Transcript
Page 1: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Maximizing Time-decaying Influence

in Social Networks

2016/9/22 ECML-PKDD 2016

Naoto Ohsaka (UTokyo)

Yutaro Yamaguchi (Osaka Univ.)

Naonori Kakimura (UTokyo)

Ken-ichi Kawarabayashi (NII)

ERATO Kawarabayashi Large Graph Project

Page 2: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Given

β–Ά Social graph 𝐺 = 𝑉, 𝐸▢ Diffusion model β„³β–Ά Integer π‘˜

Goal

β–Ά maximize πœŽβ„³ 𝑆 ( 𝑆 = π‘˜)πœŽβ„³ 𝑆 ≔ 𝐄[size of cascade initiated by 𝑆 under β„³]

Influence maximization[Kempe-Kleinberg-Tardos. KDD'03]

2

Viral marketing application[Domingos-Richardson. KDD'01]

incentive

incentive

incentive

Page 3: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Formulation by[Kempe-Kleinberg-Tardos. KDD'03]

3

Used classical diffusion models

independent cascade [Goldenberg-Libai-Muller. Market. Lett.'01]

linear threshold [Granovetter. Am. J. Sociol.'78]

οΌ‹ Tractable

Monotonicity & submodularity of 𝜎 β‹…[Kempe-Kleinberg-Tardos. KDD'03]

Near-linear time approx. algorithms[Borgs-Brautbar-Chayes-Lucier. SODA'14] [Tang-Shi-Xiao. SIGMOD'15]

- Too simple

No time-decay effects, no time-delay propagation

βˆ€π‘‹ βŠ† π‘Œ, 𝑣 βˆ‰ π‘ŒπœŽ 𝑋 βˆͺ 𝑣 βˆ’ 𝜎 𝑋 β‰₯ 𝜎 π‘Œ βˆͺ 𝑣 βˆ’ 𝜎 π‘Œ

Page 4: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

The power of influence (rumor)

depends on arrival time

decreases over time

Our aspect : Time-decay effects

4

Our question

What if incorporate time-decay effects?Monotonicity? Submodularity? Scalable algorithm?

Time-delay propagations have been studied[Saito-Kimura-Ohara-Motoda. ACML'09] [Goyal-Bonchi-Lakshmanan. WSDM'10]

[Saito-Kimura-Ohara-Motoda. PKDD'10] [Rodriguez-Balduzzi-SchΓΆlkopf. ICML'11]

[Chen-Lu-Zhang. AAAI'12] [Liu-Cong-Xu-Zeng. ICDM'12]

Time-decay effects have not much …[Cui-Yang-Homan. CIKM'14] No guarantee for influence maximization

u

Incentive

vDay 1

v

s uDay 2

Day 1

Incentive

Page 5: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Our contribution

5

Generalize independent cascade & linear threshold with

Time-decay effects & Time-delay propagationNon-increasing probability Arbitrary length distribution

Diffusion process of TV-ICReachability on a random

shrinking dynamic graph=β–Ά Characterization

β–Ά Monotonicity & submodularity of 𝜎TVIC β‹…

β–Ά Scalable and accurate greedy algorithmsbased on reverse influence set [Tang-Shi-Xiao. SIGMOD'15]

π’ͺ π‘˜ 𝐸 + 𝐸 2

𝑉

log2 |𝑉|

πœ–2time & 1 βˆ’ eβˆ’1 βˆ’ πœ– -approx.

Essential

Page 6: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Time-varying independent cascade (TV-IC) model

𝐺 = 𝑉, 𝐸 Social graph

𝒑𝒖𝒗 Non-increasing probability function

𝒇𝒖𝒗 Arbitrary length distribution

6

Objective function

𝜎TVIC 𝑆 ≔ 𝐄[# active vertices initiated by 𝑆]

0. 𝑒 became active at 𝑑𝑒1. Sample a delay 𝛿𝑒𝑣 from 𝒇𝒖𝒗

v

Incentive

u

s

time 𝑑𝑒

Page 7: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

0. 𝑒 became active at 𝑑𝑒1. Sample a delay 𝛿𝑒𝑣 from 𝒇𝒖𝒗2A. Success w.p. 𝒑𝒖𝒗 𝒕𝒖 + πœΉπ’–π’—

