Transcript
Page 1: MAXIMUM LIKELIHOOD ESTIMATION OF REGULARISATION โ€ฆ ICIP Vidal 3oct18.pdfย ยท Imaging Inverse Problems ... The challenge is that ๐‘( | ) is intractable as it involves solving two

Imaging Inverse Problems

OBJECTIVE: to estimate an unknown image ๐‘ฅ from an observation ๐‘ฆ.

A +

๐‘ง~๐‘(0, ๐œŽ2๐ผ)

๐‘ฅ โˆˆ โ„๐‘›

UNKNOWNIMAGE

๐‘ฆ โˆˆ โ„๐‘š

OBSERVATIONLINEAR

OPERATOR

NOISE

Some canonical examples:โ€ข image deconvolution โ€ข compressive sensing โ€ข super-resolution โ€ข tomographic reconstructionโ€ข inpainting

CHALLENGE: not enough information in ๐‘ฆ to accurately estimate ๐‘ฅ.

For example, in many imaging problems ๐‘ฆ = ๐ด๐‘ฅ + ๐‘ง where the operator ๐ด is either:

High-dimensional problems โ†’ ๐‘›~106

RANK-DEFICIENT

SMALL EIGENVALUES๐ด

not enough equations to solve for ๐‘ฅ

NOISE AMPLIFICATION unreliable estimates of ๐‘ฅ

REGULARISATION: We can render the problem well-posed by using prior knowledge about theunknown signal ๐‘ฅ.

How do we choose the regularisation parameter ๐œƒ?The regularisation parameter controls how much importance we give to prior knowledge andto the observations, depending on how ill posed the problem is and on the intensity of the noise.

๐œฝ

PRIORKNOWLEDGE

OBSERVEDDATA

POSSIBLE APPROACHES FOR CHOOSING ๐›‰:

NON BAYESIANโ€ข Cross-validation โ†’ Exhaustive search method

โ€ข Discrepancy Principle

โ€ข Stein-based methods โ†’Minimise Steinโ€™s Unbiased Risk Estimator (SURE), a surrogate of the MSE

โ€ข SUGAR โ†’ More efficient algorithms that uses gradient of SURE

Limitation: mostly designed for denoising problems. Difficult to implement

BAYESIANโ€ข Hierarchical โ†’ Propose prior for ๐œƒ and work with hierarchical model

โ€ข Marginalisation โ†’ Remove ๐œƒ from the model ๐‘(๐‘ฅ|๐‘ฆ) = +โ„ ๐‘ ๐‘ฅ, ๐œƒ ๐‘ฆ ๐‘‘๐œƒ

Limitation: only for homogeneous ๐œ‘(๐‘ฅ) or cases with known ๐ถ(๐œƒ)

โ€ข Empirical Bayes โ†’ Choose ๐œƒ by maximising marginal likelihood ๐‘(๐‘ฆ|๐œƒ)

Difficulty: ๐‘(๐‘ฆ|๐œƒ) becomes intractable in high-dimensional problems

Our strategy: Empirical Bayes

The challenge is that ๐‘(๐‘ฆ|๐œƒ) is intractable as it involves solving two integrals in โ„๐‘› (to marginalise ๐‘ฅ and to compute

๐ถ ๐œƒ ). This makes the computation of ๐œƒ ๐‘€๐ฟ๐ธ extremely difficult.

OUR CONTRIBUTIONWe propose a stochastic optimisation scheme to compute the maximum marginal likelihood estimator of theregularisation parameter. Novelty: the optimisation is driven by proximal Markov chain Monte Carlo (MCMC) samplers.

We want to find ๐œƒ that maximises the marginal likelihood ๐‘(๐‘ฆ|๐œƒ):

เตž

๐‘(๐‘ฆ|๐œƒ) = โ„๐‘› ๐‘ ๐‘ฆ, ๐‘ฅ ๐œƒ ๐‘‘๐‘ฅ

๐œƒ๐‘€๐ฟ๐ธ = ๐‘Ž๐‘Ÿ๐‘”๐‘š๐‘Ž๐‘ฅ๐œƒ โˆˆ ฮ˜

๐‘(๐‘ฆ|๐œƒ)

We should be able to reliably estimate ๐œƒ from ๐‘ฆ as ๐‘ฆ is very high-dimensional and ๐œƒ is a

scalar parameter

Proposed stochastic optimisation algorithmIf ๐‘(๐‘ฆ|๐œƒ) was tractable, we could use a standard projected gradient algorithm:

