Transcript
Page 1: Hydrogen isotopes permeation through the tungsten-coated

Yoshi Hirooka1,2 and Yue Xu2

1National Institute for Fusion Science, Japan 2Graduate University for Advanced Studies (currently Hefei Univ. Tech.)

Hydrogen isotopes permeation throughthe tungsten-coated F82H first wall

Presented at the IAEA-CRP meetingOct. 16th~Oct.18th , 2017

International Center, Vienna, Austria

Page 2: Hydrogen isotopes permeation through the tungsten-coated

2

1. MotivationTechnical issues: PDP/GDP through the 1st wall

2. Experimental setup3. Highlight data

3-1. VPS tungsten coatings effects3-2. SP tungsten coatings effects3-3. VPS+SP tungsten coatings effects

4. Summary

Table of Contents

Page 3: Hydrogen isotopes permeation through the tungsten-coated

3

1. Motivation

Page 4: Hydrogen isotopes permeation through the tungsten-coated

โ€ข Definition of the first wall: All the fusion experimental devices: a vacuum chamber wall.

The first walls of existing fusion devices.

JET

LHD

First wall

4

Fusion reactors: the plasma-facing surface of breeding blanket units.

The โ€œFirst Wallโ€ of a fusion power reactor

FFHR

A. Sagara et al., research report, NIFS-MEMO-64 (2013).

(Force-Free Helical Reactor)

ใƒ—ใƒฌใ‚ผใƒณใ‚ฟใƒผ
ใƒ—ใƒฌใ‚ผใƒณใƒ†ใƒผใ‚ทใƒงใƒณใฎใƒŽใƒผใƒˆ
Another picture
Page 5: Hydrogen isotopes permeation through the tungsten-coated

[1] A. Sagara et al., Fusion Technol. 39 (2001) 753โ€“757.

Blanket concepts include:โ€ข Water-cooled solid breeder (e.g. Li2TiO3),โ€ข He-cooled solid breeder (e.g. Li4SiO4),โ€ข Self-cooled liquid breeder (e.g. FLiBe),โ€ข Water-cooled liquid breeder (e.g. Li-Pb)โ€ฆ

5

Breeding blanket structure

First wall(F82Hโ€ฆ)

Vacuum chamber wall

Flibe blanket for FFHRAfter A. Sagara [1] Characteristics of the first wall of a

fusion power reactor are: โ€ข A large surface area: ~1000 m2,โ€ข Made of reduced activation materials

(e.g. RAFS (F82Hโ€ฆ), V-alloy, and SiCf/SiC),

โ€ข Operated at high temperatures (e.g. ~500 โ„ƒ for ferritic steel alloys),

โ€ข Thin wall design to reduce thermo-mechanical stress (~5 mm for RAFS).

First wall

Vacuum chamber wall

ใƒ—ใƒฌใ‚ผใƒณใ‚ฟใƒผ
ใƒ—ใƒฌใ‚ผใƒณใƒ†ใƒผใ‚ทใƒงใƒณใฎใƒŽใƒผใƒˆ
Another picture
Page 6: Hydrogen isotopes permeation through the tungsten-coated

6

[1]

[1] Y. Ueda et al., J. Nucl. Mater. 313-316 (2003) 32-41.[2] A. Sagara et al., Fusion Technol. 39 (2001) 753-757.

โ€ข Optimum first wall thickness: 5 mm or even less, although these concepts employ various first wall materials.

Optimum thickness of the first wall

Thickness optimization [2]

Page 7: Hydrogen isotopes permeation through the tungsten-coated

800 K

T2 pressure in breeder

S. Fukada, et al., Fusion Eng. Des. 83, 747 (2008). 7

โ€ข For blanket employing FLiBe, the tritium thermodynamic equilibriumpressure is ~104 Pa at 800 K at a tritium concentration (at%) of ~0.1 ppm(~12 g tritium for FFHR).

