Transcript
  • 8/14/2019 Presented as the Problem-Screen

    1/38

  • 8/14/2019 Presented as the Problem-Screen

    2/38

  • 8/14/2019 Presented as the Problem-Screen

    3/38

  • 8/14/2019 Presented as the Problem-Screen

    4/38

  • 8/14/2019 Presented as the Problem-Screen

    5/38

  • 8/14/2019 Presented as the Problem-Screen

    6/38

    1

    Contenuti / Contents

    Finding and Keeping the Time / Trovando e Mantenendo il Tempo

    Holograms o Real and Virtual Point Trajectories

    Ologrammi del Reale e Traitettorie del Punto Virtuale (estratto)

    Sad Young Man on a Train / Uomo Giovane e Triste su un Treno

    A Study o the Persistence o Vision

    Uno Studio Sulla Persistenza Della Visione (estratto)

    A Photograph o Duchamp Using a Hinged Mirror

    The Truth Is Out There

    La Verit St La Fuori

    Fotografa di Duchamp usando uno specchio movibile

    Maker, Above Below and Between

    A List o Blending Modes

    Elenco dei metodi di usione

    An Event Over the Skies o France / Un Evento sui Cieli della Francia

    Credits / Crediti

    3

    4

    6

    8

    9

    13

    14

    17

    18

    19

    20

    22

    24

    28

    30

    Presented as the Problem

  • 8/14/2019 Presented as the Problem-Screen

    7/38

    2

  • 8/14/2019 Presented as the Problem-Screen

    8/38

    3

  • 8/14/2019 Presented as the Problem-Screen

    9/38

    4

    CHAPTER 2

    HOLOGRAMS OF REAL AND

    VIRTUAL POINT TRA JECTORIES

    2.1 Introduction

    In relativity, the orbit o a point event through

    space-time is called its world line. The world

    line itsel is timeless, because it contains time

    as one o its dimensions. Over a period o years,

    we have been ascinated by the prospect o

    recording world lines o moving points o light

    holographically. O course, these will have

    their three-dimensional (3D) spatial (the 3D

    trajectory) pattern and be timeless. There will

    be no way to give a direction o time and all we

    know is what events (3D positions) are the time

    neighbors o others.

    Does this multidecade eort shed light on

    relativity or make it easier to understand? Prob-

    ably not. Holography can help us understand

    relativity, but that work is due to Abramson, not

    us. Surprisingly, our eorts have caused us to

    understand holography better. In this work we

    discuss holographic recording o moving points

    and compare the results with various aspects o

    other ways o recording a line in 3D space, such

    as recording an actual luminous line, sequential

    recording o points, and computer generationo lines.

    2.2 Early Work

    Our interest began with our eorts to generate

    3D holographic images o synthetic scenes.

    Why not draw the scene with a moving point

    source using holography with a xed reerence

    beam to record the 3d object? Figure 2.1 shows

    the geometry. We moved the point continu-

    ously parallel to the recording plate. Our results

    were wonderul, both theoretically and experi-

    mentally.

    Theoretically, we showed that the coherently

    time averaging an Airy pattern (the ar-eld

    complex wave ront o a point source) leads to a

    sin x/x pattern (the ar-eld complex wave ront

    that would have been produced had the whole

    line been present at once). This seemed quite

    proound at the time. The coherent integration

    obliterated the time dimension. It may still be

    proound. We know that physics based on in-

    stants and innitesimal points ails prooundly

    at the quantum level. It lacks the coherent

    integration into the whole. Experimentally,

    we ound that the image o a clean bright line

    was produced. Without that success, we would

    not have persisted through the dark decades

    o disappointments and partial successes that

    ollowed.

    Physicists progress by jumping to unwarranted

    generalizations and then examining the results.

    This is not so much a method as a predisposi-

    tion. The obvious thing to do ater the rst suc-

    cess was to move to more complex space-time

    patterns. We expected, naively it now appears,

    no problem in recording arbitrarily complex

    scenes in this way. Instead, we encountered two

    major problems. One problem we understoodalmost immediately and later were able to work

    around to some extent. The other problem

    we did not even understand, although we im-

    mediately invented a way to work around it. We

    address those two problems below.

    2.2.1 Brightness Problem

    As we all should have known, there is a commu-

    nication-theoretic limitation on the inormation

  • 8/14/2019 Presented as the Problem-Screen

    10/38

    5

    content o the image and how much inorma-

    tion we actually see depends on the encryption

    method. All o the great holographers (e.g.,

    Gabor, Leith, and Denisyuk) knew that.

    Figure 2.1 Schematics o the optical congura-

    tion. S is a point source and H is the hologram.

    We did too, but it is easy to orget. The inorma-

    tion storage density (that is bits per square

    centimeters or thin holograms and bits per

    cubic centimeters or thick holograms) is very

    material dependent. Resolution and noise are

    the primary determinants. I we use all o that

    capacity coherently to record a single point, the

    image may have tremendous signal-to-noise

    ratio (SNR). On the other hand, i we record

    and reconstruct N distinct, equally bright

    points, then each can have at most 1/N o the

    available light and 1/N o the single-point SNR.

    We emphasized the words at most. Only i

    each point comes rom a hologram with unit

    contrast can we achieve the 1/N brightness

    condition. This would be the case i we recordedthe hologram o N coherent points simultane-

    ously. However, in the case as was done in our

    rst holograms, we are talking about recording

    the N points sequentially. Thus we have holo-

    grams rom N essentially independent points

    ull overlapping and then each will use only

    1/N o the shared dynamic range. The bright-

    ness and SNR o each point can be at most

    1/N o the values achievable or a single point.

    So, whichever way we choose to record the N

    points, the brighness and SNR cannot be better

    than 1/N that o a single point and, usually, it

    will be much lower.

