Transcript
Page 1: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

ADAPTIVE COHESIVEVOLUMETRIC FINITE ELEMENT METHODFORDYNAMIC FRACTURESIMULATIONS

BY

MARIUSZ ZACZEK

B.S.,Universityof Illinois at Urbana-Champaign,1999

THESIS

Submittedin partialfulfillment of therequirementsfor thedegreeof Masterof Sciencein AeronauticalandAstronauticalEngineering

in theGraduateCollegeof theUniversityof Illinois atUrbana-Champaign,2001

Urbana,Illinois

Page 2: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

c

Copyright by MariuszZaczek,2001

Page 3: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

To my mother

iii

Page 4: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

ACKNOWLEDGMENTS

First and foremost,I would like to thank the Centerfor Simulationof AdvancedRockets

(CSAR) who hassponsoredmy researchover the pasttwo years. I would also like to express

my appreciationandgratitudeto my advisor, Prof. PhilippeGeubelle.Withouthisadvice,support

andunderstandingI wouldhaveneverbeenableto finishthisthesis.I amespeciallygratefulto him

for spendingcountlesshoursin helpingwith this researchandin takingthetime to answermany

of my questions.Thankyou alsoto DhirendraKubair, SpandanMaiti, JasonKamphausandthe

variousothermembersof theStructuresandSolid MechanicsGroupwho have beengreatfriends

andhavehelpedmetremendouslyovermy time here.In addition,I wouldalsolike to thankProf.

RicardoUribe who hasallowedto expandmy horizonsby working on variousroboticprojectsas

partof theAdvancedDigital SystemsLaboratory.

Lastly, I would like to thankmy motherwho hasalwaysbelievedin meandencouragedmeto

bethebestthatI canandnever forget to smile. Without herI would have never hadtheenergy to

work sohard.

iv

Page 5: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1 Review of theCohesive/VolumetricFiniteElementScheme. . . . . . . . . . . . . 6

2.1.1 Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.2 Finite ElementImplementation . . . . . . . . . . . . . . . . . . . . . . . 112.1.3 Stability andMeshSize . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 NodalTimeStepSubcycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.3 DynamicCohesiveNode/ElementInsertion . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 GeometryandDatabaseManagement. . . . . . . . . . . . . . . . . . . . 192.3.1.1 1-D Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3.1.2 2-D Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 CohesiveElementStability andSystemEquilibrium . . . . . . . . . . . . 262.3.2.1 CohesiveDamping . . . . . . . . . . . . . . . . . . . . . . . . 282.3.2.2 CohesiveElementPre-Stretching. . . . . . . . . . . . . . . . . 30

2.3.3 InsertionRegion Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 332.3.3.1 BoundingBox Approach . . . . . . . . . . . . . . . . . . . . . 332.3.3.2 Stress-basedSelectionApproach . . . . . . . . . . . . . . . . . 35

2.4 ParallelImplementationusingCharm++ . . . . . . . . . . . . . . . . . . . . . . 372.4.1 MeshPartitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.4.2 ComputationalEfficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 402.4.3 Structureof StandardCharm++ FEM Framework . . . . . . . . . . . . . 412.4.4 ParallelStructureof theDynamicInsertionCode . . . . . . . . . . . . . . 44

3 1-D ANALYSIS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.1 ProblemDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2 Multi-TimeStepNodalSubcycling Results . . . . . . . . . . . . . . . . . . . . . 493.3 DynamicCohesiveNodeInsertionResults. . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Blind CohesiveNodeInsertionResults . . . . . . . . . . . . . . . . . . . 553.3.2 Dampingof Blind Insertion . . . . . . . . . . . . . . . . . . . . . . . . . 583.3.3 DynamicInsertionwith Pre-Stretch . . . . . . . . . . . . . . . . . . . . . 60

v

Page 6: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

3.3.4 CombinedInsertionwith Subcycling . . . . . . . . . . . . . . . . . . . . . 633.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 2-D ANALYSIS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.1 Multi-TimeStepSubcycling Results . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 EqualSubcycledto Non-SubcycledRegionRatioof 1:1 . . . . . . . . . . 694.1.2 UnequalSubcycledto Non-SubcycledRegionRatio . . . . . . . . . . . . 704.1.3 Multi-TimeStepNodalSubcycling Observations . . . . . . . . . . . . . . 73

4.2 DynamicCohesiveElementInsertion . . . . . . . . . . . . . . . . . . . . . . . . 754.2.1 InsertionAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1.1 Blind Insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . 784.2.1.2 Dampingof Blind Insertion . . . . . . . . . . . . . . . . . . . . 784.2.1.3 Insertionwith Pre-Stretch. . . . . . . . . . . . . . . . . . . . . 814.2.1.4 InsertionAnalysisObservations. . . . . . . . . . . . . . . . . . 83

4.2.2 InsertionResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.2.2.1 BoundingBox Insertion . . . . . . . . . . . . . . . . . . . . . . 844.2.2.2 StressBasedInsertionin L-Angle Specimen . . . . . . . . . . . 894.2.2.3 Stress-basedInsertionin VerticalInterfaceSpecimen . . . . . . 944.2.2.4 Stress-basedInsertionin AngledInterfaceSpecimen. . . . . . . 964.2.2.5 InsertionInterval Selection . . . . . . . . . . . . . . . . . . . . 1024.2.2.6 DynamicInsertionCombinedwith Subcycling . . . . . . . . . . 105

4.3 ParallelizationUsingCharm++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . 1125.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135.2 Recommendationsfor FutureResearch. . . . . . . . . . . . . . . . . . . . . . . . 115

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vi

Page 7: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

LIST OF FIGURES

Figure Page

1.1 Illustrationof the fractureprocessassociatedwith theTitan IV SRMU graincol-lapseaccident(takenfrom Changetal., (1994)).. . . . . . . . . . . . . . . . . . . 2

2.1 CVFE conceptshowing one 4-nodecohesive elementbetweentwo linear-straintriangularvolumetricelements.The cohesive elementis shown in its deformedconfiguration.In its undeformedconfigurationis hasnothicknessandtheadjacentnodesaresuperposed.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Bilinear cohesive failure law for thepuretensileor modeI (∆t 0, left) andpureshearor modeII (∆n 0, right) cases.An unloadingandreloadingpathis alsoshown in themodeI case.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Coupledcohesive failure modeldescribedby Equation2.4; variationof normal(top)andshear(bottom)cohesivetractionswith respectto normal(∆n) andtangen-tial (∆t) displacementjumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Timestepdefinedby: (a) elementsizeor (b) elementtype. . . . . . . . . . . . . . 142.5 Subcycling regiondistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.6 Timestepassignment.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.7 (a)Standard1-D mesh.(b) 1-D meshwith insertedcohesivenode. . . . . . . . . . 202.8 2-D Cohesiveelementrepresentation. . . . . . . . . . . . . . . . . . . . . . . . . 212.9 2-D cohesive elementinsertion: (a) proposededgefor cohesive insertion,(b) in-

sertedcohesiveelement,(c) “criss-crossed”cohesiveelement. . . . . . . . . . . . 212.10 Connectivity updateof nodesandelements. . . . . . . . . . . . . . . . . . . . . . 222.11 Common2-D insertioncases.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.12 Illustrativeexampleof threecohesiveelementinsertionsusingCases#2 and#3 in

Figure2.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.13 Illustrationof insertionCase#5 in Figure2.11. . . . . . . . . . . . . . . . . . . . 262.14 1-D “blind” insertiontestproblem. . . . . . . . . . . . . . . . . . . . . . . . . . . 272.15 1-D “blind” insertiontest problem: evolution of the displacementjump across

thecohesive element(i.e., betweennodes2 & 4 in Figure2.14) resultingfrom acohesiveelementinsertionat time0, 1000∆t (33 3 s), 2000∆t (66 6 s). . . . . . . . 28

2.16 Schematicrepresentationof adamped1-D cohesiveelement.. . . . . . . . . . . . 28

vii

Page 8: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

2.17 Effect of cohesive damping:evolution of thedisplacementjump acrossthecohe-sive elementfor the simple1-D testproblemshown in Figure2.14andresultingfrom “blind” cohesive elementinsertionwith dampingat time 0, 1000∆t (33 3 s)and2000∆t (66 6 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.18 1-D cohesiveelementpre-stretchingconcept. . . . . . . . . . . . . . . . . . . . . 302.19 1-D cohesive elementpre-stretchingconcept,with thepre-stretchappliedequally

on thetwo nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.20 2-D separationcontributionsfrom neighboringcohesiveelements. . . . . . . . . . 332.21 1-D test problemseparationoscillationsof nodes2 & 4 (Figure2.14) resulting

from insertionwith pre-stretchingat time0, 1000∆t (33 3 s), 2000∆t (66 6 s). . . . 342.22 Boundingboxmethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.23 Multiple activecohesiveregions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.24 Stress-basedinsertionresultsfor simpleangledcase. . . . . . . . . . . . . . . . . 372.25 SimpleCVFEmesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392.26 PartitionedCVFE mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Referenceproblemin 1-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2 x-t diagramin 1-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483.3 Analyticalsolutionfor displacementd, velocityv andstressσ in themiddleof the

beamfor the1-D waveproblemdescribedin Figure3.1. . . . . . . . . . . . . . . 483.4 Subcycling testdescribedby Smolinski(1989)by CaseC. . . . . . . . . . . . . . 493.5 Velocityprofileof node#5 with subcycling parameterm 10. . . . . . . . . . . . 503.6 Velocityprofileof node#15with subcycling parameterm 10. . . . . . . . . . . 503.7 Velocityprofileof node#25with subcycling parameterm 10. . . . . . . . . . . 513.8 Subcycling effecton (a)displacementsand(b) velocitiesat node5. . . . . . . . . . 523.9 Testcaseusedto gettiming resultsfor subcycling. . . . . . . . . . . . . . . . . . . 533.10 Nodes12 through20 aremadecohesive. . . . . . . . . . . . . . . . . . . . . . . . 543.11 Velocityprofileof node#15resultingfrom blind insertionat the0th timestep(0 0

s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.12 Velocity profile of node#15resultingfrom blind insertionat the2500th time step

(6 25s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.13 Velocity profile of node#15resultingfrom blind insertionat the5000th time step

(12 5 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.14 Velocityprofileof node#15resultingfrom blind insertionat the10000th timestep

(25 0 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.15 Velocity profile of node#15 resultingfrom blind insertionwith dampingat the

5000th timestep(12 5 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.16 Velocity profile of node#15 resultingfrom blind insertionwith dampingat the

10000th timestep(25 0 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.17 Velocity profile of node#15 resulting from insertionwith pre-stretchingat the

5000th timestep(12 5 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii

Page 9: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

3.18 Velocity profile of node#15 resulting from insertionwith pre-stretchingat the10000th timestep(25 0 s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.19 Cohesive separationfor node#15 resultingfrom blind insertionat 10000th timestep(25 0 s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.20 Cohesive separationfor node#15 resultingfrom insertionwith pre-stretchingat10000th timestep(25 0 s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.21 Testcasefor dynamiccohesivenodeinsertionwith pre-stretching. . . . . . . . . . 633.22 Testcasefor dynamicinsertionwith subcycling. . . . . . . . . . . . . . . . . . . . 643.23 Velocityprofileof node400of dynamiccohesivenodeinsertionattimestep150000