~1 torr liter/s/m2

~1000 torr liter/s

ใƒ—ใƒฌใ‚ผใƒณใ‚ฟใƒผ
ใƒ—ใƒฌใ‚ผใƒณใƒ†ใƒผใ‚ทใƒงใƒณใฎใƒŽใƒผใƒˆ
Atomic molar ratio, assuming the first wall area of 1000 m2, 0.4 m thick, then ~12 g tritium in the loop.
Page 8: Hydrogen isotopes permeation through the tungsten-coated

PDP GDP: Bi-directional permeation

For the self-cooled breeder blankets, hydrogen isotopes will penetratethrough the first wall by Plasma-Driven Permeation (PDP) in one directionand Gas-Driven Permeation (GDP) in the opposite direction, referred to asโ€œbi-directionalโ€ permeation.

Breeding blanket

T+D+D+

D+

D+

T+

T+

T+

T+

Edge plasma

T+

T+

D+

D+

n + Li T + Heโ†’First wall

~5 mm, ~500 โ„ƒ

T-GDP

D, T-PDP

Important parameters

GDP:โ€ข Solubilityโ€ข Diffusivityโ€ข External pressure

Diffusion

DiffusionImplantation

T+

T+

D+

re-emission

8

PDP:โ€ข Surface

recombination coefficient

โ€ข Diffusivityโ€ข Implantation fluxโ€ข Reflection coefficient

Bi-directional permeation

T2 T2

T2

T2

T2T2

T2

T2

T2

T2T2

Dissociation & Solution

Do we want bi-directional permeation?

No!

[1] A. Sagara et al., Fusion Technol. 39 (2001) 753-757.[2] R. A. Pitts et al., J. Nucl. Mater. 438 (2013) S48โ€“S56.

Potential issues๏ผšโ€ข PDPโ€“D lowers the

recovery efficiencyof T from thebreeder.

โ€ข GDP-T permeation leads to uncontrolled fueling.

1. W as a plasma-facing material [1,2]:

โ€ข High melting point (3410โ„ƒ)โ€ข High thermal conductivity โ€ข Low sputtering yieldโ€ข Low activation2. Applications:โ€ข Divertor: JET, EAST, ITERโ€ฆ โ€ข First wall: ASDEX-Uโ€ฆ3. W coatings methods:โ€ข Vacuum Plasma-Sprayed W

(VPS-W)โ€ข SPutter-deposited W (SP-W)โ€ข Chemical Vapor Deposition

W (CVD-W)โ€ฆ

Page 9: Hydrogen isotopes permeation through the tungsten-coated

9

2. Experimental facility and setup

Page 10: Hydrogen isotopes permeation through the tungsten-coated

10Y. Hirooka et al., J. Nucl. Mater. 337-339(2005)585-589.

VEHICLE-1

Experimental facilityPlasma parameters:ne: ~1010 cm-3

Te: 3~10 eV Ion flux : ~1016 cm-2s-1

(๐ง๐ง๐‡๐‡๐Ÿ๐Ÿ: ~1013 cm-3)

Variable leak valve

VEHICLE-1 test chamber

ECR plasma source

VGauge II

Resistive heater

BiasLangmuirprobe II

Langmuirprobe I

Magnet

Gate valve

TMP

QMS II

QMS IOrifice

Sample

TMP

TMPInsulator

Gauge IGas side

Plasma side

Pneumatic shutter

Optical spectrometer

QMS: Quadrupole Mass SpectrometerTMP: Turbo Molecular Pump

Page 11: Hydrogen isotopes permeation through the tungsten-coated

11

Experimental setup

Samples: โ€ข F82H (Fe-8Cr-2W) โ€ข VPS-W coated F82Hโ€ข SP-W coated F82H

Permeation membrane sample

ฯ†35 mm

70 mm

โ€ข PDP and GDP fluxes are measured by two QMS (Quadrupole Mass Spectrometer), respectively.

โ€ข Ion bombardment energy is provided by a DCbias (-100 V).

โ€ข Temperature: ~150 - 550 โ„ƒ.โ€ข Argon plasma bombardment pre-treatment to

reduce surface contamination.