𝑣 becomes active at 𝑑𝑒 + 𝛿𝑒𝑣

Time-varying independent cascade (TV-IC) model

𝐺 = 𝑉, 𝐸 Social graph

𝒑𝒖𝒗 Non-increasing probability function

𝒇𝒖𝒗 Arbitrary length distribution

7

v

Incentive

u

s

time 𝑑𝑒 time 𝑑𝑒 + 𝛿𝑒𝑣

Objective function

𝜎TVIC 𝑆 ≔ 𝐄[# active vertices initiated by 𝑆]

Success

Page 8: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

0. 𝑒 became active at 𝑑𝑒1. Sample a delay 𝛿𝑒𝑣 from 𝒇𝒖𝒗2B. Failure w.p. 𝟏 βˆ’ 𝒑𝒖𝒗 𝒕𝒖 + πœΉπ’–π’—

𝑣 remains inactive

Time-varying independent cascade (TV-IC) model

𝐺 = 𝑉, 𝐸 Social graph

𝒑𝒖𝒗 Non-increasing probability function

𝒇𝒖𝒗 Arbitrary length distribution

8

v

Incentive

u

s

time 𝑑𝑒

Objective function

𝜎TVIC 𝑆 ≔ 𝐄[# active vertices initiated by 𝑆]

Failure

Page 9: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Characterization of the IC model[Kempe-Kleinberg-Tardos. KDD'03]

9

𝑆 influences 𝑧in the IC process

𝑆 can reach 𝑧in a random subgraph 𝐺′⇔

S z S z

No need to consider time

Page 10: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

β–Ά Dynamic …

𝐺t changes over time

∡ 𝑝𝑒𝑣 changes over time

β–Ά Shrinking …

𝐺t has only edge deletions

∡ 𝑝𝑒𝑣 is non-increasing

Characterization of the TV-IC model

10

𝑆 influences 𝑧in the TV-IC process

𝑆 can reach 𝑧 in a random

shrinking dynamic graph 𝐺t⇔

S z S z

S z

S z

time 1

time 2

time 3

Page 11: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Monotonicity & submodularity of 𝜎TVIC(β‹…)

11

⇝ Greedy algorithm is 1 βˆ’ eβˆ’1 -approx.[Nemhauser-Wolsey-Fisher. Math. Program.'78]

𝜎TVIC 𝑆 = 𝐄𝐺t # vertices reachable from 𝑆 in 𝐺t

Our results : Monotone & submodularShrinking is a MUST

𝑆 influences 𝑧in the TV-IC process

𝑆 can reach 𝑧 in a random

shrinking dynamic graph 𝐺t⇔

Page 12: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Reverse influence set [Tang-Shi-Xiao. SIGMOD'15]

𝑅𝑖 ≔ {vertices that would have influenced 𝑧𝑖}

𝜎 𝑆 ∝ 𝐄[# sets in β„› intersecting 𝑆]

Efficient approximation of 𝜎TVIC β‹…

12

↑ chosen u.a.r.

BFS-like alg. for the IC [Borgs-Brautbar-Chayes-Lucier. SODA'14]

Dijkstra-like alg. for the continuous IC [Tang-Shi-Xiao. SIGMOD'15]

Cannot be applied to our model

β„› =

Greedy algorithm requires estimations of 𝜎TVIC β‹…

a

bz1

ca

f

z3

az2

𝑅1 𝑅2 𝑅3

Page 13: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Naive reverse influence set generation

under the TV-IC model

13

𝑣 ∈ 𝑅𝑖𝑣 can reach 𝑧𝑖 in a random

shrinking dynamic graph⇔

⇝ Ξ© 𝑉 β‹… 𝐸 time

Check each vertex separately

Page 14: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Efficient reverse influence set generation

under the TV-IC model

14

Computing 𝜏 𝑣❝ 𝑣 must pass through 𝑣,𝑀 for some 𝑀 to reach 𝑧𝑖 ❞

𝜏 𝑣 = max𝑣,𝑀 ∈𝐸

min 𝜏 𝑀 βˆ’ 𝛿𝑣𝑀, π‘π‘£π‘€βˆ’1 π‘₯𝑣𝑀

𝑣 ∈ 𝑅𝑖 𝝉 𝒗 β‰₯ πŸŽβ‡”

