Transcript
Page 1: Frequency Limits of InP-based Integrated Circuits

Plenary, Indium Phosphide and Related Materials Conference, May 15-18, Matsue, Japan

Frequency Limits of InP-based Integrated Circuits

Mark Rodwell , E. Lind, Z. Griffith, S. R. Bank, A. M. CrookU Si i tti M Wi t G B k A C G d

Sponsors

U. Singisetti, M. Wistey, G. Burek, A.C. GossardUniversity of California, Santa Barbara

Collaborators (III-V MOS)A. Gossard, S. Stemmer, C. Van de Walle University of California Santa Barbara

pJ. Zolper, S. Pappert, M. RoskerDARPA (TFAST, SWIFT, FLARE)D. Purdy, I. MackOffice of Naval ResearchKwok Ng, Jim HutchbySemiconductor Research y

P. Asbeck, A. Kummel, Y. Taur, University of California San Diego J. Harris, P. McIntyre,Stanford UniversityC. Palmstrøm,University of Minnesota

Semiconductor Research Corporation

Collaborators (HBT)M. Urteaga, R. Pierson , P. Rowell, M-J Choe, B. BrarTeledyne Scientific CompanyX M Fang D Lubyshev Y Wu J M Fastenau W K Liu

[email protected] 805-893-3244, 805-893-5705 fax

University of MinnesotaM. Fischetti University of Massachusetts Amherst

X. M. Fang, D. Lubyshev, Y. Wu, J. M. Fastenau, W.K. Liu International Quantum Epitaxy, Inc.S. MohneyPenn State University

Page 2: Frequency Limits of InP-based Integrated Circuits

Specific Acknowledgements

(Prof.) Erik Lind125 HBT

Dr. Zach Griffith Dr. Mark Wistey I G A MOSFET125 nm HBTs

process technologytheory / epi design

500 & 250 nm HBTs150 GHz Logic100 GHz op-amps

InGaAs MOSFETprocess technologytheory / epi design

Page 3: Frequency Limits of InP-based Integrated Circuits

THz Transistors are coming soon; both InP & Silicon

InP Bipolars: 250 nm generation: → 780 GHz f 424 GHz f 4 5 V BV

8

10

μm2

InP Bipolars: 250 nm generation: → 780 GHz fmax , 424 GHz fτ , 4-5 V BVCEO

125 nm & 62 nm nodes 30

40

B

U

Z. Griffith

0

2

4

6

0 1 2 3 4 5

mA

/μ→ ~THz devices

0

10

20

109 1010 1011 1012

dB H21

fτ = 424 GHz

fmax

= 780 GHz

Vce

IBM IEDM '06: 65 nm SOI CMOS → 450 GHz fmax , ~1 V operationI t l J '07 45 / hi h K / t l t

10 10 10 10Hz

Intel Jan '07: 45 nm / high-K / metal gate continued rapid progress→ continued pressure on III-V technologies→ continued pressure on III V technologies

If you can't beat them, join them !y junclear if Si MOSFETs will work well at sub-22-nm gate lengthInGaAs/InAs/InP channels under serious investigation for CMOS VLSI.

Datta, DelAlamo, Sadana, ...

Page 4: Frequency Limits of InP-based Integrated Circuits

THz InP vs. near-THz CMOS: different opportunities

65 / 45 / 33 / 22 CMOS65 / 45 / 33 / 22 ... nm CMOSvast #s of very fast transistors

having low breakdown sloppy DC parameters ... having low breakdown, sloppy DC parameters what NEW mm-wave applications will this enable ?

massive monolithic mm-wave arrays→ 1 Gb/s over ~1 km mm-wave MIMO

DC parameters limit analog precision...

