Transcript
Page 1: Multidimensional heritability analysis of neuroanatomical

Multidimensional heritability analysis of neuroanatomical shape

Jingwei Li

Page 2: Multidimensional heritability analysis of neuroanatomical

Brain Imaging Genetics

Genetic Variation

Behavior Cognition Neuroanatomy

Page 3: Multidimensional heritability analysis of neuroanatomical

Brain Imaging Genetics

Genetic Variation

Neuroanatomy

Page 4: Multidimensional heritability analysis of neuroanatomical

Descriptors of Brain Structures

โ€ข One-dimensional descriptors (Hibar2015; Stein2012; Sabuncu2012)

โ€“ Volume

โ€“ Surface area

โ€“ โ€ฆ

โ€ข Drawbacks

โ€“ Limited when capturing the anatomical variation

Same area

Page 5: Multidimensional heritability analysis of neuroanatomical

Descriptors of Brain Structures

โ€ข Multi-dimensional shape descriptor: truncated Laplace-Beltrami Spectrum (LBS)โ€ข ๐œ“: R๐‘› โ†’ R๐‘›+๐‘˜ is the local parametrization of a submonifold ๐‘€ of R๐‘›+๐‘˜

๐‘”๐‘–๐‘— =< ๐œ•๐‘–๐œ“, ๐œ•๐‘—๐œ“ >, ๐บ = ๐‘”๐‘–๐‘— ๐‘›ร—๐‘›, ๐‘Š = det๐บ, ๐‘”๐‘–๐‘— = ๐บโˆ’1 ๐‘–, ๐‘—

โ€ข If ๐‘“ and ๐œ™ are real-valued functions defined on ๐‘€, then

๐›ป ๐‘“, ๐œ™ = ๐‘–,๐‘— ๐‘”๐‘–,๐‘— ๐œ•๐‘–๐‘“ ๐œ•๐‘—๐œ™, ฮ”๐‘“ =

1

๐‘Š ๐‘–,๐‘— ๐œ•๐‘– ๐‘”

๐‘–๐‘—๐‘Š ๐œ•๐‘—๐‘“

where ๐›ป ๐‘“, ๐œ™ โ‰”< grad ๐‘“, grad ๐œ™ > and ฮ”๐‘“ โ‰” div grad ๐‘“ .

โ€ข Solve Laplacian eigenvalue problem: ฮ”๐‘“ = ๐œ†๐‘“Nabla operator Laplace-Beltrami operator

eigenfunction eigenvalue

Page 6: Multidimensional heritability analysis of neuroanatomical

Descriptors of Brain Structures

โ€ข Multi-dimensional shape descriptor: truncated Laplace-Beltrami Spectrum (LBS)

Translate Laplacian eigenvalue problem: ๐šซ๐’‡ = ๐€๐’‡ to a variational problem:

โ€ข ๐œ™ฮ”๐‘“ ๐‘‘๐œŽ = โˆ’ ๐›ป ๐‘“, ๐œ™ ๐‘‘๐œŽ

โ€ข Since ๐›ป ๐‘“, ๐œ™ = ๐‘–,๐‘— ๐‘”๐‘–,๐‘— ๐œ•๐‘–๐‘“ ๐œ•๐‘—๐œ™ and ๐œ™ฮ”๐‘“ ๐‘‘๐œŽ = ๐œ™ ๐œ†๐‘“ ๐‘‘๐œŽ = โˆ’๐œ† ๐œ™๐‘“๐‘‘๐œŽ

๐‘–,๐‘— ๐‘”๐‘–,๐‘— ๐œ•๐‘–๐‘“ ๐œ•๐‘—๐œ™ ๐‘‘๐œŽ = ๐œ† ๐œ™๐‘“๐‘‘๐œŽ

variational problem

Green formula

Page 7: Multidimensional heritability analysis of neuroanatomical

Descriptors of Brain Structures

โ€ข Multi-dimensional shape descriptor: truncated Laplace-Beltrami Spectrum (LBS)

Discretization of ๐‘–,๐‘— ๐‘”๐‘–,๐‘— ๐œ•๐‘–๐‘“ ๐œ•๐‘—๐œ™ ๐‘‘๐œŽ = ๐œ† ๐œ™๐‘“๐‘‘๐œŽ:

โ€ข Choose ๐‘› linearly independent form functions: ๐œ™1 ๐‘ฅ , ๐œ™2 ๐‘ฅ ,โ€ฆ , ๐œ™๐‘› ๐‘ฅ as basis functions (e.g. ๐‘ฅ, ๐‘ฅ2, ๐‘ฅ3, โ€ฆ) defined on the parameter space.

โ€ข Any eigenfunction ๐‘“ can be approximately projected to the basis functions:๐‘“ ๐‘ฅ โ‰ˆ ๐น ๐‘ฅ = ๐‘ˆ1๐œ™1 ๐‘ฅ + โ‹ฏ+ ๐‘ˆ๐‘›๐œ™๐‘› ๐‘ฅ

โ€ข To solve ๐‘ˆ โ‹… , substitute ๐‘“ and ๐œ™ โ‹… into the variational problem.

โ€ข Define ๐ด = ๐‘Ž๐‘™๐‘š ๐‘›ร—๐‘› = ๐‘—,๐‘˜ ๐œ•๐‘—๐น๐‘™ ๐œ•๐‘˜๐น๐‘š ๐‘”๐‘—๐‘˜๐‘‘๐œŽ๐‘›ร—๐‘›

and ๐ต =

๐‘๐‘™๐‘š ๐‘›ร—๐‘› = ๐น๐‘™๐น๐‘š๐‘‘๐œŽ ๐‘›ร—๐‘›

=> ๐ด๐‘ˆ = ๐œ†๐ต๐‘ˆGeneral eigenvalue problem

Page 8: Multidimensional heritability analysis of neuroanatomical

Descriptors of Brain Structures

โ€ข Multi-dimensional shape descriptor: truncated Laplace-Beltrami Spectrum (LBS)

โ€“ Solve a Laplacian eigenvalue problem defined based on the brain region

โ€“ Obtain the first ๐‘€ eigenvalues

โ€ข Properties (Reuter 2006):

โ€“ Isometric invariant

โ€ข For planar shapes and 3D-solids:isometry congruency(identical after rigid body transformation)