(3750s) with nodalsubcycling usingm 10. . . . . . . . . . . . . . . . . . . . . 65

4.1 Cohesiveelementdistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.2 Nodaldisplacementsof a randomnodeaheadof thenotchfor a problemwith an

equalregion ratio (1 : 1) with subcycling parametersof m 1 4 10 16and20. . . 694.3 Nodaldisplacementsof a randomnodefor the2 : 1 region ratio with subcycling

parametersof m 1 4 10 16and20. . . . . . . . . . . . . . . . . . . . . . . . . 724.4 Nodaldisplacementsof a randomnodefor the4 5 : 1 region ratio with subcycling

parametersof m 1 4 10and16. . . . . . . . . . . . . . . . . . . . . . . . . . . 724.5 Percenttimesavingsvs region ratio for varioussubcycling parameters. . . . . . . 744.6 Simple2-D mesheswith threecohesive elementsinsertedalong(a) ”horizontal”

and(b) ”mixed” interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764.7 Normalizedaveragestresslevelsfor thevolumetricelementsof themiddlecohe-

sive element. Vertical lines at the 0th (0 0 s), 2500th (1 0 s) and5000th (2 0 s)timesteprepresentdynamicinsertiontimes. . . . . . . . . . . . . . . . . . . . . 77

4.8 Normalizedseparationof thetrackingnodefor ”horizontal” blind insertionat the0th (0 0 s), 2500th (1 0 s) and5000th (2 0 s) timestep. . . . . . . . . . . . . . . . 79

4.9 Normalizedseparationof thetrackingnodefor ”mixed” blind insertionat the0th(0 0 s), 2500th (1 0 s) and5000th (2 0 s) timestep. . . . . . . . . . . . . . . . . . 79

4.10 Normalizedseparationof the trackingnodefor ”horizontal” blind insertionwithdampingat the 0th (0 0 s), 2500th (1 0 s with η 3 8) and5000th (2 0 s withη 4 4) timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.11 Normalizedseparationof thetrackingnodefor ”mixed”blind insertionwith damp-ing at the0th (0 0 s), 2500th (1 0 s with η 2 4) and5000th (2 0 s with η 4 3)timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 Normalizedseparationof the trackingnodefor “horizontal” insertionwith withpre-stretchingat the0th (0 0 s), 2500th (1 0 s) and5000th (2 0 s) timestep. . . . . 82

4.13 Normalizedseparationof the trackingnodefor “mixed” insertionwith with pre-stretchingat the0th (0 0 s), 2500th (1 0 s) and5000th (2 0 s) timestep. . . . . . . 82

4.14 Effect of blind insertionvs pre-stretchingon theamplitudeof thetractionoscilla-tionsfor increasingstressinsertionlevels,for the“horizontal” and“mixed” cases. 83

4.15 Schematicof a modeI crackproblem. . . . . . . . . . . . . . . . . . . . . . . . . 85

ix

Page 10: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.16 Numberof cohesive elementspresentin the domainover time for boundingboxinsertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.17 ModeI casecracktip distanceversustime. . . . . . . . . . . . . . . . . . . . . . 874.18 Mode I referencecasewith cohesive elementspresentfrom the beginning of the

simulation(10x exaggeration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.19 ModeI boundingbox solution(10x exaggeration)(edgekey: thin = normaledge,

dark= cohesiveelement,dashed= failing cohesiveelement,bold= failedcohesiveelement). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.20 Schematicrepresentationof L-angletestspecimenwith boundaryconditions. . . . 904.21 Numberof cohesive elementspresentin the domainover time for variousstress

insertionlevels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.22 L-anglecasecracktip distanceversustime, for variousstressinsertionlevels. . . . 914.23 L-anglereferencecasewith cohesive elementspresentfrom thebeginningof the

simulation(10x exaggeration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924.24 L-anglecasewith stressbasedcohesive elementinsertionfor a 15% stresslevel

(10xexaggeration)(edgekey: thin = normaledge,dark= cohesiveelement,dashed= failing cohesiveelement,bold= failedcohesiveelement). . . . . . . . . . . . . 92

4.25 L-anglecasewith stressbasedcohesive elementinsertionfor a 30% stresslevel(10xexaggeration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.26 L-anglecasewith stressbasedcohesive elementinsertionfor a 45% stresslevel(10xexaggeration)(edgekey: thin = normaledge,dark= cohesiveelement,dashed= failing cohesiveelement,bold= failedcohesiveelement). . . . . . . . . . . . . 93

4.27 Schematicrepresentationof interfacetestspecimenwith boundaryconditions. . . 944.28 Deformationafter5000timestepsfor stressinsertionof 45%(10xexaggeration).. 954.29 Deformationafter17500timestepsfor stressinsertionof 45%(10xexaggeration). 954.30 Deformationafter25500timestepsfor stressinsertionof 45%(10xexaggeration)

(edgekey: thin = normaledge,dark= cohesiveelement,dashed= failing cohesiveelement,bold= failedcohesiveelement). . . . . . . . . . . . . . . . . . . . . . . 95

4.31 Schematicrepresentationof interfacetestspecimenwith boundaryconditions. . . 964.32 Cracklengthhistoryfor aweak60 degreeinterface. . . . . . . . . . . . . . . . . 984.33 Crackspeedhistoryfor aweak60 degreeinterface. . . . . . . . . . . . . . . . . . 984.34 ModeI cracktrappedalongtheweakLoctite-384interfacefor a45%stress-based

insertion(no exaggeration)(edgekey: thin = normaledge,dark = cohesive ele-ment,dashed= failing cohesiveelement,bold= failedcohesiveelement). . . . . . 99

4.35 ModeI cracktrappedalongthestrongWeldon-100interfacefor a45%stressbasedinsertion(no exaggeration)(edgekey: thin = normaledge,dark = cohesive ele-ment,dashed= failing cohesiveelement,bold= failedcohesiveelement). . . . . . 100

4.36 Close-upof crackregionalongaweakinterface(noexaggeration). . . . . . . . . 1014.37 Close-upof crackregionalongastronginterface(no exaggeration). . . . . . . . . 1014.38 L-anglereferencecasewith cohesive elementsinsertedevery (a) 100 time steps

(b) 500timestepsat the30%stresslevel (10x exaggeration). . . . . . . . . . . . 103

x

Page 11: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.39 L-anglereferencecasewith cohesive elementsinsertedevery (a) 1000time steps(b) 10000time stepsat the30%stresslevel (10x exaggeration)(edgekey: thin =normaledge,dark= cohesive element,dashed= failing cohesive element,bold =failedcohesiveelement). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.40 Numberof cohesiveelementspresentover time for insertionintervalsof 100,500,1000,5000and10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.41 Close-upof thethreeintervalspresentedin Figure4.40. . . . . . . . . . . . . . . 1044.42 Schematicof a modeI crackproblemusingnodalsubcycling anddynamicstress

insertionof 45%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064.43 Region ratioover time for thesubcycling solutionswith m 6 10and14. . . . . . 1074.44 Referencesolutionwith cohesive elementspresenteverywherein the domainat

thebeginningof thesimulation.No subcycling is used(10xexaggeration). . . . . 1074.45 (a)Solutionhavingonlydynamicinsertionat45%of thelocalstresswith nosubcy-

cling. (b) Combineddynamicinsertionwith subcycling, m 6 (10xexaggeration).1084.46 (a) Combineddynamicinsertionwith subcycling, m 10 (b) Combineddynamic

insertionwith subcycling, m 14 (10x exaggeration)(edgekey: thin = normaledge,dark = cohesive element,dashed= failing cohesive element,bold = failedcohesiveelement). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.47 Speedupresultsfor L-anglecaseusing1, 2, 4, and6 processors. . . . . . . . . . . 110

5.1 Adaptivecrackpropagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165.2 11thelementbrokeninto 7 pieces. . . . . . . . . . . . . . . . . . . . . . . . . . . 1165.3 Velocityprofile for new node#26afterelementbreakupat timestep10000. . . . . 117

xi

Page 12: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

CHAPTER 1

INTR ODUCTION

Theresearchpresentedin this thesisis sponsoredby ASCI/ASAPCenterfor theSimulationof

AdvancedRockets(CSAR)whosemainobjective is thedetailed,integrated,whole-systemsimu-

lation of solid propellantrocketsunderboth normalandabnormaloperatingconditionsHeathet

al., (2000).Thedevelopmentof numericaltoolsneededto simulatein anadaptive fashionaccident

scenariosinvolving the propagationof one or more cracksin the solid propellant(or grain) or

alongthegrain/caseinterfaceconstitutestheprimaryobjective of the researchwork summarized

hereafter.

Fractureeventstakingplacein thegrainduringtheflight of asolidpropellantrocketoftenhave

detrimentaleffectson theperformanceof therocket. As thecrackpropagatesin thegrainor along

the grain/caseinterface,it createsadditionalburning surfaces,generatingan excessof hot gas,

which, in turn,maystronglyaffect thepressurehistoryin therocket chamberandsometimeslead

to acatastrophicfailure.A classicalexampleof acatastrophicsolidrocket failurethatinvolvedthe

propagationof acrackalongthegrain/caseinterfaceis thatof theTitan IV graincollapseaccident

that took placeon April 1, 1991(Wilson et al., 1990;Changet al. 1994)TheTitan IV accident

scenariois schematicallyillustratedin Figure1.1. Dueto theaerodynamiceffectsassociatedwith

thegrainshapenearaslotandtheinteractionbetweencoreandcrossflows,aregionof lowerpres-

suredevelopedalongthedownstreamportionof thegrain, leadingto its progressive deformation

into therocket chamberandresultingin a dramaticincreasein theheadendpressure.Associated

with thegraindeformation,a crackis believedto have initiatedfrom theaft segmentstressrelief

1

Page 13: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

groove,extendedto theadjacentcasebondandpropagatedalongtheinterfaceat speedsexceeding

60m s (Wilsonetal., 1992).Thepropagationof theinterfacecrackaccentuatedthegrainslumping

process,whicheventuallyled to thechokingof thecoreflow andtheexplosionof therocket.

Figure 1.1 Illustrationof the fractureprocessassociatedwith theTitan IV SRMU graincollapseaccident(takenfrom Changet al., (1994)).

Although progresshasbeenmadeover the pastfour decadesin understandingthe complex

physicalphenomenaassociatedwith this classof fractureevents(Kuo andKooker, 1990;Lu and

Kuo, 1994;Smirnov, 1985),no truly predictive numericaltoolsarecurrentlyavailableto capture

adequatelythefailureprocessandits effecton therocketperformance.Thesimulationof dynamic

fractureeventstakingplacewhile thegrainis burningconstitutesamajorcomputationalchallenge

for variousreasons.Firstly, theconstitutiveandfailureresponsesof thesolid propellantarequite

complex andofteninvolvelargedeformationsandratedependence,whichmustbeaccountedfor in

theconstitutive,failureandkinematicdescriptionsof thecontinuum.Secondly, thegeometryof the

problemchangessubstantiallyduringthefractureeventdueto therapidpropagationof thecrack

andthe deformationandprogressive burning of thegrain. Thirdly, this problemis characterized

by a complex fluid/structureinteractiondue to the aeroelasticdeformationsof the grain and to

the pressurizationof the newly createdfracturesurfacesby the reactinggas. This interactionis

2

Page 14: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

particularlyhardto modelin thevicinity of theadvancingcrackfront wherethegeometryof the

correspondingfluid domainis especiallycomplex andnew fluid regionsarecontinuouslyadded

dueto the crackmotion. Finally, the problemis highly transient,as the speedof the crackhas

beenshown to besometimesof theorderof tensof meterspersecond,possiblyresultingin failure

eventslastinga fractionof asecond.