Page 5: Frequency Limits of InP-based Integrated Circuits

THz InP vs. near-THz CMOS: different opportunities

InP HBT: THz bandwidths good breakdown analog precision InP HBT: THz bandwidths, good breakdown, analog precision

8

10

μm2

10-6

10-4

10-2

(A)

Ic

Ib

30

40

B

U

&0

2

4

6

0 1 2 3 4 5

mA

10-12

10-10

10-8

10 6

0 0 25 0 5 0 75 1

I c , I

b b

0

10

20

109 1010 1011 1012

dB H21

fτ = 424 GHz

fmax

= 780 GHz &0 1 2 3 4 5

Vce

0 0.25 0.5 0.75 1

Vbe

(V)

340 GHz, 70 mW amplifiers (design)In future: 700 or 1000 GHz amplifiers ?

10 10 10 10Hz

p

200 GHz digital logic (design)

M. Jones

g gIn future: 450 GHz clock rate ?

Z. Griffith

30-50 GHz gain-bandwidth op-amps→ low IM3 @ 2 GHz In future: 200 GHz op-amps for low-IM3 10 GHz amplifiers?M. Urteaga

(Teledyne)

Z. Griffith

Page 6: Frequency Limits of InP-based Integrated Circuits

Transistor Benchmarks

f BVCEO i t th l lt li itfmax matters40

H

no gain above 10

BVCEO is not the only voltage limit

10

20

30

dB

U

H21 218 GHz

4

6

8

(mA

/μm

2 )

6.8 V BVCEO

4

6

8

(mA

/μm

2 ) !0

10

9 10 11 12

ft = 660 GHz

fmax

= 218 GHz0

2

4

0 1 2 3 4 5 6 7 8

J e

0

2

4

0 1 2 3 4 5 6 7 8

J e

109 1010 1011 1012

Hz

Tuned amplifiers: fmax sets bandwidth

0 1 2 3 4 5 6 7 8V

ce (V)

0 1 2 3 4 5 6 7 8V

ce (V)

Need Safe Operating Areaat least BV /2 at J /2

Mixed-signal: CcbΔV/ Ic , CjeΔV/ Ic , RexIc/ΔV , RbbIc/ΔV ,

...at least BVceo/2 at Jmax/2

thermal resistance, high-current breakdownhigh temperature operation ( 75 C) ?ex c bb c

τf high-temperature operation (~75 C) ?

Goal is >1 THz fτ and fmax<50 fs CΔV / I charging delays

→ emphasize InP-collector DHBTs

Page 7: Frequency Limits of InP-based Integrated Circuits

HBT Scaling LawsHBT Scaling Laws

Page 8: Frequency Limits of InP-based Integrated Circuits
Page 9: Frequency Limits of InP-based Integrated Circuits

InP DHBTs: May 2007

700

800RSC

500 GHz400 GHz300 GHz200 GHz maxffτ=600 GHz

Teledyne 2/) (alone or

max

max

ffff

τ :metrics popular

250 300nm

600

700 UIUC DHBT

NTT

Fujitsu HEMT)

)11(

1

max

max

ff

ff

+ −τ

τ

250-300nm

400

500 SFU

UIUC SHBT

UCSB

max

(GH

z)

mW/ gain, associated PAE,

:amplifierspower

:metrics better much600nm

200

300 NGST

Pohang SHBT

HRL

f m

:digital gain, associated ,F

:amplifiers noise low mW/

min

300-400nm

0

100

0 100 200 300 400 500 600 700 800

IBM SiGe

VitesseUpdated March 2007

),/( ),/(

hence , g

cex

ccb

clock

VIRIVC

f

ΔΔ

0 100 200 300 400 500 600 700 800

ft (GHz) )(

),/(

cb

cbb

ττVIR

Page 10: Frequency Limits of InP-based Integrated Circuits

HBT Scaling RoadmapsHBT Scaling Roadmaps

Page 11: Frequency Limits of InP-based Integrated Circuits

2005: InP DHBTs @ 500 nm Scaling Generation

emitter 500 nm width16 Ω⋅μm2 contact ρ

✓✓

base 300 width, 20 Ω⋅μm2 contact ρ ✓

✓collector 150 nm thick, 5 mA/μm2 current density5 V, breakdown

✓✓✓

fτ 400 GHzfmax 500 GHz

power amplifiers 250 GHz di it l l k t 160 GH

✓✓

✓✓

(178 GHz)(150 GH )digital clock rate 160 GHz

(static dividers)✓ (150 GHz)