    Returning to our special interest here o a

    continuously moving point, one should ask

    the question: How big is N? That is a question

    we did not even begin to answer in the middle

    period o this multidecade eort.

    We now know that the above discussion is over-

    simplied and that there are ways, depending

    on the recording material and recording condi-

    tion, to improve the situation. In act, at a quite

    early stage we did conceive o and demonstrate

    a way to improve the brightness and SNR. We

    simply moved the points close to the record-

    ing medium. Because o the limited angular

    divergence o the point source, the area on the

    recording medium illuminated at any instant

    was small. Thus there was no need or a reer-

    ence beam where there was no object beam, so

    we could block that part o the reerence beam.

    Using a complicated optomechanical system,

    we scanned a point in 3d space near the record-

    ing plate and tracked it with the corresponding

    part o the reerence beam. All o the time, most

    o the recording material received light only

    near the image o the reerence point. The rest

    o the recording medium was shielded and,

    thereore, not degraded. thus no point sueredthe ull 1/N penalty, and very bright images

    were obtained.

    2.2.2 Longitudinal Motion Problem

    Initially, we did not call the problem by this

    name. All we observed was that when we moved

    the point in a 3D orbit (rather than in the 2D

    plane, parallel to the recording medium), we did

    not get very good images. In act, the images

  • 8/14/2019 Presented as the Problem-Screen

    11/38

    6

    were terrible. We did not know why, but we did

    nd a satisactory experimental way to x the

    problem. We chopped (binary time modulated)

    both beams. For reasons we did not understand

    at the time, this allowed us to record beautiul

    3D images.

    This review o the history o a small part o

    holography allows us to introduce the current

    state o the art. We now know what the longi-

    tudinal motion problem was and why chopping

    cured it. We will show below that all parts o

    the Airy pattern are blurred out during any

    substantial longitudinal motion. Chopping

    reduced the blurring eects by recording just

    a very short light segment or each chopping

    cycle. A general mathematical analysis o the

    phenomena involved in holographic recording

    o moving sources ollows below. The general

    consequences will then be represented with

    some demonstrative examples o special inter-

    esting cases.

    CAPITOLO 2

    OLOGRAMMI DEL REALE E

    TRAIETTORIE DEL PUNTO VIRTUALE

    2.1 Introduzione

    Nella relativit, lorbita di un punto attraverso

    il tempo e lo spazio chiamata linea del mondo.

    La linea del mondo senza tempo perch lo

    contiene come una delle sue dimensioni. Sono

    anni che siamo aascinati dalla prospettiva di

    registrare le linee del mondo dei punti di luce in

    movimento, ologracamente. Naturalmente,

    questi avranno il loro schema tri-dimensionale

    (3D) spaziale (traiettoria 3D) e saranno senza

    tempo. Non ci sar modo di dare una traiettoria

    del tempo e tutto quello che sappiamo che gli

    eventi (posizioni 3D) sono i vicini del tempo

    di altri.

    Questo sorzo illumina sulla relativit o la

    rende pi semplice da capire ? Probabilmente

    no. Lolograa ci pu aiutare a capire la relativ-

    it ma questo lavoro appartiene a Abramson,

    non a noi. Sorprendentemente, i nostri sorzi ci

    hanno portato a meglio capire la relativit. In

    questo lavoro abbiamo discusso registrazioni

    olograche di punti in movimento e comparato

    i risultati con vari aspetti di altri modi di regis-

    trare una linea nello spazio 3D, come registrareuna linea di luce, registrare sequenze di punti e

    linee generate dal computer.

    2.2 Lavori Precedenti

    Il nostro interesse nasce con gli sorzi di gener-

    are immagini olograche di scene sintetiche in

    3D. Perch non disegnare la scena con un punto

    di luce usando lolograa con un raggio di re-

    erenza ssato per registrare un oggetto in 3D ?

  • 8/14/2019 Presented as the Problem-Screen

    12/38

    7

    Teoricamente, abbiamo mostrato che medi-

    ando coerentemente il tempo, uno schema

    Airy (il campo lontano complesso dell onda

    rontale di un punto onte) porta a una sin

    x\x (il campo lontano complesso dell onda

    rontale di un punto onte che sarebbe stato

    prodotto aveva lintera linea ormanta in una

    volta). Questo sembrava ben proondo a quel

    tempo. Lintegrazione coerente obliterava la

    dimensione del tempo. Potrebbe essere ancora

    proondo. Sappiamo che sica basata su istanti

    e punti innitesimali allisce proondamente ai

    livelli dei quanti. Manca lintegrazione coerente

    nellintero. Sperimentalmente, abbiamo trovato

    che limmagine di una linea pulita e luminosa

    stata prodotta. Senza quel successo non

    avremmo persitito attraverso i decenni bui della

    delusione e il successo parziale che ha seguito.

    Il progresso dei sici salta su una non giusti-

    cata generalizzazione e esaminando i risultati

    in seguito. Questo non tanto un metodo

    quando una predisposizione. La cosa ovvia

    da are dopo un primo successo era muovere

    schemi spazio temporali pi complessi. Ci

    aspettavamo, adesso sembra incoscentemente,

    nessun problema nel registrare arbitrariamente

    scene complesse in questa maniera. Invece

    incontrammo due grandi problemi. Il primo lo

    capimmo quasi immediatamente e in seguito

    eravamo in grado di lavorare su alcune esten-sioni. Laltro problema non lo avevamo capito

    anche se avevamo immediatamente inventato

    una maniera per lavorarci intorno. Trattiamo

    questi due problemi di seguito.

