Transcript

Abstractโ€” In this paper, we present an algorithm of the

homotopy analysis method (HAM) to obtain symbolic

approximate solutions for linear and nonlinear differential

equations of fractional order. We show that the HAM is

different from all analytical methods; it provides us with a

simple way to adjust and control the convergence region of the

series solution by introducing the auxiliary parameter โ„, the

auxiliary function ๐‘ฏ ๐’• , the initial guess ๐’š๐ŸŽ(๐’•) and the auxiliary

linear operator . Three examples, the fractional oscillation

equation, the fractional Riccati equation and the fractional

Lane-Emden equation, are tested using the modified algorithm.

The obtained results show that the Adomain decomposition

method, Variational iteration method and homotopy

perturbation method are special cases of homotopy analysis

method. The modified algorithm can be widely implemented to

solve both ordinary and partial differential equations of

fractional order.

Index Termsโ€”Adomian decomposition method, Caputo

derivative, Fractional Lane-Emden equation, Fractional

oscillation equation, Fractional Riccati equation, Homotopy

analysis method.

I. INTRODUCTION

Fractional differential equations have gained importance

and popularity during the past three decades or so, mainly due

to its demonstrated applications in numerous seemingly

diverse fields of science and engineering. For example, the

nonlinear oscillation of earthquake can be modeled with

fractional derivatives, and the fluid-dynamic traffic model

with fractional derivatives can eliminate the deficiency

arising from the assumption of continuum traffic flow. The

differential equations with fractional order have recently

proved to be valuable tools to the modeling of many physical

phenomena [1-8]. This is because of the fact that the realistic

modeling of a physical phenomenon does not depend only on

the instant time, but also on the history of the previous time

which can also be successfully achieved by using fractional

1Department of Mathematics, Zarqa Private University, Zarqa 1311,

Jordan, (email: [email protected]) 2Prince Abdullah Bin Ghazi Faculty of Science and IT, Al-Balqa'

Applied University, Salt 19117, Jordan, (email: [email protected]) 3Department of Mathematics, Mutah University, P. O. Box 7, Al-Karak,

Jordan, (email: [email protected]) 4Department of Mathematics, University of Jordan, Amman 11942,

Jordan, (email: [email protected]) *Corresponding author. Email addresses: [email protected];

[email protected], Tel. +962-5-3532519, Fax. +962-5-3530462.

calculus. Most nonlinear fractional equations do not have

exact analytic solutions, so approximation and numerical

techniques must be used. The Adomain decomposition

method (ADM) [9-14], the homotopy perturbation method

(HPM) [15-25], the variational iteration method (VIM)

[26-28] and other methods have been used to provide

analytical approximation to linear and nonlinear problems.

However, the convergence region of the corresponding

results is rather small as shown in [9-28]. The homotopy

analysis method (HAM) is proposed first by Liao [29-33] for

solving linear and nonlinear differential and integral

equations. Different from perturbation techniques; the HAM

doesn't depend upon any small or large parameter. This

method has been successfully applied to solve many types of

nonlinear differential equations, such as projectile motion

with the quadratic resistance law [34], Klein-Gordon

equation [35], solitary waves with discontinuity [36], the

generalized Hirota-Satsuma coupled KdV equation [37], heat

radiation equations [38], MHD flows of an Oldroyd

8-constant fluid [39], Vakhnenko equation [40], unsteady

boundary-layer flows [41]. Recently, Song and Zhang [42]

used the HAM to solve fractional KdV-Burgers-Kuramoto

equation, Cang and his co-authors [43] constructed a series

solution of non-linear Riccati differential equations with

fractional order using HAM. They proved that the Adomian

decomposition method is a special case of HAM, and we can

adjust and control the convergence region of solution series

by choosing the auxiliary parameter โ„ closed to zero.

The objective of the present paper is to modify the HAM to

provide symbolic approximate solutions for linear and

nonlinear differential equations of fractional order. Our

modification is implemented on the fractional oscillation

equation, the fractional Riccati equation and the fractional

Lane-Emden equation. By choosing suitable values of the

auxiliary parameter โ„, the auxiliary function ๐ป ๐‘ก , the initial

guess ๐‘ฆ0(๐‘ก) and the auxiliary linear operator we can

adjust and control the convergence region of solution series.

Moreover, we illustrated for several examples that the

Adomain decomposition, Variational iteration and homotopy

perturbation solutions are special cases of homotopy analysis

solution.

II. DEFINITIONS

For the concept of fractional derivative we will adopt

Caputoโ€Ÿs definition [7] which is a modification of the

Riemann-Liouville definition and has the advantage of

dealing properly with initial value problems in which the

Construction of Analytical Solutions to

Fractional Differential Equations Using

Homotopy Analysis Method

Ahmad El-Ajou1, Zaid Odibat

*2, Shaher Momani

3, Ahmad Alawneh

4

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

initial conditions are given in terms of the field variables and

their integer order which is the case in most physical

processes [4].

Definition 1. A real function ๐‘“(๐‘ฅ), ๐‘ฅ > 0, is said to be in the

space ๐ถ๐œ‡ , ๐œ‡ โˆˆ โ„ if there exists a real number ๐‘ , such

that ๐‘“ ๐‘ฅ = ๐‘ฅ๐‘๐‘“1 ๐‘ฅ , where ๐‘“1 ๐‘ฅ โˆˆ ๐ถ 0, โˆž and it is said

to be in the space ๐ถ๐œ‡๐‘› iff ๐‘“ ๐‘› ๐‘ฅ โˆˆ ๐ถ๐œ‡ , ๐‘› โˆˆ โ„•.

Definition 2. The Riemann-Liouville fractional integral

operator of order ๐›ผ > 0 , of a function ๐‘“ ๐‘ฅ โˆˆ ๐ถ๐œ‡ , ๐œ‡ โ‰ฅ โˆ’1,

is defined as:

๐ฝ๐›ผ๐‘“ ๐‘ฅ =1

๐›ค ๐›ผ ๐‘ฅ โˆ’ ๐‘ก ๐›ผโˆ’1

๐‘ฅ

0

๐‘“ ๐‘ก ๐‘‘๐‘ก ,

๐›ผ > 0 , ๐‘ฅ > 0 ,

(1)

๐ฝ0๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ . (2)

Properties of the operator ๐ฝ๐›ผ can be found in [5-8], we

mention only the following:

For ๐‘“ โˆˆ ๐ถ๐œ‡ , ๐œ‡ โ‰ฅ โˆ’1, ๐›ผ, ๐›ฝ โ‰ฅ 0 and ๐›พ โ‰ฅ โˆ’1

๐ฝ๐›ผ๐ฝ๐›ฝ๐‘“ ๐‘ฅ = ๐ฝ๐›ผ+๐›ฝ๐‘“ ๐‘ฅ = ๐ฝ๐›ฝ ๐ฝ๐›ผ๐‘“(๐‘ฅ) , (3)