Page 12: Frequency Limits of InP-based Integrated Circuits

2006: 250 nm Scaling Generation, 1.414:1 faster

emitter 500 250 nm width 16 9 Ω⋅μm2 access ρ

✓✓

base 300 150 width, 20 10 Ω⋅μm2 contact ρ ✓

✓collector 150 100 nm thick, 5 10 mA/μm2 current density5 3.5 V, breakdown

✓✓✓

fτ 400 500 GHzfmax 500 700 GHz

power amplifiers 250 350 GHz di it l l k t 160 230 GH

✓✓(425 GHz)

(780 GHz)

digital clock rate 160 230 GHz(static dividers)

Page 13: Frequency Limits of InP-based Integrated Circuits

2007: 125 nm Scaling Generation → almost-THz HBT

emitter 500 250 125 nm width16 9 4 Ω⋅μm2 access ρ ✓

base 300 150 75 width, 20 10 5 Ω⋅μm2 contact ρ ✓

✓collector 150 100 75 nm thick, 5 10 20 mA/μm2 current density5 3.5 3 V, breakdown

✓✓

fτ 400 500 700 GHzfmax 500 700 1000 GHz

power amplifiers 250 350 500 GHz di it l l k t 160 230 330 GHdigital clock rate 160 230 330 GHz(static dividers)

Page 14: Frequency Limits of InP-based Integrated Circuits

2008-9: 65 nm Scaling Generation→beyond 1-THz HBT

emitter 500 250 125 63 nm width16 9 4 2.5 Ω⋅μm2 access ρ ✓

base 300 150 75 70 nm width, 20 10 5 5 Ω⋅μm2 contact ρ ✓

collector 150 100 75 53 nm thick, 5 10 20 35 mA/μm2 current density5 3.5 3 2.5 V, breakdown

fτ 400 500 700 1000 GHzfmax 500 700 1000 1500 GHz

power amplifiers 250 350 500 750 GHz di it l l k t 160 230 330 450 GHdigital clock rate 160 230 330 450 GHz(static dividers)

Page 15: Frequency Limits of InP-based Integrated Circuits

HBT Scaling HBT Scaling ChallengesChallenges

Page 16: Frequency Limits of InP-based Integrated Circuits

Scaling challenges: What looks easy, what looks hard ?key device parameter required changekey device parameter required change

collector depletion layer thickness decrease 2:1

base thickness decrease 1.414:1

emitter junction width decrease 4:1

ll t j ti idth d 4 1collector junction width decrease 4:1

emitter resistance per unit emitter area decrease 4:1

current density increase 4:1

base contact resistivity(if contacts lie above collector junction)

decrease 4:1

base contact resistivity(if contacts do not lie above collector junction)

unchanged

Hard:Hard:Thermal resistance (ICs)Emitter contact + access resistanceYield in deep submicron processesp pContact electromigration (?), dark-line defects (?)

Probably not as hard :Probably not as hard :Maintaining adequate breakdown for 3 V operation...