โ€ข For surface:isometry โ‰  congruency

Page 9: Multidimensional heritability analysis of neuroanatomical

Descriptors of Brain Structures

โ€ข Multi-dimensional shape descriptor: truncated Laplace-Beltrami Spectrum (LBS)

โ€“ Solve a Laplacian eigenvalue problem defined based on the brain region

โ€“ Obtain the first ๐‘€ eigenvalues

โ€ข Properties (Reuter 2006):

โ€“ Isometric invariant

โ€“ scaling a n-dimensional manifold by the factor ๐‘Ž results in

scaled eigenvalues by the factor 1

๐‘Ž2

โ€“ โ€ฆ In this paper, eigenvalues are scaled:

๐œ†๐‘–,๐‘š = ๐œ†๐‘–,๐‘š โ‹… ๐‘‰๐‘–2/3

๐‘–: subject; ๐‘š: dimension

Page 10: Multidimensional heritability analysis of neuroanatomical

Heritability

โ€ข A phenotype/trait can be influenced by genetic and environmental effects.

โ€ข Heritability: how much of the variation in a phenotype/trait is due to variation in genetic factors.

Page 11: Multidimensional heritability analysis of neuroanatomical

Main Idea of This Paper

โ€ข Truncated LBS is more representative for a shape compared to volume.

โ€ข Use truncated LBS as descriptors for 12 brain regions to compute heritability. Compare that with volume-based heritability.

โ€ข To adapt truncated LBS into GCTA (Genome-wide Complex Trait Analysis) (Yang 2011) heritability model, propose a multi-dimensional heritability model.

Page 12: Multidimensional heritability analysis of neuroanatomical

GCTA heritability model

๐‘ฆ = ๐‘” + ๐‘ + ๐‘’

๐‘”~๐‘ 0, ๐œŽ๐ด2๐พ ๐‘~๐‘ 0, ๐œŽ๐ถ

2ฮ› ๐‘’~๐‘ 0, ๐œŽ๐ธ2๐ผ

Additive genetic component Common environmental component

Unique environmental component

๐‘ ร— 1 trait vector(๐‘: #subjects)

Page 13: Multidimensional heritability analysis of neuroanatomical

GCTA heritability model

๐‘ฆ = ๐‘” + ๐‘ + ๐‘’

๐‘”~๐‘ 0, ๐œŽ๐ด2๐พ ๐‘~๐‘ 0, ๐œŽ๐ถ

2ฮ› ๐‘’~๐‘ 0, ๐œŽ๐ธ2๐ผ

K: genetic similarity matrix

โ€ขFamilial study: ๐พ = 2 ร— ๐พ๐‘–๐‘›๐‘ โ„Ž๐‘–๐‘ ๐ถ๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘ . E.g. parent-offspring (0.5), identical twins (1), full siblings (0.5), half siblings (0.25)

โ€ขUnrelated subjects study: genome-side single-nucleotide polymorphism (SNP) data

Page 14: Multidimensional heritability analysis of neuroanatomical

GCTA heritability model

๐‘ฆ = ๐‘” + ๐‘ + ๐‘’

๐‘”~๐‘ 0, ๐œŽ๐ด2๐พ ๐‘~๐‘ 0, ๐œŽ๐ถ

2ฮ› ๐‘’~๐‘ 0, ๐œŽ๐ธ2๐ผ

What is Single-Nucleotide Polymorphism (SNP):

โ€ข Each locus on a DNA sequence is a single nucleotide adenine (A), thymine (T), cytosine (C), or guanine (G).

โ€ข SNP: a DNA sequence variation occurring when the types of single nucleotide in the genome (or other shared sequence) differs between individuals or paired chromosomes in one subject. E.g., AAGCCTA and AAGCTTA.

โ€ข SNP can leads to alleles (variants of a given gene).

โ€ข Each SNP can have 3 genotypes: AA, Aa, aa (denoted as 0-2)

Page 15: Multidimensional heritability analysis of neuroanatomical

GCTA heritability model

๐‘ฆ = ๐‘” + ๐‘ + ๐‘’

๐‘”~๐‘ 0, ๐œŽ๐ด2๐พ ๐‘~๐‘ 0, ๐œŽ๐ถ

2ฮ› ๐‘’~๐‘ 0, ๐œŽ๐ธ2๐ผ

How to compute genetic similarity from SNP:

โ€ข ๐‘‹(#subjects x #SNPs).

โ€ข Standardize each column of ๐‘‹ (mean 0, variance 1).

โ€ข ๐พ =๐‘‹๐‘‹๐‘‡

#๐‘†๐‘๐‘ƒ๐‘ 

0 โ‹ฏ 22 โ‹ฏ 1โ‹ฎ1 โ‹ฏ

โ‹ฎ0

Page 16: Multidimensional heritability analysis of neuroanatomical

GCTA heritability model

๐‘ฆ = ๐‘” + ๐‘ + ๐‘’

๐‘”~๐‘ 0, ๐œŽ๐ด2๐พ ๐‘~๐‘ 0, ๐œŽ๐ถ

2ฮ› ๐‘’~๐‘ 0, ๐œŽ๐ธ2๐ผ

ฮ›: shared environment matrix between the subjects

โ€ขFamilial study: e.g., twins & non-twin siblings (1)

โ€ขUnrelated subjects study: ฮ› vanishes

Page 17: Multidimensional heritability analysis of neuroanatomical

GCTA heritability model

๐‘ฆ = ๐‘” + ๐‘ + ๐‘’

๐‘”~๐‘ 0, ๐œŽ๐ด2๐พ ๐‘~๐‘ 0, ๐œŽ๐ถ

2ฮ› ๐‘’~๐‘ 0, ๐œŽ๐ธ2๐ผ

Identical matrix

Page 18: Multidimensional heritability analysis of neuroanatomical

GCTA heritability model

๐‘ฆ = ๐‘” + ๐‘ + ๐‘’

