Transcript
Page 1: CME-driven Interplanetary Shocks

Spectral Properties of Heavy Ions Spectral Properties of Heavy Ions Associated with Interplanetary Shocks Associated with Interplanetary Shocks

at 1 AUat 1 AU

SHINE 2004SHINE 2004Big Sky, Montana Big Sky, Montana

M. I. Desai M. I. Desai University of Maryland, College Park, MD 20742, USAUniversity of Maryland, College Park, MD 20742, USA

Co-Authors: Co-Authors: G. M. Mason: University of MarylandG. M. Mason: University of Maryland

C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA J. E. Mazur: Aerospace CorpJ. E. Mazur: Aerospace Corp

J. R. Dwyer: Florida Institute of TechnologyJ. R. Dwyer: Florida Institute of TechnologyR.E. Gold & S. M. Krimigis: JHU/APLR.E. Gold & S. M. Krimigis: JHU/APL

C.W.Smith: University of New HampshireC.W.Smith: University of New HampshireQ. Hu: IGPP, UC Riverside, CAQ. Hu: IGPP, UC Riverside, CA

R. M. Skoug: Los Alamos National LaboratoryR. M. Skoug: Los Alamos National Laboratory

Spectral Properties of Heavy Ions Spectral Properties of Heavy Ions Associated with Interplanetary Shocks Associated with Interplanetary Shocks

at 1 AUat 1 AU

SHINE 2004SHINE 2004Big Sky, Montana Big Sky, Montana

M. I. Desai M. I. Desai University of Maryland, College Park, MD 20742, USAUniversity of Maryland, College Park, MD 20742, USA

Co-Authors: Co-Authors: G. M. Mason: University of MarylandG. M. Mason: University of Maryland

C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA C.M.S.Cohen & M. E. Wiedenbeck: SRL, Caltech, CA J. E. Mazur: Aerospace CorpJ. E. Mazur: Aerospace Corp

J. R. Dwyer: Florida Institute of TechnologyJ. R. Dwyer: Florida Institute of TechnologyR.E. Gold & S. M. Krimigis: JHU/APLR.E. Gold & S. M. Krimigis: JHU/APL

C.W.Smith: University of New HampshireC.W.Smith: University of New HampshireQ. Hu: IGPP, UC Riverside, CAQ. Hu: IGPP, UC Riverside, CA

R. M. Skoug: Los Alamos National LaboratoryR. M. Skoug: Los Alamos National Laboratory

Page 2: CME-driven Interplanetary Shocks

CME-driven Interplanetary ShocksCME-driven Interplanetary Shocks

Page 3: CME-driven Interplanetary Shocks

“Ambient”

(Desai et al. 2001, ApJ 553, L89 & 2003, ApJ, 588, 1149).

• Surveyed 72 shocks

between Oct. 1997-Oct.

2002

• 3He ions accelerated in

45 IP shocks

Pre-shock intervals provide a “proxy” for ambient particles in the IP medium

Intensity-time profiles Intensity-time profiles for an IP shockfor an IP shock

Page 4: CME-driven Interplanetary Shocks

Ambient and SEP Ambient and SEP Abundances Abundances

Ambient and SEP Ambient and SEP Abundances Abundances

Ambient Ambient

material material

comprises comprises

~30% from ~30% from

impulsive impulsive

flares, and flares, and

~70% from ~70% from

large gradual large gradual

SEPsSEPs

Gradual SEPs

Impulsive SEPs

Upstream Material

10-2

10-1

100

C N O Ne MgSi S Ca Fe

12 1416 20 24 2832 40 56

Mass (AMU)

(Desai et al. 2003 ApJ, 588, 1149).

Page 5: CME-driven Interplanetary Shocks

IP Shock compared with solar wind IP Shock compared with solar wind abundancesabundances

0

1

2

3

4

1 2 3 4 5 6Mass/Charge (AMU e-1)

m = 1.22 ± 0.23

c = 0.40 ± 0.22

cu

2 =3.34; =1.45 10P x-3

= 0.43; =0.13r p

4He C

Mg

Ne

N

O

Si

S

Fe

GI = + *[c m MIQO/MOQI]

(Desai et al. 2003 ApJ, 588, 1149).