๐ฝ๐›ผ๐‘ฅ๐›พ =๐›ค(๐›พ + 1)

๐›ค(๐›ผ + ๐›พ + 1)๐‘ฅ๐›ผ+๐›พ . (4)

Definition 3. The fractional derivative of ๐‘“(๐‘ฅ) in the

Caputo sense is defined as:

๐ทโˆ—๐›ผ๐‘“ ๐‘ฅ = ๐ฝ๐‘›โˆ’๐›ผ๐ท๐‘›๐‘“ ๐‘ฅ

=1

๐›ค ๐‘› โˆ’ ๐›ผ ๐‘ฅ โˆ’ ๐‘ก ๐‘ฅโˆ’๐›ผโˆ’1

๐‘ฅ

0

๐‘“(๐‘›) ๐‘ก ๐‘‘๐‘ก , (5)

for ๐‘› โˆ’ 1 < ๐›ผ โ‰ค ๐‘› , ๐‘› โˆˆ โ„• , ๐‘ฅ > 0 , ๐‘“ โˆˆ ๐ถโˆ’1๐‘› .

Lemma 1. If ๐‘› โˆ’ 1 < ๐›ผ โ‰ค ๐‘›, ๐‘› โˆˆ โ„• and ๐‘“ โˆˆ ๐ถ๐œ‡๐‘› , ๐œ‡ โ‰ฅ โˆ’1,

then

๐ทโˆ—๐›ผ ๐ฝ๐›ผ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ , (6)

๐ฝ๐›ผ๐ทโˆ—๐›ผ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฅ โˆ’ ๐‘“ ๐‘˜ 0+

๐‘ฅ

๐‘˜! , ๐‘ฅ > 0

๐‘›โˆ’1

๐‘˜=0

. (7)

III. HOMOTOPY ANALYSIS METHOD

The principles of the HAM and its applicability for various

kinds of differential equations are given in [29-43]. For

convenience of the reader, we will present a review of the

HAM [29, 38]. To achieve our goal, we consider the

nonlinear differential equation.

๐‘ ๐‘ฆ ๐‘ก = 0 , ๐‘ก โ‰ฅ 0 , (8)

where N is a nonlinear differential operator, and ๐‘ฆ(๐‘ก) is

unknown function of the independent variable ๐‘ก.

A. Zeroth- order Deformation Equation

Liao [29] constructs the so-called zeroth-order

deformation equation:

1 โˆ’ ๐‘ž ๐œ™ ๐‘ก; ๐‘ž โˆ’ ๐‘ฆ0 ๐‘ก = ๐‘žโ„๐ป ๐‘ก ๐‘ ๐œ™ ๐‘ก; ๐‘ž , (9)

where ๐‘ž โˆˆ 0,1 is an embedding parameter, โ„ โ‰  0 is an

auxiliary parameter, ๐ป ๐‘ก โ‰  0 is an auxiliary function, is

an auxiliary linear operator, ๐‘ is nonlinear differential

operator, ๐œ™ ๐‘ก; ๐‘ž is an unknown function, and ๐‘ฆ0 ๐‘ก is an

initial guess of ๐‘ฆ(๐‘ก), which satisfies the initial conditions. It

should be emphasized that one has great freedom to choose

the initial guess ๐‘ฆ0 ๐‘ก , the auxiliary linear operator , the

auxiliary parameter โ„ and the auxiliary function ๐ป ๐‘ก .

According to the auxiliary linear operator and the suitable

initial conditions, when ๐‘ž = 0, we have

๐œ™ ๐‘ก; 0 = ๐‘ฆ0 ๐‘ก , (10)

and when ๐‘ž = 1 , since โ„ โ‰  0 and ๐ป ๐‘ก โ‰  0 , the

zeroth-order deformation equation (9) is equivalent to (8),

hence

๐œ™ ๐‘ก; 1 = ๐‘ฆ ๐‘ก . (11)

Thus, as ๐‘ž increasing from 0 to 1 , the solution ๐œ™ ๐‘ก; ๐‘ž various from ๐‘ฆ0 ๐‘ก to ๐‘ฆ(๐‘ก). Define

๐‘ฆ๐‘š ๐‘ก = 1

๐‘š!

๐œ•๐‘š๐œ™ ๐‘ก; ๐‘ž

๐œ•๐‘ž๐‘š ๐‘ž=0

. (12)

Expanding ๐œ™ ๐‘ก; ๐‘ž in a Taylor series with respect to the

embedding parameter ๐‘ž, by using (10) and (12), we have:

๐œ™ ๐‘ก; ๐‘ž = ๐‘ฆ0 ๐‘ก + ๐‘ฆ๐‘š ๐‘ก ๐‘ž๐‘š

โˆž

๐‘š=1

. (13)

Assume that the auxiliary parameter โ„ , the auxiliary

function ๐ป ๐‘ก , the initial approximation ๐‘ฆ0(๐‘ก) and the

auxiliary linear operator are properly chosen so that the

series (13) converges at ๐‘ž = 1. Then at ๐‘ž = 1, from (11), the

series solution (13) becomes

๐‘ฆ ๐‘ก = ๐‘ฆ0 ๐‘ก + ๐‘ฆ๐‘š ๐‘ก

โˆž

๐‘š=1

. (14)

B. High-order Deformation Equation

Define the vector:

๐‘ฆ ๐‘› = ๐‘ฆ0 ๐‘ก , ๐‘ฆ1 ๐‘ก , ๐‘ฆ2 ๐‘ก , โ€ฆ , ๐‘ฆ๐‘›(๐‘ก) . (15)

Differentiating equation (9) m-times with respect to

embedding parameter ๐‘ž , then setting ๐‘ž = 0 and dividing

them by ๐‘š! , we have, using (12), the so-called mth-order

deformation equation

๐‘ฆ๐‘š ๐‘ก โˆ’ ๐œ’๐‘š๐‘ฆ๐‘šโˆ’1 ๐‘ก = โ„๐ป ๐‘ก ๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 ๐‘ก ,

๐‘š = 1,2, โ€ฆ , ๐‘› , (16)

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

where

๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 = 1

(๐‘š โˆ’ 1)!

๐œ•๐‘šโˆ’1๐‘[๐œ™ ๐‘ก; ๐‘ž ]

๐œ•๐‘ž๐‘šโˆ’1 ๐‘ž=0

, (17)

and

๐œ’๐‘š = 0 , ๐‘š โ‰ค 1

1 , ๐‘š > 1 . (18)

The so-called mth-order deformation equation (16) is a linear

which can be easily solved using Mathematica package.