๐‘”~๐‘ 0, ๐œŽ๐ด2๐พ ๐‘~๐‘ 0, ๐œŽ๐ถ

2ฮ› ๐‘’~๐‘ 0, ๐œŽ๐ธ2๐ผ

โ„Ž2 =๐œŽ๐ด2

๐œŽ๐ด2 + ๐œŽ๐ถ

2 + ๐œŽ๐ธ2

โ„Ž2: the variance in the trait explained by the variance in additive genetic component

heritability

Page 19: Multidimensional heritability analysis of neuroanatomical

Multi-dimensional traits heritability model

๐‘Œ = ๐บ + ๐ถ + ๐ธ

๐‘ฃ๐‘’๐‘ ๐บ ~๐‘ 0, ฮฃ๐ด โจ‚๐พ , ๐‘ฃ๐‘’๐‘ ๐ถ ~๐‘ 0, ฮฃ๐ถ โจ‚ฮ› , ๐‘ฃ๐‘’๐‘ ๐ธ ~๐‘ 0, ฮฃ๐ธ โจ‚๐ผ

๐‘ ร—๐‘€ trait matrix(๐‘: #subjects)(๐‘€: #dimensions)

ฮฃ๐ด = ๐œŽ๐ด๐‘Ÿ๐‘  ๐‘€ร—๐‘€: ๐œŽ๐ด๐‘Ÿ๐‘  is

the genetic covariance between ๐‘Ÿ-th and ๐‘ -thdimensions in traits

ฮฃ๐ถ = ๐œŽ๐ถ๐‘Ÿ๐‘  ๐‘€ร—๐‘€: ๐œŽ๐ถ๐‘Ÿ๐‘  is

the common environmental covariance between ๐‘Ÿ-thand ๐‘ -th dimensions in traits

ฮฃ๐ธ = ๐œŽ๐ธ๐‘Ÿ๐‘  ๐‘€ร—๐‘€: ๐œŽ๐ธ๐‘Ÿ๐‘  is

the unique environmental covariance between ๐‘Ÿ-thand ๐‘ -th dimensions in traits

Page 20: Multidimensional heritability analysis of neuroanatomical

Multi-dimensional traits heritability model

๐‘Œ = ๐บ + ๐ถ + ๐ธ

๐‘ฃ๐‘’๐‘ ๐บ ~๐‘ 0, ฮฃ๐ด โจ‚๐พ , ๐‘ฃ๐‘’๐‘ ๐ถ ~๐‘ 0, ฮฃ๐ถ โจ‚ฮ› , ๐‘ฃ๐‘’๐‘ ๐ธ ~๐‘ 0, ฮฃ๐ธ โจ‚๐ผ

โจ‚: Kronecker product

ฮฃ๐ด๐‘Ÿ๐‘ โจ‚๐พ =

๐œŽ๐ด11๐พ ๐œŽ๐ด12๐พ โ‹ฏ ๐œŽ๐ด1๐‘€๐พ

๐œŽ๐ด21๐พ ๐œŽ๐ด22๐พ โ‹ฏ ๐œŽ๐ด2๐‘€๐พ

โ‹ฎ โ‹ฎ โ‹ฎ๐œŽ๐ด๐‘€1๐พ ๐œŽ๐ด๐‘€2๐พ โ‹ฏ ๐œŽ๐ด๐‘€๐‘€๐พ

Page 21: Multidimensional heritability analysis of neuroanatomical

Multi-dimensional traits heritability model

๐‘Œ = ๐บ + ๐ถ + ๐ธ

๐‘ฃ๐‘’๐‘ ๐บ ~๐‘ 0, ฮฃ๐ด โจ‚๐พ , ๐‘ฃ๐‘’๐‘ ๐ถ ~๐‘ 0, ฮฃ๐ถ โจ‚ฮ› , ๐‘ฃ๐‘’๐‘ ๐ธ ~๐‘ 0, ฮฃ๐ธ โจ‚๐ผ

๐‘ฃ๐‘’๐‘ ๐‘Ž1, ๐‘Ž2, โ‹ฏ , ๐‘Ž๐‘˜ =

๐‘Ž1 ๐‘Ž2โ‹ฎ ๐‘Ž๐‘˜

Page 22: Multidimensional heritability analysis of neuroanatomical

Multi-dimensional traits heritability model

๐‘Œ = ๐บ + ๐ถ + ๐ธ

๐‘ฃ๐‘’๐‘ ๐บ ~๐‘ 0, ฮฃ๐ด โจ‚๐พ , ๐‘ฃ๐‘’๐‘ ๐ถ ~๐‘ 0, ฮฃ๐ถ โจ‚ฮ› , ๐‘ฃ๐‘’๐‘ ๐ธ ~๐‘ 0, ฮฃ๐ธ โจ‚๐ผ

โ„Ž2 =tr ฮฃ๐ด

tr ฮฃ๐ด + tr ฮฃ๐ถ + tr ฮฃ๐ธ=

๐‘š=1

๐‘€

๐›พ๐‘šโ„Ž๐‘š2

where ๐›พ๐‘š =๐œŽ๐ด๐‘š๐‘š + ๐œŽ๐ถ๐‘š๐‘š + ๐œŽ๐ธ๐‘š๐‘š

๐‘=1๐‘€ ๐œŽ๐ด๐‘๐‘ + ๐œŽ๐ถ๐‘๐‘ + ๐œŽ๐ธ๐‘๐‘

โ„Ž๐‘š2 =

๐œŽ๐ด๐‘š๐‘š

๐œŽ๐ด๐‘š๐‘š + ๐œŽ๐ถ๐‘š๐‘š + ๐œŽ๐ธ๐‘š๐‘š

The multi-dimensional trait heritability is a weighted average of the heritability of each dimension.

heritability

Page 23: Multidimensional heritability analysis of neuroanatomical

Multi-dimensional traits heritability model

โ€ข Properties

โ€“ Invariant to rotations of data

๐‘Œ๐‘‡ = ๐บ๐‘‡ + ๐ถ๐‘‡ + ๐ธ๐‘‡

โ„Ž๐‘‡2 = โ„Ž2

๐‘Œ = ๐บ + ๐ถ + ๐ธ (1)

(2)

heritability from model (1)heritability from model (2)

๐‘‡๐‘‡๐‘‡ = ๐‘‡๐‘‡๐‘‡ = ๐ผ

Page 24: Multidimensional heritability analysis of neuroanatomical

Consider covariates

โ€ข Sometimes, we want to study the effects after controlling some nuisance variables by regressing them out.