Page 17: Frequency Limits of InP-based Integrated Circuits

Temperature Rise: Transistor, Substrate, Packageflowheatlcylindrica flowspherical flowplanar

⎟⎠⎞

⎜⎝⎛ −

⋅+⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟⎟

⎞⎜⎜⎝

⎛≅Δ 2substrate

2/11lnDDT

KP

DLKP

WL

LKPT sube

ππ

junctionnear flowheat lcylindrica

eLr >for flowspherical

2/for flowplanar

HBTDr >

⎠⎝⎟⎠

⎜⎝

⎟⎠

⎜⎝ DKDLKWLK InPEInPeEInP ππ

callylogarithmi increases

variationantinsignific

constant is iflly quadraticaincreases

subT

chipCu

chippackage WK

PT ⎟

⎠⎞

⎜⎝⎛ +≅Δ

211

π

lenghts,Wiring100

150

se, K

elvi

n

total)/GHz 150( m 40 clocksub fT ⋅= μ

eddemonstrat from scaled etc.

densities,power rates,clock

g ,g

50

100

on te

mpe

ratu

re ri

package

substrate: cylindrical + spherical regions

ICs digital GHz 150

eddemonstrat

0100 200 300 400 500 600 700

junc

tio

master-slave D-Flip-Flop clock frequency, GHz

substrate: planar regionpackage

Page 18: Frequency Limits of InP-based Integrated Circuits

HBTs:HBTs:500 G ti500 nm Generation

Page 19: Frequency Limits of InP-based Integrated Circuits

500 nm Generation in Manufacturing: Teledyne Self-aligned Dielectric Sidewall Process

Emitter Contact

Dielectric

No short-circuits from liftoff defects.Emitter can be much thinner

Base Contact

Dielectric Sidewall

Emitter can be much thinner→ small etch undercut.

30

40

e) (d

B)

fτ = 405GHzfmax = 392 GHz

10

20

|(red

), U

(blu

e

JE = 6.5 mA/um2

VCE = 1.5 V

emitterEB grade

base

emittermetal

basemetal

dielectricsidewallspacer base contact

window

10 11 120

Frequency (GHz)

|H21

RF Gains Electroplate emitter contactEtch emitter semiconductor

Dielectric sidewall depositionBase contact patterning

Selectively deposit base metal

M. Urteaga et al, 2004 IEEE Device Research Conference, June 21-23, 2004

c.f. also Minh Le et al IEDM 2006 (Vitesse)

Page 20: Frequency Limits of InP-based Integrated Circuits

Example ICs in 500 nm HBT

142 GHz 800 mW 128 GHz 206 mW 175 GHz 7 5 mW

V. PaidiZ. Griffith

M. UrteagaP. Rowell

D. PiersonB. Brar142 GHz, 800 mW

master/slave latch128 GHz, 206 mW master/slave latch

175 GHz, 7.5 mW medium-power amp.

Fe

N+S.I.

N+N+ N+Fe

mesa HBT sidewall /pedestal HBTmesa HBT mesa HBT UCSB

sidewall /pedestal HBTTeledyne

mesa HBT UCSB

Other Results:160 Gb/s multiplexer (T. Swahn et al, Chalmers / Vitesse)~5000-HBT direct-digital frequency synthesis ICs (Vitesse, Teledyne)

