Transcript
Page 1: Further Trigonometric Identities
Page 2: Further Trigonometric Identities

Introductionβ€’ This chapter extends your knowledge of

Trigonometrical identities

β€’ You will see how to solve equations involving combinations of sin, cos and tan

β€’ You will learn to express combinations of these as a transformation of a single graph

Page 3: Further Trigonometric Identities
Page 4: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

7A

Q

P

N

11

AB

By GCSE Trigonometry:

 

O

  

 

So the coordinates of P are:

 

M  So the coordinates of Q

are: 

 

 

 

 

Q

 

 

   

π‘†π‘–π‘›π΄βˆ’π‘†

𝑖𝑛𝐡

Page 5: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

7A

𝑃𝑄2=ΒΏΒΏ

𝑃𝑄2=ΒΏ(πΆπ‘œ 𝑠2 π΄βˆ’2πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅+πΆπ‘œπ‘ 2𝐡)+(𝑆𝑖𝑛2 π΄βˆ’2𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡+𝑆𝑖𝑛2𝐡)

𝑃𝑄2=ΒΏ(πΆπ‘œ 𝑠2 𝐴+𝑆𝑖𝑛2 𝐴) βˆ’2 (πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅+𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡)+(πΆπ‘œπ‘ 2𝐡+𝑆𝑖𝑛2𝐡)

𝑃𝑄2=ΒΏ2βˆ’2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅+𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡)

Multiply out the brackets

Rearrange

≑ 1

Page 6: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

7A

Q

P

N

11

A

B

O M

 

 You can also work out PQ using the triangle

OPQ:

B - A1

1

2bcCosA 2Cos(B - A)

Q

P

2Cos(B - A) 2Cos(A - B)

Sub in the values

Group terms

Cos (B – A) = Cos (A – B) eg) Cos(60) = Cos(-60)

Page 7: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

7A

2Cos(A - B)𝑃𝑄2=ΒΏ2βˆ’2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅+𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡)

2βˆ’2(πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅+𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡) 2Cos(A - B)βˆ’2 (πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅+𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡) 2Cos(A - B)

πΆπ‘œπ‘ π΄πΆπ‘œπ‘ π΅+𝑆𝑖𝑛𝐴𝑆𝑖𝑛𝐡 Cos(A - B)Subtract 2 from both

sides

Divide by -2

Cos(A - B) = CosACosB + SinASinBCos(A + B) = CosACosB - SinASinB

Page 8: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

7A

Cos(A - B) ≑ CosACosB + SinASinBCos(A + B) ≑ CosACosB - SinASinBSin(A + B) ≑ SinACosB + CosASinBSin(A - B) ≑ SinACosB - CosASinB

Page 9: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

Show that:

7A

Cos(A - B) = CosACosB + SinASinBCos(A + B) = CosACosB - SinASinB

Sin(A + B) = SinACosB + CosASinBSin(A - B) = SinACosB - CosASinB

Tan (A + B) Tan ΞΈ

Tan (A+B) Tan (A+B)

Tan (A+B) Tan (A+B) TanA+ TanB1 - TanATanB

Rewrite

Divide top and bottom by CosACosB

Simplify each Fraction

Page 10: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

7A

Cos(A - B) ≑ CosACosB + SinASinBCos(A + B) ≑ CosACosB - SinASinBSin(A + B) ≑ SinACosB + CosASinBSin(A - B) ≑ SinACosB - CosASinBTan (A + B)

Tan (A - B) You may be asked to

prove either of the Tan identities using the Sin

and Cos ones!

Page 11: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

Show, using the formula for Sin(A – B), that:

7A

Cos(A - B) ≑ CosACosB + SinASinBCos(A + B) ≑ CosACosB - SinASinBSin(A + B) ≑ SinACosB + CosASinBSin(A - B) ≑ SinACosB - CosASinBTan (A + B)

Tan (A - B)

𝑆𝑖𝑛15=√6βˆ’βˆš24

𝑆𝑖𝑛15=𝑆𝑖𝑛(45βˆ’30)

Sin(A - B) ≑ SinACosB - CosASinBSin(45 - 30) ≑ Sin45Cos30 – Cos45Sin30

Sin(45 - 30) β‰‘βˆš22

√32

√2212Γ— Γ—βˆ’

Sin(45 - 30) β‰‘βˆš64

√24βˆ’

Sin(15) ≑ √6βˆ’βˆš24

A=45, B=30

These can be written as surds

Multiply each pair

Group the fractions up

Page 12: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

Given that:

Find the value of:

7A

< A < 270˚CosTan(A+B)

Tan (A + B)

A

B

35

4

12

13

𝑆𝑖𝑛𝐴=𝑂𝑝𝑝𝐻𝑦𝑝

𝑆𝑖𝑛𝐴=βˆ’ 35

πΆπ‘œπ‘ π΅=𝐴𝑑𝑗𝐻𝑦𝑝 5

π‘‡π‘Žπ‘›π΄=𝑂𝑝𝑝𝐴𝑑𝑗

π‘‡π‘Žπ‘›π΄=34

π‘‡π‘Žπ‘›π΅=𝑂𝑝𝑝𝐴𝑑𝑗

π‘‡π‘Žπ‘›π΅=512πΆπ‘œπ‘ π΅=βˆ’ 1213

π‘‡π‘Žπ‘›π΅=βˆ’ 512

Use Pythagoras’ to find the missing side (ignore negatives)Tan is positive in the range 180˚ -