  • 8/14/2019 Presented as the Problem-Screen

    13/38

    8

    SAD YOUNG MAN ON A TRAIN

    UOMO GIOVANE E TRISTE SU UN TRENO

  • 8/14/2019 Presented as the Problem-Screen

    14/38

    9

    it should be noted that in this material there is no urther ormation o rods. The coarse-

    ly granular precipitate is well marked in the second and third divisions, but no rods are

    ormed.

    It is evident that my conclusion rom a study o the material described is that

    the basophilic bodies ound are not in the nature o chromidia, but are the result o indi-rect nuclear activity. As to the applicability o these results to cases in which basophilic

    inclusions occur normally, it is impossible to say more than that such cases should be con-

    sidered in the light o the evidence here given. The explanation oered or the ormation

    o the basophilic extra nuclear bodies described is intended to be suggestive rather than

    conclusive. It brings together acts which have not hitherto been associated.

    A more detailed paper with illustrations is orthcoming.

    Beckwith, Cora J., The Genesis o the plasma-structure in the egg o Hydractinia echinata. J. Morph., 25,

    1914.

    Chambers, Robert. Microdissection Studies I. A mer. J. Physiol., 43, 1917; and Microdissection Studies II,

    Exper. Zool., 23, 1917.

    Dantchako, Vera. Studies in cell division and cell di erentiation I, J. Morph., 27, 1916.

    Gatenby. J. Brout. The Cytoplasmic Inclusions o the Germ Cells. Part V, Quar. Jour. Mic. Sci., 63, 1919.

    Schaxel, Julius, Das Zusammenwirken der ZelIbestandteile bei Eireiung. Furchung, und ersten Organ-

    bilung der Echinodermen. Arch. Micr. Anat. 76, 1911; Plasmastructuren, Chondriosomen und Chromidien. Anat.

    Anz., 39, 1911.

    Wilson. E B., Archoplasm, Centrosome, and Chromatin in the Sea-Urchin Egg, J. Morph., II, 1895.

    A S T U D Y O F T H E P E R S I S T E N C E O F V I S I O N

    By Arthur C. Hardy

    Department o Physics, Massachusetts Institute o Technology. Communicated by Edwin II, Wilson,

    February 20. 1920

    Introduction.It was observed by Allen,1 while investigating the eect o the

    color o the light on the persistence o vision, that there seemed to be portions o the retina

    where the persistence o the retinal impression was less than on the ovea. That is, whenno fickering o the color under observation was perceptible in the center o the retina, a

    slight movement o the eye in any direction which allowed the light to all upon the periph-

    eral portions o the retina was sucient to destroy the apparent continuity o the light.

    Allen attempted to measure the persistence or regions on the temperal side o the retina

    at 10 and 20 degrees rom the axis o the eye but ound that the results were too uncer-

    tain to be o any use. The writer has measured the persistence o vision or several colors

    within the cone whose semi-vertical angle is nearly 40 degrees. More than one hundred

    points on the retina within this area were observed or each color used. From these data,

    it is possible to construct a map o the retina showing the persistence o vision or eachportion.

    221Vol.6. 1920 PSYCHOLOGY: A. C. HARDY

  • 8/14/2019 Presented as the Problem-Screen

    15/38

    10

    Results o this sort should be o interest, not only to the illumination engineer,

    but to the physiologist and the psychologist as well. I the number o observers were large

    to insure that the results represent the average eye, it would be possible to construct a map

    o the retina with contour lines to show equal values o the persistence o vision. This

    was done by the author using the values obtained or his own eyes. The general shape othe lines was ound to coincide more or less with the shape o the color elds given by Ab-

    ney.2 The extent o the color elds is, o course, dependent upon the intensity o the light.

    It was not possible to show that the area o the retina covered in this investigation was

    greater than the color eld or the blue or the intensity used. As the color eld or the blue

    is larger in area than or any other color, it seems natural to suppose that the persistence o

    vision should depend only upon the intensity o the light on portions o the retina outside

    this area and should be independent o the wave-length.

    Description o apparatus.The persistence o vision was measured by observ-

    ing the minimum speed at which a sectored disk could be driven without destroying the

    apparent continuity o the light. The source o light was a concentrated lament incandes-

    cent lamp operated at constant voltage. A lens system was used to bring the rays to ocus

    on the sectored disk. When the position o the disk is such that the rays do not strike it,

    they diverge until they strike a ground-glass screen about 6 centimeters square. An iris

    diaphragm placed just in ront o it makes the size o the illuminated area on the ground-

    glass adjustable without altering the brightness. The sectored disk, the necessary electric

    motor to drive it, the incandescent lamp and the lens system are all placed in a light tight

    box. The eye was then placed 1 meter in ront o the ground-glass and a chin rest was pro-

    vided to insure steady conditions o the retina while making the observations. Needless to

    say, the investigation was carried on in total darkness. A small electric lamp operated on

    the storage battery current and careully shielded was used to read the instruments when

    necessary. The time or the recovery o the retina ater this stimulus was less than the time

    required to place the apparatus in adjustment or the next reading.

    The speed o the disk was measured by means o a small magneto and a volt-

    meter calibrated to read the speed directly in revolutions per minute. The persistence o

    vision was rst determined or the ovea by causing the disk to rotate at sucient speed

    so that no ficker was apparent and then slowly to lose velocity until the rst ficker wasobserved. On the average, it was ound possible to determine the critical speed so that

    subsequent readings would not dier by more than 2 percent. Observations were also

    made with the speed o the disk increasing and the average was taken as the persistence

    measure. A set o lters made by the Wratten and Wainwright Company was used one at

    a time when it was desired to use light o a particular color. These lters were ound to be

    very nearly monochromatic. The use o spectrum colors would be more accurate but the

    intensity o the light cannot be adjusted within as wide limits.