Page 21: Frequency Limits of InP-based Integrated Circuits

HBTs: HBTs: 250 G ti250 nm Generation

Page 22: Frequency Limits of InP-based Integrated Circuits

250 nm scaling generation InP DHBTs

Emitter contact resistance 5 Ω⋅μm2

B t t i t i 5 Ω 2Base contact resistance is < 5 Ω⋅μm2

Z. GriffithE. Lind

Page 23: Frequency Limits of InP-based Integrated Circuits

DHBTs: 250 nm Scaling Generation

150 nm thick collector 60 nm thick collector

Z. GriffithE. Lind

30

40

U

H21

150 nm thick collector 60 nm thick collector

30

40

B

U

10

20dB

f 660 GHfmax

= 218 GHz10

20dB H21

f = 424 GHz

fmax

= 780 GHz

0109 1010 1011 1012

Hz

ft= 660 GHz

30

0109 1010 1011 1012

Hz

fτ = 424 GHz

6

8

10

A/μ

m2

20

30

μm2

0

2

4mA

10mA

0 1 2 3 4 5V

ce

00 1 2 3

Vce

Emitter access: 5.1 Ω⋅μm2

Base contact: 6.3 Ω⋅μm2

Page 24: Frequency Limits of InP-based Integrated Circuits

Example IC Designs in 250 nm HBT M. JonesZ. Griffith

200 GHz master-slave latches

340 GHz, 70 mW, medium-power amplifiers

...fabrication on hold......fabrication planned summer/fall 2007

Page 25: Frequency Limits of InP-based Integrated Circuits

125 nm InP HBT125 nm InP HBTdevelopmentdevelopment

Page 26: Frequency Limits of InP-based Integrated Circuits

Emitter Access Resistance

125 ti i 5 Ω 2 itt i ti iti

Erik LindAdam Crook

Seth BankUttam Singisetti

125 nm generation requires 5 Ω - μm2 emitter resistivities 65 nm generation requires 1-2 Ω - μm2

Recent Results:ErAs/Mb MBE in-situ 1.5 Ω - μm2

Mb MBE in-situ 0.6 Ω - μm2Mb MBE in situ 0.6 Ω μmTiPdAu ex-situ 0.5 Ω - μm2

TiW ex-situ 0.7 Ω - μm2

Degeneracy contributes 1 Ω - μm2

102

20 nm emitter-base depletion layer contributes 1 Ω - μm2 resistance

10-1

100

101

J(m

A/u

m^2

)

Fermi-Dirac

Te=0 nm

10 nm steps

10-3

10-2

-0.3 -0.2 -0.1 0 0.1 0.2V

be- φ

Equivalent series resistance approximation

Boltzmann

)()(

xqnJ

xxE fn −

=∂

∂ Te=100 nm

p

Page 27: Frequency Limits of InP-based Integrated Circuits

Epitaxial Layer Development for 125 nm Generation

I G A b l h t i ti it l t it ti b t ll t t b d d

Erik Lind

InGaAs base: low sheet resistivity, low transit time, but collector must be graded

low-current breakdown d i t d b

B-C grade redesign: thin the setback, thin the grade

102

104

106

)1.5

dominated by tunneling in setback layer 1) less superlattice periods...

0.51

1.5

10-4

10-2

100

Cur

rent

(A/c

m2)

1 5-1.0-0.50.00.51.0

eV

collectorbase

calculation-2.5-2

-1.5-1

-0.50

eV

1 2 3 4 510-6

Vcb (V)

Vcb

= 0.0 V-2.0-1.5

0 10 20 30 40 50 60 70 80nm

30

2) thinner (sub-monolayer) superlattice periods→ random alloy grade

: Zach Griffith

calculation0 20 40 60 80 100nm

10

20

mA

/μm

2

3) thin GaAs/InGaAs strained-layer grade

00 1 2 3

Vce

DC data shows expected increase in breakdown.Transport (RF) data is pending.

Page 28: Frequency Limits of InP-based Integrated Circuits

125 nm Emitter Process

Bl k t tt d iti TiW itt t t t l

Erik Lind

Blanket sputter deposition TiW emitter contact metalOptical lithography → ICP reactive-ion etchingICP RIE etch of InGaAs/InP semiconductorICP RIE etch of InGaAs/InP semiconductor,Selective wet etch to base

125 nm emitter 500 nm undercut at emitter ends

61 nm junction:40 nm lateral undercut

Page 29: Frequency Limits of InP-based Integrated Circuits

UCSB 125 nm DHBT DevelopmentErik Lind

Adam Crook

125 nm emitter processemitter contact resistivity~ 0 7 Ω μm2

EmitterMetal

~ 0.7 Ω - μm2

base contact resistivityInGaAs/InP

base contact resistivity~ 3-5 Ω -μm2

Target performance ~ 700-900 GHz simultaneous ft & fmax , 3-4 V breakdown

Page 30: Frequency Limits of InP-based Integrated Circuits

How might we build the 62.5 nm HBT ?