270˚

Use Pythagoras’ to find the missing side (ignore negatives)Tan is negative in the range 90˚ -

180˚

90 180

270 360y = TanΞΈ

Page 13: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition

formulae

Given that:

Find the value of:

7A

< A < 270˚CosTan(A+B)

Tan (A + B)

Tan (A + B)

π‘‡π‘Žπ‘›π΄=34 π‘‡π‘Žπ‘›π΅=βˆ’ 512

Tan (A + B) Tan (A + B) Tan (A + B)

Tan (A + B)

Substitute in TanA and TanB

Work out the Numerator and Denominator

Leave, Change and Flip

Simplify

Although you could just type the whole thing into your calculator, you still need to show the stages for

the workings marks…

Page 14: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You need to know and be able to use the addition formulaeGiven that:

Express Tanx in terms of Tany…

7A

2𝑠𝑖𝑛 (π‘₯+ 𝑦 )=3π‘π‘œπ‘  (π‘₯βˆ’ 𝑦 )

2𝑠𝑖𝑛 (π‘₯+ 𝑦 )=3π‘π‘œπ‘  (π‘₯βˆ’ 𝑦 )

2(𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘¦+π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝑦 )ΒΏ3 (π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦+𝑠𝑖𝑛π‘₯𝑠𝑖𝑛𝑦 )

2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘¦+2π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝑦¿3π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦+3 𝑠𝑖𝑛π‘₯𝑠𝑖𝑛𝑦2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘¦+2π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝑦¿3π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦+3 𝑠𝑖𝑛π‘₯π‘ π‘–π‘›π‘¦π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦ π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦ π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦ π‘π‘œπ‘ π‘₯π‘π‘œπ‘ π‘¦

2 π‘‘π‘Žπ‘›π‘₯+2 π‘‘π‘Žπ‘›π‘¦ΒΏ3+3 π‘‘π‘Žπ‘›π‘₯π‘‘π‘Žπ‘›π‘¦2 π‘‘π‘Žπ‘›π‘₯βˆ’3 π‘‘π‘Žπ‘›π‘₯π‘‘π‘Žπ‘›π‘¦ΒΏ3βˆ’2π‘‘π‘Žπ‘›π‘¦π‘‘π‘Žπ‘›π‘₯ (2βˆ’3 π‘‘π‘Žπ‘›π‘¦ )ΒΏ3βˆ’2π‘‘π‘Žπ‘›π‘¦

π‘‘π‘Žπ‘›π‘₯ΒΏ3βˆ’2π‘‘π‘Žπ‘›π‘¦2βˆ’3 π‘‘π‘Žπ‘›π‘¦

Rewrite the sin and cos parts

Multiply out the brackets

Divide all by cosxcosy

Simplify

Subtract 3tanxtanySubtract 2tany

Factorise the left side

Divide by (2 – 3tany)

Page 15: Further Trigonometric Identities
Page 16: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sin2A, cos 2A and tan2A in terms of angle A,

using the double angle formulae

7B

Sin(A + B) ≑ SinACosB + CosASinBSin(A + A) ≑ SinACosA + CosASinASin2A ≑ 2SinACosA

Replace B with A

Simplify

Sin2A ≑ 2SinACosASin4A ≑ 2Sin2ACos2ASin2A ≑ SinACosA

Sin60 ≑ 2Sin30Cos303Sin2A ≑ 6SinACosA

Γ· 2

2A 4A

x 3 2A = 60

Page 17: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sin2A, cos 2A and tan2A in terms of angle A,

using the double angle formulae

7B

Cos(A + B) ≑ CosACosB - SinASinBCos(A + A) ≑ CosACosA - SinASinA

Cos2A ≑ CoReplace B with A

Simplify

Cos2A ≑ CoCos2A ≑ (1 Cos2A ≑ Co1 - Co

Cos2A ≑ 1 Cos2A ≑ 2CoReplace Sin2A with (1 – Cos2A)Replace Cos2A with (1 – Sin2A)

Page 18: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sin2A, cos 2A and tan2A in terms of angle A,

using the double angle formulae

7B

Replace B with A

Simplify

Tan (A + B) Tan (A + A)

Tan 2A

Tan 2A Tan 60 Tan 2A

2Tan 2A Tan A Γ· 2 2A = 60

x 22A = A

Page 19: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sin2A, cos 2A and tan2A in terms of angle A,

using the double angle formulae

Rewrite the following as a single Trigonometric function:

7B

2𝑠𝑖𝑛 πœƒ2 π‘π‘œπ‘ 

πœƒ2 π‘π‘œπ‘ πœƒ

𝑆𝑖𝑛 2πœƒβ‰‘2 π‘ π‘–π‘›πœƒπ‘π‘œπ‘  πœƒπ‘†π‘–π‘›πœƒβ‰‘2 𝑠𝑖𝑛 πœƒ2 π‘π‘œπ‘ 

πœƒ2

2𝑠𝑖𝑛 πœƒ2 π‘π‘œπ‘ 

πœƒ2 π‘π‘œπ‘ πœƒ

ΒΏ π‘ π‘–π‘›πœƒπ‘π‘œπ‘ πœƒ

ΒΏ12 𝑠𝑖𝑛2πœƒ

2ΞΈ ΞΈ

Replace the first part

Rewrite

Page 20: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sin2A, cos 2A and tan2A in terms of angle A,

using the double angle formulae

Show that:

