Transcript
Page 1: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Epilepsy: Error of Scales?Ann Arbor, MI 2007

Theoden Netoff

University of Minnesota, BME

Page 2: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Homeostasis and Epilepsy

• Neurons are in constant state of flux

• There is no single solution of ion channel densities to achieve a particular behavior

• There are many changes in response to an event like a seizure:– Changes in ion channel densities– Changes in neuronal dynamics– Changes in network coupling

Page 3: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Ih modulation following a Seizure:two models, two different results

• Shah and Johnston– Kanic acid injection.– EC Layer III Pyramidal

Neurons– Decreased Ih density

in dendrites– Hypothesis:

Decreasing Ih increases synaptic efficacy and increases excitability of the cells.

• Chen and Soltesz– Febrile seizures– CA1 Pyramidal Cells– Increase in Ih current– Hypothesis: Increasing

Ih causes rebound excitation following inhibition.

Page 4: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Ih: Hyperpolarizing activated cationic current.

Chen and Soltesz

The “Sag” current

Page 5: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Opposing effects of Ih

Santoro and BaramThe multiple personalities of h-channels. TINS 26(10)550:554

Page 6: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Dynamic clamp

• Computer controlled delivery of current to a cell

• Complex protocols• Simulation of ion

channels• Simulation of synapses• Simulation of neurons to

make “hybrid” networks

Vm

Iapp

Iapp

Vm

Page 7: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Phase Response Curve

500 1000 1500 2000 2500 3000 3500 4000 4500 5000-50

-40

-30

-20

-10

0

10

mV

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.6

0.65

0.7

0.75

0.8

0.85

sec

nA

T

Page 8: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Phase Response Curve

500 1000 1500 2000 2500 3000 3500 4000 4500 5000-50

-40

-30

-20

-10

0

10

mV

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.6

0.65

0.7

0.75

0.8

0.85

sec

nA

Page 9: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Phase Response Curve

500 1000 1500 2000 2500 3000 3500 4000 4500 5000-50

-40

-30

-20

-10

0

10

mV

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.6

0.65

0.7

0.75

0.8

0.85

sec

nA

Page 10: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Phase Response Curve

0 50 100 150-5

0

5

10

15

20

25

in

mse

c

in msec0 10 20 30 40 50 60 70 80

-2

0

2

4

6

8

10

in

mse

c

in msec

Type 1 Type 2Excitatory Input

Page 11: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Predicted excitatory interaction

0 50 100 150-5

0

5

10

15

20

25

0 50 100 150-5

0

5

10

15

20

25

i

n m

sec

in msec

- =

0 50 100 150-30

-20

-10

0

10

20

30

Tn2 - T

n1

Tn+

12

- T

n+1

1

Page 12: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Fixedpoints of Spike time difference map (STDM)

0 50 100 150-30

-20

-10

0

10

20

30

Tn2 - T

n1

Tn+

12

- T

n+1

1

Page 13: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Measuring from Neurons

Page 14: Epilepsy: Error of Scales? Ann Arbor, MI 2007

STRCs measured and network behaviors.

Page 15: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Effects of Ih on PRC and network synchrony

0 20 40 60 80 100 120-40

-20

0

20

40

Spi

ke t

ime

adva

nce

(mse

c)

Time since last spike

Correlation coefficient=0.7485

50

100

150

ISI

pert

urbe

d0 50 100 150 200 250

80

100

120

ISI

un-p

ertu

rbed

Spike num

0 20 40 60 80 100 120-40

-20

0

20

40

Spi

ke t

ime

adva

nce

(mse

c)

Time since last spike

Correlation coefficient=0.61583

50

100

150

ISI

pert

urbe

d

0 50 100 150 200 25050

100

150

ISI

un-p

ertu

rbed

Spike num0 50 100

-10

0

10

20

0 50 100-20

0

20

0 50 100-10

0

10

20

0 50 100-20

0

20

-200 -100 0 100 2000

5

10

15

-200 -100 0 100 2000

10

20

W/o added Ih W/ added Ih

No Ih, Added Ih

PRC

STDM

STDH

Page 16: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Effects of Ih on two cell networks

-150 -100 -50 0 50 100 1500

2

4

6

Cell 2 Spike Triggered Cross correlation, Points left of 0 indicate neuron fired before computer

80 100 120 1400

0.050.1

Cell 1 Spike Intervals, mean ISI = 101.5005

80 100 120 1400

0.050.1

Cell 2 Spike Interval, mean ISI = 99.8156

0 50 100 150 200 250 300 350 400 450 500-100

0

100

Spike Number

ST

D

-150 -100 -50 0 50 100 1500

2

4

6

8

Cell 2 Spike Triggered Cross correlation, Points left of 0 indicate neuron fired before computer

90 100 110 1200

0.050.1

Cell 1 Spike Intervals, mean ISI = 103.9169

90 100 110 1200

0.050.1

Cell 2 Spike Interval, mean ISI = 103.6663

0 100 200 300 400 500 600 700-100

0

100

Spike Number

ST

D

-150 -100 -50 0 50 100 1500

1

2

3

4

5

6

7

w/o Ih

w/ Ih

W/o Ih W/ Ih

Page 17: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Spike time differences w/o Ih

Page 18: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Spike time differences w/ Ih

Page 19: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Network Hypothesis

• Raising Ih or lowering Ih may depend on whether activity is caused by feedforward or feedback network activity

↑ Activity

↓ Ih

↑ Activity

↑ Ih

Page 20: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Homeostatic effects of changing Ih

• Increasing Ih ↓ synaptic efficacy

• ↓ in efficacy early in spiking phase• Phase dependent ↓ makes network ↑ synchrony• In Hippocampus:

– ↑ Ih ↓ activity because it is a feedforward network (CA3→CA1) and dampens network input.

• In Entorhinal cortex:– ↑ Ih ↑ activity because it is a feedback network by

synchronizing the excitatory cells

Page 21: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Question:

Homeostatic mechanisms work at the level of the individual neuron.

Is epilepsy be caused by discrepancies between homeostatic mechanisms at the cellular and their actions at a network scale?

Page 22: Epilepsy: Error of Scales? Ann Arbor, MI 2007

Acknowledgements

John WhiteNancy KopellJonathan BettencourtAlan DorvalBrian Burton

Grants:Postdoctoral NRSA:

5F32MH066555-02

Fellowships:Center for BioDynamics (Boston University)


Recommended