Key = latest activation time 𝜏 𝑣max. 𝜏 𝑣 s.t. (𝑣 gets active in 𝜏 𝑣 ) ⇝ (𝑧𝑖 gets active)

Dynamic programming yields

+∞ = 𝜏 𝑧𝑖 β‰₯ 𝜏 𝑣1 β‰₯ β‹― β‰₯ 𝜏 π‘£π‘Ÿ β‰₯ 0

v

w1

w2

w3

zi

Page 15: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Performance analysis

15

Lemma 2 Correctness

Lemma 3 Running time = π’ͺ 𝐸 β‹…OPT

𝑉log 𝑉 in exp.

Theorem 4

Our reverse influence set generation method +

IMM (Influence Maximization via Martingales) framework[Tang-Shi-Xiao. SIGMOD'15]

1 βˆ’ eβˆ’1 βˆ’ πœ– -approx. w.h.p.

π’ͺ π‘˜ 𝐸 + 𝐸 2

𝑉

log2 |𝑉|

πœ–2expected time

𝐸

𝑉is small for real graphs

Page 16: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Experiments: Setting

β–ΆComparative algorithms

This work

IMM-CTIC[Tang-Shi-Xiao. SIGMOD'15]

IMM-IC[Tang-Shi-Xiao. SIGMOD'15]

LazyGreedy[Minoux. Optim. Tech.'78]

Degree

Efficient algorithmsunder different models

Accurately estimate𝜎TVIC β‹… by simulations

Simple baseline

▢𝑝𝑒𝑣 𝑑 = inβˆ’deg 𝑣 β‹… 𝑐 β‹… 𝑑 βˆ’1

▢𝑓𝑒𝑣 β‹… = (Weibull distribution) [Lawless. '02]

Page 17: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Experiments: Solution quality

17

LazyGreedy > This work > IMM-IC > IMM-CTIC > Degree

ego-Twitter |𝑉|=81K 𝐸 =2,421Kca-GrQc |𝑉|=5K 𝐸 =29K

𝜎TVIC β‹… of seed sets produced by each method

Bett

er

Accuracy guarantee Ignore time-decay effects

Dataset : Stanford Large Network Dataset Collection. http://snap.stanford.edu/data

Environment : Intel Xeon E5540 2.53 GHz CPU + 48 GB memory & g++v4.8.2 (-O2)

Ob

ject

ive

va

lue

Seed size k Seed size k

Ob

ject

ive

va

lue

Page 18: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Experiments: Scalability

18

Degree ≫ This work β‰ˆ IMM-IC > IMM-CTIC ≫ LazyGreedy

Running time for selecting seed sets of size π‘˜ for each method

Quadratic timeNear-linear time

Just sorting

Bett

er

Dataset : Stanford Large Network Dataset Collection. http://snap.stanford.edu/data

Environment : Intel Xeon E5540 2.53 GHz CPU + 48 GB memory & g++v4.8.2 (-O2)

Seed size k Seed size k

ego-Twitter |𝑉|=81K 𝐸 =2,421Kca-GrQc |𝑉|=5K 𝐸 =29K

Page 19: Maximizing Time-decaying Influence in Social Networks (ECML-PKDD'16)

Summary & future work

19

ClassicalConstant probability

ε›³

Monotone & submodular

[Kempe+'03]

Influence maximization

π’ͺ π‘˜ 𝑉 + 𝐸log 𝑉

πœ–2time

1 βˆ’ eβˆ’1 βˆ’ πœ– -approx.[Tang+'15]

Our studyTime-decay probability

ε›³

Monotone & submodular

Influence maximization

π’ͺ π‘˜ 𝐸 + 𝐸 2

𝑉

log2 |𝑉|

πœ–2time

1 βˆ’ eβˆ’1 βˆ’ πœ– -approx.

More generalTime-varying probability

ε›³

Simple extension violates

submodularity

Efficient influence max.?

𝑑

𝑝𝑒𝑣 𝑑

𝑑

𝑝𝑒𝑣 𝑑

𝑑

𝑝𝑒𝑣 𝑑

generalize generalize


Recommended