As describedin Geubelleet al., (2001),thekey componentof themulti-physicsfluid/structure

codeto beusedin thesimulationof dynamicfailure in ”li ve” solid propellantis anexplicit Arbi-

trary/LagrangianEulerian(ALE) formof theCohesive/VolumetricFiniteElement(CVFE)scheme,

speciallydevelopedfor the simulationof dynamicfractureeventsin structuraldomainswith re-

gressingboundaries.The CVFE schemerelies on a combinationof conventional(volumetric)

elementsandof interfacial(cohesive)elementsto capturetheconstitutiveandfailureresponsesof

the material,respectively. The numericalmethod,which is describedin detail in Chapter2, has

beenshown to bequitesuccessfulin thesimulationof variousdynamicfractureproblemsinvolving

spontaneouscrackinitiation, propagationandarrest. It wasused,for example,by Camachoand

Ortiz (1996)to simulateimpactdamagein ceramicmaterials,andby Needleman(1997)to model

dynamicfailureeventsin brittle materials.SiegmundandNeedleman(1997)haveusedtheCVFE

schemeto studyrate-dependencein thedynamicfailureof elasto-plasticmaterials.Geubelleand

Baylor (1998)have simulatedimpact-induceddelaminationof composites,and,morerecently, Bi

etal., (2001)haveusedtheCVFEschemeto capturedynamicfiberpush-outin modelcomposites.

However, in its currentimplementationderivedfrom thework of GeubelleandBaylor (1998),

the CVFE schemerelieson the initial ”static” introductionof the cohesive elementsin thefinite

elementmesh.In otherwords,theanalystprovidesat theonsetof thesimulationa setof possible

pathsfor thedynamiccrack(s)thatwould resultfrom thedynamicloadingof thestructure.This

approachis particularlyattractive for its simplicity: oncethecohesive/volumetricmeshis created,

thedynamicfracturesimulationproceedswithout theneedto modify thestructuralmodel. How-

ever, it suffersfrom two importantlimitations:firstly, thepresenceof theinterfacialelementsin the

finite elementmeshgreatlyincreasesthenumberof nodes,and,therefore,thenumberof degrees

of freedom.This increasein the problemsizeoftenhassubstantialimpacton thecomputational

3

Page 15: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

costof the simulation. Secondly, andperhapsmoreimportantly, the presenceof a large number

of cohesive elementsmayadverselyaffect theprecisionof thenumericalsolution. As shown by

Baylor (1997),theadditionalcomplianceassociatedwith thecohesiveelementsmayleadto under

predictingthestressfieldsin thediscretizedstructure.And sincethefailureprocessis stress-based,

this erroron thestressvaluemayaffect theprecisionof thefractureprediction.

To addressthesetwo issues,we proposeto developandimplementin this projectanadaptive

CVFE scheme,for which the cohesive elementsarenot introducedinitially in the finite element

meshbut areinserteddynamicallyduring thesimulationitself. This approachwill not only sub-

stantiallyreducethenumberof nodaldegreesof freedom,especiallyduring the loadingphaseof

thedynamicproblemduringwhich little failuretakesplace,but alsowill guaranteeamoreprecise

captureof thedynamicstressfield beforeandduringthefractureevent.

The developmentand implementationof the adaptive CVFE schemepresentsvariouschal-

lengesthatneedto beaddressed.Thesechallengesareconcernedwith 1) themanagementof the

databasecontainingtheevolving finite elementdiscretization,2) thecriterion to beusedto insert

cohesive elementsadaptively, 3) themechanicalperturbationcreatedby thedynamicallyinserted

cohesiveelements,and4) theloadimbalanceinherentlypresentin theparallelimplementationof

theadaptiveCVFEscheme.Theapproachadoptedin thepresentstudyto addressthesechallenges

is summarizedin Chapter2.

Thepresentprojectalsoaddressesthe issueof adaptivity of theCVFE schemeat anotherim-

portantlevel. As shown by Baylor (1997), one importantdifficulty associatedwith the CVFE

schemeis the fact that it often requiresthe useof very small time stepstypically representinga

small fraction (3 to 5%) of the Courantlimiting valuecharacterizingexplicit dynamicschemes.

This limitation greatlyimpactsthecomputationaleffort of suchsimulations,astensor hundreds

of thousandsof time stepsareoftenneeded.Theneedto usevery small time stepsfor theentire

meshseemsespeciallywastefulwhenonly a small numberof cohesive elementsareusedin the

analysis,asit is thecasewith theproposedadaptiveCVFE scheme.A naturalway to addressthis

issueis thenodalexplicit subcycling schemeproposedby Smolinski(1989),which allows for the

useof distinctlydifferenttimestepvaluesin variouspartsof thefinite elementdomain.

4

Page 16: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Theapplicationof thenodalsubcycling schemeto theadaptiveCVFEschemeis alsodescribed

in Chapter2, followed, in Chapter3, by a one-dimensional(1-D) study of the adaptive CVFE

scheme,performedbecauseof its simplicity and its ability to provide useful insight on various

stability issues.Finally, wesummarizein Chapter4 variousimplementationissuesassociatedwith

themorecomplex 2-D caseandpresenttheresultsof various2-D simulationsperformedwith the

adaptiveCVFE code.

5

Page 17: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

CHAPTER 2

METHODOLOGY

As describedearlier, thebasicgoalof theresearcheffort summarizedin thepresentdocument

is to developandimplementanadaptive Cohesive/VolumetricFinite Element(CVFE) schemeto

simulateefficiently dynamicfractureproblemsinvolving the spontaneousinitiation, propagation

andarrestof oneor morecracks.Theapproachadoptedin this projectrelieson a combinationof

theadaptiveinsertionof cohesiveelementsin thefinite elementmesh,subcycling,meshrefinement

andparallel implementation.Detailson thesevariouscomponentsarepresentedin this chapter,

togetherwith a summaryof theformulationandimplementationof theCVFEscheme.

2.1 Review of the Cohesive/Volumetric Finite ElementScheme

2.1.1 Formulation

As mentionedabove, the backboneof this researchis the CVFE scheme,which is schemati-

cally presentedin Figure2.1. It consistsof a combinationof conventional(volumetric)elements

(representedby 3-nodetrianglesin Figure2.1, althoughmost typesof structuralfinite elements

canbeused)andof interfacial(cohesive)elements(representedby a4-nodeelementin Figure2.1,

althoughhigher-ordercohesive elementsarealsoavailable). The volumetricelementsareused

to characterizethemechanicalresponseof thebulk material,while thecohesive elementsarein-

troducedin thefinite elementmeshto simulatethespontaneousmotionof oneor morecracksin

6

Page 18: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

the structure.The captureof the failure processis achieved with the aid of a phenomenological

cohesive failurelaw characterizingtheevolutionof thecohesiveelementresponse.

t

n

VolumetricElement

ElementCohesive

VolumetricElement

Figure 2.1 CVFE conceptshowing one4-nodecohesive elementbetweentwo linear-straintrian-gular volumetricelements.The cohesive elementis shown in its deformedconfiguration. In itsundeformedconfigurationis hasno thicknessandtheadjacentnodesaresuperposed.

Thechoiceof thecohesive failuremodelplaysanimportantrole in thesimulationof thefrac-

ture process.In this study, we usethe bilinear rate-independentintrinsic formulationintroduced

by GeubelleandBaylor (1998),which is presentedin Figure2.2 for thepuremodeI andmodeII

cases.Thecohesive relationconsistsin two distinctportions:a linearly rising part, indicatingan

increasingresistanceof thecohesiveelementto theseparationof theadjacentvolumetricelements,

followedby amonotonicallydecreasingrelationbetweencohesivetractionanddisplacementjump

simulatingtheprogressive failureof thematerial. Themaximumvalueof thenormal(σmax) and

tangential(τmax) cohesivetractionsrespectivelycorrespondto tensileandshearstrengthsof thema-

terial. Oncethedisplacementjump (∆n for thetensilecaseand∆t for theshearcase)hasreached

a critical value(respectively denotedby ∆nc and∆tc for themodeI andII casesin Figure2.2),the

cohesive tractionis assumedto vanish. No moremechanicalinteractionis thenassumedto take

placebetweenthe initially adjacentvolumetricelements,therebycreatinga traction-freesurface

(i.e.,acrack)in thediscretizedsolid domain.

Theareaunderthecohesive traction/separationcurve correspondto theenergy neededto gen-

erateanew fracturesurface,i.e.,thefracturetoughnessof thematerial,denotedby GIc andGI Ic for

themodesI andII, respectively. To accountfor thepossiblecouplingbetweenthefailuremodes,

7

Page 19: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Tt

t

maxτ

∆ tc

GIIc

Tn

n

maxσ

∆ nc

Unloading

Reloading

GIc

Figure2.2Bilinearcohesivefailurelaw for thepuretensileor modeI (∆t 0, left) andpureshearor modeII (∆n 0, right) cases.An unloadingandreloadingpathis alsoshown in themodeI case.

thenormalandtangentialcohesivetractions,Tn andTt , arerelatedto thenormof thedisplacement

jump vector∆ ∆n ∆t throughtheintroductionof theresidualstrengthparameterSdefinedas 1 ∆ (2.1)

where ∆ denotestheEuclideannormof thenon-dimensionaldisplacementjump vector∆

∆ ∆n

∆t ∆n ∆nc

∆t ∆tc (2.2)

To limit thedetrimentaleffect thatthecomplianceof thecohesiveelementsmight have on the

stressfield solution,theresidualstrengthparameterof acohesiveelementis initially givenavalueinitial verycloseto unity. Typically avalueof 0 95to 0 98is used.As theelementfails, thisvalue

progressively decreasesto zero,at which point completefailure is assumedto have occurred.In

orderto maintainamonotonicdecreaseof thisstrengthparameterandtherebypreventthepossible

healingof thecohesive elements,theminimumvalueachievedby

is storedat eachintegration

8

Page 20: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

point by using min min max 0 1 ∆ (2.3)

The resultingrate-independentcoupledbilinear cohesive traction-separationlaw can be ex-

pressedas

Tn 1 ∆nσmax Tt

1 ∆tτmax (2.4)

where

∆nc 2GIc

σmax

initial ∆nt 2GI Ic

τmax

initial (2.5)

in which, asindicatedearlier, GIc andGI Ic arethecritical energy releaserates(or fracturetough-

nesses)for modeI andmodeII failures,respectively. The fracturemodecouplingachieved by

Equation2.4canbeseenin Figure2.3.

9

Page 21: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 2.3 Coupledcohesive failuremodeldescribedby Equation2.4; variationof normal(top)andshear(bottom)cohesive tractionswith respectto normal(∆n) andtangential(∆t) displacementjumps.