โ€ข E.g., age, gender, handness

Page 25: Multidimensional heritability analysis of neuroanatomical

Consider covariates

๐‘Œ = ๐‘‹๐ต + ๐บ + ๐ถ + ๐ธ

๐‘ฃ๐‘’๐‘ ๐บ ~๐‘ 0, ฮฃ๐ด โจ‚๐พ , ๐‘ฃ๐‘’๐‘ ๐ถ ~๐‘ 0, ฮฃ๐ถ โจ‚ฮ› , ๐‘ฃ๐‘’๐‘ ๐ธ ~๐‘ 0, ฮฃ๐ธ โจ‚๐ผ

๐‘Œ = ๐‘ˆ๐‘‡๐‘Œ = ๐‘ˆ๐‘‡๐บ + ๐‘ˆ๐‘‡๐ถ + ๐‘ˆ๐‘‡๐ธ = ๐บ + ๐ถ + ๐ธ

๐‘ฃ๐‘’๐‘ ๐บ ~๐‘ 0, ฮฃ๐ด โจ‚ ๐‘ˆ๐‘‡๐พ๐‘ˆ , ๐‘ฃ๐‘’๐‘ ๐ถ ~๐‘ 0, ฮฃ๐ถ โจ‚ ๐‘ˆ๐‘‡ฮ›๐‘ˆ ,

๐‘ฃ๐‘’๐‘ ๐ธ ~๐‘ 0, ฮฃ๐ธ โจ‚๐ผ

๐‘ˆ๐‘‡๐‘‹ = 0๐‘ˆ๐‘‡๐‘ˆ = ๐ผ

๐‘ˆ๐‘ˆ๐‘‡ = ๐ผ โˆ’ ๐‘‹ ๐‘‹๐‘‡๐‘‹ โˆ’1๐‘‹๐‘‡

๐‘ˆ: ๐‘ ร— ๐‘ โˆ’ ๐‘ž

Covariates (๐‘ ร— ๐‘ž)

Page 26: Multidimensional heritability analysis of neuroanatomical

Analysis

โ€ข Datasets:

โ€“ Genomics Superstruct Project (GSP; N = 1320) โ€“ unrelated subjects

โ€“ Human Connectome Project (HCP; N = 590)โ€ข 72 monozygotic twin pairs

โ€ข 69 dizygotic twin pairs

โ€ข 253 full siblings of twins

โ€ข 55 singletons

โ€ข 12 brain structures

โ€ข Traits

โ€“ Volume

โ€“ Truncated LBS

Page 27: Multidimensional heritability analysis of neuroanatomical

Volume heritability (GSP data)

โ€ข Before multiple comparisons correction: 3/12 brain structures are significantโ€ข After multiple comparisons correction: none is significantโ€ข Most structures: parametric & nonparametric p values are similar => standard errors

estimates are accurate

Page 28: Multidimensional heritability analysis of neuroanatomical

Volume heritability (GSP data)

Test-retest reliability:โ€ข Linโ€™s concordance correlation coefficient

๐œŒ๐‘ =2๐œŒ๐œŽ๐‘ฅ๐œŽ๐‘ฆ

๐œŽ๐‘ฅ2 + ๐œŽ๐‘ฆ

2 + ๐œ‡๐‘ฅ โˆ’ ๐œ‡๐‘ฆ2

variance mean

correlation coefficient

๐‘ฅ, ๐‘ฆ: use repeated runs on separate days of the same set of subjects

Page 29: Multidimensional heritability analysis of neuroanatomical

Truncated LBS heritability (GSP data)

โ€ข Before multiple comparisons correction: 7/12 brain structures are significantโ€ข After multiple comparisons correction: 5/12 brain structures are significantโ€ข Most structures: parametric & nonparametric p values are similar => standard errors

estimates are accurateโ€ข Smaller standard error than volume-based heritability

Page 30: Multidimensional heritability analysis of neuroanatomical

Truncated LBS heritability (GSP data)

Test-retest reliability:โ€ข Averaged Linโ€™s concordance correlation coefficient

across ๐‘€ dimensions

๐œŒ๐‘ =2๐œŒ๐œŽ๐‘ฅ๐œŽ๐‘ฆ

๐œŽ๐‘ฅ2 + ๐œŽ๐‘ฆ

2 + ๐œ‡๐‘ฅ โˆ’ ๐œ‡๐‘ฆ2

variance mean

correlation coefficient

๐‘ฅ, ๐‘ฆ: use repeated runs on separate days of the same set of subjects

Page 31: Multidimensional heritability analysis of neuroanatomical

Truncated LBS heritability (GSP data)

Page 32: Multidimensional heritability analysis of neuroanatomical

Truncated LBS heritability (HCP data)

โ€ข Only significant brain structures results are shown

โ€ข Consistently higher than GSP datasetโ€“ Possible reason: in unrelated subjects only the variation of some

common SNPs are captured.

Structure ๐’‰๐Ÿ Standard Error

Accumbens area 0.309 0.162

Caudate 0.583 0.124

Cerebellum 0.653 0.120

Corpus Callosum 0.558 0.136

Hippocampus 0.363 0.190

Third Ventricle 0.536 0.134

Putamen 0.483 0.212

Page 33: Multidimensional heritability analysis of neuroanatomical

Visualizing principal mode of shape variation

โ€ข PCA is a kind of rotation of data. The first PC of LBS explains a large percentage of shape variation.

โ€ข Heritability model: (1) invariant to rotation; (2) heritability of multi-dimensional trait = weighted average of each dimensionโ€™s heritability

โ€ข The heritability of truncated LBS is the weighted average of the first M PCsโ€™ heritability.

Page 34: Multidimensional heritability analysis of neuroanatomical

Visualizing principal mode of shape variationProcedures (for one brain structure)1. Register each subjectโ€™s mask (1 โ€“ in structure, 0 โ€“ out of structure)

to a common used template.

2. Create a population average of structure surface for plottingโ€“ A weighted average of all subjectsโ€™ registered mask image

โ€“ Weight: Gaussian kernel โ€ข center: average of first PC

โ€ข distance: subject-specific corresponding first PC <-> center

โ€ข Width: resulting 500 shapes have non-0 weights

โ€“ The isosurface with 0.5 in the averaged map

3. Use the same Gaussian kernel, generate averaged maps by including the shapes around +2 standard deviation of the first PC (-2 s.d. as well)

4. Plot the difference between the two maps in step 3 on the surface generated in step 2.

Page 35: Multidimensional heritability analysis of neuroanatomical

Visualizing principal mode of shape variation

Red: shapes around +2 s.d. are larger than -2 s.d.

Blue: shapes around -2 s.d. are larger than +2 s.d.