IV. AN ALGORITHM OF HOMOTOPY ANALYSIS METHOD

The HAM has been extended in [42,43] to solve some

fractional differential equations. They use the auxiliary linear

operator to be ๐‘‘/๐‘‘๐‘ก or ๐ทโˆ—๐›ผ , where 0 < ๐›ผ โ‰ค 1. Also they

fix the auxiliary function ๐ป ๐‘ก to be 1. In this section, we

present an efficient algorithm of the HAM. This algorithm

can be established based on the assumptions that the

nonlinear operator can involve fractional derivatives, the

auxiliary function ๐ป ๐‘ก can be freely selected and the

auxiliary linear operator can be considered as = ๐ทโˆ—๐›ฝ

, ๐›ฝ > 0 . To illustrate its basic ideas, we consider the following

fractional initial value problem

๐‘๐›ผ ๐‘ฆ ๐‘ก = 0 , ๐‘ก โ‰ฅ 0 , (19)

where ๐‘๐›ผ is a nonlinear differential operator that may

involves fractional derivatives, where the highest order

derivative is ๐‘› , subject to the initial conditions

๐‘ฆ ๐‘˜ 0 = ๐‘๐‘˜ , ๐‘˜ = 0,1,2, โ€ฆ , ๐‘› โˆ’ 1 . (20)

The so-called zeroth-order deformation equation can be

defined as

1 โˆ’ ๐‘ž ๐ทโˆ—๐›ฝ ๐œ™ ๐‘ก; ๐‘ž โˆ’ ๐‘ฆ0 ๐‘ก = ๐‘žโ„๐ป ๐‘ก ๐‘ ๐œ™ ๐‘ก; ๐‘ž ,

๐›ฝ > 0 , (21)

subject to the initial conditions

๐œ™ ๐‘˜ 0; ๐‘ž = ๐‘๐‘˜ , ๐‘˜ = 0,1,2, โ€ฆ , ๐‘› โˆ’ 1 . (22)

Obviously, when ๐‘ž = 0 , since ๐‘ฆ0 ๐‘ก satisfies the initial

conditions (20) and = ๐ทโˆ—๐›ฝ

, ๐›ฝ > 0, we have

๐œ™ ๐‘ก; 0 = ๐‘ฆ0 ๐‘ก , (23)

and, the so-called mth-order deformation equation can be

constructed as

๐ทโˆ—๐›ฝ ๐‘ฆ๐‘š ๐‘ก โˆ’ ๐œ’๐‘š๐‘ฆ๐‘šโˆ’1 ๐‘ก = โ„๐ป ๐‘ก ๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 ๐‘ก ,

๐›ฝ > 0 , (24)

subject to the initial conditions

๐‘ฆ๐‘š(๐‘˜) 0 = 0 , ๐‘˜ = 0,1,2, โ€ฆ , ๐‘› โˆ’ 1. (25)

Operating ๐ฝ๐›ฝ , ๐›ฝ > 0 on both sides of (24) gives the

mth-order deformation equation in the form:

๐‘ฆ๐‘š ๐‘ก = ๐œ’๐‘š๐‘ฆ๐‘šโˆ’1 ๐‘ก + โ„ ๐ฝ๐›ฝ ๐ป ๐‘ก ๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 ๐‘ก . (26)

V. EXAMPLES

In this section we employ our algorithm of the homotopy

analysis method to find out series solutions for some

fractional initial value problems.

Example 1. Consider the composite fractional oscillation

equation [18]

๐‘‘2๐‘ฆ

๐‘‘๐‘ก2โˆ’ ๐‘Ž๐ทโˆ—

๐›ผ๐‘ฆ ๐‘ก โˆ’ ๐‘๐‘ฆ ๐‘ก โˆ’ 8 = 0 , ๐‘ก โ‰ฅ 0 ,

๐‘› โˆ’ 1 < ๐›ผ โ‰ค ๐‘› , ๐‘› = 1,2 ,

(27)

subject to the initial conditions

๐‘ฆ 0 = 0 , ๐‘ฆโ€ฒ 0 = 0 . (28)

First, if we set ๐›ผ = 1 , ๐‘Ž = ๐‘ = โˆ’1 , then the equation

(27) becomes linear differential equation of second order

which has the following exact solution

๐‘ฆ ๐‘ก = 8 โˆ’ 8๐‘’โˆ’๐‘ก/2 cos 3

2๐‘ก +

1

3sin

3

2๐‘ก . (29)

Since, ๐‘๐›ผ ๐‘ฆ ๐‘ก =๐‘‘2๐‘ฆ

๐‘‘๐‘ก2 โˆ’ ๐‘Ž๐ทโˆ—๐›ผ๐‘ฆ ๐‘ก โˆ’ ๐‘๐‘ฆ ๐‘ก โˆ’ 8 , according

to (12) and (17), we have

๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 = ๐‘ฆ๐‘šโˆ’1โ€ฒโ€ฒ ๐‘ก โˆ’ ๐‘Ž๐ทโˆ—

๐›ผ๐‘ฆ๐‘šโˆ’1 ๐‘ก โˆ’ ๐‘๐‘ฆ๐‘šโˆ’1 ๐‘ก

โˆ’8 1 โˆ’ ๐œ’๐‘š . (30)

If we take the auxiliary function ๐ป ๐‘ก = 1 , and the

parameter ๐›ฝ = 2, then the auxiliary linear operator becomes

= ๐‘‘2 ๐‘‘๐‘ก2 , (31)

and

๐‘ฆ๐‘š ๐‘ก = ๐œ’๐‘š๐‘ฆ๐‘šโˆ’1 ๐‘ก + โ„ ๐ฝ2 ๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 ๐‘ก , (32)

subject to the initial conditions

๐‘ฆ๐‘š 0 = ๐‘ฆ๐‘šโ€ฒ 0 = 0 . (33)

(I) If we choose the initial guess approximation

๐‘ฆ0 ๐‘ก = 0 , (34)

then we have

๐‘ฆ1 = โˆ’4โ„๐‘ก2 , (35)

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

๐‘ฆ2 = โˆ’4โ„ 1 + โ„ ๐‘ก2 +โ„2๐‘

3๐‘ก4 +

8โ„2๐‘Ž

๐›ค(5 โˆ’ ๐›ผ)๐‘ก4โˆ’๐›ผ ,

๐‘ฆ3 = โˆ’4โ„ 1 + โ„ 2๐‘ก2 +2โ„2 1 + โ„ ๐‘

3๐‘ก4 โˆ’

โ„3๐‘2

90๐‘ก6

+16โ„2 1 + โ„ ๐‘Ž

๐›ค 5 โˆ’ ๐›ผ ๐‘ก4โˆ’๐›ผ โˆ’

16โ„3๐‘Ž๐‘

๐›ค(7 โˆ’ ๐›ผ)๐‘ก6โˆ’๐›ผ

โˆ’8โ„3๐‘Ž2

๐›ค(7 โˆ’ 2๐›ผ)๐‘ก6โˆ’2๐›ผ .

Moreover, if we set the auxiliary parameter โ„ = โˆ’1, then the

result is the Variational iteration solution obtained by

Momani and Odibat in [18] and the same homotopy

perturbation solution obtained by Odibat in [21].