    To determine the persistence o vision or o center portions o the retina, a

    small radiolight sight was used. This was mounted on a slider attached to a long rod and soconstructed as to revolve about the center o the diaphragm. In this way it was possible to

    Proc. N. A. S.222 PSYCHOLOGY: A. C. HARDY

  • 8/14/2019 Presented as the Problem-Screen

    16/38

    11

    place the sight in any desired position with respect to the center o the diaphragm. Shallow

    grooves were placed at intervals along the rod so that it was possible to read the position o

    the slider in the dark. In the experimental work, readings were taken about every 3 degrees

    rom the center and along directions which made angles with the horizontal o 45, 90, 135,

    ISO, 225, 270 and 315 degrees. The manipulation was the same as beore except that theattention was directed toward the radiolight sight and the persistence o vision measured

    with the light rom the ground-glass screen alling on some other portion o the retina. It

    was, o course, necessary to cover one eye during all o the experimental work.

    Experimental results.Beore results could be obtained which were consistent

    with themselves, it was ound necessary to take several precautions. For example, time

    was given or the eye to become accustomed to the darkness. Results were obtained which

    showed that 5 minutes in total darkness was sucient. It was also ound that any motion

    o the body, however slight, would cause the interest to fag. For this reason, the motor

    controls had to be adjusted so that the motor would change its speed slowly as it was im-

    possible to operate a rheostat by hand. One hand was held on a key which was pressed at

    the instant that the ficker was seen to appear or disappear and the critical speed noted.

    The size o the diaphragm which seemed to give the best results was a circle o

    diameter 5.84 mm. The persistence o vision is dependent upon the size o the retinal area

    stimulated and also the scintillation o the light rom a small aperture caused more or less

    uncertainty.3 The above aperture was chosen as being the smallest that it was practicable

    to use. With the diaphragm placed at a distance o 1 meter rom the eye, the angle sub-

    tended by the diaphragm at the eye is 3-30.

    As has already been said, the persistence o vision was determined or several

    colors and in each case the persistence was measured or about one hundred points on the

    retina lying inside a circle which is the base o a cone whose semivertical angle is 38.7.

    No attempt will be made to give the results in ull. They represent the persistence o an

    impression on the retina o the eye o the author. The eye is known to be normal or color

    perception but has a moderate amount o astigmatism which should not aect the persis-

    tence o vision. A ew results will be given to show the nature o the inerences which have

    be drawn rom the investigation.

    For red light (6776 A) the persistence o vision in the ovea was 0.0209 second.The persistence or points lying at equal distances rom the ovea was ound to be very

    nearly the same. That is, i lines are drawn showing equal values o the persistence o vi-

    sion, they appear to approximate circles with the ovea at the center. The deviation rom

    the circle is enough to make them resemble the limits o the color elds or the retina. The

    circles are in every case fattened so that the major axis o the resulting ellipse is horizon-

    tal. The persistence is less or the ovea than or any other part o the retina, and there is

    a steady increase in the persistence nearly proportional to the distance rom the ovea.

    The maximum value observed occurs on the nasal side o the retina at about 88 rom

    the ovea. The persistence is slightly greater on the nasal side than on the temporal. Themaximum value is 0.109 second.

    223Vol.6. 1920 PSYCHOLOGY: A. C. HARDY

  • 8/14/2019 Presented as the Problem-Screen

    17/38

    12

    For the yellow-green (3310 A) very similar results were obtained. The persis-

    tence o vision or the ovea is 0.0179 second and is less than any other portion o the reti-

    na. The lines o equal values o the persistence are ellipses with the major axes horizontal.

    The persistence is still slightly greater on the nasal side. The maximum value is observed

    to occur or the same region as or the red light but the maximum in this case is 0.0339second showing that the persistence is more nearly constant over the whole retina.

    For the blue-violet (4631 A) the persistence o the ovea is 0.0346 second. There

    is little change in the persistence or dierent portions o the retina. The region which

    gave a maximum value or the red and the yellow-green, now gives a value o 0.0339 sec-

    ond or slightly less than the ovea. The maximum occurs about 7 rom the ovea on the

    nasal side and is 0.0401 second. The minimum o 0.0305 second occurs on the temporal

    side at an angle o 35 rom the ovea. The change between the maximum and minimum

    amounts only to the dierence between 1/25 second and 1/35 second. For the blue-violet

    light used, the persistence is very nearly constant over the whole retina.

    It will be noticed that these values or the persistence are smaller than those

    which are sometimes quoted. The values given here represent the time required or the im-

    pression on the retina to ade suciently to be noticed when compared to a resh stimulus.

    They do not represent the time or the total extinction o the retinal image.

    The above results were obtained at the laboratories o the Department o Phys-

    ics at the University o Caliornia.

    1Physic. Rev., 28, 1909 (48).2 Sir William Abncy,Researches in Color Vision, p. 190, et. seq.3 See Almey, loc. cit., p. 181.

    Proc. N. A. S.224 PSYCHOLOGY: A. C. HARDY

  • 8/14/2019 Presented as the Problem-Screen

    18/38

    13

    U N O S T U D I O S U L L A P E R S I S T E N Z A D E L L A V I S I O N E

    Di Arthur C. Hardy

    Dipartimento di Fisica, Massachusetts Institute o Technology. Comunicato by Edwin II, Wilson, 20 Feb-

    braio 1920; (estratto)

    Per la luce rossa (6776 A) la persistenza della visione nella ovea era 0,0209sec. Fu scoperto che la persistenza per i punti disposti a distanze uguali dalla ovea era

    quasi la stessa. Se linee sono tracciate mostrando valori uguali della persistenza della vi-

    sione, sembrano approssimare cerchi con la ovea al centro. La deviazione dal cerchio

    suciente per arli assomigliare ai limiti del colore dei campi per la retina. I cerchi sono

    schiacciati in tutti i casi cos che lasse maggiore della risultante ellisse orizzontale. La

    persistenza minore sulla ovea che in ogni altra parte della retina e si nota un costante

    aumento quasi proporzionale alla distanza dalla stessa. Il valore massimo osservato vi-

    cino al lato nasale della retina a circa 88 dalla ovea. La persistenza e leggermente mag-

    giore sul lato nasale che su quello della temperal. Il valore massio 0.109 secondi.