Page 36: Multidimensional heritability analysis of neuroanatomical

Strengths

โ€ข Use truncated LBS instead of volume as features

โ€“ Capture more shape variation

โ€“ Isometry invariance

โ€“ Does not require any registration or mapping (Reuter 2006 & 2009)

โ€ข Generalize the concept of heritability into multi-dimensional phenotypes

โ€“ Other applications (multi-tests of one behavior; disease study)

Page 37: Multidimensional heritability analysis of neuroanatomical

Strengths

โ€ข Variability of heritability estimation

โ€“ Multi-dimensional trait heritability model < original GCTA model (unrelated subject dataset)

โ€“ Heritability estimates are more accurate, more significant

โ€ข Propose a visualization method for shape variation

โ€“ Interpretation: shape variation along the first PC axis of the shape descriptor

Page 38: Multidimensional heritability analysis of neuroanatomical

Weakness

โ€ข Optimal number of eigenvalue may not be 50

โ€“ Only 30, 50, 70 are tested

โ€“ Error bars for difference number of eigenvalues are not shown

โ€“ Other number except 50 (used in paper) could lead to higher heritability and smaller error bars

Page 39: Multidimensional heritability analysis of neuroanatomical

Weakness

โ€ข Optimal number of eigenvalue can be different for different brain structures

โ€“ Amygdala: heritability is similar for 30, 50, 70 eigenvalues (even decrease)

โ€“ 3rd-ventricle: heritability increases from 0.4 to 0.6

Page 40: Multidimensional heritability analysis of neuroanatomical

Weakness

โ€ข Links between proposed visualization method and LBS heritability are not clear.

โ€ข Only volume-based GCTA heritability is compared to the new method and new model.

โ€“ More comparisons with the literature (e.g., Gilmore 2010; Baare 2001)

Page 41: Multidimensional heritability analysis of neuroanatomical

Backup: invariant to rotations of data

๐‘๐‘œ๐‘ฃ ๐‘ฃ๐‘’๐‘ ๐บ๐‘‡

= ๐‘๐‘œ๐‘ฃ ๐‘‡๐‘‡โจ‚๐ผ ๐‘ฃ๐‘’๐‘ ๐บ

= ๐‘‡๐‘‡โจ‚๐ผ ๐‘ฃ๐‘’๐‘ ๐บ ๐‘‡โจ‚๐ผ

= ๐‘‡๐‘‡โจ‚๐ผ ฮฃ๐ดโจ‚๐พ ๐‘‡โจ‚๐ผ

= ๐‘‡๐‘‡ฮฃ๐ด๐‘‡ โจ‚๐พ

Similarly, ๐‘๐‘œ๐‘ฃ ๐‘ฃ๐‘’๐‘ ๐ถ๐‘‡ = ๐‘‡๐‘‡ฮฃ๐ถ๐‘‡ โจ‚ฮ›, ๐‘๐‘œ๐‘ฃ ๐‘ฃ๐‘’๐‘ ๐ธ๐‘‡ = ๐‘‡๐‘‡ฮฃ๐ธ๐‘‡ โจ‚๐ผ

โ„Ž๐‘‡2 =

๐‘ก๐‘Ÿ ๐‘‡๐‘‡ฮฃ๐ด๐‘‡

๐‘ก๐‘Ÿ ๐‘‡๐‘‡ฮฃ๐ด๐‘‡ + ๐‘ก๐‘Ÿ ๐‘‡๐‘‡ฮฃ๐ถ๐‘‡ + ๐‘ก๐‘Ÿ ๐‘‡๐‘‡ฮฃ๐ธ๐‘‡

=๐‘ก๐‘Ÿ ฮฃ๐ด ๐‘‡๐‘‡๐‘‡

๐‘ก๐‘Ÿ ฮฃ๐ด ๐‘‡๐‘‡๐‘‡ + ๐‘ก๐‘Ÿ ฮฃ๐ถ ๐‘‡๐‘‡๐‘‡ + ๐‘ก๐‘Ÿ ฮฃ๐ธ(๐‘‡๐‘‡๐‘‡)

=๐‘ก๐‘Ÿ ฮฃ๐ด

๐‘ก๐‘Ÿ ฮฃ๐ด + ๐‘ก๐‘Ÿ ฮฃ๐ถ + ๐‘ก๐‘Ÿ ฮฃ๐ธ= โ„Ž2

Theorem: ๐‘ฃ๐‘’๐‘ ๐ด๐‘‹๐ต = ๐ต๐‘‡โจ‚๐ด ๐‘ฃ๐‘’๐‘ ๐‘‹Here ๐ด = ๐ผ, ๐‘‹ = ๐บ, ๐ต = ๐‘‡

โ€ข ๐ดโจ‚๐ต ๐‘‡ = ๐ด๐‘‡โจ‚๐ต๐‘‡

โ€ข ๐‘๐‘œ๐‘ฃ ๐ด๐‘‹ = ๐ด๐‘๐‘œ๐‘ฃ ๐‘‹ ๐ด๐‘‡

๐ดโจ‚๐ต ๐ถโจ‚๐ท = ๐ด๐ถโจ‚๐ต๐ท

โ€ข ๐‘ก๐‘Ÿ ๐ด๐ต๐ถ = ๐‘ก๐‘Ÿ ๐ต๐ถ๐ด = ๐‘ก๐‘Ÿ ๐ถ๐ด๐ตโ€ข Associative property of matrix

multiplication

Page 42: Multidimensional heritability analysis of neuroanatomical

Backup: multi-dimensional trait heritability is a weighted average of heritability of each dimension