(II) If we take the initial guess

๐‘ฆ0 = 4๐‘ก2 , (36)

then we will get the approximations

๐‘ฆ1 = โˆ’โ„๐‘

3๐‘ก4 +

8โ„๐‘Ž

๐›ค(5 โˆ’ ๐›ผ)๐‘ก4โˆ’๐›ผ ,

(37)

๐‘ฆ2 = โˆ’โ„ 1 + โ„ ๐‘

3๐‘ก4 +

โ„2๐‘2

90๐‘ก6 โˆ’

8โ„ 1 + โ„ ๐‘Ž

๐›ค 5 โˆ’ ๐›ผ ๐‘ก4โˆ’๐›ผ

+16โ„2๐‘Ž๐‘

๐›ค(7 โˆ’ ๐›ผ)๐‘ก6โˆ’๐›ผ +

8โ„2๐‘Ž2

๐›ค(7 โˆ’ 2๐›ผ)๐‘ก6โˆ’2๐›ผ ,

๐‘ฆ3 = โˆ’โ„ 1 + โ„ 2๐‘

3๐‘ก4 +

11โ„2 1 + โ„ ๐‘2

90๐‘ก6

โˆ’โ„3๐‘3

35 6 4๐‘ก8 โˆ’

8โ„ 1 + โ„ 2๐‘Ž

๐›ค 5 โˆ’ ๐›ผ ๐‘ก4โˆ’๐›ผ

+32โ„2 1 + โ„ ๐‘Ž๐‘

๐›ค 7 โˆ’ ๐›ผ ๐‘ก6โˆ’๐›ผ +

16โ„2 1 + โ„ ๐‘Ž2

๐›ค 7 โˆ’ 2๐›ผ ๐‘ก6โˆ’2๐›ผ

โˆ’24โ„3๐‘Ž๐‘2

๐›ค 9 โˆ’ ๐›ผ ๐‘ก8โˆ’๐›ผ โˆ’

24โ„3๐‘Ž2๐‘

๐›ค(9 โˆ’ 2๐›ผ)๐‘ก8โˆ’2๐›ผ

โˆ’8โ„3๐‘Ž3

๐›ค(9 โˆ’ 3๐›ผ)๐‘ก8โˆ’3๐›ผ .

Here, if we put โ„ = โˆ’1 in (37), then we will get the Adomian

decomposition solution obtained by Momani and Odibat in

[18].

(III) If we take the initial guess

๐‘ฆ0 = 3๐‘ก2 ,

(38)

then we will get the approximations

๐‘ฆ1 = โˆ’โ„๐‘ก2 โˆ’โ„๐‘

4๐‘ก4 โˆ’

6โ„๐‘Ž

๐›ค(5 โˆ’ ๐›ผ)๐‘ก4โˆ’๐›ผ ,

(39)

๐‘ฆ2 = โˆ’โ„๐‘ก2 โˆ’โ„๐‘

4๐‘ก4 โˆ’

6โ„๐‘Ž

๐›ค 5 โˆ’ ๐›ผ ๐‘ก4โˆ’๐›ผ

+โ„2๐‘ก2โˆ’2๐›ผ 360๐‘Ž2๐›ค 7 โˆ’ ๐›ผ ๐‘ก4 + โ‹ฏ .

(VI) If we replace ๐ป ๐‘ก = 1 by ๐ป ๐‘ก = ๐‘ก1/2 in (III), then

we have

๐‘ฆ1 = โˆ’8โ„

15๐‘ก

52 โˆ’

4โ„๐‘

21๐‘ก

92

โˆ’24โ„๐‘Ž

9 โˆ’ 2๐›ผ (7 โˆ’ 2๐›ผ)๐›ค(3 โˆ’ ๐›ผ)๐‘ก

92โˆ’๐›ผ ,

๐‘ฆ2 = โˆ’8โ„

15๐‘ก

52 โˆ’

4โ„๐‘

21๐‘ก

92

โˆ’24โ„๐‘Ž

9 โˆ’ 2๐›ผ 7 โˆ’ 2๐›ผ ๐›ค 3 โˆ’ ๐›ผ ๐‘ก

92โˆ’๐›ผ +

โ„2

(4)1+3๐›ผ๐‘ก3โˆ’2๐›ผ โ€ฆ .

By means of the so-called โ„-curves [29], Fig.1 shows that

the valid region of โ„ is the horizontal line segment. Thus, the

valid regions of โ„ for the HAM of Eq. (27) at different values

of ๐›ผ are shown in Fig.1.

Fig. 2.(a)~(f) shows the approximate solutions for Eq. (27)

obtained for different values of ๐›ผ , โ„ , ๐ป ๐‘ก and ๐‘ฆ0(๐‘ก) using

HAM. Fig. 2.(a) shows that the best solution results when we

use the initial guess ๐‘ฆ0 = 3๐‘ก2. Fig. 2.(b) shows that the best

solution results when we use the auxiliary parameter โ„ =โˆ’0.7. Fig. 2.(c) shows that the best solution results when we

use the auxiliary function ๐ป ๐‘ก = 1. In Fig. 2.(d)~(f), we

compare the approximate solutions for different values of โ„

and ๐ป ๐‘ก . As shown in Fig. 2.(a)~(f), we can observe that by

choosing a proper value of the auxiliary parameter โ„, the

auxiliary function ๐ป ๐‘ก , the auxiliary linear operator and

the initial guess ๐‘ฆ0(๐‘ก) we can adjust and control convergence

region of the series solutions. Moreover, we can observe that

convergence region increases as โ„ goes to left end point of

the valid region of โ„ , but this may decreases the agreement

with the exact solution. Choosing a suitable auxiliary

function ๐ป ๐‘ก with the left end point of the valid region of โ„

scrimps the disagreement with the exact solution. Fig.3. show

the โ€žresidual errorโ€Ÿ for 15th order approximation for Eq. (27)

at ๐›ผ = 1 obtained for different values of โ„ and ๐ป ๐‘ก .

Fig.1. The โ„-curves of ๐‘ฆโ€ฒ which are corresponding to the15th-order

approximate HAM solution of Eq.(27) when ๐ป ๐‘ก = ๐‘ก1/2 ,

๐‘ฆ0 = 3๐‘ก2 , โ„’ = ๐‘‘2 ๐‘‘๐‘ก2. Dotted line: ๐›ผ = 0.5, dash.dotted

line: ๐›ผ = 1, solid line: ๐›ผ = 1.5.

2.5 2.0 1.5 1.0 0.5 0.0h

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y'

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

(a) ๐›ผ = 1 , ๐ป ๐‘ก = 1 , โ„ = โˆ’1 , โ„’ = ๐‘‘2 ๐‘‘๐‘ก2 .