F82H thickness: 0.5 - 2 mm VPS-W thickness: 50 - 200 ยตm SP-W coatings thickness: 0.5 - 4 ยตm

VPS-W: Vacuum Plasma-Sprayed WSP-W: SPutter-deposited W

Plasma

Gas

Heater

Bias

Membrane

Hฮฑ spectrometer

Thermocouple

Page 12: Hydrogen isotopes permeation through the tungsten-coated

1011

1013

1015

1017

1019

calc

ulat

ed io

n flu

xes (

cm-2

s-1) A B C D E

Ion flux to the first wall

R. Behrisch, et al., J. Nucl. Mater. 313โ€“316 (2003) 388โ€“392. 12

โ€ข D+ ion flux to the first wall has been estimated to be of the order of 1016 D cm-2 s-1.

A

B

C

D

E

ITER

D+

ใƒ—ใƒฌใ‚ผใƒณใ‚ฟใƒผ
ใƒ—ใƒฌใ‚ผใƒณใƒ†ใƒผใ‚ทใƒงใƒณใฎใƒŽใƒผใƒˆ
1.ion/plasma 2.20years before, blanket concept(water cooling). Edge plasma condition. No concept of ferritic steel. 3.Incident fluxes too high in PDP, too low in IDP, and Te range. 4.
Page 13: Hydrogen isotopes permeation through the tungsten-coated

Solubility of gases in metals (Sieverts' law):

โ€ข S(T): Sievertsโ€™ constant as a function of temperature;

โ€ข pH2: hydrogen pressure.

2H( )C S T p= โ‹…

Membrane

L

High pressure

Diffusion

๐‡๐‡

๐‡๐‡

๐‡๐‡

๐‡๐‡

๐‡๐‡

๐‡๐‡๐‡๐‡

X

C

Low pressure

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

Dissociation & Solution

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

๐‡๐‡๐Ÿ๐Ÿ

Permeation

๐‡๐‡๐Ÿ๐Ÿ

F. Waelbroeck et al., J. Nucl. Mater. 85-86 (1979) 345-349. 13

Gas-driven permeation (GDP) model (single layer)

Permeability: ฮฆ(T)โ‰กD(T)S(T)

upstream

๐‘๐‘H2๐ฟ๐ฟ๐ฟ๐ฟ (โ‰ˆ0, usually) ๐‘๐‘H2

๐ป๐ป๐ป๐ป

downstream

Diffusion limited gas-driven permeation flux:

โ€ข L: membrane thickness;โ€ข D(T): diffusion coefficient;โ€ข ๐’‘๐’‘๐‡๐‡๐Ÿ๐Ÿ

๐‘ฏ๐‘ฏ๐‘ฏ๐‘ฏ : H2 pressure at the high pressure side.

๐ฝ๐ฝ = โˆ’๐ท๐ท ๐‘‡๐‘‡๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

=๐ท๐ท ๐‘‡๐‘‡ ๐‘†๐‘† ๐‘‡๐‘‡

๐ฟ๐ฟ๐‘๐‘H2๐ป๐ป๐ป๐ป

Page 14: Hydrogen isotopes permeation through the tungsten-coated

14

F82H: pressure and thickness effects on GDPGDP (0.5 mm thick F82H) GDP at ~500 oC

โ€ข The GDP flux is proportional to the square-root of upstream pressure,and inversely proportional to the membrane thickness.

2GDP H( )( ) ( )

J D TdC D T S T pdx L

= โˆ’ =GDP is diffusion-limited:

๐ฝ๐ฝ โˆ ๐‘๐‘H2๐ฝ๐ฝ โˆ

1๐ฟ๐ฟ

Page 15: Hydrogen isotopes permeation through the tungsten-coated

B. L. Doyle, J. Nucl. Mater. 111 & 112 (1982) 628-635. 15

L

DownstreamUpstreamEdge

Plasma

Permeation

J+

Re-emissionJโˆ’

Membrane

Implantation0J

rK LK

Recombination Diffusion

c0

x(RD)d

c1

cp

Recombination Recombinationx

(RR)

cpc0 c1

d

Plasma-driven permeation (PDP) model

x(DD)

d

DiffusionDiffusionc0c1

cp

(~nm)

โ€ข c0 and c1: H concentrations of the plasma side and back side;

โ€ข d: implantation range;

โ€ข cp: H concentrations at x=d;โ€ข Kr and KL: H recombination coefficients.