Mesa process: control of etch undercut with dry+wet process

Alternatives:dielectric sidewall process- dielectric sidewall process

- sidewall process with extrinsic base regrowth: allows thinner base

Page 31: Frequency Limits of InP-based Integrated Circuits

InP-based FETs; InP based FETs; MOSFET & HEMTMOSFETs & HEMTs

Page 32: Frequency Limits of InP-based Integrated Circuits

InP-based HEMTs & MOSFETs : Why ?

6

7

8

dB GHz 200=τf

InGaAs/InP HEMTs: mm-wave low-noise amplifiers

⎟⎟⎠

⎞⎜⎜⎝

⎛⋅Γ+++≈ffRRRgF igsmi )(1min

3

4

5

6

imu

m N

ois

e F

igu

re,

A ~2.5:1 fτ / fsignal ratio provides 3 dB noise figure.

Low-noise 100-300 GHz

⎠⎝ τf

20 40 60 80 100 120 140 160 1800 200

1

2

0

Frequency, GHz

Min

i

GHz 500=τfLow-noise 100-300 GHz

preamplification is a key application for 1-THz-fτ HEMTs

Frequency, GHz

InGaAs/InP MOSFETs: post-22-nm VLSI (?)Higher mobility and peak electron velocity than in Silicon

→ higher ( Id / Wg ) and lower ( CΔV / I ) at sub-22-nm scaling (?)

Page 33: Frequency Limits of InP-based Integrated Circuits
Page 34: Frequency Limits of InP-based Integrated Circuits
Page 35: Frequency Limits of InP-based Integrated Circuits

Some Encouraging Initial Data . . .-- non-parabolic bands (variable m*) significantly increase feasible sheet chargenon parabolic bands (variable m ) significantly increase feasible sheet charge

Asbeck / Fischetti / Taur simulate drive currents much larger than for constant-m* model

-- mobilities seem to be acceptable even in thin wellsmobilities seem to be acceptable even in thin wells

M. Wisteypreliminary data

and o r c rrent de ice designs . . . and our current device designs . . .

metal gatesource contact drain contact

well: 2.5 nm InGaAs, 2.5 nm InP

barrier

undoped

InGaAs channeldielectric

N+ regrowth N+ regrowth

source contact drain contact

undoped

InP sub-channel

device design and fabrication:Asbeck group: UCSD

N+ InGaAs/InAs extrinsic source & drain by regrowth

P + substrateundopedsubstrate

undopedsubstrate

Asbeck group: UCSDTaur group: UCSDFischetti group: U. MassRodwell group: UCSBPalmstrøm group: U. Minn

Page 36: Frequency Limits of InP-based Integrated Circuits

Frequency Limits of InP-based Integrated Circuits

Scaling limits: contact resistivities, device and IC thermal resistances.InP Bipolar Transistors

62 (1 TH f 1 5 TH f ) li ti i f ibl62 nm (1 THz fτ , 1.5 THz fmax ) scaling generation is feasible.700 GHz amplifiers, 450 GHz digital logic

Is the 32 nm (1 THz amplifiers) generation feasible ?Is the 32 nm (1 THz amplifiers) generation feasible ?

InP Field-Effect TransistorsInP Field Effect TransistorsLow electron effective mass → difficulties with further scalingGuarded optimism regarding 22 nm generation for VLSIGuarded optimism regarding 22 nm generation for VLSISerious difficulties beyond.