    Per la luce giallo-verde (3310 A) sono stati ottenuti risultati molti simili. La

    persistenza della luce nella ovea 0,0179 secondi ed ineriore che in ogni altra porzione

    della retina. Le linee di valori uguali della persistenza sono ellissi con lasse maggiore oriz-

    zontale. La persistenza ancora leggermente pi alta sul lato nasale. Il valore massimo

    accade per la stessa regione della luce rossa ma in questo caso il massimo 0,0339 secondi

    mostrando che la persistenza pi costante su tutta la retina.

    Per il blu-viola (4631 A) la persistenza nella ovea (0,0346 secondi) C un pic-

    colo cambio nella persistenza per porzioni dierenti della retina. La regione che ha dato

    un valore massimo per il rosso e giallo-verde adesso d un valore di 0,0339 secondi o poco

    meno della ovea. Il massimo si registra circa a 7 dalla ovea sul lato nasale ed 0,0401

    secondi. Il minimo 0,0305 secondi, si mostra sul lato temporale ad un angolo di 35 dalla

    ovea. Il cambio tr il massimo e il minimo ammonta solo alla dierenza tr 1\25 secondi e

    1\35 secondi. Per la luce blu-viola usata la persistenza molto vicina alla costanza su tutta

    la retina.

    Sar noticato che questi valori per la persistenza sono minori di quelli che a

    volte sono quotati. I valori qu dati rappresentano il tempo richiesto per limpressione

    sulla retina di sumare sucientemente orti per essere registrate quando comparate aduno stimolo resco.

    I risultati di sopra sono stati ottenuti nei laboratori del Dipartimento di Fisica

    dell Universit della Caliornia

  • 8/14/2019 Presented as the Problem-Screen

    19/38

    14

  • 8/14/2019 Presented as the Problem-Screen

    20/38

    15

  • 8/14/2019 Presented as the Problem-Screen

    21/38

    16

  • 8/14/2019 Presented as the Problem-Screen

    22/38

    17

  • 8/14/2019 Presented as the Problem-Screen

    23/38

    18

    LA VERIT ST LA FUORI

  • 8/14/2019 Presented as the Problem-Screen

    24/38

    19

    83. Fotografa di Duchamp usando uno specchio movibile, 1917.

    Il piacere di Duchamp per le nuove maniere popolari e oggetti tecnologici si estende naturalmente

    alla otograa, di cui ha esplorato le varie dimensioni durante tutta la vita. Qu, il ripetuto uomo

    di ronte allo specchio sembra essere prodotto senza il otograo, una specie di autoritratto

    automatico che lascia la domanda dell autoriet irrisolta. Gli amici di Duchamp, Francis Picabia

    e Henri-Pierre Roch avevano scattoto otograe simili, probabilmente nella stessa occasione: 10

    otobre 1917 al Broadway Photo Shop di New York.

    Se richiamiamo il commento di Duchamp a Pierre Cabanne riguardo le altre unzioni che la pittura

    aveva ricoperto in passato: religiosa, losoca, morale, in quale dimensione ha inteso Duchamp

    il Grande Vetro per avere una visione concettuale che poteva riormare la unzione dell arte ? O,

    per dirlo in altre parole, che unzione hanno nel Grande Vetro le diverse reerenze alla religione,

    mitologia e letteratura ? Abbiamo visto come scienza e prospettiva come modi di descrivere il

    reale avevano una ruolo nella genesi della sua immagineria. Cosa diciamo di sistemi di credenze o

    miti di tipo dierente ?

  • 8/14/2019 Presented as the Problem-Screen

    25/38

    20

    MAKER, BEWEEN ABOVE AND BELOW

    wo or three points o departureWhere edge blank eddiesTe texure o receivabilityBy

    Vectors may saturatePieces o layered approximations received

    Te suracing o a parallel dri,generating a sense o out and in

    Angular spin, the depth-maker o a suraceDistance o time, pre-holeunneling volumes o degrees, as i

    broken tubesWithin but between the numbers being counted

    Te setting o a broken railTe enormous movability o a sucking passage (omnidirectional)Random, partial shrinking

    Appearance o some prole junctures, some linear burps, many

    16. Review and Sel-Criticism.94.

  • 8/14/2019 Presented as the Problem-Screen

    26/38

    21

    Volumes exchanged, a speed o shiing

    Place or construction o a core o exibility only

    Difuse receding which parallels and contourswaiting texture

    Te unique range o elasticities oimpressionable stretching, not yet texture

    Te regulating o reection, deection, inectionCoalescence o sound joints, guidesRealization o mounting and push o duration (instant group)

    Both senders and receivers, congurational coverings onall and any scalePull o breatho keep the end in sightAs always the necessity o out o the blue, to and romA sudden drop into a scale o action

    Te call o continuity

    16. Review and Sel-Criticism. 95.

  • 8/14/2019 Presented as the Problem-Screen

    27/38

    22

    A LIST OF BLENDING MODES

    Normal

    Edits or paints each pixel to make it the result

    color. This is the deault mode. (Normal mode

    is called Threshold when youre working with a

    bitmapped or indexed-color image.)