c0โ‰ˆ0, c1โ‰ˆ0 ๐ฝ๐ฝโˆ’ โ‰ˆ ๐ฝ๐ฝ0

Diffusion

cpโ‰ˆc0โ‰ˆc1 ๐ฝ๐ฝโˆ’ =๐พ๐พ๐‘Ÿ๐‘Ÿ

๐พ๐พ๐‘Ÿ๐‘Ÿ + ๐พ๐พ๐ฟ๐ฟ๐ฝ๐ฝ0

๐‘ฑ๐‘ฑ๐ŸŽ๐ŸŽ = ๐‘ฑ๐‘ฑโˆ’

+ ๐‘ฑ๐‘ฑ+

Particle balance:

implantation re-emission permeation

cpโ‰ˆc0, c1โ‰ˆ0 ๐ฝ๐ฝโˆ’ = ๐พ๐พ๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘02๐ฝ๐ฝ+ =๐ท๐ท๐ฟ๐ฟ

๐ฝ๐ฝ0๐พ๐พ๐‘Ÿ๐‘Ÿ

๐ฝ๐ฝ+ =๐พ๐พ๐ฟ๐ฟ

๐พ๐พ๐‘Ÿ๐‘Ÿ + ๐พ๐พ๐ฟ๐ฟ๐ฝ๐ฝ0

๐ฝ๐ฝ+ =๐‘‘๐‘‘๐ฟ๐ฟ๐ฝ๐ฝ0

Page 16: Hydrogen isotopes permeation through the tungsten-coated

16

F82H: temperature and thickness effects on PDP

PDP in RD-regime [1] : 0

r

JDJL K+ =

โ€ข The steady-state PDP flux is inversely proportional to the membranethickness, meaning that hydrogen PDP is in the RD-regime.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1012

1013

1 mm F82H 0.5 mm F82H

PDP

flux

(D/c

m2 /s

)

1000/T (K-1)

~1x1016 D/cm2/s, 100 eV550500 450 400 350 300

(oC)

0.0 0.5 1.0 1.5 2.0 2.50

2

4

6

8

445 oC 510 oC

PDP

flux

(x 1

012 D/

cm2 /s

)

Thickness (mm)

~1 x 1016 D/cm2/s, 100 eV

PDP at 445 oC and 500 oCPDP flux increases as temp. increases

[1] B. L. Doyle, J. Nucl. Mater. 111 & 112 (1982) 628-635.

๐ฝ๐ฝ โˆ1๐ฟ๐ฟ

Page 17: Hydrogen isotopes permeation through the tungsten-coated

17

Permeation studies by modelling: DIFFUSE code

Isotopic effects:I. Isotope dependence of diffusivity, trapping energy, etc.II. Coupling of isotopes through the process of surface recombination.III. Competition of the various isotopes for traps.

Hydrogen transport in solids can be described as:2

2

( , )( , ) ( , )( ) ( , ) tC x tC x t C x tD T G x tt x t

โˆ‚โˆ‚ โˆ‚= โˆ’ +

โˆ‚ โˆ‚ โˆ‚Mobile hydrogen:

Mobile

Trapped hydrogen:

C(x,t) and Ct(x,t): concentrations of mobile and trapped; D: diffusion coefficient; G(x,t): hydrogenimplantation profile; Ct

0(x) and Cte(x): concentrations of intrinsic and empty trapping sites; ฮป: mean

distance between trapping sites; v0: jumping frequency; k: Boltzmanโ€™s constant; Ut: the de-trapping energy.

02

0

( , ) ( , ) ( , )( ) ( , ) exp( / )

( , ) ( ) ( , )

et t

t

et t t

tC x t C x t C x tD T C x t U kT

tC x t C x C x t

ฮฝฮป

โˆ‚= โˆ’ โˆ’

โˆ‚= โˆ’

Trapped Implantation profile

Page 18: Hydrogen isotopes permeation through the tungsten-coated

18

One-dimensional modelling by DIFFUSE (2)

โ€ข GDP-T2 pressure: ~1 Paโ€ข Plasma:

5ร—1015 Dยทcm-2ยทs-1 5ร—1015 Tยทcm-2ยทs-1

โ€ข Membrane: 5 mm thick ฮฑ-Feโ€ข Temperature: 527oC

โ€ข Boundary conditions: Gas side: Sievertsโ€™ lawPlasma side: recombination

โ€ข Intrinsic trap density: 1% โ€ข Trapping energy: 0.62 eV

Bi-directional PDP-D/T and GDP-T2 flows.