Page 37: Frequency Limits of InP-based Integrated Circuits

(end)

Page 38: Frequency Limits of InP-based Integrated Circuits

non-animated non animated versions of the three versions of the three

key scaling slideskey scaling slides

Page 39: Frequency Limits of InP-based Integrated Circuits

HBT scaling laws

WGoal: double transistor bandwidth when used in any circuiteW

bcWcTbT

y→ keep constant all resistances, voltages, currents→ reduce 2:1 all capacitances and all transport delays

vTDT bnbb /22 +=τ → thin base ~1.414:1

vTcc 2=τ

cccb /TAC ∝AR /

→ thin collector 2:1

→ reduce junction areas 4:1reduce emitter contact resistivity 4:1

( )ELlength emitter ecex AR /ρ=

2, / ceKirkc TAI ∝

→ reduce emitter contact resistivity 4:1(current remains constant, as desired )

PLP ⎞⎛ need to reduce junction areas 4:1

EInPe

e

EInP LKP

WL

LKPT

ππ+⎟⎟

⎞⎜⎜⎝

⎛≅Δ ln

need to reduce junction areas 4:1reduce widths 2:1 & reduce length 2:1 → doubles ΔTreducing widths 4:1, keep constant length→ small ΔT increase ✓

contacts

c

e

bcs

e

esbb AL

WLWR ρρρ

++≅612

→ reduce base contact resistivity 4:1

reduce widths 2:1 & reduce length 2:1 → constant Rbbreducing widths 4:1, keep constant length → reduced Rbb

✓✓✓g , p g bb

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

Page 40: Frequency Limits of InP-based Integrated Circuits

Back-of-Envelope FET ScalingGoal double transistor bandwidth when used in any circuit

→ reduce 2:1 all capacitances and all transport delays→ keep constant all resistances, voltages, currents

)(~ VVVWvcI thgsgexiteqd Δ−−

μ/LvVΔ

2/1*)/(~ mkTvexit (non-degenerate)

μ/~ gexit LvVΔ

thi l 2 1wellwoxoxeq TTc εε 2//~/1 + ceq doubledthin layers 2:1

gexiteqm Wvcg ~ ✓gm , Id held constant reduce Wg 2:1

✓C reduced 2:1WWLcC ~ α+ reduce Lg 2:1 ✓Cgs reduced 2:1 gggeqgs WWLcC 1~ α+dielectric fringing

✓(Cgd , Cs-b , Cd-b ) all reduced 2:1 ( ) gbdbsgd WCCC toalproportion all , , −−

g

✓(Rs , Rd ) held constant g

DSs

DSg

cs W

LLW

R /

/

ρρ+= reduce Ls/d 2:1 ,reduce ρc 4:1

2:1 vertical scaling → 2:1 increased ( gm / Wg ) → 2:1 reduced Wg→ 2:1 reduced fringing capacitances

Page 41: Frequency Limits of InP-based Integrated Circuits

FETs no longer scale well

t li th h id hi h K di l t i (if f ibl )tunneling through oxide → high-K dielectrics (if feasible)

Thin layers & low effective mass limit channel sheet charge density( ) *( ) */mqnEE swellf ∝−

( ) *2 /1 mTEE wellcwell ∝−

high sheet charge in thin wellinfinite well approximation

Low density of states limits drive current Solomon & Laux, 2001 IEDM

high sheet-charge in thin well→ populate higher-mass band minima

Low density of states limits drive current

density-of-states term dominates , limits ( gm / Wg )and ( Id / Wg ) f i i & b t t it l l d i t C

wellwoxoxeeqgeqm TTmqcWvcg εεπ 2///)2(~/1 where~ *22 ++⋅ h

→ fringing & substrate capacitances no longer scale, can dominate over Cgs

Thin quantum wells have low mobilityLi SST 2005; Gold et al, SSC 1987; Sakaki et al, APL 1987

( ) 62/ wellTWE ∝∂∂∝ −μ

; , ; ,

Page 42: Frequency Limits of InP-based Integrated Circuits

InP DHBT: 500 nm Scaling GenerationZ. Griffith

30

40U

h21

10

20dB ft = 450 GHz,

fmax

= 490 GHz

0109 1010 1011 1012

Hz

600 nm wide emitter, 120 nm thick collector, 30 nm thick base


Recommended