Dashed line: ๐‘ฆ0 = 0 , dash.dotted line: ๐‘ฆ0 = 4๐‘ก2, dotted line: ๐‘ฆ0 =3๐‘ก2, solid line: Exact solution

(b) ๐›ผ = 1 , ๐ป ๐‘ก = 1 , ๐‘ฆ0 = 3๐‘ก2 , โ„’ = ๐‘‘2 ๐‘‘๐‘ก2 .

Dashed line: โ„ = โˆ’1 , dash.dotted line: โ„ = โˆ’0.7 , dotted

line: โ„ = โˆ’0.3 , solid line: Exact solution

(c) ๐›ผ = 1 , โ„ = โˆ’0.7 , ๐‘ฆ0 = 3๐‘ก2 , โ„’ = ๐‘‘2 ๐‘‘๐‘ก2 .

Dashed line: ๐ป ๐‘ก = ๐‘ก, dash.dotted line: ๐ป ๐‘ก = ๐‘ก1/2, dotted line:

๐ป ๐‘ก = 1 , solid line: Exact solution.

(d) ๐›ผ = 1 , ๐‘ฆ0 = 3๐‘ก2 , โ„’ = ๐‘‘2 ๐‘‘๐‘ก2 .

Dotted line: ๐ป ๐‘ก = 1 , โ„ = โˆ’0.7, dash.dotted line: ๐ป ๐‘ก = ๐‘ก1/2 ,โ„ = โˆ’0.3 , solid line: Exact solution.

(e) ๐›ผ = 0.5 , ๐‘ฆ0 = 3๐‘ก2 , โ„’ = ๐‘‘2 ๐‘‘๐‘ก2 .

Dotted line: ๐ป ๐‘ก = 1 , โ„ = โˆ’0.7, solid line: ๐ป ๐‘ก = ๐‘ก1/2 , โ„ = โˆ’0.3 .

(f) ๐›ผ = 1.5 , ๐‘ฆ0 = 3๐‘ก2 , โ„’ = ๐‘‘2 ๐‘‘๐‘ก2 .

Dotted line: ๐ป ๐‘ก = 1 , โ„ = โˆ’0.7, solid line : ๐ป ๐‘ก = ๐‘ก1/2 , โ„ = โˆ’0.3 .

Fig. 2. Approximate solutions for Eq. (27)

Example 2. Consider the fractional Riccati equation [17]

๐ทโˆ—๐›ผ๐‘ฆ ๐‘ก + ๐‘ฆ2 ๐‘ก โˆ’ 1 = 0 , 0 < ๐›ผ โ‰ค 1 , ๐‘ก โ‰ฅ 0 , (40)

subject to the initial condition

๐‘ฆ 0 = 0 . (41)

According to (17), we have

๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 = ๐ทโˆ—๐›ผ๐‘ฆ๐‘šโˆ’1 ๐‘ก + ๐‘ฆ๐‘– ๐‘ก ๐‘ฆ๐‘šโˆ’1โˆ’๐‘– ๐‘ก

๐‘šโˆ’1

๐‘–=0

โˆ’ 1 โˆ’ ๐œ’๐‘š ,

(42)

(I) If we choose the initial guess approximation

๐‘ฆ0 ๐‘ก = ๐‘ก , (43)

0 1 2 3 4 5 6 7t

2

4

6

8

10

12

14

y

2 4 6 8 10 12t

5

10

15

y

0 2 4 6 8 10 12t

2

4

6

8

10

12

14

y

0 2 4 6 8 10 12t

2

4

6

8

10

12

14

y

0 2 4 6 8 10 12t

2

4

6

8

10

12

14

y

0 2 4 6 8 10t

2

4

6

8

10

12

14

y

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

Fig. 3. The residual error for Eq. (27) when ๐›ผ = 1 , ๐‘ฆ0 = 3๐‘ก2, โ„’ = ๐‘‘2 ๐‘‘๐‘ก2 . Solid line: ๐ป ๐‘ก = 1 , โ„ = โˆ’0.7 , dotted

line: ๐ป ๐‘ก = ๐‘ก1/2 , โ„ = โˆ’0.3 .

the parameter ๐›ฝ = 1 and ๐ป ๐‘ก = 1, then according to (26)

we find

๐‘ฆ1 = โˆ’โ„ ๐‘ก โˆ’๐‘ก3

3โˆ’

๐‘ก2โˆ’๐›ผ

๐›ค 3 โˆ’ ๐›ผ

๐‘ฆ2 = โˆ’โ„ ๐‘ก โˆ’๐‘ก3

3โˆ’

๐‘ก2โˆ’๐›ผ

๐›ค 3 โˆ’ ๐›ผ

โˆ’โ„2 2๐‘ก3

3โˆ’

2๐‘ก5

15+

๐‘ก2โˆ’๐›ผ

๐›ค 3 โˆ’ ๐›ผ โˆ’

2๐‘ก4โˆ’๐›ผ

๐›ค 4 โˆ’ ๐›ผ โˆ’

๐‘ก3โˆ’2๐›ผ

๐›ค 4 โˆ’ 2๐›ผ ,

๐‘ฆ3 = โˆ’โ„ ๐‘ก โˆ’๐‘ก3

3โˆ’

๐‘ก2โˆ’๐›ผ

๐›ค 3 โˆ’ ๐›ผ

โˆ’โ„2 4๐‘ก3

3โˆ’

4๐‘ก5

15+

2๐‘ก2โˆ’๐›ผ

๐›ค 3 โˆ’ ๐›ผ โˆ’

2๐‘ก3โˆ’2๐›ผ

๐›ค 4 โˆ’ 2๐›ผ

โˆ’ 6

๐›ค 3 โˆ’ ๐›ผ +

6

๐›ค 4 โˆ’ ๐›ผ โˆ’

2๐›ค 5 โˆ’ ๐›ผ

๐›ค 4 โˆ’ ๐›ผ 2

๐›ค 4 โˆ’ ๐›ผ ๐‘ก4โˆ’๐›ผ

๐›ค 5 โˆ’ ๐›ผ

+โ„3 ๐‘ก3

3โˆ’

2๐‘ก5

5+

17๐‘ก7

315โˆ’

4๐‘ก4โˆ’๐›ผ

๐›ค 4 โˆ’ ๐›ผ +

2

3๐›ค 3 โˆ’ ๐›ผ +

4

๐›ค 4 โˆ’ ๐›ผ +

16

๐›ค 6 โˆ’ ๐›ผ

๐›ค 6 โˆ’ ๐›ผ ๐‘ก4โˆ’๐›ผ

๐›ค 7 โˆ’ ๐›ผ

+ 1

๐›ค 3 โˆ’ ๐›ผ 2+

2

๐›ค 4 โˆ’ 2๐›ผ +

2๐›ค 5 โˆ’ ๐›ผ

๐›ค 4 โˆ’ ๐›ผ ๐›ค 5 โˆ’ 2๐›ผ

ร—๐›ค 5 โˆ’ 2๐›ผ ๐‘ก5โˆ’2๐›ผ

๐›ค 6 โˆ’ 2๐›ผ โˆ’

๐‘ก3โˆ’2๐›ผ

๐›ค 4 โˆ’ 2๐›ผ +

๐‘ก4โˆ’3๐›ผ

๐›ค 5 โˆ’ 3๐›ผ .