โ„Ž2 =๐‘ก๐‘Ÿ ฮฃ๐ด

๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ถ + ฮฃ๐ธ

= ๐‘š=1๐‘€ ๐œŽ๐ด๐‘š๐‘š

๐‘=1๐‘€ ๐œŽ๐ด๐‘๐‘ + ๐‘=1

๐‘€ ๐œŽ๐ถ๐‘๐‘ + ๐‘=1๐‘€ ๐œŽ๐ธ๐‘๐‘

=

๐‘š=1

๐‘€๐œŽ๐ด๐‘š๐‘š + ๐œŽ๐ถ๐‘š๐‘š + ๐œŽ๐ธ๐‘š๐‘š

๐‘=1๐‘€ ๐œŽ๐ด๐‘๐‘ + ๐œŽ๐ถ๐‘๐‘ + ๐œŽ๐ธ๐‘๐‘

โ‹…๐œŽ๐ด๐‘š๐‘š

๐œŽ๐ด๐‘š๐‘š + ๐œŽ๐ถ๐‘š๐‘š + ๐œŽ๐ธ๐‘š๐‘š

=

๐‘š=1

๐‘€

๐›พ๐‘šโ„Ž๐‘š2

Page 43: Multidimensional heritability analysis of neuroanatomical

Backup: moment-matching estimator for unrelated subjects (no shared environmental component)๐‘๐‘œ๐‘ฃ ๐‘ฆ๐‘Ÿ , ๐‘ฆ๐‘  = ๐œŽ๐ด๐‘Ÿ๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐ผ โŸน ๐‘ฆ๐‘Ÿ๐‘ฆ๐‘ 

๐‘‡ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐ผ

To estimate ๐œŽ๐ด๐‘Ÿ๐‘ , ๐œŽ๐ธ๐‘Ÿ๐‘ , use a regression model:

๐‘ฃ๐‘’๐‘ ๐‘ฆ๐‘Ÿ๐‘ฆ๐‘ ๐‘‡ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ

โŸน ๐‘ฆ๐‘ โจ‚๐‘ฆ๐‘Ÿ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ

โŸน ๐‘ฃ๐‘’๐‘ ๐พ ๐‘‡ ๐‘ฆ๐‘ โจ‚๐‘ฆ๐‘Ÿ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ ๐‘‡๐‘ฃ๐‘’๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ ๐‘‡๐‘ฃ๐‘’๐‘ ๐ผ

๐‘ฃ๐‘’๐‘ ๐ผ ๐‘‡ ๐‘ฆ๐‘ โจ‚๐‘ฆ๐‘Ÿ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ ๐‘‡๐‘ฃ๐‘’๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ ๐‘‡๐‘ฃ๐‘’๐‘ ๐ผ

โŸน ๐‘ฆ๐‘ โจ‚๐‘ฆ๐‘Ÿ

๐‘‡๐‘ฃ๐‘’๐‘ ๐พ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ ๐‘‡๐‘ฃ๐‘’๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ ๐‘‡๐‘ฃ๐‘’๐‘ ๐พ

๐‘ฆ๐‘ โจ‚๐‘ฆ๐‘Ÿ๐‘‡๐‘ฃ๐‘’๐‘ ๐ผ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ ๐‘‡๐‘ฃ๐‘’๐‘ ๐ผ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ ๐‘‡๐‘ฃ๐‘’๐‘ ๐ผ

โŸน ๐‘ฆ๐‘ ๐‘‡โจ‚๐‘ฆ๐‘Ÿ

๐‘‡ ๐‘ฃ๐‘’๐‘ ๐พ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ ๐‘‡๐‘ฃ๐‘’๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ ๐‘‡๐‘ฃ๐‘’๐‘ ๐พ

๐‘ฆ๐‘ ๐‘‡โจ‚๐‘ฆ๐‘Ÿ

๐‘‡ ๐‘ฃ๐‘’๐‘ ๐ผ = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐พ ๐‘‡๐‘ฃ๐‘’๐‘ ๐ผ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ฃ๐‘’๐‘ ๐ผ ๐‘‡๐‘ฃ๐‘’๐‘ ๐ผ

โŸน ๐‘ฆ๐‘Ÿ๐‘‡๐พ๐‘ฆ๐‘  = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ก๐‘Ÿ ๐พ

2 + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ก๐‘Ÿ ๐พ

๐‘ฆ๐‘Ÿ๐‘‡๐‘ฆ๐‘  = ๐œŽ๐ด๐‘Ÿ๐‘ ๐‘ก๐‘Ÿ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐‘ก๐‘Ÿ ๐ผ

Page 44: Multidimensional heritability analysis of neuroanatomical

Backup: moment-matching estimator for unrelated subjects (no shared environmental component)

โŸน๐œŽ๐ด๐‘Ÿ๐‘ ๐œŽ๐ธ๐‘Ÿ๐‘ 

=๐‘ก๐‘Ÿ ๐พ2 ๐‘ก๐‘Ÿ ๐พ

๐‘ก๐‘Ÿ ๐พ ๐‘ก๐‘Ÿ ๐ผ

โˆ’1๐‘ฆ๐‘Ÿ๐‘‡๐พ๐‘ฆ๐‘ ๐‘ฆ๐‘Ÿ๐‘‡๐‘ฆ๐‘ 

โŸน

๐œŽ๐ด๐‘Ÿ๐‘  =๐‘ฆ๐‘Ÿ๐‘‡ ๐‘๐พ โˆ’ ๐‘ก๐‘Ÿ ๐พ ๐ผ ๐‘ฆ๐‘ ๐‘๐‘ก๐‘Ÿ ๐พ2 โˆ’ ๐‘ก๐‘Ÿ2 ๐พ

โ‰”๐‘ฆ๐‘Ÿ๐‘‡ ๐พ โˆ’ ๐œ๐ผ ๐‘ฆ๐‘ 

๐œˆ๐พ

๐œŽ๐ธ๐‘Ÿ๐‘  =๐‘ฆ๐‘Ÿ๐‘‡ ๐‘ก๐‘Ÿ ๐พ2 ๐ผ โˆ’ ๐‘ก๐‘Ÿ ๐พ ๐พ ๐‘ฆ๐‘ ๐‘๐‘ก๐‘Ÿ ๐พ2 โˆ’ ๐‘ก๐‘Ÿ2[๐พ]

=๐‘ฆ๐‘Ÿ๐‘‡ ๐œ…๐ผ โˆ’ ๐œ๐พ ๐‘ฆ๐‘ 

๐œˆ๐พ

where ๐œ = ๐‘ก๐‘Ÿ ๐พ๐‘, ๐œ… = ๐‘ก๐‘Ÿ ๐พ2

๐‘, ๐œˆ๐พ = ๐‘ก๐‘Ÿ ๐พ2 โˆ’ ๐‘ก๐‘Ÿ2 ๐พ๐‘ = ๐‘ ๐œ… โˆ’ ๐œ

โŸน ฮฃ๐ด =๐‘Œ๐‘‡ ๐พ โˆ’ ๐œ๐ผ ๐‘Œ

๐œˆ๐พ, ฮฃ๐ธ =

๐‘Œ๐‘‡ ๐œ…๐ผ โˆ’ ๐œ๐พ ๐‘Œ

๐œˆ๐พ

Page 45: Multidimensional heritability analysis of neuroanatomical

Backup: sampling variance of the point estimator

๐‘„๐ด โ‰”๐พ โˆ’ ๐œ๐ผ

๐œˆ๐พ, ๐‘„๐ธ โ‰”