Can be written as:

7B

1+π‘π‘œπ‘  4πœƒ

πΆπ‘œπ‘ 2 πœƒβ‰‘2π‘π‘œπ‘ 2πœƒβˆ’1 Double the angle parts

2π‘π‘œπ‘ 22πœƒ

πΆπ‘œπ‘  4 πœƒβ‰‘2π‘π‘œπ‘ 22πœƒβˆ’1

1+π‘π‘œπ‘  4πœƒΒΏ1+(2π‘π‘œπ‘ 22πœƒβˆ’1)

ΒΏ2π‘π‘œπ‘ 22 πœƒ

Replace cos4ΞΈ

The 1s cancel out

Page 21: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sin2A, cos 2A and tan2A in terms of angle A,

using the double angle formulae

Given that:

Find the exact value of:

7B

π‘π‘œπ‘ π‘₯=34 180 ˚<π‘₯<360 ˚

𝑠𝑖𝑛2π‘₯

x

πΆπ‘œπ‘ π‘₯=𝐴𝑑𝑗𝐻𝑦𝑝

πΆπ‘œπ‘ π‘₯=34

𝑆𝑖𝑛π‘₯=𝑂𝑝𝑝𝐻𝑦𝑝

𝑆𝑖𝑛π‘₯=√74

Use Pythagoras’ to find the missing side (ignore negatives)

Cosx is positive so in the range 270 - 360

3

√74

Therefore, Sinx is negative

90 180

270 360

y = SinΞΈ

y = CosΞΈ

𝑆𝑖𝑛π‘₯=βˆ’ √74

Sin2x ≑ 2SinxCosxSin2x = 2Sin2x =

Sub in Sinx and Cosx

Work out and leave in surd form

Page 22: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sin2A, cos 2A and tan2A in terms of angle A,

using the double angle formulae

Given that:

Find the exact value of:

7B

π‘π‘œπ‘ π‘₯=34 180 ˚<π‘₯<360 ˚

π‘‘π‘Žπ‘›2π‘₯

x

πΆπ‘œπ‘ π‘₯=𝐴𝑑𝑗𝐻𝑦𝑝

πΆπ‘œπ‘ π‘₯=34

π‘‡π‘Žπ‘›π‘₯=𝑂𝑝𝑝𝐴𝑑𝑗

π‘‡π‘Žπ‘›π‘₯=√73

Use Pythagoras’ to find the missing side (ignore negatives)

Cosx is positive so in the range 270 - 360

3

√74

Therefore, Tanx is negative

90 180

270 360y = CosΞΈ

π‘‡π‘Žπ‘›π‘₯=βˆ’ √73

Sub in Tanx

Work out and leave in surd form90 18

0270 360

y = TanΞΈ

Tan 2x Tan 2x

π‘‡π‘Žπ‘›2 π‘₯=βˆ’3√7

Page 23: Further Trigonometric Identities
Page 24: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

The double angle formulae allow you to solve more

equations and prove more identities

Prove the identity:

7C

π‘‘π‘Žπ‘›2πœƒβ‰‘ 2π‘π‘œπ‘‘ πœƒβˆ’ π‘‘π‘Žπ‘›πœƒ

π‘‘π‘Žπ‘›2πœƒβ‰‘ 2π‘‘π‘Žπ‘› πœƒ1βˆ’π‘‘π‘Žπ‘›2πœƒ

π‘‘π‘Žπ‘›2πœƒβ‰‘

2 π‘‘π‘Žπ‘›πœƒπ‘‘π‘Žπ‘›πœƒ

1π‘‘π‘Žπ‘›πœƒ βˆ’

π‘‘π‘Žπ‘›2πœƒπ‘‘π‘Žπ‘›πœƒ

π‘‘π‘Žπ‘›2πœƒβ‰‘ 2π‘π‘œπ‘‘ πœƒβˆ’π‘‘π‘Žπ‘›πœƒ

Divide each part by tanΞΈ

Rewrite each part

Page 25: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

The double angle formulae allow you to solve more

equations and prove more identities

By expanding:

Show that:

7C

𝑠𝑖𝑛 (2𝐴+𝐴)

Replace A and B

𝑠𝑖𝑛 (3 𝐴)≑3 π‘ π‘–π‘›π΄βˆ’4 𝑠𝑖𝑛3 𝐴

𝑠𝑖𝑛 (𝐴+𝐡 )β‰‘π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅+π‘π‘œπ‘ π΄π‘ π‘–π‘›π΅