Now, if we take โ„ = โˆ’1 , then we have the homotopy

perturbation solution obtained by Odibat and Momani in

[17].

(II) If we chose the initial guess approximation

๐‘ฆ0 ๐‘ก = ๐‘ก1/2 , (44)

the auxiliary linear operator

โ„’ = ๐ทโˆ—๐›ฝ

, ๐›ฝ > 0 , (45)

and the auxiliary function

๐ป ๐‘ก = ๐‘ก๐›พ , ๐›พ > โˆ’1 , (46)

then (26) gives

๐‘ฆ1 = โ„๐‘ก๐›ฝ+๐›พ โˆ’๐›ค 1 + ๐›พ

๐›ค 1 + ๐›พ + ๐›ฝ +

๐›ค 2 + ๐›พ ๐‘ก

๐›ค 2 + ๐›พ + ๐›ฝ

+ ๐œ‹๐›ค

32

+ ๐›พ โˆ’ ๐›ผ ๐‘ก12โˆ’๐›ผ

2๐›ค 32

โˆ’ ๐›ผ ๐›ค 32

+ ๐›พ โˆ’ ๐›ผ + ๐›ฝ ,

๐‘ฆ2 = โ„๐‘ก๐›ฝ+๐›พ โˆ’๐›ค 1 + ๐›พ

๐›ค 1 + ๐›พ + ๐›ฝ +

๐›ค 2 + ๐›พ ๐‘ก

๐›ค 2 + ๐›พ + ๐›ฝ

+ ๐œ‹๐›ค

32

+ ๐›พ โˆ’ ๐›ผ ๐‘ก12โˆ’๐›ผ

2๐›ค 32

โˆ’ ๐›ผ ๐›ค 32

+ ๐›พ โˆ’ ๐›ผ + ๐›ฝ +

โ„2๐‘ก2๐›ฝ+2๐›พโˆ’1

2 โ€ฆ ,

โ‹ฎ

and so on. As pointed above, the valid region of โ„ is a

horizontal line segment. Thus, the valid region of โ„ for the

HAM solution of Eq. (40) at ๐›ผ = 0.5 , ๐›พ = โˆ’0.5 , ๐›ฝ = 1 is

โˆ’1.15 < โ„ < โˆ’0.1 as shown in Fig. 4.

Fig. 5.(a)~(d) show the approximate solution for Eq. (40)

obtained for different values of โ„, ๐›ฝ, ๐ป(๐‘ก) and ๐‘ฆ0(๐‘ก) using

HAM. As observed in Fig. 2.(a)~(f), we can notice that the

convergence region can be adjusted and controlled by

choosing proper values of the auxiliary parameter โ„ , the

auxiliary function ๐ป ๐‘ก , the auxiliary linear operator and

the initial guess ๐‘ฆ0(๐‘ก).

Fig. 4. The โ„-curves of ๐‘ฆโ€ฒ & ๐‘ฆโ€ฒโ€ฒ which are corresponding to the

HAM solution of Eq. (40) when ๐›ผ = 0.5 , ๐‘ฆ0 = ๐‘ก1/2 , ๐›พ = โˆ’0.5 ,๐›ฝ = 1 . Dotted curve: 15th-order approximation of ๐‘ฆโ€ฒ ,

solid line: 15th-order approximation of ๐‘ฆโ€ฒโ€ฒ .

0 2 4 6 8 100.03

0.02

0.01

0.00

0.01

1.5 1.0 0.5h

20

10

10

20

y', y

"

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

(a) ๐›ผ = 0.5 , โ„’ = ๐ทโˆ—

๐›ผ , ๐ป ๐‘ก = 1 , ๐‘ฆ0 = ๐‘ก๐›ผ /๐›ค 1 + ๐›ผ .

Dash. dotted line: โ„ = โˆ’1 , dotted line: โ„ = โˆ’0.5 , solid line:

โ„ = โˆ’0.2 .

(b) ๐›ผ = 0.5 , โ„’ = ๐ทโˆ—

๐›ผ , ๐ป ๐‘ก = 1 , โ„ = โˆ’0.2 .

Dash. dotted line: ๐‘ฆ0 = ๐‘ก, dotted line: ๐‘ฆ0 = ๐‘ก๐›ผ /๐›ค 1 + ๐›ผ , solid

line: ๐‘ฆ0 = ๐‘ก1/2 .

(c) ๐›ผ = 0.5 , ๐‘ฆ0 = ๐‘ก1/2 , ๐ป ๐‘ก = 1 , โ„ = โˆ’0.2 .

Dash. dotted line: โ„’ = ๐ทโˆ—0.5, dotted line: โ„’ = ๐ทโˆ—

0.75, solid line: โ„’ =๐ทโˆ— .

(d) ๐›ผ = 0.5 , ๐‘ฆ0 = ๐‘ก1/2 , โ„’ = ๐ทโˆ— = ๐‘‘ ๐‘‘๐‘ก , โ„ = โˆ’0.2 .

Dash. dotted line: ๐ป ๐‘ก = 1 , dotted line: ๐ป ๐‘ก = ๐‘กโˆ’1/4 , solid

line: ๐ป ๐‘ก = ๐‘กโˆ’1/2 .

Fig. 5. Approximate solutions for Eq. (40)

Example 3. Consider the Lane-Emden fractional differential

equation [13, 21

๐ทโˆ—๐›ผ๐‘ฆ +

2

๐‘ก๐‘ฆโ€ฒ + ๐‘ฆ3 โˆ’ 6 + ๐‘ก6 = 0 , ๐‘ก โ‰ฅ 0 ,

๐‘› โˆ’ 1 < ๐›ผ โ‰ค ๐‘› , ๐‘› = 1,2 ,

(47)

subject to initial conditions

๐‘ฆ 0 = 0 , ๐‘ฆโ€ฒ 0 = 0 . (48)

Hence, according to (17), we have

๐‘…๐‘š ๐‘ฆ ๐‘šโˆ’1 = ๐ทโˆ—๐›ผ๐‘ฆ๐‘šโˆ’1 ๐‘ก +

2

๐‘ก๐‘ฆ๐‘šโˆ’1

โ€ฒ ๐‘ก

+ ๐‘ฆ๐‘šโˆ’1โˆ’๐‘– ๐‘ก ๐‘ฆ๐‘— ๐‘ก ๐‘ฆ๐‘–โˆ’๐‘— ๐‘ก

๐‘–

๐‘— =0

๐‘šโˆ’1

๐‘–=0

โˆ’ 6 + ๐‘ก6 1 โˆ’ ๐œ’๐‘š .