10

Page 22: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

2.1.2 Finite Element Implementation

Theimplementationof theCVFEschemereliesonthefollowing form of theprincipleof virtual

work: Ω

S : δE dΩ internal

Ω

ρa δu dΩ inertial

Γex

Tex δu dΓ external

Γin

T δ∆ dΓ cohesive

0 (2.6)

whereΩ is theundeformeddomain,Γin denotestheinterior “cohesive” boundaryalongwhich the

cohesive tractionsT act, and Γex correspondsto the part of the exterior boundaryalong which

the external tractionsTex areapplied. a andu denotethe accelerationanddisplacementfields,

respectively. S is the secondPiola-Kirchoff stresstensorand E, the Lagrangianstrain tensor,

which is relatedto thedisplacementfield through

E 12 ∇u ∇uT ∇uT∇u (2.7)

Nonlinearkinematicsis usedin this studyto accountfor the possiblelarge rotationspresent

in thestructuredueto the fractureprocess.Theexpression(2.6) of theprinciple of virtual work

is fairly conventional,exceptfor thepresenceof thefourth term,which correspondsto thevirtual

work doneby cohesive tractionT for avirtual separationδ .

Theresultingsemi-discretefinite elementformulationcanbeexpressedin thefollowing matrix

form:

Ma Rin Rco Rex (2.8)

whereM is the lumpedmassmatrix, a is the vectorcontainingthenodalaccelerations,andRin,

Rco andRex respectively denotetheinternal,cohesiveandexternalforcevectors.

The time steppingschemeis basedon the classicalexplicit second-ordercentraldifference

scheme(Belytschko et al., 1976):

dn 1 dn ∆t vn 12

∆t2an (2.9)

an 1 M 1 Rinn 1 Rco

n 1 Rexn 1 (2.10)

11

Page 23: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

vn 1 vn 12

∆t an an 1 (2.11)

where∆t is thetimestepanddn denotesthenodaldisplacementvectorat timen∆t.

The expressionof the internal, cohesive and external force vectorscan be found in Baylor

(1997).Whilea varietyof constitutivemodelscanbeusedto characterizetheresponseof thevol-

umetric elements,we use, in this study, a simple linear isotropic relation betweenthe second

Piola-Kirchoff stressesSandtheLagrangianstrainsE:

Si j λEmmδi j 2µEi j (2.12)

whereλ andµ aretheLame’sconstants.

2.1.3 Stability and Mesh Size

Like all explicit time steppingschemes,the centraldifferenceformulation is conditionally

stable(Cooket al., 1989),andthetimestepsizemustsatisfytheCourant(or CFL) condition:

∆t leCD

(2.13)

wherele is thesmallestelementsize,CD, thedilatationalwavespeed,givenby

CD E 1 ν 1 ν 1 2ν ρ (2.14)

in which E, ν andρ denotethematerial’s Young’s modulus,Poisson’s ratio anddensity, respec-

tively.

In theregionwherefailureis takingplace,smallelementshaveto beusedto captureadequately

the stressconcentrationassociatedwith the presenceof the crack front and the failure process.

In particular, a sufficient numberof elements(typically 5 to 10) mustbe usedto discretizethe

cohesive zone,i.e., theregion wherecohesive failure is takingplace.An estimateof thecohesive

12

Page 24: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

zonesizecan be obtainedfor the quasi-staticmodeI situationin termsof the constitutive and

failurepropertiesof thematerial,as

R π8

E1 ν2

GIc

σmax2 (2.15)

It is clear, however, thatsmallelementsmustonly beusedin regionswherefailureis takingor

is aboutto takeplace.A coarserdiscretizationcanbeadoptedin therestof thedomain,generating

apossiblylargedisparityin elementsizes,andthereforein timestepsizes.

Furthermore,due to their inherentinstability and to the needto accuratelycapturethe fail-

ure processin the vicinity of the dynamicallypropagatingcrackfront, the presenceof cohesive

elementsin the discretizeddomainfurther reducesthe time stepsize,typically to 1 30th of the

Courantcondition(Baylor, 1997).InanadaptiveCVFE schemewherecohesiveelementsareonly

insertedin critical portionsof thediscretizeddomains,this additionaltime steprequirementalso

suggeststheneedfor timestepsubcycling.

In conclusion,the motivation for the incorporationin the CVFE schemeof the subcycling

algorithmdescribedin the next sectioncanbe schematicallypresentedin Figure2.4: time step

disparitycanbeassociatedwith spatialvariationsin elementsizes(parta)and/orwith thepresence

of cohesivedomains(partb).

2.2 Nodal Time StepSubcycling

Usingauniformtimestepin non-uniformmeshesis averycostlyandinefficient. Theextensive

researchon the topic of time stepoptimizationhasled to the developmentof variousmulti-time

stepsubcycling algorithms.Theinitial work of Belytschko andMullen in 1976led to an“implicit-

explicit” methodfor secondorderequationsusingnodalpartitioning(NealandBelytschko, 1998).

Furtherresearch,by HughesandLui (1978),led to a “implicit-explicit” subcycling methodusing

elementpartitioning. In our researchwe have adoptedan explicit subcycling methodfor second

orderequationspresentedby Smolinski (1989). This algorithmallows the useof different time

13

Page 25: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Large Elements

Large Elements

Small Elements Cohesive

Non−Cohesive

Non−Cohesive

Figure2.4Timestepdefinedby: (a) elementsizeor (b) elementtype.

stepsin different regionsof the sameproblem. As a result,we arenot constrainedby the mi-

nority elements,rathereachregion is given a time stepthat maximizesits efficiency while still

satisfyingthe local Courantcondition. This hasthe addedbenefitof minimizing the numberof

calculationsnecessaryin the larger time stepregionsover thesametime period. Multi-time step

methodspartitiona meshwith differenttime stepsusingeithernodalor elementpartitioning.The

algorithmpresentedby Smolinskiemploys nodalpartitioning. For nodalpartitioning,time steps

aredistributedto nodesor nodalgroups,while in elementpartitioning,the elementsthemselves

aregivendifferenttimesteps.

Although the algorithmpresentedby Smolinski is capableof supportingmultiple time step

regions, we have decided,for simplicity reason,to limit the numberof regions to only two -

designatedasregionsA andB. It shouldbenotedthatthenodesof thetwo regionsarenotrestricted

to begroupedtogether, insteadthey canbedispersedovertheentiremeshasis shown in Figure2.5.

For ouranalysis,wedesignateregionA asthecritical region,having thesmallertimestepequal

to 1∆t. This regionencompassesthesmallervolumetricelementsaswell asany cohesiveelements

in thesystem.Region B is givena time stepof m∆t, wherethe subcycling parameter, m, is thus

theratio of timestepsfrom regionB to regionA. If m 1, all regionsaregivenanequaltimestep

14

Page 26: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!!"!"!"!"!"!"!"!

#"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"##"#"#"#"#"#"#"#$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$$"$"$"$"$"$%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%%"%"%"%"%"%

&"&"&"&"&&"&"&"&"&&"&"&"&"&&"&"&"&"&&"&"&"&"&&"&"&"&"&&"&"&"&"&'"'"'"'"''"'"'"'"''"'"'"'"''"'"'"'"''"'"'"'"''"'"'"'"''"'"'"'"'

B

AA

A

Figure2.5Subcycling regiondistribution.

andno subcycling is performed.Whensubcycling is used,this time stepratio mustalwaysbe a

positiveevennumber.

Oncethenodalpartitioninghasbeenperformedfor theinitial mesh,thesubcycling algorithm

is directlyappliedto thecentraldifferencetimesteppingloop. As thesolutionis steppedfrom time

t to time t m∆t, thenodesof regionA areupdatedm timesusingthestandarddiscretizationequa-

tions.RegionB, on theotherhand,is thesubcycledregionover thesametimeperiod,to whichan

approximatemethodis applied.Region B is not explicitly updated,ratherthenodalaccelerations

of region B aretoggledafter eachtime step. Sincethe parameterm is even andsincethe nodal

velocity updateis of the form vn 1 vn f an an 1 , alternatingthe sign of the acceleration

hasfor effect to keepthe velocity constantin region B. This toggling of nodalaccelerationsin

region B foregoesthecalculationof the internalandcohesive forces,therebysaving a significant

portion of time that would normally be dedicatedto thesecalculations.The equationsusedfor

directcalculationsin regionA andapproximationsin regionB arethusgivenby

dAn 1 dA

n ∆tvAn 1

2∆t2aA

n (2.16)

dBn 1 dB

n ∆tvBn (2.17)

vAn 1 vA

n 12

∆t aAn aA

n 1 (2.18)

15

Page 27: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

vBn 1 vB

n 12

∆t aBn aB

n 1 (2.19)

aAn 1 MA 1 RAin

n 1 RAcon 1 RAex

n 1 (2.20)

aBn 1 aB

n (2.21)

At time t m∆t, we turn to theexplicit updatefor region B. Usinga similar approachpresented

above,region B is explicitly calculatedwhile region A is approximatedthroughthetogglingof its

nodalaccelerations.Accordingto Smolinski(1989),this updateshouldbeperformedtwice using

a time stepof 12m∆t or one-halfthatusedin region A. This approachwasfoundby Smolinskito

correctfor theoscillatorynatureof theaccelerationconstraint(toggling)usedin theexplicit update

of region A. It is alsoa reasonwhy the subcycling parameter, m, mustbe an evennumber. The

resultingequations,which aresolvedtwiceduringthetime t m∆t, aregivenby

dAn 1 dA

n 12

m∆tvAn (2.22)

dBn 1 dB

n 12

m∆tvBn 1

8m2∆t2aB

n (2.23)

vAn 1 vA

n 14

m∆t aAn aA

n 1 (2.24)

vBn 1 vB

n 14

m∆t aBn aB

n 1 (2.25)

aAn 1 aA

n (2.26)

aBn 1 MA 1 RBin

n 1 RBcon 1 RBex

n 1 (2.27)

As implied above, the bulk of the computationalsavings associatedwith the subcycling scheme

is achieved whenwe avoid the calculationsof the internalandcohesive force vectorsfor region

B nodesfrom t to t m∆t. Thesesavings may be quite substantialwhenusingmorecomplex

constitutive modelsfor the volumetric elementsand/orwhen the numberof cohesive elements

(andthereforethesizeof regionA) is small.

16

Page 28: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Sincetheinternalforcecalculationsareperformedby assemblingthelocal internalforcevec-

torsobtainedfor all thevolumetricelements,themostefficient way to take advantageof thesub-

cycling schemeis by flaggingthe volumetricelementsbasedon the type of nodes(A or B) they

contain. This allows to quickly “passby” all theelementscontainingnodesof typeB during the

first m time stepsof thesubcycling loop. In the implementationadoptedin thepresentwork, all

elementsof typeA have a flag of 1, all thoseof typeB have a flag of m, andall thoseof “mixed

type” (i.e.,whichcontainsomenodesof typeA andsomeof typeB) receiveaflagof 1. Thisflag

theninsuresthatinternalforcecalculationsareperformedonly onthoseelementshaving theaflag

of 1 or 1, correspondingto elementshaving at leastonenodefrom regionA. Thecomputational

savingswe achieve areequalto thenumberof elementshaving a flag of m, i.e. elementswhose

internalforcecalculationis skipped.Figure2.6 shows anexampleof applyingtheelementtime

stepflagsto a typicalmesh.

time step =1 t∆ time step = m∆ t

1

−1

m

m

m

m

m

m

−1

−1

−1

−1

−1

1

1

11

1

uniform region

1∆ t or m∆ t

1∆ t

uniform region

mixed region

t∆m

Figure 2.6Timestepassignment.