๐œ…๐ผ โˆ’ ๐œ๐พ

๐œˆ๐พ

๐‘ก๐ด โ‰” ๐‘ก๐‘Ÿ ฮฃ๐ด = ๐‘ก๐‘Ÿ ๐‘Œ๐‘‡๐‘„๐ด๐‘Œ , ๐‘ก๐ธ = ๐‘ก๐‘Ÿ ฮฃ๐ธ = ๐‘ก๐‘Ÿ ๐‘Œ๐‘‡๐‘„๐ธ๐‘Œ , ๐‘ก =๐‘ก๐ด๐‘ก๐ธ

The heritability is a function of ๐‘ก: ๐‘“ ๐‘ก =๐‘ก๐ด

๐‘ก๐ด+๐‘ก๐ธ

๐‘ฃ๐‘Ž๐‘Ÿ โ„Ž๐‘†๐‘๐‘ƒ2 = ๐‘ฃ๐‘Ž๐‘Ÿ ๐‘“ ๐‘ก โ‰ˆ

๐œ•๐‘“ ๐‘ก

๐œ•๐‘ก๐‘๐‘œ๐‘ฃ ๐‘ก

๐œ•๐‘“ ๐‘ก

๐œ•๐‘ก๐‘‡

where ๐œ•๐‘“ ๐‘ก

๐œ•๐‘ก=

๐œ•๐‘“ ๐‘ก

๐œ•๐‘ก,๐œ•๐‘“ ๐‘ก

๐œ•๐‘ก=

๐‘ก๐ธ

๐‘ก๐ด+๐‘ก๐ธ2 ,

โˆ’๐‘ก๐ด

๐‘ก๐ด+๐‘ก๐ธ2

Define ๐‘‰๐‘Ÿ๐‘  = ๐‘๐‘œ๐‘ฃ ๐‘ฆ๐‘Ÿ , ๐‘ฆ๐‘  = ๐œŽ๐ด๐‘Ÿ๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐ผ

Page 46: Multidimensional heritability analysis of neuroanatomical

Backup: sampling variance of the point estimator

๐‘๐‘œ๐‘ฃ ๐‘ก๐‘Ÿ ๐‘Œ๐‘‡๐‘„๐›ผ๐‘Œ , ๐‘ก๐‘Ÿ ๐‘Œ๐‘‡๐‘„๐›ฝ๐‘Œ

= ๐‘Ÿ,๐‘ =1

๐‘€

๐‘๐‘œ๐‘ฃ ๐‘ฆ๐‘Ÿ๐‘‡๐‘„๐›ผ๐‘ฆ๐‘Ÿ , ๐‘ฆ๐‘ 

๐‘‡๐‘„๐›ฝ๐‘ฆ๐‘ 

= 2 ๐‘Ÿ,๐‘ =1

๐‘€

๐‘ก๐‘Ÿ ๐‘„๐›ผ๐‘‰๐‘Ÿ๐‘ ๐‘„๐›ฝ๐‘‰๐‘Ÿ๐‘ 

โŸน ๐‘๐‘œ๐‘ฃ ๐‘ก = 2 ๐‘Ÿ,๐‘ =1

๐‘€ ๐‘ก๐‘Ÿ ๐‘„๐ด๐‘‰๐‘Ÿ๐‘ ๐‘„๐ด๐‘‰๐‘Ÿ๐‘  ๐‘ก๐‘Ÿ ๐‘„๐ด๐‘‰๐‘Ÿ๐‘ ๐‘„๐ธ๐‘‰๐‘Ÿ๐‘ ๐‘ก๐‘Ÿ ๐‘„๐ธ๐‘‰๐‘Ÿ๐‘ ๐‘„๐ด๐‘‰๐‘Ÿ๐‘  ๐‘ก๐‘Ÿ ๐‘„๐ธ๐‘‰๐‘Ÿ๐‘ ๐‘„๐ธ๐‘‰๐‘Ÿ๐‘ 