𝑠𝑖𝑛 (2𝐴+𝐴 )≑𝑠𝑖𝑛 2π΄π‘π‘œπ‘ π΄+π‘π‘œπ‘ 2 𝐴𝑠𝑖𝑛𝐴

𝑠𝑖𝑛 (3 𝐴)≑(2 π‘ π‘–π‘›π΄π‘π‘œπ‘ π΄)π‘π‘œπ‘ π΄+(1βˆ’2𝑠𝑖𝑛2 𝐴) 𝑠𝑖𝑛𝐴

𝑠𝑖𝑛 (3 𝐴)≑2π‘ π‘–π‘›π΄π‘π‘œπ‘ 2 𝐴+π‘ π‘–π‘›π΄βˆ’2𝑠𝑖𝑛3𝐴

𝑠𝑖𝑛 (3 𝐴)≑2𝑠𝑖𝑛𝐴 (1βˆ’π‘ π‘–π‘›2 𝐴)+π‘ π‘–π‘›π΄βˆ’2𝑠𝑖𝑛3𝐴

𝑠𝑖𝑛 (3 𝐴)≑2π‘ π‘–π‘›π΄βˆ’2𝑠𝑖𝑛3𝐴+π‘ π‘–π‘›π΄βˆ’2𝑠𝑖𝑛3𝐴

𝑠𝑖𝑛 (3 𝐴)≑3 π‘ π‘–π‘›π΄βˆ’4𝑠𝑖𝑛3 𝐴

Replace Sin2A and

Cos 2AMultiply

outReplace cos2A

Multiply out

Group like terms

Page 26: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

The double angle formulae allow you to solve more

equations and prove more identities

Given that:

Eliminate ΞΈ and express y in terms of x…

7C

π‘₯=3 π‘ π‘–π‘›πœƒ 𝑦=3βˆ’4 π‘π‘œπ‘ 2 πœƒand

π‘₯=3 π‘ π‘–π‘›πœƒπ‘₯3=π‘ π‘–π‘›πœƒ

𝑦=3βˆ’4 π‘π‘œπ‘ 2 πœƒ3βˆ’π‘¦4 =π‘π‘œπ‘  2πœƒ

Divide by 3

Subtract 3, divide by 4Multiply by -1

π‘π‘œπ‘ 2πœƒ=1βˆ’2𝑠𝑖𝑛2πœƒ

3βˆ’π‘¦4 =ΒΏ1βˆ’2( π‘₯3 )

2

3βˆ’ 𝑦=ΒΏ4βˆ’8( π‘₯3 )2

βˆ’ 𝑦=ΒΏ1βˆ’8 (π‘₯3 )2

𝑦=ΒΏ8 (π‘₯3 )2

βˆ’1

Replace Cos2ΞΈ and SinΞΈ

Multiply by 4

Subtract 3

Multiply by -1

Page 27: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

The double angle formulae allow you to solve more

equations and prove more identities

Solve the following equation in the range stated:

(All trigonometrical parts must be in terms x, rather than 2x)

7C

3π‘π‘œπ‘  2π‘₯βˆ’π‘π‘œπ‘ π‘₯+2=00 Β° ≀ π‘₯≀360 Β°

3π‘π‘œπ‘ 2π‘₯βˆ’π‘π‘œπ‘ π‘₯+2=0

3 (2π‘π‘œπ‘ 2π‘₯βˆ’1)βˆ’π‘π‘œπ‘ π‘₯+2=0

6π‘π‘œπ‘ 2π‘₯βˆ’3βˆ’π‘π‘œπ‘ π‘₯+2=0

6π‘π‘œπ‘ 2π‘₯βˆ’π‘π‘œπ‘ π‘₯βˆ’1=0

Replace cos2x

Multiply out the bracket

Group terms

(3π‘π‘œπ‘ π‘₯+1)(2π‘π‘œπ‘ π‘₯βˆ’1)=0

π‘π‘œπ‘ π‘₯=βˆ’ 13 π‘π‘œπ‘ π‘₯=12or

Factorise

90 180

270 360

y = CosΞΈ1

2βˆ’ 13

π‘₯=π‘π‘œπ‘ βˆ’1(βˆ’ 13 ) π‘₯=π‘π‘œπ‘ βˆ’1( 12 )π‘₯=109.5 Β°,250.5 Β°π‘₯=60 Β°,300 Β°

π‘₯=60 Β° ,109.5 Β° ,250.5 Β° ,300 Β°

Solve both pairs

Remember to find additional answers!

Page 28: Further Trigonometric Identities
Page 29: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can write expressions of the form acosΞΈ + bsinΞΈ,

where a and b are constants, as a sine or cosine function

only

Show that:

Can be expressed in the form:

So:

7D

3 𝑠𝑖𝑛π‘₯+4π‘π‘œπ‘ π‘₯

𝑅𝑠𝑖𝑛(π‘₯+Ξ± )

𝑅𝑠𝑖𝑛(π‘₯+Ξ± )¿𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘  Ξ±+π‘…π‘π‘œπ‘ π‘₯𝑠𝑖𝑛 Ξ±3 𝑠𝑖𝑛π‘₯+4π‘π‘œπ‘ π‘₯¿𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘  Ξ±+π‘…π‘π‘œπ‘ π‘₯𝑠𝑖𝑛 Ξ±π‘…π‘π‘œπ‘ Ξ±=3 𝑅𝑠𝑖𝑛α=4

π‘π‘œπ‘ Ξ±= 3𝑅 𝑠𝑖𝑛α= 4

𝑅 Ξ±

𝑅

3

4(𝑂𝐻 )( 𝐴𝐻 )So in the triangle, the Hypotenuse is

R…𝑅=√32+42 𝑅=5

π‘π‘œπ‘ Ξ±= 3𝑅

π‘π‘œπ‘ Ξ±=35

Ξ±=π‘π‘œπ‘ βˆ’ 1 35

Ξ±=53.1Β°

Replace with the expression

Compare each term – they must be equal!