17

Page 29: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

An addedbenefitof thesubcycling algorithmis thatit canbereadily implementedin anadap-

tive fashion.Thetime stepsof theindividualnodes,aswell asof thevolumetricelements,canbe

changedat any time duringthesimulation.This allows themeshto adaptto thechangingcritical

region. Whenusedin conjunctionwith adaptive meshing,thetime stepsarereducedasthe local

meshis madefiner, and increasedas the meshgrows coarser. With dynamiccohesive element

insertion,thetimestepsdecreaseascohesiveelementsareinserted.

Setinitial conditionsfor nodaldisplacements,velocitiesandacceleration.Clearthecounter:c 0Loopover time (conventionalexplicit centraldifferencemethod).

if (c m) PRIMAR Y REGION: A (solveA, approximateB)UpdateA displacementsdA

n 1 usingEquation2.16UpdateB displacementsdB

n 1 usingEquation2.17

CalculateRAinandRco

UpdateA accelerationsaAn 1 usingEquation2.20

ToggleB accelerationsaBn 1 usingEquation2.21

UpdateA velocitiesvAn 1 usingEquation2.18

UpdateB velocitiesvBn 1 usingEquation2.19

Increasecounters:c c 1Increasetime: t t ∆t

if (c ( m) PRIMAR Y REGION: B (solveB, approximateA)UpdateA displacementsdA

n 1 usingEquation2.22UpdateB displacementsdB

n 1 usingEquation2.23

CalculateRBin

ToggleA accelerationsaAn 1 usingEquation2.26

UpdateB accelerationsaBn 1 usingEquation2.27

UpdateA velocitiesvAn 1 usingEquation2.24

UpdateB velocitiesvBn 1 usingEquation2.25

Increasecounters:c c 1If c m 2, thesetc 0

Table 2.1 Codeimplementationof the multi-time stepnodal subcycling algorithm (Smolinski,1989).

18

Page 30: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

2.3 Dynamic CohesiveNode/ElementInsertion

As describedearlier, a key componentof the adaptive CVFE schemerelieson the ability to

insertdynamicallycohesiveelementsin afinite elementmesh.Thissectionprovidessomedetails

onthreeissuesassociatedwith thedynamicelementinsertionprocess.Thefirst oneis thecriterion

usedto insertthecohesive elements:in this work, we selecttheregionsfor insertionbasedeither

on a boundingbox approachwhich grows aselementsare inserted,or a stress-basedapproach

wherecohesive elementsareplacedin regionswherestresslevelshave reacheda predetermined

threshold. The secondissueis that of databasemanagement:the insertionalgorithmrequiresa

moredetailedknowledgeof the currentmesh,including connectivity informationfor the nodes,

edgesandelements,aswell asother flagsnot necessarywith standardpre-simulationcohesive

elementinsertions. Finally, we addressthe “mechanics”of the insertionprocess,i.e., how to

insertcohesive elementswith minimal disturbanceof thesolution. Variousapproachesincluding

selectivedampingor pre-stretchingareconsidered.

2.3.1 Geometryand DatabaseManagement

Cohesive elementinsertionpresentschallenginggeometryanddatabasemanagementissues,

asnodesareduplicated,new elementsarecreatedandthe meshconnectivity mustbe appropri-

atelyadjusted.Additionally, theconservationof massandmomentummustbemaintainedon the

nodesof thesystem.This meansthatany nodeduplicationrequirestherecalculationof themass

contributionsfrom connectingelements,aswell astheduplicationof thenodaldisplacements,ve-

locities andaccelerations.Dynamic insertionrequiresmuchmoreinformationpertainingto the

nodes,edges,cohesive andvolumetricelements.Theseincludeflagsdefiningthetypesof nodes,

arraysof edgesconnectedto anode,etc.Thisextra informationis notneededif cohesiveelements

arepresentfrom thevery startof thesimulation. It is requiredonly wheninsertionis performed

dynamicallyto ensurethatthenew cohesiveelementsaswell astheassociatednodesandelements

areadjustedaccordingly.

19

Page 31: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

2.3.1.1 1-D Insertion

The 1-D cohesive insertionconceptis illustratedin Figure2.7 for the caseof two adjacent

two-nodevolumetricelements.Cohesive elementsarerepresentedastwo nodehalvesconnected

by a non-linearspringsatisfyingthe chosencohesive traction-separationlaw. In orderto satisfy

the conservation of mass,eachof the nodehalvesreceivesa masscontribution of its connected

volumetricelements.As a result,if theelementon theright of thecohesivenodeis moremassive,

the right half will have a larger massthanthe left. In orderto conserve the linearmomentumof

the system,the newly formedright nodegetsa copy of all pertinentinformation(displacement,

velocity andacceleration)from the left node. Additionally, the volumetricelementson the left

andright sidemusthave their nodalconnectivity informationupdatedto take the new nodeinto

account.Thevariousnodeandelementdataandconnectivity arestoredasarraysin thecodeand

thesearrayswill grow with any duplicationandshouldbe adjustedasnecessarythroughoutthe

simulation.

1 2 3

ProposedCohesive Node

a b

1 32 4

Cohesive Node

a b

Figure2.7 (a)Standard1-D mesh.(b) 1-D meshwith insertedcohesivenode.

2.3.1.2 2-D Insertion

In the 2-D part of the presentstudy, we usethree-nodeconstant-straintriangularvolumetric

elements.Thecohesiveelementsthushave four nodewith thenodesorderedin counter-clockwise

fashionasseenin Figure2.8. Cohesive elementsare insertedin placeof existing or proposed

edgesby duplicatingtheedgeandpossiblyits nodesto form thenew four-nodesystem.In order

to insureproperinsertion,moreinformationis needed.In particular, eachedgemustknow thetwo

nodesconnectedto it aswell asthe volumetricelementsit borders.Anotherlist is alsoneeded,

which contains,for eachnode,thelist of all edgesandvolumetricelementsconnectedto it. This

20

Page 32: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

additionalinformationis createdonceatthebeginningof thesimulation,andis updatedascohesive

elementsareinsertedadaptively. Consistency is thekey to asuccessfulcohesiveelementinsertion.

Wealwaysdefinethetopvolumetricelementof anedgeto betheelementpointedto by thenormal

vectorof theedge.Thenormalvectoris itself consistentlycalculatedaspointingto theright of the

segmentfrom thefirst to thesecondnode(Figure2.8).

Bottom Element

Top ElementEdge Normal

2

3

1

4Left Cohesive

Node

Left Node

duplicated edge

Right CohesiveNode

NodeRightoriginal edge

Figure2.82-D Cohesiveelementrepresentation.

Inconsistentnumberingandcalculationscan result in insertionof invalid cohesive elements

which maybe“criss-crossed”asdemonstratedin Figure2.9. Criss-crossedcohesiveelementsare

a resultof incorrectinitiation of top/bottomelementsandleft/right nodes.

4

3

5

1

2 3

2

4ProposedCohesive

Edge

1

4

1

5

2

6

3

21

3

6

45

DuplicatedNodes

DuplicatedEdge

4

1

5

2

21

4

3 6

3

5

DuplicatedEdge

OriginalEdge

6

Figure 2.9 2-D cohesive elementinsertion:(a) proposededgefor cohesive insertion,(b) insertedcohesiveelement,(c) “criss-crossed”cohesiveelement.

21

Page 33: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Onceall the edgeandnodeinformationhasbeendefined,cohesive elementinsertioncanbe

initiated. A selectededgecanonly bemadecohesive if it is not alreadycohesive, or this edgeis

aninternaledgethathasnotbeenflaggedby theuser. Externalboundaryedgesarerestrictedfrom

cohesive insertionbecausecohesive elementsrequiredto besandwichedbetweentwo volumetric

elements.

Thevalid proposededgeis now readyfor cohesive insertion. Standardcohesive insertional-

ways requiresthe duplicationof the proposededge. The nodesof the proposededgeare only

duplicatedif thesenodesarealreadyconnectedto anexisting cohesive or duplicatededge.These

nodescanbeeasilyrecognizedasthey will beflaggedascohesive nodes.Nodesflaggedas“nor-

mal” (i.e., non-cohesive) have no cohesive or duplicatededgesin their lists andasa result they

will not beduplicated.Nodalduplicationschematicallysplits themeshat thenode.Theoriginal

edgesandvolumetricelementsconnectedto this nodearealsosplit betweenthenew nodehalves.

This is similar to the1-D casewherethecohesivenodesystemis composedof two halves,eachof

which is connectedto its own elementscausingtheredistribution of nodalmasses.In 2-D, nodal

massesareobtainedfrom thevolumetricelementsto which thenodeis connected.Whenanodeis

duplicated,themassof theoriginal andduplicatedhalvesmustberecalculatedbasedonly on the

volumetricelementsconnectedto eachhalf. The sumof thesemassesshouldequalthe original

masspresentprior to any insertionaroundtheselectednode.In addition,conservationof momen-

tum mustalsobemaintainedfor eachnodeby duplicatingthenodaldisplacements,velocitiesand

accelerations,aswell asany otherpertinentflagsandmarkers.

Cohesive Edge ProposedCohesive Edge

4

65

3

11

2

New

2 7

Cohesive EdgeCohesive Edge

1

34

52

6

1

Figure 2.10Connectivity updateof nodesandelements.

22

Page 34: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Only five differentcasescanbe encounteredduring cohesive elementinsertion. Thesecases

arepresentedgraphicallyin Figure2.11.Thefirst caseis for anexistingcohesiveelement,which,

for obviousreason,cannothaveany morecohesiveelementsinsertedin its place.Thesecondcase

involvesa proposededgethat hasnever beenmadecohesive and is not connectedto any other

cohesive edges.Insertionfor this caseinvolvesonly the duplicationof the proposededge. The

resultingcohesive elementis considereddormantbecauseit sharesthe left andright nodesets.

Cases3 and4 aremirror imagesof eachother. They eachinvolve a normalproposededgethat

is connectedto oneothercohesive edgeor element. Elementinsertionfor thesecasesrequires

the duplicationof the connectingnodeaswell as the duplicationof the edge. The final caseis

concernedwith anedgethat is borderedby two othercohesive edges.This insertionrequiresthe

duplicationof boththeleft andright nodes.

23

Page 35: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Case #1: Nodes and edge flagged as cohesive or duplicated.

Existing cohesive element.

Edge duplicated

NodeShared

Case #2: Nodes and edge flagged normal.

NodeShared

Edge duplicated

Case #3: Right node is flagged cohesive or duplicated.

NodeShared

DuplicatedRight NodeShared

Node

Edge duplicated

Duplicated

Case #4: Left node is flagged cohesive or duplicated.

Node NodeSharedShared Left Node

Edge duplicated

Duplicated DuplicatedRight Node

Case #5: Both nodes are cohesiveSharedNode

Left NodeNode

Shared

Figure2.11Common2-D insertioncases.