    Dissolve

    Edits or paints each pixel to make it the result

    color. However, the result color is a random

    replacement o the pixels with the base color or

    the blend color, depending on the opacity at any

    pixel location.

    Darken

    Looks at the color inormation in each channel

    and selects the base or blend colorwhichever

    is darkeras the result color. Pixels lighter

    than the blend color are replaced, and pixels

    darker than the blend color do not change.

    Multiply

    Looks at the color inormation in each channel

    and multiplies the base color by the blend color.

    The result color is always a darker color. Mul-

    tiplying any color with black produces black.

    Multiplying any color with white leaves the

    color unchanged. When youre painting with

    a color other than black or white, successive

    strokes with a painting tool produce progres-sively darker colors. The eect is similar to

    drawing on the image with multiple marking

    pens.

    Color Burn

    Looks at the color inormation in each channel

    and darkens the base color to refect the blend

    color by increasing the contrast. Blending with

    white produces no change.

    Linear Burn

    Looks at the color inormation in each channel

    and darkens the base color to refect the blend

    color by decreasing the brightness. Blending

    with white produces no change.

    Lighten

    Looks at the color inormation in each channel

    and selects the base or blend colorwhichever

    is lighteras the result color. Pixels darker

    than the blend color are replaced, and pixels

    lighter than the blend color do not change.

    Screen

    Looks at each channels color inormation

    and multiplies the inverse o the blend and

    base colors. The result color is always a lighter

    color. Screening with black leaves the color un-

    changed. Screening with white produces white.

    The eect is similar to projecting multiple

    photographic slides on top o each other.

    Color Dodge

    Looks at the color inormation in each channel

    and brightens the base color to refect the blend

    color by decreasing the contrast. Blending with

    black produces no change.

    Overlay

    Multiplies or screens the colors, depending on

    the base color. Patterns or colors overlay theexisting pixels while preserving the highlights

    and shadows o the base color. The base color is

    not replaced, but mixed with the blend color to

    refect the lightness or darkness o the original

    color.

    Sot Light

    Darkens or lightens the colors, depending on

    the blend color. The eect is similar to shining

    a diused spotlight on the image. I the blend

  • 8/14/2019 Presented as the Problem-Screen

    28/38

    23

    color (light source) is lighter than 50% gray, the

    image is lightened as i it were dodged. I the

    blend color is darker than 50% gray, the image

    is darkened as i it were burned in. Painting

    with pure black or white produces a distinctly

    darker or lighter area, but does not result in

    pure black or white.

    Linear Dodge (Add)

    Looks at the color inormation in each channel

    and brightens the base color to refect the blend

    color by increasing the brightness. Blending

    with black produces no change.

    Hard Light

    Multiplies or screens the colors, depending on

    the blend color. The eect is similar to shining

    a harsh spotlight on the image. I the blend

    color (light source) is lighter than 50% gray,

    the image is lightened, as i it were screened.

    This is useul or adding highlights to an image.

    I the blend color is darker than 50% gray, the

    image is darkened, as i it were multiplied. This

    is useul or adding shadows to an image. Paint-

    ing with pure black or white results in pure

    black or white.

    Vivid Light

    Burns or dodges the colors by increasing or

    decreasing the contrast, depending on the

    blend color. I the blend color (light source) islighter than 50% gray, the image is lightened

    by decreasing the contrast. I the blend color is

    darker than 50% gray, the image is darkened by

    increasing the contrast.

    Linear Light

    Burns or dodges the colors by decreasing or

    increasing the brightness, depending on the

    blend color. I the blend color (light source) is

    lighter than 50% gray, the image is lightened by

    increasing the brightness. I the blend color is

    darker than 50% gray, the image is darkened by

    decreasing the brightness.

    Pin Light

    Replaces the colors, depending on the blend

    color. I the blend color (light source) is lighter

    than 50% gray, pixels darker than the blend

    color are replaced, and pixels lighter than the

    blend color do not change. I the blend color is

    darker than 50% gray, pixels lighter than the

    blend color are replaced, and pixels darker than

    the blend color do not change. This is useul or

    adding special eects to an image.

    Hard Mix

    Adds the red, green and blue channel values o

    the blend color to the RGB values o the base

    color. I the resulting sum or a channel is 255

    or greater, it receives a value o 255; i less than

    255, a value o 0. Thereore, all blended pixels

    have red, green, and blue channel values o ei-

    ther 0 or 255. This changes all pixels to primary

    colors: red, green, blue, cyan, yellow, magenta,

    white, or black.

    Dierence

    Looks at the color inormation in each channel

    and subtracts either the blend color rom the

    base color or the base color rom the blend

    color, depending on which has the greaterbrightness value. Blending with white inverts

    the base color values; blending with black

    produces no change.

    Exclusion

    Creates an eect similar to but lower in con-

    trast than the Dierence mode. Blending with

    white inverts the base color values. Blending

    with black produces no change.

  • 8/14/2019 Presented as the Problem-Screen

    29/38

    24

    Hue

    Creates a result color with the luminance and

    saturation o the base color and the hue o the

    blend color.

    Saturation

    Creates a result color with the luminance and

    hue o the base color and the saturation o the

    blend color. Painting with this mode in an area

    with no (0) saturation (gray) causes no change.

    Color

    Creates a result color with the luminance o the

    base color and the hue and saturation o the

    blend color. This preserves the gray levels in the

    image and is useul or coloring monochrome

    images and or tinting color images.

    Luminosity

    Creates a result color with the hue and satura-

    tion o the base color and the luminance o

    the blend color. This mode creates the inverse

    eect o Color mode.

    Lighter Color

    Compares the total o all channel values or the

    blend and base color and displays the higher

    value color. Lighter Color does not produce a

    third color, which can result rom the Lighten

    blend, because it chooses the highest channel

    values rom both the base and blend color tocreate the result color.