R = 5

Inverse Cos

Find the smallest value in the acceptable range given

3 𝑠𝑖𝑛π‘₯+4π‘π‘œπ‘ π‘₯ΒΏ5sin (π‘₯+53.1Β° )

Page 30: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can write expressions of the form acosΞΈ + bsinΞΈ,

where a and b are constants, as a sine or cosine function

only

Show that you can express:

In the form:

So:

7D

𝑠𝑖𝑛π‘₯βˆ’βˆš3π‘π‘œπ‘ π‘₯

𝑅𝑠𝑖𝑛(π‘₯βˆ’Ξ±)

𝑅𝑠𝑖𝑛(π‘₯βˆ’Ξ±)¿𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π›Όβˆ’π‘…π‘π‘œπ‘ π‘₯𝑠𝑖𝑛𝛼𝑠𝑖𝑛π‘₯βˆ’βˆš3π‘π‘œπ‘ π‘₯¿𝑅𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π›Όβˆ’π‘…π‘π‘œπ‘ π‘₯π‘ π‘–π‘›π›Όπ‘…π‘π‘œπ‘ π›Ό=1 𝑅𝑠𝑖𝑛𝛼=√3

𝑅=√12+(√3 )2 𝑅=2

π‘…π‘π‘œπ‘ π›Ό=12π‘π‘œπ‘ π›Ό=1π‘π‘œπ‘ π›Ό=

12

𝛼=π‘π‘œπ‘ βˆ’1 12

𝛼=πœ‹3

R = 2

Divide by 2

Inverse cos

Find the smallest value in the

acceptable range

Replace with the expression

Compare each term – they must be equal!

𝑠𝑖𝑛π‘₯βˆ’βˆš3π‘π‘œπ‘ π‘₯ΒΏ2sin (π‘₯βˆ’ πœ‹3 )

Page 31: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can write expressions of the form acosΞΈ + bsinΞΈ,

where a and b are constants, as a sine or cosine function

only

Show that you can express:

In the form:

So:

7D

𝑠𝑖𝑛π‘₯βˆ’βˆš3π‘π‘œπ‘ π‘₯

𝑅𝑠𝑖𝑛(π‘₯βˆ’Ξ±)

𝑠𝑖𝑛π‘₯βˆ’βˆš3π‘π‘œπ‘ π‘₯ΒΏ2sin (π‘₯βˆ’ πœ‹3 )

Sketch the graph of:𝑠𝑖𝑛π‘₯βˆ’βˆš3π‘π‘œπ‘ π‘₯= Sketch the graph of:2sin (π‘₯βˆ’ πœ‹3 )

Ο€/2 Ο€ 3Ο€/2 2Ο€

1

-1

Ο€/2 Ο€ 3Ο€/2 2Ο€

1

y=sin π‘₯

y=sin (π‘₯βˆ’ πœ‹3 )

Ο€/2 Ο€ 3Ο€/2 2Ο€

1

-1

y=2sin (π‘₯βˆ’ πœ‹3 )

Ο€/34Ο€/3-1

2

-2

Start out with sinx

Translate Ο€/3 units

right

Vertical stretch, scale

factor 2Ο€/34Ο€/3

2sin (βˆ’ πœ‹3 )ΒΏβˆ’βˆš3 At the y-

intercept, x = 0

Page 32: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can write expressions of the form acosΞΈ + bsinΞΈ,

where a and b are constants, as a sine or cosine function

only

Express:

in the form:

So:

7D

2π‘π‘œπ‘ πœƒ+5π‘ π‘–π‘›πœƒ

π‘…π‘π‘œπ‘ (πœƒβˆ’π›Ό)

π‘…π‘π‘œπ‘ (πœƒβˆ’π›Ό)ΒΏπ‘…π‘π‘œπ‘  πœƒπ‘π‘œπ‘ π›Ό+π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Ό2π‘π‘œπ‘ πœƒ+5π‘ π‘–π‘›πœƒΒΏπ‘…π‘π‘œπ‘  πœƒπ‘π‘œπ‘ π›Ό+π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Όπ‘…π‘π‘œπ‘ π›Ό=2 𝑅𝑠𝑖𝑛𝛼=5

Replace with the expression

Compare each term – they must be equal!

𝑅=√22+52 𝑅=√29

π‘…π‘π‘œπ‘ π›Ό=2√29π‘π‘œπ‘ π›Ό=2π‘π‘œπ‘ π›Ό=

2√29

𝛼=π‘π‘œπ‘ βˆ’1 2√29

𝛼=68.2

R = √29

Divide by √29

Inverse cos

Find the smallest value in the

acceptable range

2π‘π‘œπ‘ πœƒ+5π‘ π‘–π‘›πœƒΒΏβˆš29cos (πœƒβˆ’68.2)

Page 33: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can write expressions of the form acosΞΈ + bsinΞΈ,

where a and b are constants, as a sine or cosine function

only

Solve in the given range, the following equation:

7D

2π‘π‘œπ‘ πœƒ+5π‘ π‘–π‘›πœƒ=30 Β°<πœƒ<360 Β°

2π‘π‘œπ‘ πœƒ+5π‘ π‘–π‘›πœƒ=√29cos (πœƒβˆ’68.2)

√29cos (πœƒβˆ’68.2)=30 Β°<πœƒ<360 Β°

We just showed that the original equation can be rewritten…

Hence, we can solve this equation instead!