In orderto clarify thevariousinsertioncases,wepresentin Figure2.12anillustrativeexample

of insertionfor asimple2-D mesh.Thefirst proposedcohesiveedgeis anon-cohesiveedgehaving

non-cohesivenodes.Thissituationcorrespondsto Case#2 in Figure2.11,for whichonly theedge

is duplicatedandthetwo nodesareflaggedcohesive. Althoughacohesiveelementis addedto the

generallist of cohesive elements,this elementhasno impacton the structuralsolutionsinceno

displacementjump is possible.Next, we inserttheneighboredgeto theright of thefirst element.

This edgeis alsonon-cohesivebut it containsonecohesivenoderesultingfrom thefirst insertion.

Dependingontheorientationof thenormalvectorof thisedge,thissituationcorrespondsto Cases

24

Page 36: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

#3 or #4 in Figure2.11. Finally, the third cohesive elementinsertionis similar in conceptto the

secondone,exceptthattheedgeis notorientedhorizontally.

Edge Duplication Only

Proposed Cohesive Edge

Edge and NodeDuplication

Proposed Cohesive Edge

Edge and NodeDuplication

Proposed Cohesive Edge

Figure 2.12 Illustrative exampleof threecohesive elementinsertionsusingCases#2 and#3 inFigure2.11.

25

Page 37: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

In order to illustrate insertionCase#5, we considerthe illustrative exampleshown in Fig-

ure2.13.After theinsertionof thefirst two cohesiveelements,themiddleedgeis still a “normal”

edgealthoughbothof its nodesareflaggedascohesive. Insertionof acohesiveelementalongthis

edgethuscausetheduplicationof boththeleft andright nodes.

Edge Duplications Only

Proposed Cohesive Edges

Edge and Node Duplications

Proposed Cohesive Edge

Figure2.13Illustrationof insertionCase#5 in Figure2.11.

2.3.2 CohesiveElementStability and SystemEquilibrium

Thusfar, we have only discussedthe geometricaspectsof the dynamiccohesive elementin-

sertionalgorithm. It is also importantto investigatethe effect insertionhason the stability and

precisionof thedynamicfinite elementsolution. Typical dynamicinsertionoccursin regionsun-

dergoingdynamicdeformationsandstresses.In theinsertionalgorithmdescribedsofar, we have

not discussedthe effect of existing stressstateon the insertionmethod: our basicapproachin-

volvessimply duplicatingall nodalinformation. Thenew cohesive elementis thusinsertedin an

“unstretched”state,in which theadjacentnodesaresuperposed.

26

Page 38: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

However, asillustratedbelow, this “blind” insertionmaycauseoscillationsin theresponseof

thecohesivenodesandotherapproacheshaveto beadopted.To illustratethispoint, let usconsider

thesimple1-D problemshown in Figure2.14. It consistingof two segmentsof equallengthwith

oneendfixed at a wall andthe othersubjectedto a prescribedvelocity V. Eachsegmenthasa

lengthof 1 0 m, a cross-sectionalareaof 1 0 m2, a densityof 1 0 kg m3, anda Young’s modulus

of 1 Pa. Theresultingdilatationalwave speedis thus1 0 m s, andthecritical (Courant)time step

is 1 0 s. The time stepsizechosenhereis 0 033s dueto the inherentinstability of thecohesive

elementto beinserted.A cohesiveelementis insertedat thecenterof thesystem.

For the basesolution,we introducethe cohesive elementinto the meshat the first time step.

Dynamic insertion is investigatedby insertingthe cohesive elementafter 1000∆t (33 3 s) and

2000∆t (66 6 s). We run the simulationfor a total of 3000 time steps(100 s) with a constant

imposedvelocityof 0 01m s.

V31 2 4

Figure2.141-D “blind” insertiontestproblem.

To quantify the nodal oscillationsresultingfrom the cohesive elementinsertion,we plot in

Figure2.15 the evolution of the displacementjump acrossthe cohesive element. As expected,

in the referencecasefor which the cohesive elementis presentthroughoutthe simulation, the

displacementjumpincreaseslinearlywith timedueto theappliedvelocityboundarycondition.No

oscillationsareobserved in that case.On theotherhand,insertionsafter the 1000th and2000th

time stepscreatesubstantiallevels of oscillationsin the cohesive elementresponse.While the

averagedisplacementjump valueremainsthesameasin thereferencecase,theamplitudeof the

oscillationsincreasewith thestresslevel atwhich theinsertionwasperformed.

Thesecohesive nodeoscillationsare likewise presentin 2-D systemsand in order to obtain

satisfactorysolutionswerequirethattheseoscillationsbedampedout.

27

Page 39: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 80 90 100−5

0

5

10

15

20x 10

−3

time (sec)

sepa

ratio

n (m

)

Insertion at 2000th stepInsertion at 1000th stepReference solution

Figure 2.15 1-D “blind” insertiontestproblem: evolution of the displacementjump acrossthecohesive element(i.e., betweennodes2 & 4 in Figure2.14) resultingfrom a cohesive elementinsertionat time0, 1000∆t (33 3 s), 2000∆t (66 6 s).

2.3.2.1 CohesiveDamping

Onepossibleapproachto reducethe potentiallydetrimentaloscillationsassociatedwith the

”blind” insertionof cohesive elementsinvolve the introductionof someform of dampingin the

cohesive response.Schematically, this approachcorrespondsto addinga dash-potin thecohesive

elementdescription(Figure2.16).

Cohesive Node System

Figure2.16Schematicrepresentationof adamped1-D cohesiveelement.

28

Page 40: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

In its simplestform, the”damped”cohesive elementresponsecanbecharacterizedby a mul-

tiplicative term 1 ηδ to thecohesive failure law describedin Section2.1,with η denotingthe

dampingcoefficient, δ, thenormof thevelocity jump vector.

To illustratetheeffectof this additionaldampingtermon theresponseof theinsertedcohesive

element,wereconsiderthesimple1-D problemdescribedin Figure2.14.As shown in Figure2.17,

the introductionof a dampingterm in the cohesive elementresponseeliminatesall oscillations

after just a few time steps.However, it wasfound that theamountof damping(i.e., thevalueof

thecoefficient η) is stronglyproblemdependent.For thesimple1-D problemathand,theoptimal

dampingcoefficientsfor the1000th and2000th time stepinsertioncasesareη 20 andη 30,

respectively.

0 10 20 30 40 50 60 70 80 90 1000

0.002

0.004

0.006

0.008

0.01

0.012

time (sec)

sepa

ratio

n (m

)

Insertion at 2000th stepInsertion at 1000th stepReference solution

Figure 2.17Effect of cohesive damping:evolution of thedisplacementjump acrossthecohesiveelementfor thesimple1-D testproblemshown in Figure2.14andresultingfrom “blind” cohesiveelementinsertionwith dampingat time0, 1000∆t (33 3 s) and2000∆t (66 6 s).

29

Page 41: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Furthermore,in 2-D, thepresenceof thedampingtermwasfoundto bemuchlesseffective in

reducingtheoscillations. Theseshortcomingsforcedus to adoptanotherapproachbasedon the

pre-stretchingof thedynamicallyinsertedcohesiveelements.Thisapproachis describednext.

2.3.2.2 CohesiveElementPre-Stretching

As indicatedin thesimple1-D testproblemdescribedabove, theoscillationsassociatedwith

the cohesive elementinsertionarelinked to the amplitudeof the local stressfield presentin the

vicinity of theproposedcohesiveedgeat thetimeof theelementinsertion.Thebasicideapursued

hereafterconsistsin introducingthecohesiveelementin amannerthatwouldminimizethepertur-

bationon the local stressfield. This goalcanbeaccomplishedby insertingthecohesive element

in a pre-deformedstate- eitherstretchedor contracteddependingon the tensileor compressive

natureof the local stressfield. In otherwords,the nodaloscillationswill be minimizedbecause

thepre-deformedcohesiveelementwill bein astateof separationcloseto theexpectedseparation

hadthecohesiveelementbeenpresentfrom thebeginning.

In order to apply the cohesive elementpre-stretchingat the time of insertion,we must de-

terminethe nodaldisplacementjump acrossthe cohesive surfaceto be introduced. A relatively

straightforwardapproachto accomplishthis is to enforcelocal equilibriumon theassemblycom-

posedof thecohesive elementandtheadjacentvolumetricelement.To demonstratethis idea,let

usconsiderthesimple1-D systemshown in Figure2.18.

1 2 3

b

Cohesive NodeProposed

u uu1 2 3

a

1 32 4

a b

Cohesive Node

u u u u1 2 34

Figure 2.181-D cohesiveelementpre-stretchingconcept.

The local equilibriumequationsfor the four nodesinvolvedin thecohesive elementinsertion

canbewritten in theform:

30

Page 42: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

)K *,+ D - + R - (2.28)

where,for anaxially loadedbarproblem,thestiffnessmatrix)K * , nodaldisplacementvector + D -

andforcevector + R - aregivenby.//////0 ka ka 0 0 ka ka kc kc 0

0 kc kc kb kb

0 0 kb kb

13222222456666667 6666668

u1

u2

u4

u3

9:666666;666666< .//////0 Ra

internal

0

0

Rbinternal

132222224 (2.29)

in which thestiffnesseska andkb of thebarelementsa andb aregivenby

ka EaAa

lakb EbAb

lb(2.30)

Thecohesivenodestiffnesskc is givenby

kc Sinitial

1 Sinitial

σmax

∆c(2.31)

whereSinitial is theinitial strengthparameter, σmax is thecritical failurestressand∆c is thecritical

separation.

The nodal forces,Rainternal andRb

internal actingon nodes1 and3, respectively, quantify the

existing stressstateon volumetricelementsa andb. Prescribingthenodaldisplacementsat nodes

1 and3 asthosecomputedat thesenodesat thetimeof insertion,wecanreadilysolvetheresulting

2-by-2linearsystemin termsof u2 andu4:.0ka kc kc kc kc kb

14 57 8 u2

u4

9 ;< .0kau1

kbu3

14 (2.32)

31

Page 43: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

While this methodis quite simplein 1-D andfor a singlecohesive element,it is quite more

cumbersomein 2-D andwherea largenumberof elementsareinsertedsimultaneously. A simpler

methodinspiredfrom thepre-stretchingapproachconsistsin usingthelocal stressfield directly to

compute,with the aid of the traction-separationlaw, the initial displacementjump to be applied

acrossthecohesivesurface.

Invertingthetraction-separationrelationintroducedearlier, thedisplacementjumpcanbewrit-

tenas

∆ 1 T∆c

σmax(2.33)

Theappliedcohesive traction,T, is simply chosenastheaverageof thenodalinternalforces

appliedonnodes2and4by thevolumetricelementsaandb, respectively. Asshown in Figure2.19,

the separationis thenappliedevenly in both directionsfrom the currentlocationof the original

node(i.e., node#2). This even distribution hasshown to give good resultsalthougha mass-

weightedseparationcanbe usedby which the displacementis greatertowardsthe lighter edge

element.

∆Impose

No Pre−stretch

1 32 4

a b

2/∆ 2/∆

Pre−stretch

1 32 4

a b

Figure 2.191-D cohesive elementpre-stretchingconcept,with thepre-stretchappliedequallyonthetwo nodes.