(49)

In view of the modified homotopy analysis method, if we set

๐‘ฆ0 = 0 , ๐ป ๐‘ก = 1 , ๐›ฝ = 2 , (50)

then the mth-order deformation equation (26) gives

๐‘ฆ1 = โˆ’โ„ ๐‘ก2 3 + ๐‘ก6

56 ,

Fig. 6. The โ„-curves of ๐‘ฆโ€ฒโ€ฒ which are corresponding to the

5th-order approximate HAM solution of Eq. (47) for different

values of ๐›ผ . Dash dotted line: ๐›ผ = 2, dotted line: ๐›ผ = 1.75 , solid

line: ๐›ผ = 1.5 .

0 1 2 3 4 5t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

0 1 2 3 4 5 6t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

0 1 2 3 4 5 6t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

0 2 4 6 8 10t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

1.0 0.8 0.6 0.4 0.2 0.0h

0.5

1.0

1.5

2.0

2.5

3.0

y"

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

(a) ๐›ผ = 2 , ๐‘ฆ0 = 0 , ๐ป ๐‘ก = 1 , ๐›ฝ = 2.

Dotted line: โ„ = โˆ’0.5, dash.dotted line: โ„ = โˆ’0.35, dash.dot dotted

line: โ„ = โˆ’0.1, solid line: exact solution.

(b) ๐‘ฆ0 = 0 , ๐ป ๐‘ก = 1 , ๐›ฝ = 2 , โ„ = โˆ’0.35.

Dash. dotted line: ๐›ผ = 1.5 , dotted line: ๐›ผ = 1.75, solid line: ๐›ผ = 2 .

Fig. 7. Approximate solutions for Eq. (47)

๐‘ฆ2 = โˆ’โ„ ๐‘ก2 3 + ๐‘ก6

56

โˆ’6โ„2๐‘ก4โˆ’๐›ผ

๐›ค 11 โˆ’ ๐›ผ 120๐‘ก6 +

๐›ค ๐›ผ โˆ’ 4

๐›ค ๐›ผ โˆ’ 10 + โ„ ๐‘ก2 1176 + ๐‘ก6 ,

โ‹ฎ

and so on. Moreover, if we replace the initial guess

๐‘ฆ0 = 0 by ๐‘ฆ0 = ๐‘ก2, then we have ๐‘ฆ๐‘š = 0, โˆ€ ๐‘š โ‰ฅ 1, hence,

๐‘ฆ ๐‘ก = ๐‘ก2 is the exact solution.

The valid region of โ„ for the HAM solution of Eq. (47) at

๐›ผ = 2 is โˆ’0.6 < โ„ < โˆ’0.15 , at ๐›ผ = 1.75 is โˆ’0.6 < โ„ <โˆ’0.15 and at ๐›ผ = 1.5 is โˆ’0.6 < โ„ < โˆ’0.15 as shown in

Fig. 6.

Fig.7.(a) shows the approximate solution for Eq. (47) at

๐›ผ = 2 obtained for different values of โ„ using HAM. As the

previous examples, the convergence region of the series

solution increases as โ„ goes to the left end point of its valid

region. Fig. 7.(b) shows the HAM solution for Eq. (47) at

different values of ๐›ผ obtained for โ„ = โˆ’0.35.

VI. DISCUSSION AND CONCLUSIONS

In this work, we carefully proposed an efficient algorithm

of the HAM which introduces an efficient tool for solving

linear and nonlinear differential equations of fractional order.

The modified algorithm has been successfully implemented

to find approximate solutions for many problems. The work

emphasized our belief that the method is a reliable technique

to handle nonlinear differential equations of fractional order.

As an advantage of this method over the other analytical

methods, such as ADM and HPM, in this method we can

choose a proper value for the auxiliary parameter โ„ , the

auxiliary function ๐ป ๐‘ก , the auxiliary linear operator and

the initial guess ๐‘ฆ0 to adjust and control convergence region

of the series solutions.

There are some important points to make here. First, we

can observe that the convergence region of the series solution

increases as โ„ tends to zero. Second, choosing a suitable

auxiliary function ๐ป ๐‘ก or initial approximation ๐‘ฆ0 ๐‘ก may

accelerate the rapid convergence of the series solution and

may increase the agreement with the exact solution. Third,

for a certain value of โ„ , choosing a suitable auxiliary linear

operator โ„’ = ๐ทโˆ—๐›ฝ

, ๐›ฝ > 0 may increase the convergence

region. Finally, generally speaking, the proposed approach

can be further implemented to solve other nonlinear problems

in fractional calculus field.

REFERENCES

[1] G. O. Young, โ€œDefinition of physical consistent damping laws with

fractional derivatives,โ€ Z. Angew. Math. Mech, vol. 75, 1995, pp.

623-35.

[2] J. H. He, โ€œSome applications of nonlinear fractional differential

equations and their approximations,โ€ Bull. Sci. Technol., vol. 15(2),

1999, pp. 86-90.

[3] J. H. He, โ€œApproximate analytic solution for seepage flow with

fractional derivatives in porous media,โ€ Comput. Methods Appl.

Mech. Eng., vol. 167, 1998, pp. 57-68.

[4] F. Mainardi, Fractional calculus: 'Some basic problems in continuum

and statistical mechanics, in Fractals and Fractional calculus in

Continuum Mechanics, A. carpenter and F. Mainardi, Eds., New York:

Springer-Verlag, 1997, pp. 291-348.

[5] I. Podlubny, Fractional Differential Equations. New York: Academic

Press, 1999.

[6] K. S. Miller, and B. Ross, An introduction to the fractional calculus and

fractional differential equations. New York: John Willy and Sons, Inc.,

1993.

[7] M. Caputo, โ€œLinear models of dissipation whose Q is almost frequency

independent,โ€ Part II. J. Roy Austral Soc. vol. 13, 1967, pp. 529-539.

[8] K. B. Oldham, and J. Spanier, The Fractional calculus. New York:

Academic Press, 1974.

[9] G. Adomian, โ€œNonlinear stochastic differential equations,โ€ J. Math.

Anal. Appl., vol. 55, 1976, pp. 441-452.

[10] G. Adomian, โ€œA review of the decomposition method in applied

mathematics,โ€ J. Math. Anal. Appl., vol. 135, 1988, pp. 501-544.

[11] G. Adomian, Solving Frontier Problems of physics: the decomposition

method. Boston: Kluewr Academic Publishers, 1994.

[12] N. T. Shawagfeh, โ€œThe decomposition method for fractional

differential equations,โ€ J. Frac. Calc., vol. 16, 1999, pp. 27-33.

[13] A. M. Wazwaz, โ€œThe modified decomposition method for analytic

treatment of differential equations,โ€ Appl. Math. Comp., vol. 173,

2006, pp. 165-176.