βˆ’68.2 Β°<πœƒβˆ’68.2<291.2Β°Remember to

adjust the range for (ΞΈ –

68.2)

√29cos (πœƒβˆ’68.2)=3

cos (πœƒβˆ’68.2)= 3√29

πœƒβˆ’68.2=π‘π‘œπ‘ βˆ’ 1 3√29

πœƒβˆ’68.2=56.1,βˆ’56.1,303.9

πœƒ=12.1,124.3

Divide by √29

Inverse Cos

Remember to work out other values in the

adjusted range

Add 68.2 (and put in order!)

90 180

270 360

y = CosΞΈ

-90

56.1

-56.1

303.9

Page 34: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can write expressions of the form acosΞΈ + bsinΞΈ,

where a and b are constants, as a sine or cosine function

only

Find the maximum value of the following expression, and the smallest positive value of ΞΈ at

which it arises:

7D

12π‘π‘œπ‘ πœƒ+5 π‘ π‘–π‘›πœƒ

π‘…π‘π‘œπ‘ (πœƒβˆ’π›Ό)ΒΏπ‘…π‘π‘œπ‘  πœƒπ‘π‘œπ‘ π›Ό+π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Ό12π‘π‘œπ‘ πœƒ+5 π‘ π‘–π‘›πœƒΒΏπ‘…π‘π‘œπ‘  πœƒπ‘π‘œπ‘ π›Ό+π‘…π‘ π‘–π‘›πœƒπ‘ π‘–π‘›π›Ό

π‘…π‘π‘œπ‘ π›Ό=12 𝑅𝑠𝑖𝑛𝛼=5

Replace with the expression

Compare each term – they must be equal!

𝑅=√122+52𝑅=13

π‘…π‘π‘œπ‘ π›Ό=1213π‘π‘œπ‘ π›Ό=12π‘π‘œπ‘ π›Ό=

1213

𝛼=π‘π‘œπ‘ βˆ’1 1213

𝛼=22.6

R = 13

Divide by 13

Inverse cos

Find the smallest value in the

acceptable range

ΒΏ13cos (πœƒβˆ’22.6 )

13cos (πœƒβˆ’22.6)13(1)π‘€π‘Žπ‘₯=13πœƒβˆ’22.6=0πœƒ=22.6

Max value of cos(ΞΈ - 22.6) =

1Overall maximum

therefore = 13Cos peaks at 0

ΞΈ = 22.6 gives us 0

Rcos(ΞΈ – Ξ±) chosen as it gives us the same

form as the expression

Page 35: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can write expressions of the form acosΞΈ + bsinΞΈ,

where a and b are constants, as a sine or cosine function

only

7D

π‘Žπ‘ π‘–π‘› πœƒΒ±π‘π‘π‘œπ‘ πœƒ

π‘Žπ‘π‘œπ‘  πœƒΒ±π‘π‘ π‘–π‘›πœƒ

𝑅𝑠𝑖𝑛 (πœƒΒ±π›Ό )

π‘…π‘π‘œπ‘  (πœƒβˆ“π›Ό )

Whichever ratio is at the start, change the expression into a function of that (This makes solving problems

easier)Remember to get the + or – signs the correct way

round!

Page 36: Further Trigonometric Identities
Page 37: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( 𝑃 βˆ’π‘„2 )

You get given all these in the formula booklet!

Page 38: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( 𝑃 βˆ’π‘„2 )

Using the formulae for Sin(A + B) and Sin (A – B), derive the result that:

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

𝑆𝑖𝑛 ( 𝐴+𝐡 )=π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅+π‘π‘œπ‘ π΄π‘ π‘–π‘›π΅π‘†π‘–π‘› ( π΄βˆ’π΅ )=π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅βˆ’π‘π‘œπ‘ π΄π‘ π‘–π‘›π΅π‘†π‘–π‘› ( 𝐴+𝐡 )+𝑠𝑖𝑛 (π΄βˆ’π΅)=2 π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅

𝐴+𝐡=π‘ƒπ΄βˆ’π΅=𝑄2 𝐴=𝑃+𝑄𝐴=

𝑃+𝑄2

𝐴+𝐡=π‘ƒπ΄βˆ’π΅=𝑄2𝐡=π‘ƒβˆ’π‘„π΅=

𝑃 βˆ’π‘„2

Add both sides together (1 + 2)

1)

2)

Let (A+B) = P Let (A-B) = Q

1)

2)

1)

2)1 + 2

Divide by

2

1 - 2

Divide by

2

𝑆𝑖𝑛 ( 𝐴+𝐡 )+𝑠𝑖𝑛 (π΄βˆ’π΅)=2 π‘ π‘–π‘›π΄π‘π‘œπ‘ π΅

𝑆𝑖𝑛𝑃+𝑆𝑖𝑛𝑄¿2 𝑠𝑖𝑛( 𝑃+𝑄2 ) ( π‘ƒβˆ’π‘„2 )π‘π‘œπ‘ 

Page 39: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( 𝑃 βˆ’π‘„2 )

Show that:

𝑠𝑖𝑛105βˆ’π‘ π‘–π‘›15= 1√2

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

𝑠𝑖𝑛105βˆ’π‘ π‘–π‘›15=2π‘π‘œπ‘ ( 105+152 )𝑠𝑖𝑛(105βˆ’152 )𝑠𝑖𝑛105βˆ’π‘ π‘–π‘›15=2π‘π‘œπ‘ 60 𝑠𝑖𝑛 45