PDP-D

PDP-T

โ€ข The tritium concentration profiles interactwith each other in the two counter flows.

โ€ข Deuterium flow appears to be independent ofthese tritium flows, driven by its ownconcentration gradient, i.e. โ€œrandom walkโ€diffusion.

First wall

GDP-T2

Page 19: Hydrogen isotopes permeation through the tungsten-coated

0 200 400 600 800 1000 1200

5400

5600

5800

6000

Time (s)

Hฮฑ in

tens

ity (a

.u.)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

H 2 par

tial p

ress

ure

(x10

-7 Pa

)

19

Demonstration of simultaneous bi-directional H/D permeation for the first time

D-plasma

H2 gas

Membrane

H2 partial pressure

HฮฑSpectrometer

D2 partialpressure

D โ€“ PDP: Te: ~10 eVne: ~1010 cm-3

Flux: ~1016 D cm-2 s-1

H - GDP: ~104 Pa (Fukada [1])Membrane: 0.5 mm F82HTemperature: ~470โ„ƒ

H2 filled in for GDP

GDP H2pumped

Hฮฑ intensity

H2 partial pressure

0.25 0.502.25 2.50 2.75

2.0

2.2

2.4

100

120

400

500

600

Pres

sure

(x10

-6 Pa

)

D2

Pres

sure

(x10

-6 Pa

)

Time (hour)

pressure build-up

pressure build-up

Temp

eratu

re (o C)

HD

Temperature

0.5 mm F82H

Evidence of D-PDP

HD

D2

Evidence of H-GDP

H-GDP

D-PDP

[1] S. Fukada, et al., Fusion Eng. Des. 83, 747 (2008). Y. Xu et al., Fusion Eng. Des. DOI: 10.1016/j.fusengdes.2017.04.022 (2017).

Page 20: Hydrogen isotopes permeation through the tungsten-coated

20

3. Tungsten coatings effects on hydrogen permeation

3.1. VPS-tungsten coated F82H

Page 21: Hydrogen isotopes permeation through the tungsten-coated

21

unmeltedW particles

melted Wpores

50 ยตm

50 ยตm

Microstructure of VPS-W coatings(a) F82H surface, polished (b) VPS-W surface, as-received

(c) W/F82H cross-section, polished (d) VPS-W cross-section, fractured

โ€ข Deposition temperature: โˆผ600 โ„ƒ

โ€ข W powder particles:โˆผ25 ฮผm

โ€ข Density: ~90% of bulk W

1 ยตm

5 ยตm

lamellar structurecolumnar grains

10 ยตm

porescracks

interfaceW

F82H 2 ยตm

TEM

Page 22: Hydrogen isotopes permeation through the tungsten-coated

0 10 20 30 40 500

2

4

6

8

Perm

eatio

n flu

x (x

1015

H/cm

2 /s)

Pressure (Torr)

H2

RT

Machining down to the coating surface by removing F82H substrate. The permeation flux was detected immediately after gas loading. The permeation fluxes increase proportional to the pressure

difference, indicating that gas molecules penetrate through theconnected pores in the coating but not through the W bulk.

H2 flows through VPS-W coatingsat room temperature

22

ฮฆ5 mm

50 ยตm

VPS-W: 170 ยตm

Experimental proof of connected pores of VPS-W

F82Hฮฆ5 mm hole

VPS-WH2 gasOpen pores

Page 23: Hydrogen isotopes permeation through the tungsten-coated

23

VPS-W coatings suppress PDP

0.0 0.5 1.0 1.5 2.0 2.51010

1012

1014

1016

Time (hour)

PDP

flux

(H/c

m2 /s

)

0

100

200

300

400

500

600

90 ยตm VPS-W, 0.5 mm F82H 0.5 mm F82H

F82HVPS-W coated F82H

Temperatures

Tem

pera

ture

(o C)

Hydrogen PDP: at ~500โ„ƒ

1.2 1.3 1.4 1.5 1.6 1.7 1.81011

1012

1013

1014

1015

F82H

VPS-W coated F82H

PDP

flux

(H/c

m2 /s

)

1000/T (K-1)

90 ยตm VPS-W, 0.5 mm F82H

550 500 450 400 350 300 (oC)

Hydrogen PDP through F82H with/without VPS-W coatings

VPS-W coatings effects on PDP:

โ€ข VPS-W suppresses DT-PDP from the plasma side.