0.0 0.5 1.0 1.5 2.0 2.5t

2

4

6

8

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0t

2

4

6

8

10

12

y

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________

[14] S. Momani, and N. T. Shawagfeh, โ€œDecomposition method for solving

fractional Riccati differential equations,โ€ Appl. Math. Comput, vol.

182, 2006, pp. 1083-1092.

[15] S. Abbasbandy, โ€œHomotopy perturbation method for quadratic Riccati

differential equation and comparison with Adomian's decomposition

method,โ€ Appl. Math. Comp., vol. 173, 2006, pp. 493-500.

[16] Z. Odibat, and S. Momani, โ€œA reliable treatment of homotopy

perturbation method for Klein-Gordan equations,โ€ Physics Letters A,

vol. 365 (5-6), 2007, pp. 351-357.

[17] Z. Odibat, and S. Momani, โ€œModified homotopy perturbation method:

Application to quadratic Riccati differential equation of fractional

order,โ€ Chaos, Solitons and Fractals, vol. 36 (1), 2008, pp. 167-174.

[18] S. Momani, and Z. Odibat, โ€œNumerical comparison of methods for

solving linear differential equations of fractional order,โ€ Chaos,

Solitons and Fractals, vol. 31, 2007, pp. 1248-1255.

[19] Z. Odibat, and S. Momani, โ€œNumerical methods for nonlinear partial

differential equations of fractional order,โ€ Applied Mathematical

Modeling, vol. 32 (1), 2008, pp. 28-39.

[20] S. Momani, and Z. Odibat, โ€œNumerical approach to differential

equations of fractional order,โ€ J. of Comput. Appl. Math., vol. 207,

2007, pp. 96-110.

[21] Z. Odibat, โ€œA new modification of the homotopy perturbation method

for linear and nonlinear operators,โ€ Appl. Math. Comput., vol. 189 (1),

2007, pp. 746-753.

[22] J. H. He, โ€œHomotopy perturbation technique,โ€ Comput. Meth. Appl.

Eng., vol. 178, 1999, pp. 257-262.

[23] J. H. He, โ€œApplication of homotopy perturbation method to nonlinear

wave equations,โ€ Chaos, Solitons & Fractals, vol. 26 (3), 2005, pp.

695-700.

[24] J. H. He, โ€œThe homotopy perturbation method for nonlinear oscillators

with discontinuities,โ€ Appl. Math. Comp., vol. 151, 2004, pp.

287-292.

[25] J. H. He, โ€œHomotopy perturbation method for bifurcation of nonlinear

problems,โ€ Int. J. nonlin. Sci. Numer. Simulat. Vol. 6(2), 2005, pp.

207-208.

[26] Z. Odibat, and S. Momani, โ€œApplication of variation iteration method

to nonlinear differential equations of fractional order,โ€ Int. J . Nonlin.

Sci. Numer. Simulat., vol. 1(7), 2006, pp. 15-27.

[27] J. H. He, โ€œVariational iteration method - a kind of non-linear analytic

technique: some examples,โ€ Int. J. Nonlin. Mech., vol. 34, 1999, pp.

699-708.

[28] J. H. He, โ€œVariational iteration method for autonomous ordinary

differential systems,โ€ Appl. Math. Comput., vol. 114, 2000, pp.

115-23.

[29] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy

Analysis Methods, Boca Raton: Chapman and Hall/CRC Press, , 2003.

[30] S. J. Liao, โ€œOn the homotopy analysis method for nonlinear problems,โ€

Appl. Math. Comput., vol. 147, 2004, pp. 499-513.

[31] S. J. Liao, โ€œComparison between the homotopy analysis method and

homotopy perturbation method,โ€ Appl. Math. Comput., vol. 169, 2005,

pp. 1186-1194.

[32] S. J. Liao, โ€œHomotopy analysis method: A new analytic method for

nonlinear problems,โ€ Appl. Math. and Mech., vol. 19, 1998, 957-962.

[33] S. J. Liao, โ€œAn approximate solution Technique which does not depend

upon small parameter: a special example,โ€ Int. J. Nonlin. Mech., vol.

30, 1995, pp. 371-380.

[34] K.Yabushita et al, โ€œAn analytic solution of projection motion with the

quadratic resistance law,โ€ Journal of Physics A: Mathematical and

theoretical, vol. 40, 2007, pp. 8403-8416.

[35] Q. Sun, โ€œSolving the Klein-Gordon equation by means of the

homotopy analysis method,โ€ Appl. Math. and Comput., vol. 169, 2005,

pp. 355-365.

[36] W. Wu, and S. J. Liao, โ€œSolving solitary waves with discontinuity by

means of the homotopy analysis method,โ€ Chaos, Solitons and

Fractals, vol. 26, 2005, pp. 177-185.

[37] S. Abbasbandy, โ€œThe application of homotopy analysis method to

solve a generalized Hirota-Satsuma coupled KdV equation,โ€ Physics

Letters A, vol. 361, 2007, pp. 478-483.

[38] S. Abbasbandy, โ€œHomotopy analysis method for heat radiation

equations,โ€ International Communications in Heat and Mass Transfer,

vol. 34(3), 2007, pp.380-87.

[39] S. Abbasbandy, โ€œSoliton solutions for the Fitzhugh-Nagumo equation

with the homotopy analysis method,โ€ Appl. Math. Model, vol. 32,

2008, pp. 2706-2714.

[40] S. Abbasbandy, โ€œApproximate solution for the nonlinear model of

diffusion and reaction in porous catalysts by means of the homotopy

analysis method,โ€ Chem. Eng. J., vol. 136, 2008, pp. 144-150.

[41] Hayat T, Khan M, and Asghar S. โ€œHomotopy analysis of MHD flows

of an oldroyd 8-constant fluid,โ€ Acta Mech., vol. 168, 2004, pp.

213-232.

[42] Y. Wu, C. Wang, and S. Liao, โ€œSolving the one-loop soliton solution of

the Vakhnenko equation by means of the homotopy analysis method,โ€

Chaos, Solitons and Fractals, vol. 23, 2005, pp. 1733-1740.

[43] S. J. Liao, โ€œSeries solutions of unsteady boundary-layer flows over a

stretching flat plate,โ€ Studies in Appl. Math., vol. 117(3), 2006, pp.

239-263.

[44] L. Song, H. Zhang, โ€œApplication of homotopy analysis method to

fractional KdV-Burgers-Kuramoto equation,โ€ Physics Letters A, vol.

367, 2007, pp. 88-94.

[45] J. Cang et al., โ€œSeries solutions of non-linear Riccati differential

equations with fractional order,โ€ Chaos, solitons & Fractals, to be

published.

IAENG International Journal of Applied Mathematics, 40:2, IJAM_40_2_01

(Advance online publication: 13 May 2010)

______________________________________________________________________________________


Recommended