Transcript
Page 1: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

1

MAYO CLINIC

Optimi zatio nof Int ernal Margin

t o Account for Respi rat ory Motion

YIL DI RIM D. MUTAF, PhDDEBRA H. BRINKMANN, PhD

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

SM

– Internal Target Volume (ITV) = CTV + IM

I ntrod uc tion

• Respiratory motion is a source of dosimetric uncertainty

• ICRU 62 recommends use of Internal Margin (IM)– …to compensate for expected

physiological movements, variations in shape, size and position of the CTV during therapy…

• The aim of this study is to find – Optimum Internal Margin

ITV

PTV

IM

IM

SM

– Planning Target Volume (PTV) = ITV + SM

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Motion I magin g

• 4DCT or Fluoroscopy – Enables identification of the target motion– Ensures only the geometric coverage

� i.e. where target IS

– Doesn’t provide direct information on the dosimetric effects due to motion� i.e. what dose target GETS

• Determining IM from imaging studies alone could be overly-conservative– Are smaller margins sufficient?

�Possible implications regarding dose escalation

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Part I – Phantom Study

• Phantom Simulation– Rectangular body with

3.0cm radius target (TV)

• Treatment Plans– 4 coplanar, orthogonal

fields treat TV – Conformal in the coronal

plane�plane of motion

– Plans with different IM and SM added linearly

Coronal View

Page 2: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

2

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Sim ul ation Method

• Extract dose from the coronal plane at center of the target

• Where location of target change due to – Setup Uncertainties

through 100 fractions– Respiration motion in

each fraction

2)/(cos)( 04

0 ATtAtA −= π)/(cos)( 4

0 TtAtA π=Lujan et.al., MedPhys 99

Coronal Plane

Head

Foot

Asy

mm

etri

c(c

m) S

ymm

etric(cm

)

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Setup Uncertainti es and Resp iration

Appropriate setup margins are applied

MSM σ⋅= 7.0van Herk et.al., IJROBP 2000

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Comparison of Plans

• REFERENCE (or STATIC) Plan– No respiration motion (without IM) – With setup uncertainties (added SM)

� σM = 2, 4 and 6 mm• MOTION Plan

– With respiration motion (added IM)

� 5, 10, 15, 20 mm p2p motion– With setup uncertainties (added SM)

No Respiration (Reference)

R = 30 mm

10mm p2p Amp IM = 0 mm

R = 30 mm

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Compariso n of Plans

( )2

1%100

%95

21

−= ∫ dVDD

NF static

imotioni

DVH Based Cost Function

a

i

aiiDvgEUD

1

= ∑

Ratio of gEUDs

A. Niemierko Med. Phys. 97

Page 3: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

3

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Optimu m Inter nal Margin

• Optimum dosimetric coverage is obtained with IM smaller than full motion amplitude– Symmetric margins

• Asymmetric margins – Using the end of exhale

images for treatment planning

– Larger but one sided margins• Observed to be independent of

the random setup uncertainties – Effect of systematic

uncertainties is not yet investigated

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Part II – Patient Study

Fluence simulation requires constant external contour along the motion direction

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Patien t Cohor t

• 12 total patients – 10 lung, 2 pancreas– TV range 7 to 210cc

• Treatment plan characteristics

– 3 to 6 beams� All coplanar beams� 6 or 10 MV

– Conformal in the direction of motion

• Setup Uncertainties are not simulated– No setup margins (SM)

• Only 10mm p2p symmetric motion studied

1 2 3 4

5 6 7 8

9 10 11 12

Note: Drawings not to scale.Targets are indexed in the order of increasing volume.

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Compariso n of Plans

Patien t #610 mm Mot ion

TV = 51.3 cc

( )2

1%100

%95

21

−= ∫ dVDD

NF static

imotioni

DVH Based Cost Function

Patient #610 mm Motion

TV = 51.3 cc

Ratio of gEUDs

a

i

aiiDvgEUD

1

= ∑A. Niemierko Med. Phys. 97

Page 4: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

4

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Optimu m Inter nal Margin

Target Coverage (avg of 12 patients)– Minimum dose is 0.2% colder

� TV receiving colder dose is 0.2%– TV receiving 100% dose (V100) is

0.8% larger– Relative gEUD is always ≥ 100%

Target Conformity (~ Normal Tissue Sparing)

– 17% less irradiated volume receiving 100% dose

– 10% less irradiated volume receiving 50% dose

Distribution of OptimumInternal Margins

50% and 100%RTOG Conformit y Indices (CI)Relative CI ≡ CImotion / CIstatic

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Concl usions

• Optimum Internal Margin (IM) was always smaller than full motion amplitude – Example: ±1.5mm IM for 10mm p2p motion

• Standard practice of target expansion based on imaging alone (e.g. 4DCT) is overly conservative– “Where Target IS” vs “What Target GETS”

• As compared to full motion amplitude, optimum internal margin provided– Similar target coverage– Improved target conformity

ThankYou!


Recommended