In two dimensions,thenodalseparationscanreceive contributionsfrom multiple neighboring

cohesive elements,and in both the x and y directions. Figure 2.20 is a schematicexampleof

threeconnectededgeswherecohesive elementsareinserted.We first transformthe normaland

tangentialcohesive separationsinto theseparationsalongtheprincipalx andy axes,resultingin

separationsof ∆x and∆y. Whenapplyingtheseseparationsto thevariousnodeswemustbecareful

notto simplysumthecontributionsfrom eachneighboringcohesiveelement.Insteadwecaneither

32

Page 44: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

usethemaximumor minimumnodalseparation,theaverageof all of theneighboringseparations,

or someweighteddistributionbasedon themassof thecurrentnode.After sometestingwe found

thattheoptimalapproachis to usetheaverageof theneighboringcohesiveseparations.Theother

approachesinducedgreateroscillationsfor every testcase.

∆∆

n1

t1n2

t2

Figure 2.202-D separationcontributionsfrom neighboringcohesiveelements.

Figure2.21shows the effect of pre-stretchingon the separationof the cohesive nodefor the

0th (0 s), 1000th (33 3 s) and2000th (66 6 s) timestepinsertioncasesfor thesimple1-D problem

discussedearlier. Theoscillations,while still present,havebeendrasticallyreduced.More testsof

theeffectof adaptivecohesiveelementinsertiononthesolutionarepresentedin Chapters3 and4.

2.3.3 Insertion RegionSelection

Thethird critical componentof theadaptivecohesiveelementschemeis thecriterionto beused

to introducethecohesive elementsin thefinite elementmesh.In this study, two approacheshave

beenconsidered:thefirst onerelieson defininga boundingbox within which all edgesaremade

cohesive andallow this box to grow asnecessary, while thesecondoneconsistsin selectingthe

cohesive edgesbasedon the local stresslevel. Thesetwo approachesaresuccessively discussed

hereafter.

2.3.3.1 Bounding Box Approach

Theboundingbox insertionmethodselectsproposedcohesive edgesby first categorizing the

systemby threemainregions(Figure2.22): a non-cohesive region whereno cohesive elementis

present,a passive cohesive region wherecohesive elementsarepresentbut have not undergone

33

Page 45: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 80 90 1000

0.002

0.004

0.006

0.008

0.01

0.012

time (sec)

sepa

ratio

n (m

)

Insertion at 2000th stepInsertion at 1000th stepReference solution

Figure 2.211-D testproblemseparationoscillationsof nodes2 & 4 (Figure2.14)resultingfrominsertionwith pre-stretchingat time0, 1000∆t (33 3 s), 2000∆t (66 6 s).

any failure,andan active cohesive region wherecohesive elementsarefailing. Failing cohesive

elementaredefinedby the valueof the strengthparameter, S, introducedin Equation2.1,which

decreasesastheelementfails until completefailurefor S 0.

Theboundingbox approachfirst determinestheextentof theactivecohesive region. This box

is thenenlargedby a prescribedamountandnew cohesive elementsareinsertedwithin this new

box. Theregionbetweentheoriginalandnew boundingboxesis thepassivecohesiveregionwhere

failureis expectedto occurin thenearfuture.Theboundingboxwill continueto grow andmoveas

longascohesiveelementsarefailing within thesystem.Theboundingboxmethodis quitecapable

of determiningtheappropriatecohesive regionsalthoughthis methodis not self-starting.Instead,

at leastonecohesive elementmustbepresentin thecritical region, sincetheboundingboxesare

only definedbasedon existing cohesive elements.As a result, we are againlimited to known

problemswherecritical regionsarepredictable,suchasfractureproblemsinvolving apre-existing

notch.

34

Page 46: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

AC

PC

NC

AC = Active Cohesive

PC = Passive Cohesive

NC = Non−Cohesive

Figure2.22Boundingbox method.

The seconddrawbackof the boundingbox approachis that the boundingbox may become

very large while the actualactive cohesive region may be quite small. This situationcanoccur

for problemsthathavemultiple critical regionswhich arespacedfar apart,asin a doublenotched

specimenshown in Figure2.23. Whena singleboundingbox approachis used,theextentof the

failing elementsdefinea box which cancrossnon-cohesive regions. The resultingenlargedbox

requiresthat thenon-cohesive region bemadecohesive eventhoughfailure is not expectedthere

until muchlaterin thesimulation,if atall. Thismaycauseinsertionto grow uncontrollably, filling

theentiredomainwithin ashorttime.

2.3.3.2 Stress-basedSelectionApproach

A bettermethodfor selectingsitesfor cohesive elementinsertionis basedon a local stress

criterion. In thismethod,anedgeis selectedfor insertionif thesomemeasureof thestressesin the

neighboringvolumetricelementsreachessomecritical value.This stressmeasuredependson the

typeof failuremodelcharacterizingthematerialof interest.For brittle systems,thestressmeasure

would be basedon the valueof the maximumprincipal stress.For moreductile systems,other

stressmeasuresbased,for example,on thevalueof thevonMisesstress,aremoreadequate.In the

presentstudy, weusethefollowing simpleexpressionof thestresscriterion:

35

Page 47: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

PC

Bounding Box

NC

AC

AC

Figure2.23Multiple activecohesiveregions.=σ11

2 σ222 2σ12

2 > X% σmax (2.34)

whereσ11, σ22 and σ12 are the stressescomputedin the adjacentvolumetric elements,X is a

user-definedfractionlevel andσmax denotesthestrengthof thematerial.

With this method,cohesive elementsare insertedinto the systemonly wherever they are

needed,therebysignificantlyminimizing thecomputationaltime andmemorycosts.To illustrate

theconceptof stress-basedcohesiveelementinsertion,Figure2.24presentstheresultof adynamic

fracturesimulationinvolving a simpleL-shapeddomainattachedalongits top edgeandsubjected

to a downwardvelocity alongthe left end. In this particularproblem,cohesive elementswerein-

troducedin thedomainwhenthestresslevel reached45 % of thematerialstrength.No cohesive

elementswerepresentin the domainat the beginning of the simulation. The insertedcohesive

elementsareshown asdarker segmentsandonly representa smallportionof thetotal numberof

edges,therebysignificantlyreducingthe computationalcost. The referencecase,with cohesive

elementpresenteverywherein thesystem,tookapproximately4500s, while thesimulationbased

on thestress-basedinsertiononly requiredabout1000s of CPUtime.

36

Page 48: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure2.24Stress-basedinsertionresultsfor simpleangledcase.

2.4 Parallel Implementation usingCharm++

Problemsrequiringa largenumberof computationsor thosehaving longsimulationtimesmay

benefitfrom someform of parallelization.SincetheCVFE schemeis basedon anexplicit central

differencemethod,it lendsitself well to codeparallelization.Distributing a problemacrossmany

processorsallowsusto decreasethesolutiontimeor increasetheproblemsize.

Two well known parallelizationtechniquesareOpenMP andMPI . OpenMP is a collection

of compilerdirectivesand library routineswhich take advantageof sharedmemoryparallelism

of codes(Padua,2000). OpenMP allows us to take a serial codeandapply parallelismto the

individual loops within it. This is a good methodfor simple loops but is not viable for more

complex loopstypical of theCVFE methodor whereraceconditionsmayexist. A racecondition

37

Page 49: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

occurswhenmultipleprocessorsattemptto write to thesamememorylocationcausingfutureread

attemptsto potentiallyaccessincorrectdata.

MPI or MessagePassingInterfaceis a morerobust methodby which slave processorscom-

municatedatawith themasterprocessor. Eachprocessorgetsasinglechunkof memoryon which

it performsall necessarycalculations.Thedownsideof MPI is that theserialcodemustbecom-

pletelyrewrittensothatit fits theMPI format.

A betterparallelizationmethodis Charm++ which is basedon the MPI method. The ad-

vantageof this methodis that the communicationoccursdeeperin the background.Using the

Charm++ finite elementframework weareableto write aparallelversionof ourcodethatclosely

resemblestheserialversion,but still takesadvantageof thevariousotherCharm++ featuressuch

as:runtimeloadbalancing,monitoringof performance,etc. (Lawlor, 2000).

2.4.1 MeshPartitioning

Codeparallelizationrequiresthe distribution of dataover several processors.In the CVFE

scheme,wedistributethenodal,volumetricandcohesivedataandconnectivities. Thedataincludes

suchinformationasnodaldisplacements,velocitiesandaccelerations,materialpropertiesof the

elementsaswell asvariousotherflags.Theconnectivity informationincludesthelistsof all nodes

connectedto eachelementof a chunk. A simplerepresentationof a CVFE meshis presentedin

Figure2.25with thecorrespondingconnectivity informationin Table2.2.

Element NodeList

Volumetric- V1 1, 2, 3Volumetric- V2 2, 3, 5Volumetric- V3 4, 6, 8Volumetric- V4 7, 9, 10Volumetric- V5 9, 10,11Cohesive - C1 3, 4, 5, 6Cohesive - C2 6, 7, 8, 9

Table 2.2SimpleCVFE meshconnectivities.

38

Page 50: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

V1

V2

V3

V4

V5

2

1

5

6

10

8 9 113 4

C1C2

7

BoundaryLine

Figure 2.25SimpleCVFE mesh.

Partitioning of the simplemeshinto two chunks,A andB, is performedalongthe boundary

line. All of the boundaryelements,volumetricor cohesive, arepartitionedalongtheir edgesso

that they arefully definedin only a singlechunk. Previouspartitioningmethodswould partition

a cohesive meshby splitting the cohesive elementsacrosstwo chunks. Oncepartitioned,each

elementandnodemustberenumberedlocally sothattheloopboundariesin thecodewill nothave

to beadjusted.Theglobalnumberingis alsomaintainedso that themeshcanbereassembledat

any time into its original form. Table2.3shows theresultof partitioningthesimplemeshinto the

two chunks.NotethatnodesA5 andB1 werenode4 of theoriginalmesh- likewisenodesA6 and

B2 werenode6. Thesenodesarenow sharedbetweenthetwo chunks.

ChunkAElement NodeList

Volumetric- AV1 1, 2, 3Volumetric- AV2 2, 3, 4Cohesive- AC1 3, 4, 5, 6

ChunkBElement NodeList

Volumetric- BV1 1, 2, 4Volumetric- BV2 3, 5, 6Volumetric- BV3 5, 6, 7Cohesive - BC1 2, 3, 4, 5

Table2.3PartitionedCVFE meshconnectivities.

39

Page 51: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

AV1

AV2

A1

BV1BV3

B4 B5 B7

B6

A3

A4 A5

A6

AC1

B2

BC1

BV2

A2

B1

B3 BoundaryLine

Figure2.26PartitionedCVFEmesh.

2.4.2 Computational Efficiency

A goodrepresentationof theefficiency of theparallelsolutionis to observetheparallelspeedup

of thecode,givenby

speedup T 1T N (2.35)

whereT 1 is the time requiredto run the simulationon one processor, and T N is the time

requiredto run this samesimulationon N processors.With this we cantrackhow well thecode

is ableto performwhendistributedacrossmultiple processors.Ideally, we would preferto have

perfectspeedup,wherethesolutiontime is decreasedin proportionto thenumberof processors.

Unfortunately, thespeedupof mostsimulationsbegins to decreasewith an increasingnumberof

processors.This is becausethecostof theparallelizationbecomesgreaterrelativeto thecostof the

computationsperformedby eachprocessor. Eventually, for many processors,thecommunication

betweenthemdominatesthetotal timeof thesolution.