STOCHASTIC APPROXIMATION PROXIMAL GRADIENT (SAPG) ALGORITHM

๐œƒ๐‘ก+1 = ๐‘ƒ๐‘Ÿ๐‘œ๐‘ฆฮ˜

[๐œƒ๐‘ก + ๐›ฟ๐‘ก๐‘‘

๐‘‘๐œƒlog ๐‘(๐‘ฆ|๐œƒ๐‘ก)] where ๐›ฟ๐‘ก verifies

To tackle the intractability, we propose a stochastic variant of this algorithm based on a noisy estimate of ๐‘‘

๐‘‘๐œƒ๐‘™๐‘œ๐‘”(๐‘(๐‘ฆ|๐œƒ๐‘ก). Using Fisherโ€™s identity we have:

๐‘‘

๐‘‘๐œƒlog ๐‘ ๐’š ๐œƒ = ๐ธ๐’™|๐’š,๐œƒ

๐‘‘

๐‘‘๐œƒlog ๐‘ ๐’™, ๐’š ๐œƒ = ๐ธ๐’™|๐’š,๐œƒ โˆ’๐œ‘ ๐‘ฅ โˆ’

๐‘‘

๐‘‘๐œƒ๐ฟ๐‘œ๐‘” ๐ถ ๐œƒ

If ๐ถ ๐œƒ is unknown we can use the identity โˆ’ ๐‘‘

๐‘‘๐œƒ๐ฟ๐‘œ๐‘” ๐ถ ๐œƒ = ๐ธ๐’™|๐œƒ ๐œ‘ ๐’™

The intractable gradient becomes ๐‘‘

๐‘‘๐œƒlog ๐‘ ๐’š ๐œƒ =๐ธ๐’™|๐’š,๐œƒ โˆ’๐œ‘ ๐‘ฅ + ๐ธ๐’™|๐œƒ ๐œ‘ ๐’™

Now we can approximate ๐ธ๐’™|๐’š,๐œƒ โˆ’๐œ‘ ๐‘ฅ and ๐ธ๐’™|๐œƒ ๐œ‘ ๐’™ with Monte Carlo estimates.

We construct a Stochastic Approx. Proximal Gradient (SAPG) algorithm driven by two Markov kernels M๐œƒ and K๐œƒtargeting the posterior ๐‘ ๐’™, ๐’š ๐œƒ and the prior ๐‘ ๐‘ฅ ๐œƒ respectively.

๐‘ฟ๐’•+๐Ÿ~M๐œƒ๐‘ก X ๐‘ฆ, ๐œƒ๐‘ก , ๐‘‹๐‘ก

๐œƒ๐‘ก+1 = ๐‘ƒ๐‘Ÿ๐‘œ๐‘—ฮ˜

๐œƒ๐‘ก + ๐›ฟ๐‘ก ๐œ‘ ๐‘ผ๐’•+๐Ÿ โˆ’ ๐œ‘ ๐‘ฟ๐’•+๐Ÿ

๐‘ผ๐’•+๐Ÿ~K๐œƒ๐‘ก U ๐œƒ๐‘ก , ๐‘ˆ๐‘ก

๐‘ ๐‘ฅ ๐‘ฆ, ๐œƒ๐‘€๐ฟ๐ธ

๐‘ ๐‘ฅ ๐œƒ๐‘€๐ฟ๐ธ

๐œƒ๐‘€๐ฟ๐ธ

CONVERGEJOINTLY TO

EMPIRICAL BAYES POSTERIOR

STOCHASTIC GRADIENT

How do we generate the samples?

MOREAU-YOSIDA UNADJUSTED LANGEVIN ALGORITHM (MYULA)

๐‘ฅ๐‘ก+1 = ๐‘ฅ๐‘ก โˆ’ ๐›พ (๐›ป๐‘”๐‘ฆ ๐‘ฅ๐‘ก +๐‘ฅ๐‘ก โˆ’ ๐‘๐‘Ÿ๐‘œ๐‘ฅ๐œ‘

๐œ†๐œƒ ๐‘ฅ๐‘ก

๐œ†) + 2๐›พ ๐‘๐‘ก+1

๐›ป ๐œ‘๐‘€๐‘Œ(๐‘ฅ)

We use the MYULA algorithm for the Markov kernels K๐œƒ and M๐œƒ because they can handle:โ–ช High-dimensionality !โ–ช Convex problems with a non-smooth ๐œ‘(๐’™)

โ–ช The MYULA kernels do not target ๐‘ ๐‘ฅ ๐‘ฆ, ๐œƒ and ๐‘ ๐‘ฅ ๐œƒ exactly.โ–ช Sources of asymptotic bias:

โ–ช Discretisation of Langevin diffusion: controlled by ๐›พ and ๐œ‚.โ–ช Smoothing of non differentiable ๐œ‘(๐‘ฅ): controlled by ๐œ†.

