Transcript

© Fraunhofer IWES

Matthias Puchta

ETIP-SNET Central Region Workshop, Aachen, 2017/09/18

Offshore Pumped Hydro Storage – Project STENSEA

Source Picture: Hochtief

2

2

2

Grant Number: 0325584B

© Fraunhofer IWES

Capacities and discharge times of different storage technologies

© Fraunhofer IWES

Pumped Hydro Storage (PHS)

Operating principle:

• potential energy

Application:

• Short to medium term storage (h-d)

• Peak load, Grid Services

Properties:

• Low energy costs

• Geographical dependency

• High capacity and efficiency ( up to 88%)

• High construction costs and long construction time

Status & Trend:

• R&D: Use of “natural” height differences PSW Goldisthal, 1GW, 8h, 302m

Around 340 Projects

Source picture bottom right: bmwi-energiewende.de; Source picture top right: http://www.energystorageexchange.org/ and Google Maps

© Fraunhofer IWES

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

Inst

alled

Po

wer

in M

W

IRENA

IEA

Batterien

Pumped Hydro (PHS): Global Trend

3,0% Growth

~60% Growth

Sources: IRENA (Black and green curve), IEA (Blue curve)

© Fraunhofer IWES

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

Inst

alled

Po

wer

in M

W

IRENA

Entwicklung

IEA

Batterien

Entwicklung

Pumped Hydro (PHS): Global Trend

5,1% Growth

3,0% Growth

~60% Growth

~40% Growth

325 GW

150 GW

Sources: IRENA (Black and green curve), IEA (Blue curve)

© Fraunhofer IWES

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

Inst

alled

Po

wer

in M

W

IRENA

Entwicklung

IEA

Entwicklung Minimum

Entwicklung Maximum

Batterien

Entwicklung

Pumped Hydro (PHS): Global Trend

3,1% Growth

5,1% Growth

4,6% Growth

3,0% Growth

~60% Growth

~40% Growth

Sources: IRENA, IEA

© Fraunhofer IWES

New concept: Offshore Pumped Hydro Storage Project STENSEA

Concrete sphere corresponds to the lower reservoir of a PHS.

Fig.: Hochtief

© Fraunhofer IWES

Phase 1

Feasibility

Phase 2

Model

Phase 3

Pilot

Development Phases Project STENSEA

[ ] Involved partys: Fraunhofer IWES, Hochtief, Uni-Stuttgart

Idea: Prof. Horst Schmidt-Böcking, Prof. Gerhard Luther

BMWi-funded project runs till 06/2017 (Phase 1 und 2)

© Fraunhofer IWES

Phase 1

Feasibility

Phase 2

Model

Phase 3

Pilot [ ]

Development Phases Project STENSEA

© Fraunhofer IWES

Technical Data STENSEA Concept

Material: Concrete

Turbine: 5 MW

Discharge time: 4 h

Capacity: 20 MWh

Efficiency: 75-85 %

Diameter: 30 m

Wall thickness: 2,70 m

Storage volume: 12.000 m³

Pressure: 70 bar/700m

Weight: > buoyancy!

Source: Pictures on top and bottom left Hochtief

© Fraunhofer IWES

GIS-based resource assessment (600-800m water depth)

Potential [TWh]

World wide ~817

Top 10 ~628

Top 10 EU ~166

USA ~75

Japan ~70

© Fraunhofer IWES

GIS-based potential analyses Around 1000 km² potential in Norwegian Trench 8 GWh /1 km² ~8 TWh theoretical storage capacity

Offshore Grid

Possible Connection to the Grid

© Fraunhofer IWES

Specific Investment Costs of Storage Technologies Metastudy Energy Storage

Source: UMSICHT, IWES; Metastudie Energiespeicher for BMWi

STENSEA

Sp

eci

fic

inve

stm

en

t co

sts

in €

/kW

Specific investment costs in €/kWh

Lead-Acid

Capacitors

Nickel-Batteries

Lithium-Ion

PH

S m

inin

g PHS conventional

High-Temp. Batteries

Re

do

x-F

low

Ba

tte

ries

H2-Storage

CH

4-S

tora

ge

Flywheels

Daily compensation

Weekly/ annual compensation

Hourly compensation

Scenario: 5-120 spheres per storage park 4.000 h/a or 1.000 cycles/a

Results: Investment costs 7,8 to 9,9 M€/Sphere Specific investment costs 1.500 to 2.000 €/kW Cycle costs 1,6 €ct/kWh to 2,0 €ct/kWh Results published in Elsevier Journal Energy

© Fraunhofer IWES

Phase 1

Feasibility

Phase 2

Model

Phase 3

Pilot [ ]

Development Phases Project STENSEA

© Fraunhofer IWES

Model Experiment at Lake Constance (1:10)

Technology testing

Testing time 11/2016-12/2016 (around 4 Weeks)

100m water depth Site identification with maps

from project „Tiefenschärfe“

TRL2 TRL 5/6

Goal: Learn for Full-Scale Pilot

Überlingen

Source Street map on top: Google Maps, Source height profiles (top, bottom) project Tiefenschärfe ISF

© Fraunhofer IWES

Construction of the Concrete Sphere

Source: Hochtief Solutions AG

© Fraunhofer IWES

Transport to IWES Testfield

© Fraunhofer IWES

Laboratory Tests at IWES Testfield

Testing of all single components

Commissioning of components

Integration of sub-systems in storage system

Testing of complete system

© Fraunhofer IWES

Model Experiment at Lake Constance

© Fraunhofer IWES

Model Experiment at Lake Constance

© Fraunhofer IWES

Experiment was a full success!

Concept approved (TRL 5-6)!

Model Experiment at Lake Constance

© Fraunhofer IWES

Recovery of the Storage System

Dieter Leder

ISF

© Fraunhofer IWES

Phase 1

Feasibility

Phase 2

Model

Phase 3

Pilot [ ]

Development Phases Project STENSEA

© Fraunhofer IWES

Necessary R&D: 1:10 Model1:3 Pilot 1:1 Pilot Example Malta

© Fraunhofer IWES

…a Future Storage Option!

Dipl.-Ing. Matthias Puchta

Head of Energy Storage Departement

Fraunhofer Institute for Wind Energy and Energy System Technology IWES

mailto:[email protected]| Phone +49 561 7294-367

Website: http://s.fhg.de/stensea , www.battery-simulation.de

© Fraunhofer IWES

Further Informations: http://s.fhg.de/stensea

© Fraunhofer IWES

Further Informations: http://s.fhg.de/stensea


Recommended