Transcript
Page 1: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

1

Nanoparticles in cancer medicine –

a physician’s perspective

Sunil Krishnan, MD

John E. and Dorothy J. Harris Professor

Director, Center for Radiation Oncology Research

MD Anderson Cancer Center

Disclosure Information

Sunil Krishnan

I have the following financial relationships to disclose:

Grant or research support from:

NIH, DoD, CPRIT, Alliance for Nanohealth, Shell,

Hitachi, FUSF, Dunn Foundation, MDACC

Royalties

Taylor and Francis (book sales)

I WILL NOT include discussion of investigational or off-label use of a product in my presentation.

Physical dose enhancement

Hainfeld et al. Phys Med Biol 2004; 49: N309-15

Page 2: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

2

The underlying physics

• Ejection of orbital electron & emission of x-ray

fluorescence photon (or characteristic x-ray)

4

K

L

M Courtesy: Nivedh Manohar, PhD

Physical dose enhancement

Cho et al. Phys Med Biol 2009

Physical dose enhancement

Cho et al. Phys Med Biol 2009

Page 3: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

3

Physical dose enhancement

Cho et al. Phys Med Biol 2009, 54(16):4889-905.

Physical dose enhancement

Cho, Krishnan Med Phys 2010

Physical dose enhancement

Page 4: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

4

Internalization

14nm

74nm

50nm

Chithrani DB, et al. Rad Res 2010 173(6):719-728. 2010

.

14nm 74nm

50nm

Enhancing physical dose enhancement

hn

nanoparticles

+ peptides

Active targeting

on the order of 10 m

e- e-

e-

nanoparticles

hn

Passive targeting

Conjugated gold nanorod

Page 5: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

5

Gold nanorod

Control 30 min 4 hrs 24 hrs

PE

G-G

NR

C

22

5-G

NR

Krishnan lab, unpublished data

Tumor regrowth delay

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0 5 10 15 20 25 30

No

rma

lize

d T

um

or

Vo

lum

e

Days after treatment

Control

PEG-GNR

C-GNR

Cetuximab

Rad

Cetuximab + Rad

PEG-GNR + Rad

C-GNR + Rad

Biodistribution

0

5

10

15

20

25

30

35

40

45

Brain Heart Lung Liver Spleen Kidney Tumor Blood

% ID

PEG-GNR

C225-GNR

Cho SH. Phys Med Biol 2005; 50: N163-73

Page 6: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

6

Clonogenic survival

Dose (Gy)

0 2 4 6 8

Su

rviv

ing

Fra

cti

on

0.000

0.001

0.010

0.100

1.000

Control

PEG-GNR

C225-GNR

Dose (Gy)

0 2 4 6 8

Su

rviv

ing

Fracti

on

0.000

0.001

0.010

0.100

1.000

Control

PEG-GNR

C225-GNR

DEF 10% DEF 15%

30 min 24 hrs

DNA damage

DNA damage

0

10

20

30

40

50

60

70

0.05 0.5 1 2 4 24

Av

era

ge

Nu

mb

er

of

Fo

ci p

er

ce

ll

Time after irradiation (hrs)

No Radiation

Radiation (4 Gy)

GNR + Rad (4 Gy)

C225-GNR + Rad (4 Gy)

γ H2AX

H2AX

PARP

C 0 1 4

R4 + GNR R4 + cGNR

C 0 1 4 C 0 1 4

R4

Page 7: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

7

Apoptotic markers

0

0.5

1

1.5

Rad pGNRcGNR

-N

TP

ra

tio

G H

1 hr

Ra

d

-20.0 -15.0 -10.0 -5.0 ppm (t1) -20.0 -15.0 -10.0 -5.0 -20.0 -15.0 -10.0 -5.0

24

hr

Contro

l

pGNR

cGNR

NTP

NTP

NTP

Procaspase 3

Procaspase 9

Procaspase 8

Actin

pGNR + Rad cGNR + Rad Rad (4 Gy)

C 0 1 4 24 C 0 1 4 24 C 0 1 4 24 hr post IR

Caspase mediated apoptotic markers Mitochondrial mediated apoptotic markers E

Bcl-2

PUMA

Bax

pGNR + Rad cGNR + Rad Rad (4 Gy)

C 0 1 4 24 C 0 1 4 24 C 0 1 4 24 hr post IR

Actin

Total oxidative stress

0.8

0.8

0.9

0.9

1.0

1.0

1.1

1.1

1.2

1.2

1.3

Control Immediate 1 hr 4 hrs

No

rma

lize

d p

rote

in c

arb

on

yl c

on

ten

t

Time after 4 Gy radiation

Rad

GNR

CGNR

Protein carbonyl assay

Tissue effects

4 hrs 4 days

Post irradiation time

Ra

dia

tio

n

PE

G-G

NR

+

Ra

dia

tio

n

C2

25

-GN

R

+

Ra

dia

tio

n

Page 8: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

8

Tissue effects

0

50

100

150

200

250

300

350

4 hrs 4 days

Post irradiation period

Avera

ge m

icro

vessel d

en

sit

y

per

field

of

vie

w w

ith

10X

ob

jecti

ve

Radiation (10 Gy)

GNR + Rad (10Gy)

C225-GNR + Rad (10 Gy)

*

Intracellular distribution

Time

Intracellular distribution

Wolfe T, et al. Nanomedicine 2015;11:1277-1283

Page 9: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

9

The underlying physics

• Ejection of orbital electron & emission of x-ray

fluorescence photon (or characteristic x-ray)

25

K

L

M Courtesy: Nivedh Manohar, PhD

Summary

Bhattarai SR, et al. Nanoscale. 2017 Apr 20;9(16):5085-5093.