    Darker Color

    Compares the total o all channel values or

    the blend and base color and displays the lower

    value color. Darker Color does not produce a

    third color, which can result rom the Darken

    blend, because it chooses the lowest channel

    values rom both the base and the blend color to

    create the result color.

    ELENCO DEI METODI DI FUSIONE

    Normale

    Modica o colora ciascun pixel per trasor-

    marlo nel colore risultante. Questo il metodo

    predenito. Il metodo normale si chiama Soglia

    quando si lavora con unimmagine bitmap o in

    scala di colore.

    Dissolvi

    Modica o colora ciascun pixel per trasormar-

    lo nel colore risultante. Il colore risultante, tut-

    tavia, viene creato sostituendo in modo casuale

    i pixel con il colore di base o quello applicato,

    secondo lopacit in ogni posizione dei pixel.

    Scurisci

    Esamina le inormazioni cromatiche in ciascun

    canale e seleziona il colore di base o il colore

    applicato, il pi scuro dei due, come colore

    risultante. I pixel pi chiari del colore ap-

    plicato vengono sostituiti, quelli pi scuri non

    cambiano.

    Moltiplica

    Esamina le inormazioni cromatiche in ciascun

    canale e moltiplica il colore di base per quello

    applicato. Il colore risultante sempre pi

    scuro. La moltiplicazione di un colore con nero

    produce nero; la moltiplicazione di un colore

    con bianco non cambia il colore. Se state appli-cando un colore diverso dal nero o dal bianco,

    i tratti sovrapposti creati con uno strumento

    di pittura producono colori gradualmente pi

    scuri. Leetto simile a quello ottenuto diseg-

    nando sullimmagine con pi evidenziatori.

    Colore brucia

    Esamina le inormazioni cromatiche in ciascun

    canale e scurisce il colore di base per rifettere

    quello applicato aumentando il contrasto. Luso

  • 8/14/2019 Presented as the Problem-Screen

    30/38

    25

    del colore bianco non produce alcun cambia-

    mento.

    Brucia lineare

    Esamina le inormazioni cromatiche in ciascun

    canale e scurisce il colore di base per rifettere

    quello applicato diminuendo la luminosit.

    Luso del colore bianco non produce alcun

    cambiamento.

    Schiarisci

    Esamina il colore in ciascun canale e seleziona

    il colore di base o il colore applicato, il pi

    chiaro dei due, come colore risultante. I pixel

    pi scuri del colore applicato vengono sostituiti

    e quelli pi chiari non cambiano.

    Scolora

    Esamina le inormazioni cromatiche in ciascun

    canale e moltiplica linverso del colore applicato

    e del colore di base. Il colore risultante sempre

    pi chiaro. Scolorando con il nero, il colore

    resta invariato. Scolorando con il bianco, si

    ottiene il bianco. Leetto simile a quello otte-

    nuto proiettando pi diapositive luna sullaltra.

    Colore scherma

    Esamina le inormazioni cromatiche in ciascun

    canale e schiarisce il colore di base per rifettere

    il colore applicato diminuendo il contrasto. La

    usione con nero non produce alcun cambia-mento.

    Scherma lineare (Aggiungi)

    Esamina le inormazioni cromatiche in ciascun

    canale e schiarisce il colore di base per rifettere

    il colore applicato aumentando la luminosit.

    La usione con nero non produce alcun cam-

    biamento.

    Sovrapponi

    Moltiplica o scolora i colori, a seconda del

    colore di base. I pattern o i colori si sovrappon-

    gono ai pixel esistenti mantenendo le luci e le

    ombre del colore di base. Il colore di base non

    viene sostituito ma viene miscelato con il colore

    applicato per rifettere la luminosit o loscurit

    del colore originale.

    Luce sousa

    Scurisce o schiarisce i colori, a seconda del

    colore applicato. Leetto simile a quello ot-

    tenuto illuminando limmagine con un aretto

    a luce diusa. Se il colore applicato (sorgente

    luminosa) pi chiaro del grigio al 50%,

    limmagine viene schiarita, come se venisse

    schermata; se pi scuro del grigio al 50%,

    limmagine viene scurita, come se venisse bru-

    ciata. Luso del nero o del bianco puro produce

    unarea chiaramente pi scura o pi chiara, ma

    non produce il nero o il bianco puro.

    Luce intensa

    Moltiplica o scolora i colori, a seconda del

    colore applicato. Leetto simile a quello ot-

    tenuto illuminando limmagine con un aretto

    intenso. Se il colore applicato (sorgente lumi-

    nosa) pi chiaro del grigio al 50%, limmagine

    viene schiarita come se osse scolorata. Ci

    utile per aggiungere zone di luce allimmagine.

    Se il colore applicato pi scuro del grigio al50%, limmagine viene scurita come se osse

    moltiplicata. Ci utile per aggiungere le

    ombre allimmagine. Luso del nero o del bianco

    puro produce il nero o il bianco puro.

    Luce vivida

    Brucia o scherma i colori aumentando o

    diminuendo il contrasto, a seconda del colore

    applicato. Se il colore applicato (sorgente lumi-

    nosa) pi chiaro del grigio al 50%, limmagine

  • 8/14/2019 Presented as the Problem-Screen

    31/38

    26

    viene schiarita diminuendo il contrasto; se

    pi scuro del grigio al 50%, limmagine viene

    scurita aumentando il contrasto.

    Luce lineare

    Brucia o scherma i colori diminuendo o

    aumentando la luminosit, a seconda del colore

    applicato. Se il colore applicato (sorgente lumi-

    nosa) pi chiaro del grigio al 50%, limmagine

    viene schiarita aumentando la luminosit; se

    pi scuro del grigio al 50%, limmagine viene

    scurita diminuendo la luminosit.