Page 24: Hydrogen isotopes permeation through the tungsten-coated

1.2 1.4 1.6 1.8 2.01013

1014

1015

1016104Pa

GDP

flux

(H/c

m2 /s

)

1000/T (K-1)

(oC)550 500 450 400 350 300 250 200

VPS-W coatings effects on GDP:

โ€ข VPS-W does not suppress T-GDP from the blanket side.

Hydrogen GDP through F82H with/without VPS-W coatings

VPS-W coated F82H (F82H upstream)

F82H

VPS-W coatings do not suppress GDP

90ยตm VPS-W, 0.5mm F82H

24Y. Xu, et al., Plasma Fusion Res. 11 (2016) 2405064.

VPS-W

F82HH2 gas

(F82H upstream)

Open pores

Page 25: Hydrogen isotopes permeation through the tungsten-coated

25

3.2. SP-tungsten coated F82H

Page 26: Hydrogen isotopes permeation through the tungsten-coated

100 nm

100 nm 1 ยตm

Microstructure of SP-W coatings

โ€ข Fine grain.

โ€ข Dense structure.โ€ข Preferred orientation.

SP-W surface, as-deposited (300 โ„ƒ, 0.19 Pa)

26

Density: 19.2 g/cm3, ~99.5% of bulk W

1 ยตm

W

F82H

SP-W/F82H cross-section, polished

columnar grains

interface

30 40 50 60 70 80 90

(200)

(b) Bulk-W

Inten

sity

(a. u

.)

2 Theta (degree)

(220)(211)

(110)

(a) SP-W

XRD

Page 27: Hydrogen isotopes permeation through the tungsten-coated

1.2 1.4 1.6 1.8 2.0 2.2 2.4

1011

1013

1015

GDP

flux

(D/c

m2 /s

)

1000/T (K-1)

500 400 300 200 (oC)

27

SP-W coatings suppress GDP

SP-W coatings effects on GDP:

โ€ข SP-W suppresses T-GDP from the blanket side.

Deuterium GDP through F82H with/without SP-W coatings

F82H

SP-W coated F82H(F82H upstream)

SP-W

F82HD2 gas

(F82H upstream)

๐‘ณ๐‘ณ๐œฑ๐œฑ๐ž๐ž๐ž๐ž๐ž๐ž

=๐‘ณ๐‘ณ๐Ÿ๐Ÿ๐œฑ๐œฑ๐Ÿ๐Ÿ

+๐‘ณ๐‘ณ๐Ÿ๐Ÿ๐œฑ๐œฑ๐Ÿ๐Ÿ

โ€ข Effective permeability ฮฆeff[1]:

[1] J. Crank, The Mathematics of Diffusion, 2nd Edition, 1975.

1.5 ยตm W, 1 mm F82H

Page 28: Hydrogen isotopes permeation through the tungsten-coated

28

IDP: Ion-Driven PermeationSS: Stainless SteelSP-W: SPutter-deposited WVPS-W: Vacuum Plasma-Sprayed W

SP-W coatings enhance PDP in VEHICLE-1

SP-W coatings effects on PDP:โ€ข SP-W enhances DT-PDP from the

plasma side.

SP-W coated SS

SS

VPS-W coated SS

After R. Anderl [1]

Literature data [1]: Deuterium IDP at ~ 500 โ„ƒ

Perm

eatio

n ra

te (D

/m2 /

s)

Time (min)

SS: 0.5 mm, SP-W: 1 ยตm, VPS-W: 21 ยตm

[1] R. Anderl et al., J. Nucl. Mater 212-215 (1994) 1416-1420.