• Shock abundances are

poorly correlated with

solar wind abundances

• No clear dependence on

M/Q

• Difficult to understand in

terms of rigidity-

dependent acceleration of

solar wind ions

Page 6: CME-driven Interplanetary Shocks

IP Shock compared with ambient suprathermal IP Shock compared with ambient suprathermal abundancesabundances

0.2

0.4

0.6

0.8

2.0

1.0

1 2 3 4 5 6Mass/Charge (AMU e-1)

m = -0.64 ± 0.05

c = 0.63 ± 0.04

=4.39;P=2.56x10-5

r = -0.92; p=7.8x10-5

cu

2

(logGI) = + *[c m MIQO/MOQI]

4He N

CO

Ne

MgSi

S

Ca Fe

(Desai et al. 2003 ApJ, 588, 1149).

• Shock abundances are

well correlated with

ambient suprathermal

abundances

• Exhibit a M/Q-dependent

depletion

• Consistent with rigidity-

dependent shock

acceleration of ambient

suprathermals

Page 7: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

10-4

10-3

10-2

10-1

100

101

102

103

10-2

10-1

100

101

22 23 24 25 26 27 28 29

1999 June (UT)

10-1

100

101

ACE/ULEIS C, O, Fe Intensities

ACE/ULEIS C/O ratio

ACE/ULEIS Fe/O ratio

S2

0.16-0.23 MeV n-1 (x10)

0.91-1.28 MeV n-1

OCFe

0.2 MeV n-1

1.0 MeV n-1

0.2 MeV n-1

1.0 MeV n-1

Ambient

(a)

(b)

(c)

Shock

Fe/O at IP shocks is Fe/O at IP shocks is

depleted relative to depleted relative to

ambient values ambient values

Larger decrease at Larger decrease at

higher energy higher energy

Page 8: CME-driven Interplanetary Shocks

Energy Spectra during an IP Energy Spectra during an IP shock: shock:

All Spectra fitted by All Spectra fitted by j = jj = j00EE--

exp(-E/Eexp(-E/E00))

Parameter Carbon Oxygen Iron

No. of Points 8 10 8

j0 4.64 0.87 9.32 1.21 3.17 1.49

1.36 0.11 1.33 0.09 1.08 0.27

E0 0.69 0.09 0.72 0.06 0.35 0.06

2 0.87 0.91 0.88

10-1 100 101

Energy (MeV n-1)

10-3

10-2

10-1

100

101

102

103 2001, day 98::0426-1719 UT

Carbon

Oxygen

IronACE/ULEIS

however and E0 are coupled; Use only 0.1-0.5 MeV n-1 to obtain the power-law indices

Page 9: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Spectral indices of C, O, & Fe Spectral indices of C, O, & Fe Spectral indices of C, O, & Fe Spectral indices of C, O, & Fe

ACE/ULEIS: 0.1-0.5 MeV n-1

N = 72; r = 0.98;p ~ 0% N = 72; r = 0.79;p = 4.4 x10 -14%

0

1

2

3

4

0 1 2 3 4

O Spectral Index

0

1

2

3

4

0 1 2 3 4

O Spectral Index

(a) (b)

ACE/ULEIS: 0.1-0.5 MeV n-1

Differences in Fe and O indices are at odds Differences in Fe and O indices are at odds with injection of a mono-energetic seed with injection of a mono-energetic seed populationpopulation

Page 10: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

O e-folding energy vs. shock O e-folding energy vs. shock parameters parameters

O e-folding energy vs. shock O e-folding energy vs. shock parameters parameters

0.1

1.0

10

0.1

1.0

10

0 15 30 45 60 75 90

Shock Normal Angle [deg.]qBn

( ) [ Shock speed upstream km s-1]VS

10 100 1000

( )a ( )b

= 57; = -0.04; = 76%N r p = 51; = 0.09; = 52%N r p

E-folding energy is independent of local shock E-folding energy is independent of local shock parametersparameters

Page 11: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

0 1 2 3 4 50

1

2

3

4

5

(M+2)/(2M-2)

N = 60; r ~ 0.09; p ~ 51%

ACE/ULEIS 0.1-0.5 MeV n-1

Spectral index is poorly correlated with compression ratio, M

Results are at odds with predictions of simple steady-state models

2-hr. av. O spectral index vs. 2-hr. av. O spectral index vs. (M+2)/(2M-2) (M+2)/(2M-2)

2-hr. av. O spectral index vs. 2-hr. av. O spectral index vs. (M+2)/(2M-2) (M+2)/(2M-2)