    Luce puntiorme

    Sostituisce i colori, a seconda del colore appli-

    cato. Se il colore applicato (sorgente luminosa)

    pi chiaro del grigio al 50%, i pixel pi scuri

    rispetto al colore applicato vengono sostituiti

    mentre quelli pi chiari restano inalterati. Se il

    colore applicato pi scuro del grigio al 50%, i

    pixel pi chiari rispetto al colore applicato ven-

    gono sostituiti mentre quelli pi scuri restano

    inalterati. Questa opzione utile per aggiun-

    gere eetti speciali a unimmagine.

    Miscela dura

    Aggiunge i valori dei canali rosso, verde e blu

    del colore di usione ai valori RGB del colore

    base. Se la somma risultante per un canale

    maggiore o uguale a 255, il valore ricevuto

    255; se minore di 255, il valore 0. Pertantotutti i pixel usi hanno valori dei canali rosso,

    verde e blu pari a 0 o 255. Tutti i pixel vengono

    quindi trasormati nei rispettivi colori primari:

    rosso, verde, blu, cyan, giallo, magenta, bianco

    o nero.

    Dierenza

    Esamina le inormazioni cromatiche in ciascun

    canale e sottrae il colore applicato da quello

    di base oppure il colore di base da quello ap-

    plicato, a seconda di quale dei due ha il valore

    di luminosit maggiore. La usione con bianco

    inverte i valori del colore di base; la usione con

    nero non produce alcun cambiamento.

    Esclusione

    Crea un eetto simile al metodo Dierenza

    ma con un contrasto minore. La usione con

    il bianco inverte i valori del colore di base; La

    usione con nero non produce alcun cambia-

    mento.

    Tonalit

    Crea un colore risultante con la luminanza e la

    saturazione del colore di base e la tonalit del

    colore applicato.

    Saturazione

    Crea un colore risultante con la luminosit e la

    tonalit del colore di base e la saturazione del

    colore applicato. Applicando questo metodo

    a unarea con saturazione pari a zero (grigia),

    non viene prodotto alcun cambiamento.

    Colore

    Crea un colore risultante con la luminosit

    del colore di base e la tonalit e la saturazione

    del colore applicato. In questo modo vengono

    mantenuti i livelli di grigio nellimmagine; ci

    risulta utile per la colorazione di immagini

    monocromatiche e per tingere immagini a

    colori.

    Luminosit

    Crea un colore risultante con la tonalit e la

    saturazione del colore di base e la luminosit

    del colore applicato. Questo metodo crea un

    eetto opposto a quello del metodo Colore.

    Colore pi chiaro

    Conronta il totale di tutti i valori dei canali

    per il colore di usione e di base, e visualizza il

  • 8/14/2019 Presented as the Problem-Screen

    32/38

    27

    colore con valore pi alto. Colore pi chiaro non

    genera un terzo colore, che pu essere ottenuto

    tramite la usione Schiarisci, ma crea il colore

    risultante scegliendo i valori dei canali pi alti

    dal colore base e dal colore di usione.

    Colore pi scuro

    Conronta il totale di tutti i valori dei canali per

    il colore di usione e di base, e visualizza il col-

    ore con valore pi basso. Colore pi scuro non

    genera un terzo colore, che pu essere ottenuto

    tramite la usione Scurisci, ma crea il colore

    risultante scegliendo i valori dei canali pi bassi

    dal colore base e dal colore di usione.

  • 8/14/2019 Presented as the Problem-Screen

    33/38

    28

  • 8/14/2019 Presented as the Problem-Screen

    34/38

    29

  • 8/14/2019 Presented as the Problem-Screen

    35/38

    30

    Finding and Keeping the Ti me / Trovando e Mantenendo il Tempo - National Institute o Standards and Technology - 1977

    Holograms o Real and Virtual Point Trajectories / Ologrammi del Reale e Traitettorie del Punto Vir tuale - Three-dimensional

    Holographic Imaging - Chung J. Kuo & Meng Hua Tsai - 2002Sad Young Man on a Train / Uomo Giovane e Triste su un Treno - Marcel Duchamp - 1911-12

    A Study o the Persistence o Vi sion / Uno Studio Sulla Persistenza Della V isione - Proceedi ngs o the National Academy o Sci-

    ences o the United States o America - A. C. Hardy - Communicated by Edwin B. Wilson - 1920

    A Photograph o Duchamp Using a Hinged Mirror / Fotografa di Duchamp Usando uno Specchio Movibile - 1917

    Maker, Above Below and Between - T he Mechanism o Meaning . Arakawa & Gins - 1978

    A List o Blending Modes / Elenco Dei Met Odi di F usione - Adobe Photoshop CS3 User Guide - Adobe Systems Incor porated - 2007

    An Event Over the Skies o Fr ance / Un Evento sui Cieli della Francia - Rouen, France - March 1954

  • 8/14/2019 Presented as the Problem-Screen

    36/38

    31

  • 8/14/2019 Presented as the Problem-Screen

    37/38

    32

    Pubblicato da Project Gentili in occasione del mostra

    Published by Project Gentili on the occasion o the exhibition

    Presented as the Problem, Damon Zucconi, 2009

    Some Rights Reserved, 2009, Project Gentili

    ISSN 1973-2163

    www.damonzucconi.com

    [email protected]

    Project Gentili / 13 Via Del Carmine / 59100 Prato / Italy

    T: +39 0574 400445

    F: +39 0574 443704

    www.projectgentili.com

    [email protected]

  • 8/14/2019 Presented as the Problem-Screen

    38/38


Recommended