โ–ช ๐›พ,๐œ‚ must be < inverse of Lipchitz constant of the gradient driving each diffusion respectively.โ–ช More information about how to select each parameter can be found in [2].

WHERE DOES MYULA COME FROM?

๐‘‘๐‘‹ ๐‘ก =1

2๐›ป log ๐‘ ๐‘‹ ๐‘ก |๐‘ฆ ๐‘‘๐‘ก + ๐‘‘๐‘Š ๐‘ก

LANGEVIN DIFFUSION

๐‘ฅ๐‘ก+1 = ๐‘ฅ๐‘ก + ๐›พ ๐›ป ๐ฟ๐‘œ๐‘” ๐‘ ๐‘ฅ๐‘ก ๐‘ฆ, ๐œƒ + 2๐›พ ๐‘๐‘ก+1

๐‘๐‘ก+1~๐‘ 0, ๐•€

UNADJUSTED LANGEVIN ALGORITHM (ULA)

If ๐œ‘(๐‘ฅ) is not Lipschitz differentiable ULA is unstable.

The MYULA algorithm uses Moreau-Yosida regularization to replace the non-smooth term ๐œ‘(๐‘ฅ) with its Moreau Envelope ๐œ‘๐‘€(๐‘ฅ).

Moreau-Yosida regularisation controlled by ๐œ†

๐‘ ๐‘ฅ โˆ ๐‘’โˆ’|๐‘ฅ|

๐‘‘๐‘‹ ๐‘ก

๐‘‘๐‘กโ†’

๐‘ฅ๐‘ก+1โˆ’๐‘ฅ๐‘ก

๐›พ

EULER MARUYAMA APPROXIMATION

โˆ exp{ โˆ’ ๐‘”๐‘ฆ(๐‘ฅ) โˆ’ ๐œƒ ๐œ‘(๐‘ฅ) } BROWNIAN MOTION

ResultsWe illustrate the proposed methodology with an image deblurring problem using a total-variation prior.

We compare our results with those obtained with:โ–ช SUGARโ–ช Marginal maximum-a-posteriori estimationโ–ช Optimal or oracle value ๐œƒโˆ—

EVOLUTION OF ๐œƒ THROUGHOUT ITERATIONS

BOAT IMAGE

QUANTITATIVE COMPARISON

โœ“ Generally outperforms the other approaches

For each image, noise level, and method, we compute the MAP estimator and we display on this table the average results for the 6 test images.

EB performs remarkably well at low SNR values

Longer computing time only justified if marginalisation canโ€™t be used

SUGAR performs poorly when the main problem is not noise

Close-up for SNR=20db

METHOD COMPARISON

Over-smoothing: too much regularisation

Ringing:

not enough regularisation

PRIOR

DATA

DEGRADED EMPIRICAL BAYES MAP ESTIMATOR

SNR=40db

Future workโ–ช Detailed analysis of the convergence properties.

โ–ช Extending the methodology to problems involvingmultiple unknown regularisation parameters.

โ–ช Reducing computing times by accelerating the Markovkernels driving the stochastic approximation algorithm:

โ–ช Via parallel computingโ–ช By choosing a faster Markov kernel

โ–ช Adapt algorithm to support some non-convex problems.

โ–ช Use the samples from ๐’‘ ๐’™ ๐’š, ๐œฝ ๐‘ด๐‘ณ๐‘ฌ to perform

uncertainty quantification.

References[1] Marcelo Pereyra, Josรฉ M Bioucas-Dias, and Mรกrio ATFigueiredo, โ€œMaximum-a-posteriori estimation with unknownregularisation parameters,โ€ in 23rd European Signal ProcessingConference (EUSIPCO), 2015. IEEE, pp. 230โ€“234, 2015.

[2] Alain Durmus, Eric Moulines, and Marcelo Pereyra, โ€œEfficientBayesian computation by proximal Markov Chain Monte Carlo:when Langevin meets Moreau,โ€ SIAM Journal on ImagingSciences, vol. 11, no. 1, pp. 473โ€“506, 2018.

[3] Ana Fernandez Vidal and Marcelo Pereyra. "MaximumLikelihood Estimation of Regularisation Parameters." In 2018 25thIEEE International Conference on Image Processing (ICIP), pp.1742-1746. IEEE, 2018.