Page 12: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

22 23 24 25 26 27

2001 November (UT)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

0.14

0.27

0.55

1.09

2.19

4.37

8.55

14.35

25.20

51.35

ACE ULEIS + SIS Oxygen Intensities

MeV n-1

S

S15W34

Ambient

IP shock event measured by ULEIS & IP shock event measured by ULEIS & SISSIS

IP shock event measured by ULEIS & IP shock event measured by ULEIS & SISSIS

Page 13: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Energy spectra measured by ULEIS & Energy spectra measured by ULEIS & SISSIS

Energy spectra measured by ULEIS & Energy spectra measured by ULEIS & SISSIS

10-1

101

103

105

107

10-2

10-1

100

101

10-1 100 101 102

Kinetic Energy (MeV n-1)

10-1 100 101 102

Kinetic Energy (MeV n-1)

solid symbols = ULEISopen symbols = SIS

solid symbols = ULEISopen symbols = SIS

event #61 event #61

(a) (b)

O

C

Fe

C/O

Fe/O

Page 14: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

10-1 100 101

Kinetic Energy (MeV n-1)

10-5

10-3

10-1

100

103

10-2

10-1

100

101

10-5

10-3

10-1

100

103

10-5

10-3

10-1

100

103

10-1 100 101

Kinetic Energy (MeV n-1)10-1 100 101

Kinetic Energy (MeV n-1)

10-1 100 101

Kinetic Energy (MeV n-1)10-1 100 101

Kinetic Energy (MeV n-1)10-1 100 101

Kinetic Energy (MeV n-1)

10-2

10-1

100

101

10-2

10-1

100

101

C

O

Fe

CO

FeC

O

Fe

(a) (b) (c)

(d) (e) (f)

event #13

event #13

event #18

event #18

event #37

event #37

C/O

Fe/O

C/O

Fe/O

C/O

Fe/O

3 Classes of Fe/O energy-dependence 3 Classes of Fe/O energy-dependence 3 Classes of Fe/O energy-dependence 3 Classes of Fe/O energy-dependence

Page 15: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Energy-dependence of Fe/OEnergy-dependence of Fe/O Energy-dependence of Fe/OEnergy-dependence of Fe/O

0.01 0.1 1.0

Fe/O (0.22 MeV n-1)

0.01

0.1

1.0

0.01

0.1

1.0

0.01 0.1 1.0

Fe/O (0.22 MeV n-1)

0.01 0.1 1.0

Fe/O (0.22 MeV n-1)

0.01

0.1

1.0

N = 68 N = 33 N = 12

ACE/ULEIS ACE/ULEIS ACE/ULEIS & ACE/SIS

(a) (b) (c)

Fe = Fe/O (0.62 MeV/n.)

Fe/O (0.22 MeV/n.)

Page 16: CME-driven Interplanetary Shocks

(Adapted from Desai et al. 2004, To appear in ApJ. Aug. 20, 2004)

FeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

Extreme Events Only Extreme Events OnlyFeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

Extreme Events Only Extreme Events Only

Page 17: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

10-3

10-2

10-1

100

0 30 60 90

Shock Normal Angle, qBn [ .]deg

10 -3 10 -2 10 -1 1003 /He 4 He ratio

( )b( )a

3He/4He > 2%

N= 43;r= 0.08; p = 63.7%

3He/4He > 2%

N= 43;r= 0.56; p = 1.2x10-2%

m = 0.19 ± 0.06

c = 2.05 ± 0.41

1.0

0.2

0.4

0.6

0.8

2.0

3.0

4.0

FeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

All events All events

FeFe vs. vs. 33He/He/44He ratio; He ratio; 33He/He/44He ratio vs. He ratio vs. BnBn

All events All events

Page 18: CME-driven Interplanetary Shocks

33He/He/44He ratio vs. Injection Threshold Speed, VHe ratio vs. Injection Threshold Speed, Vinjinj = = VVSS*sec(*sec(BnBn))

33He/He/44He ratio vs. Injection Threshold Speed, VHe ratio vs. Injection Threshold Speed, Vinjinj = = VVSS*sec(*sec(BnBn))

Most IP shocks including the 3 with rising Fe/O ratios have Vinj<2*Vsw

3He/4He ratio and Fe are

poorly correlated with Vinj

Vinj > 600 km s-1

3He/4He > 2%

Conclusion: Injection Conclusion: Injection threshold speeds do not threshold speeds do not appear to play a appear to play a significant role in the significant role in the energy-dependent energy-dependent behavior of Fe/Obehavior of Fe/O