𝑠𝑖𝑛105βˆ’π‘ π‘–π‘›15=ΒΏ2Γ—12

1√2Γ—

𝑠𝑖𝑛105βˆ’π‘ π‘–π‘›15=ΒΏ1√2

P = 105 Q

= 15Work out the fraction parts

Sub in values for Cos60 and

Sin45Work out the

right hand side

Page 40: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

Solve in the range indicated:𝑠𝑖𝑛4 πœƒβˆ’π‘ π‘–π‘›3 πœƒ=0 0≀ πœƒβ‰€πœ‹

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

𝑠𝑖𝑛4 πœƒβˆ’π‘ π‘–π‘›3 πœƒ=2π‘π‘œπ‘ ( 4 πœƒ+3πœƒ2 )𝑠𝑖𝑛( 4 πœƒβˆ’3πœƒ2 )

𝑠𝑖𝑛4 πœƒβˆ’π‘ π‘–π‘›3 πœƒ=2π‘π‘œπ‘ ( 7πœƒ2 )𝑠𝑖𝑛(πœƒ2 )2π‘π‘œπ‘ ( 7 πœƒ2 )𝑠𝑖𝑛( πœƒ2 )=0π‘π‘œπ‘ ( 7 πœƒ2 )=07πœƒ2 =π‘π‘œπ‘ βˆ’ 100≀ 7πœƒ2 ≀

7πœ‹2

0≀ πœƒβ‰€πœ‹

7πœƒ2 =

πœ‹2 ,3πœ‹2 ,5πœ‹2 ,7πœ‹2

πœƒ=πœ‹7 ,3πœ‹7 ,5πœ‹7 ,πœ‹

P = 4ΞΈ Q = 3ΞΈWork out

the fractions

Set equal to 0

Either the cos or sin part must equal 0…

Inverse cos

Solve, remembering to take into account the different range

Once you have all the values from 0-2Ο€, add 2Ο€ to them to obtain equivalents…

Multiply by 2 and divide by 7

Adjust the range

Ο€/2 Ο€ 3Ο€/2 2Ο€y = CosΞΈ

0

Page 41: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

Solve in the range indicated:𝑠𝑖𝑛4 πœƒβˆ’π‘ π‘–π‘›3 πœƒ=0 0≀ πœƒβ‰€πœ‹

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

𝑠𝑖𝑛4 πœƒβˆ’π‘ π‘–π‘›3 πœƒ=2π‘π‘œπ‘ ( 4 πœƒ+3πœƒ2 )𝑠𝑖𝑛( 4 πœƒβˆ’3πœƒ2 )

𝑠𝑖𝑛4 πœƒβˆ’π‘ π‘–π‘›3 πœƒ=2π‘π‘œπ‘ ( 7πœƒ2 )𝑠𝑖𝑛(πœƒ2 )2π‘π‘œπ‘ ( 7 πœƒ2 )𝑠𝑖𝑛( πœƒ2 )=0𝑠𝑖𝑛( πœƒ2 )=0πœƒ2 =π‘ π‘–π‘›βˆ’ 100≀ πœƒ2 ≀

πœ‹2

0≀ πœƒβ‰€πœ‹

πœƒ2 =0

πœƒ=0

P = 4ΞΈ Q = 3ΞΈWork out

the fractions

Set equal to 0

Either the cos or sin part must equal 0…

Inverse sin

Solve, remembering to take into account the different range

Once you have all the values from 0-2Ο€, add 2Ο€ to them to obtain equivalents

Multiply by 2

Adjust the range

Ο€/2 Ο€ 3Ο€/2 2Ο€y = SinΞΈ

0

Page 42: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

Prove that:

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

𝑠𝑖𝑛 (π‘₯+2 𝑦 )+𝑠𝑖𝑛 (π‘₯+𝑦 )+𝑠𝑖𝑛π‘₯π‘π‘œπ‘  (π‘₯+2 𝑦 )+π‘π‘œπ‘  (π‘₯+𝑦 )+π‘π‘œπ‘ π‘₯

=π‘‘π‘Žπ‘› (π‘₯+ 𝑦 )

𝑠𝑖𝑛 (π‘₯+2 𝑦 )+𝑠𝑖𝑛 (π‘₯+𝑦 )+𝑠𝑖𝑛π‘₯In the numerator:

𝑠𝑖𝑛 (π‘₯+2 𝑦 )+𝑠𝑖𝑛π‘₯

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

𝑠𝑖𝑛 (π‘₯+2 𝑦 )+𝑠𝑖𝑛π‘₯=2𝑠𝑖𝑛( π‘₯+2 𝑦+π‘₯2 )π‘π‘œπ‘ ( π‘₯+2 π‘¦βˆ’π‘₯

2 )ΒΏ2 𝑠𝑖𝑛 (π‘₯+ 𝑦 )π‘π‘œπ‘ π‘¦

ΒΏ2 𝑠𝑖𝑛 (π‘₯+𝑦 )π‘π‘œπ‘ π‘¦+𝑠𝑖𝑛 (π‘₯+𝑦 )

ΒΏ 𝑠𝑖𝑛 (π‘₯+ 𝑦 )(2π‘π‘œπ‘ π‘¦+1)