MAXIMUM LIKELIHOOD ESTIMATION OF REGULARISATION PARAMETERSAna Fernandez Vidal, Dr. Marcelo Pereyra ([email protected], [email protected])

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS United Kingdom

The observation ๐’š is related to ๐’™ by a statistical model as a random variable.

We use a prior density to reduce uncertainty about and deliver accurate estimates.

The Bayesian Framework

๐œ‘(๐‘ฅ) penalises undesired properties and the regularisation parameter ๐œƒ controls the intensity of the penalisation.

Example: random vector ๐’™representing astronomical images.

๐‘ ๐‘ฅ|๐œƒ =๐‘’โˆ’๐œƒ ๐œ‘ ๐‘ฅ

๐ถ(๐œƒ)

HYPERPARAMETER

We model the unknown image ๐‘ฅ as a random vector with

prior distribution ๐‘ ๐‘ฅ|๐œƒ promoting desired properties about ๐‘ฅ.

PRIOR INFORMATION

๐‘ ๐‘ฆ ๐‘ฅ โˆ ๐‘’โˆ’๐‘”๐‘ฆ(๐‘ฅ)

The observation ๐‘ฆ is related to ๐‘ฅ by a statistical model:

OBSERVED DATA

LIKELIHOOD

Observed and prior information are combined by using Bayes' theorem:

POSTERIOR DISTRIBUTION

๐‘ ๐‘ฅ ๐‘ฆ, ๐œƒ โˆ ๐‘’โˆ’ ๐‘”๐‘ฆ ๐‘ฅ + ๐œƒ ๐œ‘ ๐‘ฅ

๐‘ ๐‘ฅ ๐‘ฆ, ๐œƒ = ๐‘ ๐‘ฆ ๐‘ฅ ๐‘ ๐‘ฅ|๐œƒ /๐‘(๐‘ฆ|๐œƒ)

เทœ๐‘ฅ๐‘€๐ด๐‘ƒ = argmax๐‘ฅโˆˆโ„๐‘›

๐‘ ๐‘ฅ ๐‘ฆ, ๐œƒ = argmin๐‘ฅโˆˆโ„๐‘›

๐‘”๐‘ฆ ๐‘ฅ + ๐œƒ ๐œ‘(๐‘ฅ)

The predominant Bayesian approach in imaging is MAP estimationwhich can be computed very efficiently by convex optimisation:

We will focus on convex problems where:- ๐œ‘(๐‘ฅ) is lower semicontinuous,

proper and possibly non-smooth- ๐‘”๐‘ฆ(๐‘ฅ) is Lipschitz differentiable

with Lipschitz constant L

๐‘”๐‘ฆ(๐‘ฅ) = ๐‘ฆโˆ’๐ด๐‘ฅ 2

2

2๐œŽ2)๐‘ฆ~๐‘(๐ด๐‘ฅ, ๐œŽ2๐ผ

NORMALIZING CONSTANT

Conclusionsโ–ช We presented an empirical Bayesian method to estimate regularisation parameters in convex inverse imaging problems.โ–ช We approach an intractable maximum marginal likelihood estimation problem by proposing a stochastic.

optimisation algorithm.โ–ช The stochastic approximation is driven by two proximal MCMC kernels which can handle non-smooth regularisers efficiently.โ–ช Our algorithm was illustrated with non-blind image deconvolution with TV prior where it:

โœ“ achieved close-to-optimal performanceโœ“ outperformed other state of the art approaches in terms of MSEร— had longer computing times.

โ–ช More details can be found in [3].

EXPERIMENT DETAILSโ€ขRecover ๐’™ from a blurred noisy observation ๐’š , ๐’š = ๐ด๐’™ + ๐’› and ๐’› )~N(0, ๐œŽ2๐ผโ€ข๐ด is a circulant uniform blurring matrix of size 9x9 pixelsโ€ข๐œ‘ ๐’™ = ๐‘‡๐‘‰ ๐’™ โ†’ isotropic total-variation pseudo-normโ€ขWe use 6 test images of size 512x512 pixelsโ€ขWe compute the MAP estimator for each using different values of ๐œƒ obtained with different

methodsโ€ขWe compare methods by taking average value over 6 images of the mean squared error

(MSE) and the computing time (in minutes)

ORACLE ORIGINAL

in minutes

ร— Increased computing timesโœ“ Achieves close-to-optimal performance

SNR=40dB

Close-up for SNR=20dB

DEGRADEDORIGINAL EMP. BAYES MARGINAL MAP SUGAR

Recommended