6.5 ร— 1015 D/cm2/s3 keV D3

+

0.0 0.5 1.0 1.5 2.0 2.51010

1012

1014

1016

1018

Time (hour)PD

P flu

x (H/

cm2 /s

)0

100

200

300

400

500

600

Tem

pera

ture

(o C)

Present data [2]:Hydrogen PDP: at ~500 โ„ƒ

SP-W coated F82H

F82H

VPS-W coated F82H

F82H: 0.5 mm, SP-W: 0.5 ยตm, VPS-W: 90 ยตm

Temperatures

1.0 ร— 1016 H/cm2/s100 eV H-plasma

[2] Y. Xu et al., Plasma Fusion Res. 12 (2017) 1205009.

Page 29: Hydrogen isotopes permeation through the tungsten-coated

1.2 1.3 1.4 1.5 1.6 1.7 1.810-24

10-22

10-20

10-18

10-16

10-14

10-12

Reco

mbi

natio

n co

effic

ient

(cm

4 /s)

1000/T (K-1)

(oC)550500 450 400 350 300

[1] T. Nagasaki et al., J. Nucl. Mater. 202 (1993) 228โ€“238.[2] B. L. Doyle et al., J. Nucl. Mater. 123 (1984) 1523-1530.[3] R. Anderl et al., Fusion Sci. Technol. 21 (1992) 745-752.29

Recombination coefficient

Surface recombination coefficient Kr is a key parameter relating to PDP flux

1.2 1.3 1.4 1.5 1.6 1.7 1.81011

1012

1013

1014

1015 (oC)

PDP

flux

(D/cm

2 /s)

1000/T (K-1)

550 500 450 400 350 300

SP-W coated F82H

F82H

Steady-sate D-PDP fluxes

SP-W: 1.5 ยตm, F82H: 1 mm

๐‘ฒ๐‘ฒ๐’“๐’“ ๐ƒ๐ƒ โˆ’๐–๐– = ๐Ÿ๐Ÿ.๐Ÿ๐Ÿ ร— ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐ž๐ž๐ž๐ž๐ž๐žโˆ’๐Ÿ๐Ÿ.๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’†๐’†๐’†๐’†

๐’Œ๐’Œ๐’Œ๐’Œcm4 s-1

Materials with small Kr tend to suppressre-emission, increasing the hydrogenconcentration. As a result permeation fluxincreases.

๐‘ฑ๐‘ฑ+ =๐‘ซ๐‘ซ๐‘ณ๐‘ณ

๐‘ฑ๐‘ฑ๐ŸŽ๐ŸŽ๐‘ฒ๐‘ฒ๐’“๐’“

PDP in RD-regime [2]:

๐‘ฒ๐‘ฒ๐’“๐’“(๐ƒ๐ƒ โˆ’ ๐…๐…๐…๐…๐Ÿ๐Ÿ๐‡๐‡) = ๐Ÿ‘๐Ÿ‘.๐…๐… ร— ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐ž๐ž๐ž๐ž๐ž๐ž๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ ๐ž๐ž๐ž๐ž๐’Œ๐’Œ๐“๐“

cm4 s-1

Nagasaki [1]D-Fe

This workD-F82H

This workD-SP-W

Andrel [3]D-bulk W Doyle [2]

H-Fe

๐‘ฑ๐‘ฑ๐ŸŽ๐ŸŽ = ๐‘ฑ๐‘ฑโˆ’

+ ๐‘ฑ๐‘ฑ+

Particle balance:

implantation re-emission permeation

Page 30: Hydrogen isotopes permeation through the tungsten-coated

30

Increased D retention in SP-W coated F82H has been observed: trapping effects [1] ?

PDP (implantation) TDS (desorption)

D retention by TDS

[1] B. Zajec, et al., J. Nucl. Mater. 412 (2011) 116-122.