Ignore sin(x + y) for now…

Use the identity for adding 2 sines

P = x + 2y Q = x

Simplify Fractions

Bring back the sin(x + y) we ignored earlier

Factorise

Numerator: 𝑠𝑖𝑛 (π‘₯+ 𝑦 )(2π‘π‘œπ‘ π‘¦+1)

Page 43: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

Prove that:

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

𝑠𝑖𝑛 (π‘₯+2 𝑦 )+𝑠𝑖𝑛 (π‘₯+𝑦 )+𝑠𝑖𝑛π‘₯π‘π‘œπ‘  (π‘₯+2 𝑦 )+π‘π‘œπ‘  (π‘₯+𝑦 )+π‘π‘œπ‘ π‘₯

=π‘‘π‘Žπ‘› (π‘₯+ 𝑦 )

π‘π‘œπ‘  (π‘₯+2 𝑦 )+π‘π‘œπ‘  (π‘₯+𝑦 )+π‘π‘œπ‘ π‘₯In the

denominator:

π‘π‘œπ‘  (π‘₯+2 𝑦 )+π‘π‘œπ‘ π‘₯

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘  (π‘₯+2 𝑦 )+π‘π‘œπ‘ π‘₯=2π‘π‘œπ‘ ( π‘₯+2 𝑦+π‘₯2 )π‘π‘œπ‘ ( π‘₯+2 π‘¦βˆ’π‘₯

2 )ΒΏ2π‘π‘œπ‘  (π‘₯+ 𝑦 )π‘π‘œπ‘ π‘¦

ΒΏ2π‘π‘œπ‘  (π‘₯+𝑦 )π‘π‘œπ‘ π‘¦+π‘π‘œπ‘  (π‘₯+𝑦 )

ΒΏπ‘π‘œπ‘  (π‘₯+ 𝑦 )(2π‘π‘œπ‘ π‘¦+1)

Ignore cos(x + y) for now…

Use the identity for adding 2 cosines

P = x + 2y Q = x

Simplify Fractions

Bring back the cos(x + y) we ignored earlier

Factorise

Numerator: 𝑠𝑖𝑛 (π‘₯+ 𝑦 )(2π‘π‘œπ‘ π‘¦+1)

Denominator:

π‘π‘œπ‘  (π‘₯+ 𝑦 )(2π‘π‘œπ‘ π‘¦+1)

Page 44: Further Trigonometric Identities

Further Trigonometric Identities and their Applications

You can express sums and differences of sines and cosines as products of sines and cosines by

using the β€˜factor formulae’

Prove that:

7E

𝑠𝑖𝑛𝑃+𝑠𝑖𝑛𝑄=2 𝑠𝑖𝑛( 𝑃+𝑄2 )π‘π‘œπ‘ ( π‘ƒβˆ’π‘„2 )

π‘ π‘–π‘›π‘ƒβˆ’π‘ π‘–π‘›π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒ+π‘π‘œπ‘ π‘„=2π‘π‘œπ‘ ( 𝑃+𝑄2 )π‘π‘œπ‘  (𝑃 βˆ’π‘„2 )

π‘π‘œπ‘ π‘ƒβˆ’π‘π‘œπ‘ π‘„=βˆ’2𝑠𝑖𝑛( 𝑃+𝑄2 )𝑠𝑖𝑛( π‘ƒβˆ’π‘„2 )

𝑠𝑖𝑛 (π‘₯+2 𝑦 )+𝑠𝑖𝑛 (π‘₯+𝑦 )+𝑠𝑖𝑛π‘₯π‘π‘œπ‘  (π‘₯+2 𝑦 )+π‘π‘œπ‘  (π‘₯+𝑦 )+π‘π‘œπ‘ π‘₯

=π‘‘π‘Žπ‘› (π‘₯+ 𝑦 )

Numerator: 𝑠𝑖𝑛 (π‘₯+ 𝑦 )(2π‘π‘œπ‘ π‘¦+1)

Denominator:

π‘π‘œπ‘  (π‘₯+ 𝑦 )(2π‘π‘œπ‘ π‘¦+1)

𝑠𝑖𝑛 (π‘₯+2 𝑦 )+𝑠𝑖𝑛 (π‘₯+𝑦 )+𝑠𝑖𝑛π‘₯π‘π‘œπ‘  (π‘₯+2 𝑦 )+π‘π‘œπ‘  (π‘₯+𝑦 )+π‘π‘œπ‘ π‘₯

¿𝑠𝑖𝑛(π‘₯+𝑦)(2π‘π‘œπ‘ π‘¦+1)π‘π‘œπ‘ (π‘₯+𝑦 )(2π‘π‘œπ‘ π‘¦+1)

¿𝑠𝑖𝑛(π‘₯+ 𝑦)π‘π‘œπ‘ (π‘₯+𝑦 )

ΒΏ π‘‘π‘Žπ‘› (π‘₯+ 𝑦 )

Replace the numerator and denominator

Cancel out the (2cosy + 1)

brackets

Use one of the identities from C2

Page 45: Further Trigonometric Identities

Summaryβ€’ We have extended the range of techniques

we have for solving trigonometrical equations

β€’ We have seen how to combine functions involving sine and cosine into a single transformation of sine or cosine

β€’ We have learnt several new identities