Page 19: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

FeFe vs. O spectral index & O fluence vs. O spectral index & O fluenceFeFe vs. O spectral index & O fluence vs. O spectral index & O fluence

0 1 2 3 4

Oxygen Spectral Index(0.1-0.5 MeV n-1)

101 102 103 104 105 106 107

Oxygen Fluence (#/cm2 sr MeV n-1)(0.5-2.0 MeV n-1)

1.0

0.2

0.4

0.6

0.8

2.0

3.0

4.0

1.0

0.2

0.4

0.6

0.8

2.0

3.0

4.0

N= 68;r=0.58; p = 2.4 x10-5%

m = 0.39 ± 0.05

c =-0.94 ± 0.26

N= 61;r=-0.46; p =2.0 x10-2%

m = -0.09 ± 0.02

c = 1.81 ± 0.78

(a) (b)

Page 20: CME-driven Interplanetary Shocks

Fe/O at IP shocks vs. ambientFe/O at IP shocks vs. ambientFe/O at IP shocks vs. ambientFe/O at IP shocks vs. ambient

10-2

10-1

100

Fe/O (Upstream)10-2 10-1 100

log(Fe/OShock) = c + m*log(Fe/OUpstream)

cu2 =0.53; =1.0P

=62; =0.51; =1.0 10N r p x -5

= 0.40 m ± 0.02 = 0.26 c ± 0.05

#29event

(Desai et al. 2003 ApJ, 588, 1149).

Fe/O ratios at IP Fe/O ratios at IP

shocks and ambient shocks and ambient

are well correlatedare well correlated

Page 21: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Shock C/O & Fe/O normalized to ambient Shock C/O & Fe/O normalized to ambient values values

Shock C/O & Fe/O normalized to ambient Shock C/O & Fe/O normalized to ambient values values

• Fe/O ratios are depleted by ~30% relative to ambient values

• Energy-dependence of Fe/O is diminished when compared with ambient Fe/O - not expected from mono-energetic injection

Page 22: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

O Spectral index & Fe/O O Spectral index & Fe/O dependence at IP shocks vs. dependence at IP shocks vs.

Ambient Ambient

O Spectral index & Fe/O O Spectral index & Fe/O dependence at IP shocks vs. dependence at IP shocks vs.

Ambient Ambient

Page 23: CME-driven Interplanetary Shocks

SummarySummarySummarySummary

• Spectral parameters and energy-dependence of Fe/O are independent of local shock parameters

• 5 out of 72 events (~7%) have rising Fe/O with energy; Fe/O in other events are constant or decrease with energy

• Fe/O at IP shocks are typically ~30% lower than in the ambient population

• The O spectra and energy-dependence of Fe/O are similar at IP shocks and in the ambient population

Page 24: CME-driven Interplanetary Shocks

(Desai et al. To appear in ApJ.Aug. 20, 2004 issue)

Sketch of Re-acceleration of Seed spectra at IP Sketch of Re-acceleration of Seed spectra at IP shocks shocks

Sketch of Re-acceleration of Seed spectra at IP Sketch of Re-acceleration of Seed spectra at IP shocks shocks

10-1 100 101

Kinetic Energy (MeV n -1)

10-5

10-3

10-1

100

103

OFe

Seed SpectraShock Spectra

Page 25: CME-driven Interplanetary Shocks

ConclusionConclusionConclusionConclusion

IP shocks accelerate seed spectra composed of

suprathermal ions from gradual and impulsive SEP

events by a systematic rigidity-dependent mechanism

where ions with higher M/Q are accelerated less

efficiently than those with lower M/Q

Page 26: CME-driven Interplanetary Shocks

Relevant IssuesRelevant IssuesRelevant IssuesRelevant Issues

• How common are IP shock events with rising Fe/O ratios? ~7% of events have rising Fe/O with energy

• What are the key differences between IP shocks with rising and decreasing Fe/O ratios? No appreciable differences in shock properties

• Does any particular local shock parameter play a role in determining the energy-dependent behavior of Fe/O? Cannot rule this out completely, but no

evidence that local shock properties are important

• The primary cause of rising Fe/O in IP shocks Re-acceleration of energetic ion seed spectra

that themselves have rising Fe/O with energy


Recommended