• Targeted payload delivery feasible with smaller

nanoparticles bioconjugated to peptides/antibodies

• Tumor accumulation does not increase much, BUT

distribution is altered at the cellular level

• Both the intracellular localization and the perivascular

sequestration result in greater radiosensitization at a

biological level, mediated primarily by: •Increased DNA damage and downstream signaling

•Increased oxidative stress

•Increased vascular disruption

Summary

Page 10: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

10

Another approach

Thermosensitive liposome

PEG

AuNp

Aqueous core

Phospholipid

bilayer

Hydrophobic region

12

0-1

30

nm

26 28 30 32 34 36 38 40 42 44 46 48 50 52

0

20

40

60

80

100

41.5 o

C

TSLAuNps

NTSLAuNps

Perc

en

t o

f A

uN

ps r

ele

ased

Temperature ( o

C )

38.5 oC

Focused ultrasound

Page 11: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

11

Radiosensitization

0 3 6 9 12 15 18 21 24 27 300

50

100

150

200

250

300

350

400

Control

HT

TSLAuNp

Rad

TSLAuNp + Rad

TSLAuNp + HT+ Rad

Days

No

rmali

zed

tu

mo

r vo

lum

e

Radiosensitization

0 3 6 9 12 15 18 21 24 27 300

50

100

150

200

250

300

350

400Control

HT

TSLAuNp

TSLAuNp + HT

Rad

TSLAuNp + Rad

TSLAuNp + HT+ Rad

AuNp+Rad

NTSLAuNp + Rad

NTSLAuNp + HT

NTSLAuNp + HT + Rad

HT+ Rad

Days after intravenous injection

No

rmalized

tu

mo

r vo

lum

e

Deep penetration of tumors

Page 12: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

12

Summary

• Triggered release from thermosensitive liposomes

enhances deep penetration of nanoparticles

• Deep penetration improves radiosensitization

independent of the effect of hyperthermic

radiosensitization

• In principle, this could be a class solution for a variety

of tumor types

Photoacoustic imaging

(A)

(B)

(C)

(A1)

(A2)

(A3)

(A4)

Xray fluorescence imaging

Manohar N, et al. Sci Rep. 2016 Feb 25;6:22079.

Page 13: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

13

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

0 5 10 15 20 25 30

No

rma

lize

d T

um

or

Vo

lum

e

Days after treatment

Control

PEG-GNR

C-GNR

Cetuximab

Rad

Cetuximab + Rad

PEG-GNR + Rad

C-GNR + Rad

~25nm

conjugated

nanorod

Progressive

intracellular

accumulation

Inc’d oxidative stress

Inc’d DNA damage

XRT

~120nm

Thermo-

sensitive

liposome

with gold

XRT FUS PEG

AuNp

Aqueous core

Phospholipid

bilayer

Hydrophobic region

12

0-1

30

nm

0 3 6 9 12 15 18 21 24 27 300

50

100

150

200

250

300

350

400

Control

HT

TSLAuNp

Rad

TSLAuNp + Rad

TSLAuNp + HT+ Rad

Days

No

rmali

zed

tu

mo

r vo

lum

e

Deep penetration

of nanoparticles

• Larger particles for vascular-targeted applications (thermo-

ablation, hyperthermia, vascular imaging)

• Smaller particles for parenchymal applications (imaging,

targeted payload delivery)

• Combinations of above

• Unresolved issues related to clinical translation

Summary

Page 14: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

14

Patients receiving radiation therapy for cancer

~60% of all patients receive radiation therapy

Often, standard doses of radiation therapy are unable

to cure the tumor but higher doses cannot be given due

to high risk of side effects from overdosing adjacent

normal organs

Can one give the same (standard) dose of radiation to

the tumor but make it behave like a higher dose of

radiation?

The target population

We need new approaches

Pipeline Breakdown According to

Number of Drugs

Marketed# 93

Registered# 1

Pre-registration# 5

Phase III# 47

Phase II# 103

Phase I# 62

Preclinical# 73

No Data# 5

Suspended# 7

Ceased# 150

A new radiosensitization strategy

2 µ 500 nm

Page 15: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

15

What nanoparticles work best?

Bland?

Spicy?

Spheres

Rods

Triangles

20 nm

20 nm

What nanoparticles work best?

Where do we stand today?

Prasanna PG, et al. Rad Res 2015: 184(3):235-248.

Courtesy: Gabriel Sawakuchi Courtesy: Jan Schuemann

Page 16: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

16

Roadmap to the clinic

Krishnan lab Parmesh Diagaradjane

Amit Deorukhkar

Edward Agyare

Dev Chatterjee

Shanta Bhattarai

Pankaj Singh

Jihyoun Lee

Aaron Brown

Kevin Kotamarti

Nga Diep

Krystina Sang

Jacobo Orenstein Cardona

Norman Colon

Hee Chul Park

Brook Walter

Imaging Physics John Hazle

Jason Stafford

Andrew Elliott

UT Austin James Tunnell

Raiyan Zaman

Priya Puvanakrishnan

Jaesook Park

Georgia Tech Sang Cho

Seong-Kyun Cheong

Bernard Jones

Nanospectra Glenn Goodrich

Don Payne

Jon Schwartz

James Wang

Texas Southern Univ Huan Xie

Funding NIH - KL2, R21 x 2, R01 x 2, U01, T32

DoD, CPRIT, ANH pre-center grant, Shell

UT Cntr Biomed Engg, Hitachi, FUSF, MDACC

Acknowledgements

Baylor Jeffrey Rosen

Rachel Atkinson

Amit Joshi

Rice

Naomi Halas

Page 17: Nanoparticles in cancer medicine a physician’s …amos3.aapm.org/abstracts/pdf/127-37397-418554-126524.pdf1 Nanoparticles in cancer medicine – a physician’s perspective Sunil

17


Recommended