œWeak type estimates of square functions associ-ated with quasiradial Bochner-Riesz means on certain Hardyspaces,” Journal of Mathematical Analysis and Applications, vol.339, no. 1, pp. 266–280, 2008.

    [18] Y.-C. Kim, β€œA simple proof of the 𝑝-adic version of theSobolev embedding theorem,” Communications of the KoreanMathematical Society, vol. 25, no. 1, pp. 27–36, 2010.

    [19] S. Z. Lu and D. C. Yang, β€œThe decomposition of Herz spaceson local fields and its applications,” Journal of MathematicalAnalysis and Applications, vol. 196, no. 1, pp. 296–313, 1995.

    [20] K. M. Rogers, β€œA van der Corput lemma for the 𝑝-adicnumbers,” Proceedings of the American Mathematical Society,vol. 133, no. 12, pp. 3525–3534, 2005.

    [21] K. M. Rogers, β€œMaximal averages along curves over the p-adicnumbers,” Bulletin of the Australian Mathematical Society, vol.70, no. 3, pp. 357–375, 2004.

    [22] M. H. Taibleson, Fourier Analysis on Local Fields, PrincetonUniversity Press, Princeton,NJ, USA,University of Tokyo Press,Tokyo, Japan, 1975.

    [23] S.-h. Lan, β€œThe commutators on Herz spaces over locallycompact Vilenkin groups,”Advances inMathematics, vol. 35, no.5, pp. 539–550, 2006.

    [24] C. Tang, β€œThe boundedness of multilinear commutators onlocally compact Vilenkin groups,” Journal of Function Spacesand Applications, vol. 4, no. 3, pp. 261–273, 2006.

    [25] J. Wu, β€œBoundedness of commutators on homogeneousMorrey-Herz spaces over locally compact Vilenkin groups,”Analysis in Theory and Applications, vol. 25, no. 3, pp. 283–296,2009.

    [26] A. Khrennikov, β€œπ‘-adic valued probability measures,” Indaga-tiones Mathematicae, vol. 7, no. 3, pp. 311–330, 1996.

    [27] A. Khrennikov and M. Nilsson, p-Adic Deterministic and Ran-dom Dynamical Systems, Kluwer, Dordreht, The Netherlands,2004.

    [28] S. Haran, β€œAnalytic potential theory over the 𝑝-adics,” Annalesde l’institut Fourier, vol. 43, no. 4, pp. 905–944, 1993.

    [29] S. S. Volosivets, β€œMaximal function and Riesz potential on 𝑝-adic linear spaces,” p-Adic Numbers, Ultrametric Analysis, andApplications, vol. 5, no. 3, pp. 226–234, 2013.

    [30] J. Alvarez, J. Lakey, and M. Guzmán-Partida, β€œSpaces ofbounded πœ†-central mean oscillation, Morrey spaces, and πœ†-central Carleson measures,” Universitat de Barcelona. Col-lectanea Mathematica, vol. 51, no. 1, pp. 1–47, 2000.

    [31] Q. Y. Wu, L. Mi, and Z. W. Fu, β€œBoundedness of p-adic Hardyoperators and their commutatorson p-adic central Morrey andBMO spaces,” Journal of Function Spaces and Applications, vol.2013, Article ID 359193, 10 pages, 2013.

    [32] Z. W. Fu, Q. Y. Wu, and S. Z. Lu, β€œSharp estimates of p-adichardy andHardy-Littlewood-Pólya operators,”ActaMathemat-ica Sinica, vol. 29, no. 1, pp. 137–150, 2013.

    [33] V. S. Vladimirov, β€œGeneralized functions over p-adic numberfield,” Uspekhi Matematicheskikh Nauk, vol. 43, pp. 17–53, 1988.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of


Recommended