โ‰ˆ 2 ๐‘Ÿ,๐‘ =1

๐‘€

๐œŽ๐ด๐‘Ÿ๐‘  + ๐œŽ๐ธ๐‘Ÿ๐‘ 2 ๐‘ก๐‘Ÿ ๐‘„๐ด

2 ๐‘ก๐‘Ÿ ๐‘„๐ด๐‘„๐ธ๐‘ก๐‘Ÿ ๐‘„๐ธ๐‘„๐ด ๐‘ก๐‘Ÿ ๐‘„๐ธ

2

=2๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ธ

2

๐œˆ๐พ

1 โˆ’๐œโˆ’๐œ ๐œ…

โ‰ˆ2๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ธ

2

๐œˆ๐พ

1 โˆ’1โˆ’1 1

Quadratic form of statistics:๐‘๐‘œ๐‘ฃ ๐œ–๐‘‡ฮ›1๐œ–, ๐œ–

๐‘‡ฮ›2๐œ– = 2๐‘ก๐‘Ÿ ฮ›1ฮฃฮ›2ฮฃ + 4๐œ‡๐‘‡ฮ›1ฮฃฮ›2๐œ‡Here ๐œ‡ = 0

๐‘‰๐‘Ÿ๐‘  = ๐œŽ๐ด๐‘Ÿ๐‘ ๐พ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐ผ

โ‰ˆ ๐œŽ๐ด๐‘Ÿ๐‘ ๐ผ + ๐œŽ๐ธ๐‘Ÿ๐‘ ๐ผ

๐พ โ‰ˆ ๐ผโŸน ๐œ โ‰ˆ 1, ๐œ… โ‰ˆ 1

Page 47: Multidimensional heritability analysis of neuroanatomical

Backup: sampling variance of the point estimator

๐‘ก๐‘Ÿ ๐‘„๐ด2 = ๐‘ก๐‘Ÿ

๐พ โˆ’ ๐œ๐ผ 2

๐œˆ๐พ= ๐‘ก๐‘Ÿ

๐พ โˆ’๐‘ก๐‘Ÿ ๐พ๐‘

๐ผ2

๐‘ก๐‘Ÿ ๐พ2 โˆ’๐‘ก๐‘Ÿ2 ๐พ๐‘

2 = ๐‘ก๐‘Ÿ๐พ2 โˆ’ 2

๐‘ก๐‘Ÿ ๐พ๐‘ ๐พ๐ผ +

๐‘ก๐‘Ÿ2 ๐พ๐‘2 ๐ผ

๐‘ก๐‘Ÿ ๐พ2 โˆ’๐‘ก๐‘Ÿ2 ๐พ๐‘

2

=๐‘ก๐‘Ÿ ๐พ2 โˆ’ 2

๐‘ก๐‘Ÿ2 ๐พ๐‘ +

๐‘ก๐‘Ÿ2 ๐พ๐‘

๐‘ก๐‘Ÿ ๐พ2 โˆ’๐‘ก๐‘Ÿ2 ๐พ๐‘

2 =1

๐œˆ๐พ

๐‘ก๐‘Ÿ ๐‘„๐ด๐‘„๐ธ = ๐‘ก๐‘Ÿ๐พ โˆ’ ๐œ๐ผ ๐œ…๐ผ โˆ’ ๐œ๐พ

๐œˆ๐พ2 =

๐‘ก๐‘Ÿ ๐œ…๐พ๐ผ โˆ’ ๐œ๐พ2 โˆ’ ๐œ๐พ๐ผ2 + ๐œ2๐ผ๐พ

๐œˆ๐พ2

=

๐‘ก๐‘Ÿ ๐พ2

๐‘ ๐‘ก๐‘Ÿ ๐พ โˆ’๐‘ก๐‘Ÿ ๐พ๐‘ ๐‘ก๐‘Ÿ ๐พ2 โˆ’

๐‘ก๐‘Ÿ2 ๐พ๐‘ +

๐‘ก๐‘Ÿ3 ๐พ๐‘2

๐œˆ๐พ2

=

๐‘ก๐‘Ÿ ๐พ๐‘

๐‘ก๐‘Ÿ ๐พ2 โˆ’ ๐‘ก๐‘Ÿ ๐พ2 โˆ’ ๐‘ก๐‘Ÿ ๐พ +๐‘ก๐‘Ÿ2 ๐พ๐‘

๐‘ก๐‘Ÿ ๐พ2 โˆ’๐‘ก๐‘Ÿ2 ๐พ๐‘

2 = โˆ’๐œ

๐œˆ๐พ

Page 48: Multidimensional heritability analysis of neuroanatomical

Backup: sampling variance of the point estimator

๐‘ก๐‘Ÿ ๐‘„๐ธ2 =

๐‘ก๐‘Ÿ ๐œ…๐ผ โˆ’ ๐œ๐พ 2

๐œˆ๐พ2 =

๐‘ก๐‘Ÿ ๐œ…2๐ผ โˆ’ 2๐œ…๐œ๐พ + ๐œ2๐พ2

๐œˆ๐พ2

=๐œ…

๐‘ก๐‘Ÿ ๐พ2

๐‘ ๐‘ โˆ’ 2๐‘ก๐‘Ÿ2 ๐พ๐‘ +

๐‘ก๐‘Ÿ2 ๐พ๐‘2

๐‘๐‘ก๐‘Ÿ ๐พ2 ๐‘ก๐‘Ÿ ๐พ2

๐œˆ๐พ2

=๐œ… ๐‘ก๐‘Ÿ ๐พ2 โˆ’ 2

๐‘ก๐‘Ÿ2 ๐พ๐‘ +

๐‘ก๐‘Ÿ2 ๐พ๐‘

๐œˆ๐พ ๐‘ก๐‘Ÿ ๐พ2 โˆ’๐‘ก๐‘Ÿ2 ๐พ๐‘

=๐œ…

๐œˆ๐พ

๐‘ฃ๐‘Ž๐‘Ÿ โ„Ž๐‘†๐‘๐‘ƒ2 = ๐‘ฃ๐‘Ž๐‘Ÿ ๐‘“ ๐‘ก โ‰ˆ

๐œ•๐‘“ ๐‘ก

๐œ•๐‘ก๐‘๐‘œ๐‘ฃ ๐‘ก

๐œ•๐‘“ ๐‘ก

๐œ•๐‘ก๐‘‡

โ‰ˆ2๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ธ

2

๐œˆ๐พ ๐‘ก๐ด + ๐‘ก๐ธ 4๐‘ก๐ธ , โˆ’๐‘ก๐ด

1 โˆ’1โˆ’1 1

๐‘ก๐ธโˆ’๐‘ก๐ด

=2๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ธ

2

๐œˆ๐พ ๐‘ก๐ด + ๐‘ก๐ธ 4๐‘ก๐ด + ๐‘ก๐ธ

2

=2๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ธ

2

๐œˆ๐พ ๐‘ก๐‘Ÿ ฮฃ๐ด + ๐‘ก๐‘Ÿ ฮฃ๐ธ2=

2

๐œˆ๐พโ‹…๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ธ

2

๐‘ก๐‘Ÿ ฮฃ๐ด + ฮฃ๐ธ2=

2

๐œˆ๐พโ‹…๐‘ก๐‘Ÿ ฮฃ๐‘ƒ

2

๐‘ก๐‘Ÿ ฮฃ๐‘ƒ2

Page 49: Multidimensional heritability analysis of neuroanatomical

Backup: sampling variance of the point estimator

For univariate trait, ๐‘ก๐‘Ÿ ฮฃ๐‘ƒ2 = ๐‘ก๐‘Ÿ2 ฮฃ๐‘ƒ , โŸน ๐‘ฃ๐‘Ž๐‘Ÿ โ„Ž๐‘†๐‘๐‘ƒ

2 =2

๐œˆ๐พ

For multi-dimensional trait,

๐‘ก๐‘Ÿ ฮฃ๐‘ƒ2

๐‘ก๐‘Ÿ2 ฮฃ๐‘ƒ=

๐‘–=1๐‘€ ๐œ†๐‘–

2

๐‘–=1๐‘€ ๐œ†๐‘–

2 โ‰ค 1 โŸน ๐‘ฃ๐‘Ž๐‘Ÿ โ„Ž๐‘†๐‘๐‘ƒ2 โ‰ค

2

๐œˆ๐พ


Recommended