1.2 1.3 1.4 1.5 1.6 1.7

1015

1016

SP-W coated F82H (1.5 ยตm/1 mm) F82H (1 mm)

Deut

eriu

m re

tentio

n (D

/cm2 )

1000/T (K-1)

(oC)550 500 450 400 350

SP-W coated F82H

F82H

SP-W๏ผš1.5 ยตm, F82H: 1 mm

Steady-state D-PDP fluxes

1.2 1.3 1.4 1.5 1.6 1.7 1.81011

1012

1013

1014

1015 (oC)

PDP

flux

(D/cm

2 /s)

1000/T (K-1)

550 500 450 400 350 300

SP-W coatings effects:increase fuel retention.

with coating

without coating

Page 31: Hydrogen isotopes permeation through the tungsten-coated

31

D-PDP: 1 ร— 1016 D/cm2/s, ~250 โ„ƒ, 2 hD retention: 1.2 ร— 1016 D/cm2

SIMS: O2+, 5 keV, 250 nA

SIMS depth profile

SIMS deuterium conc. depth profile

Seff

D retention data by TDS

SIMS depth profile shows a good agreementwith the D retention data and exhibits a sign ofโ€œuphill diffusionโ€ of D in the W/F82H bi-layerstructure.

๐‘‘๐‘‘1,๐ป๐ป

๐‘‘๐‘‘2,๐ป๐ป=๐‘†๐‘†1๐‘†๐‘†2(Secondary Ion Mass Spectrometry)

Page 32: Hydrogen isotopes permeation through the tungsten-coated

32

Possible trapping sites in SP-W

Possible trapping sites:1) Grain boundaries;2) Dislocations;3) Vacancy and

vacancy clustersโ€ฆ

H W

Grain boundary

Dislocation

Vacancy cluster

Y. Xu et al., Fusion Eng. Des. DOI: 10.1016/j.fusengdes.2017.07.021 (2017). Hatano et al., data presented on PSI-22, Rome (2016).

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

1.2

1st run 2nd run 3rd run 4th runG

DP fl

ux (x

1013

D/cm

2 /s)

Time (s)

Evidence of trapping effects in SP-W

Page 33: Hydrogen isotopes permeation through the tungsten-coated

33

3.3. VPS+SP double-layertungsten coated F82H

Breeding blanket

T+

T+

T+

Edge plasma

T2

First wall

T2

T2T2

T2T2

T2

D+

D+

D+

D+ T+

F82HSP-WVPS-W

D, T-PDP

T-GDP

Page 34: Hydrogen isotopes permeation through the tungsten-coated

34

0.0 0.5 1.0 1.5 2.01010

1012

1014

1016

PDP

flux

(ato

ms/

cm2 /s

)

Time (hour)

500 oC

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9109

1011

1013

1015

VPS/SP-W coated F82H

F82H

PDP

flux

(D/c

m2 /s

)1000/T (K-1)

550500 450 400 350 300 250 (oC)

SP-W coated F82H

VPS-W coated F82H

F82H

VPS/SP-W coated F82H

Double-layer W coatings suppress PDP

Hydrogen PDP at ~500 โ„ƒ Steady-state PDP fluxes

Bi-layer W coatings effects on PDP:

โ€ข VPS/SP-W suppresses DT-PDP from the plasma side.

Page 35: Hydrogen isotopes permeation through the tungsten-coated

35

1.2 1.4 1.6 1.8 2.0 2.2 2.4109

1011

1013

1015

1017

VPS/SP-W coated F82H

(oC)

GDP

flux

(D/c

m2 /s

)

1000/T (K-1)

F82H

500 400 300 200

Double-layer W coatings suppress GDP

Bi-layer W coatings effects on GDP:

โ€ข VPS/SP-W suppresses T-GDP from the blanket side.

Steady-state GDP fluxes

F82H: 1 mm, SP-W: 1.5 ยตm, VPS-W: 90 ยตm

Page 36: Hydrogen isotopes permeation through the tungsten-coated

36

I. VPS-W coatings have been found to have a low density structurewith connected pores, while SP-W coatings have a dense andpore-free structure.

II. Effects of W coatings on GDP and PDP have been investigated:

1) VPS-W coatings suppress PDP, but does not suppress GDP.

2) SP-W coatings suppress GDP, but tend to enhance PDP.

III. Based on these observations, the use of overlaid VPS+SP coatingshas been proposed for the first wall design.

IV. It has been demonstrated that VPS+SP double layer W-coatingscan suppress both GDP and PDP of hydrogen isotopes throughthe first wall.

Summary


Recommended