40

Page 52: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

2.4.3 Structure of Standard Charm++ FEM Framework

A standardserialFEM codeis parallelizedwith theCharm++ FEM framework by distributing

it into four main subroutines:init, driver, meshupdateandfinalize. This framework hasbeen

developedespeciallyfor parallelizationof finite elementcodes. Although the original must be

distributedacrossthefour mainsubroutines,it still maintainsthebasicserialform.

The init routinestartsthecodeby readingtheglobalmeshandassociateddata,flagsandcon-

nectivities for thenodesandelements.Theprogramcanhave many differentelementtypes,such

ascohesiveor volumetricelements,but only asinglenodetype.Thenodedataarepackagedusing

thefollowing calls:

call FEM Set Node? #of nodes@ #of datadoublesAB@call FEM Set Node Data r ? nodedataarrayAB@

whereFEM SetNode()setsthenumberof total nodesin thesystemwith #ofnodesandthenum-

ber of datadoublesfor eachnodeusing #ofdatadoubles. A datadoubleis equalto 8 bytesin

32-bit systems,which is equivalentto oneREAL*8 or two INTEGER types. The secondcall,

FemSetNodeData r() sendsthe arrayof nodal information to the driver routine. The sizeof

eachindividual elementof this arrayis equalto thetotal numberof datadoublesspecifiedby the

previouscall. It shouldbenotedthatall databe in full bytes.This is alreadysatisfiedif thedata

elementsareof typeREAL*8 , but if theany datais of typeINTEGER wemusthave INTEGER

pairs.

Theelementdataandconnectivitiesarepassedusingthecalls

call FEM Set Elem? elementtype@ #of elements@ #of datadoubles@ #of conndoublesAB@call FEM Set ElemData r ? elementtype@ dataarrayAB@

call FEM Set ElemConn r ? elementtype@ connectivityarrayAC@whereFEM SetElem()setstheelementtype,thenumberof elementsof this type,thenumberdata

doublesperelementandthenumberof connectivity doublesperelement.Theelementtypeis an

41

Page 53: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

integernumberwhich is typically 1 for cohesiveelementsand2 for volumetricelements.Theele-

mentdataandconnectivity arestoredin similar fashionto thenodaldataalthoughthey arebroken

acrosstwo separatearrays.This is becausethepartitioningwill only usetheconnectivity informa-

tion to determinetheproperdistribution acrosschunksandsothedatais not neededat this time.

Theelementdataandconnectivitiesarepassedonto driver usingtheFEM SetElemData R()and

FEM SetElem ConnR()calls,respectively.

Oncefully packaged,the datais senton to Charm++ which usesthe Metis programto par-

tition the meshinto several chunks. Thesechunksarethenpassedon to the processorsusedin

thesimulation. Unlike MPI , which limits only onechunkperprocessor, Charm++ assignssev-

eral chunksper processorwhich enablesit to dynamicallyload balancea simulationby simply

migratingthesmallchunksto lessactiveprocessors,asnecessary.

Thedriver routineis thencalledoneachchunk,whereit performsthevariouscalculationsand

datamanipulations.Thenodeandelementdataandconnectivitiesarereceivedby driver usingthe

following calls,which arethemirror imagesof thedata”send” calls,FEM Set(),initiatedby the

init routine:

call FEM Get Node? #of nodes@ #of datadoublesAB@call FEM Get Node Data r ? nodedataarrayAB@

call FEM Get Elem? elementtype@ #of elements@ #of datadoubles@ #of conndoublesAC@call FEM Get ElemData r ? elementtype@ dataarrayAB@

call FEM Get ElemConn r ? elementtype@ connectivityarrayAB@wheretheparametersarethesameasthosedefinedfor theFEM Set calls.

Duringeachdriver call theCVFEschemeis appliedto thenodesandelementsof theparticular

chunk. Unfortunately, the boundarynodesrequirespecialtreatmentto ensurethat the data is

correctoncethemeshis reassembled.Themassfor eachnodeis thesumof thecontributionsfrom

theneighboringvolumetricelements.If thenodeis a boundarynode,thesevolumetricelements

may be split acrossmultiple chunksso that the local boundarynodesin a given chunk receive

only a contribution from the local volumetricelements.The resultingaccelerationcalculations,

42

Page 54: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

whichrely onthenodalmasses,wouldthereforeby incorrectfor all theboundarynodes.TheFEM

framework is ableto accountfor this lackof dataof sharednodesby combiningthedataacrossall

chunks.As a result,all chunkboundarycalculationswill alwaysbeduplicatedin eachchunkbut

this addedcostinsuresthat thesolutionwill beaccurate.Theboundarynodesareall storedin a

field by calling

f ieldid D FEM Create Field ? datatype@ vectorlength @ of f set @ distanceAB@wherefieldid is theID of thecurrentfield. datatypedescribesthetypeof thedatawhich is shared,

eitherFEM BYTE , FEM INT , FEM REAL , or FEM DOUBLE . The vectorlengthdescribes

thenumberof dataitemsassociatedwith eachnode. For example,we storethenodemassesfor

eachdegreeof freedomwherefor 2-D systemsis two - theresultingvectorlengthis 2. Theoffset

is thebyteoffsetform thestartof thenodearrayto theactualdataitemsto beshared.distanceis

thebyteoffsetfrom thefirst nodeto thesecond.During thecalculationswithin driver this field is

updatedby calling

call FEM U pdate Field ? f ieldid @ f ir stnodeAB@wherefieldid specifiedthe ID of thefield definedduring thecreationof thefield. firstnodeis the

locationof thedataarrayfor thesharednodes.

Periodically, wemaywish to outputsomecurrentdatafor theglobalmeshor evenreassemble

themeshinto its original form so thatwe maychangeit andoptionally repartitionit again.This

canall beachievedby acall to themeshupdateroutinevia

call FEM U pdate Mesh? callmeshupdated@ dorepartitionAB@wherecallmeshupdateddeterminesif the meshupdateroutine shouldbe called immediately-

when non-zero. Also, if dorepartition is non-zerothe meshwill be immediatelyreassembled

on the first processor, temporarilysuspendingthe simulation,so that this meshcanbe modified

or tested.Themeshis thenrepartitionedinto several chunksandredistributedto the processors.

Thechunksmight bedifferentfrom thechunksdefinedat thestartof thesimulation.On theother

43

Page 55: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

hand,if dorepartition is zero, the call is non-blockingwhich allows the simulationto continue

while meshupdateis calledbecausetheonly actionallowedin this routineis limited to theoutput

of data.

Oncethesimulationis completed,for everychunk,thedatais reassembledonthefirstprocessor

in thefinalizeroutineallowing theuserto performfinal calculationson theserialmeshor simply

outputany necessarydatato thescreenor files.

2.4.4 Parallel Structure of the Dynamic Insertion Code

Sinceour periodic insertionof cohesive elementschangesthe basicmesh,we must remesh

aftereachinsertion.In orderto achievethisusingthecurrentframework, we takeadvantageof the

optionalpartitioningin themeshupdatesubroutine.At specificintervalsduringthegeneralsolu-

tion loop, eachdriver routinesendsall of its datato meshupdate. The datais reassembledinto

a serialmeshwherewe canperformany necessarycohesive elementinsertionsor meshupdates

muchmoreeasilythenwhenthemeshis distributedacrossseveralchunks.Thebiggestdifficulty

with performinginsertionson thedistributedmeshis dueto theboundaryedgesandnodeswhich

may requireinformation from otherchunks. This would requireextensive communicationsbe-

tweenthe chunks,resultingin increasedcomputationaleffort. Instead,we performour insertion

onaserialmeshandthenpartitionit into severalchunkanddistributedit to thevariousprocessors.

Thestructureof our codeis presentedin Table2.4.

44

Page 56: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

initreadinput dataandserialmeshcall FEM Set()// senddatato driver

driver//optionallyreadinput dataneededby eachchunkfieldid = FEM CreateField() // createmassandforcefieldsMain UpdateLoop

call FEM Get()// getdatafrom init/meshupdatecall FEM UpdateField(masses)Solutionloop

// calculatedisplacements// calculateforcescall FEM UpdateField(forces)// calculateaccelerations// calculatevelocities

EndSolutionloopcall FEM Set()// senddatato updatemeshcall FEM UpdateMesh(timestep,1)// repartitioncall FEM Get()// getdatabackfrom updatemesh

EndMain UpdateLoop

meshupdatecall FEM Set()// getdatafrom eachdriver

// dynamicinsertionandothermeshmanipulationscall FEM Set()// senddatabackto driver

finalizecloseout theprogram

Table 2.4Parallelstructureof thedynamicinsertioncode.

45

Page 57: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

CHAPTER 3

1-D ANALYSIS AND RESULTS

In order to verify andtest the multi-time stepsubcycling anddynamiccohesive elementin-

sertionalgorithmspresentedin the previouschapter, we first apply themto simple1-D systems.

Problemsin 1-D aremuchsimplerto understandandsolve,yet they arestill valid examplesof dy-

namicfractureproblems.Theexperiencegainedin 1-D is very importantin giving usdirectionfor

applyingthesamealgorithmsandany newly developedonesto 2-D problems,while minimizing

our computationaleffort andtime.

In thebeginningof thischapter, wefirst introducethereference1-D problemandits analytical

solution.In thesectionsthatfollow, we takeaparametricapproachin applyingthesubcycling and

dynamiccohesive elementinsertionalgorithmsto various1-D problems.Finally, we discussour

observationsandconclusionsin thelastsection.

3.1 ProblemDescription

Typical 1-D problemsinvolve barsor beamsunderaxial loading. In orderto testour various

algorithmswe definea referenceproblemcomposedof a beamfixedat oneendandfreeandthe

otherwith anappliedaxial loadat thefreeend,asseenin Figure3.1.Weusethisgeneralproblem

for all of our analysesin theupcomingsections.

This beam,of lengthL, is fixedat the right endandhasa compressive axial forceappliedon

the left, correspondingto an axial stressσo DFE 0 G 01 Pa. The beamis homogeneousandhasa

46

Page 58: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

x = Lx = 0

F/A

dilatational wave

Figure3.1Referenceproblemin 1-D.

cross-sectionalareaA D 1 G 0 m2, densityρ D 1 G 0 kgH m3 andYoung’s modulusE D 1 G 0 Pa. The

beamwavespeedgivenby

c D Eρ

(3.1)

is thus1 G 0 mH s.

In 1-D theanalyticalsolutionto abeamproblemcanbeobtainedby solvingthewaveequation

∂2u∂x2 D 1

c2

∂2u∂t2 (3.2)

with initial conditions

u ? L @ 0AID 0 ut ? L @ 0AJD 0 (3.3)

andboundaryconditions

u ? L @ t AKD 0 Eux ? 0 @ t AKD F H A DLE σo (3.4)

whereu is thedisplacementandc is thewavespeed.

The solution to this problemis representedby the x-t (displacement-time)diagramin Fig-

ure3.2.Thedisplacement,velocityandstressprofiles,for asamplepointatx D L H 2, areshown in

Figure3.3.

47

Page 59: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

v = 0

v = 0

v = 0

v = ο / ρ c

v = −σο / ρ c

x = 0 x = L

t = 4L/c

t = 0

t = L/c

t = 3L/c

t = 5L/c

x = L/2

t = 2L/c

ο

ο

ο+σ

σ = −σ

σ = −2σ

σ = 0

σ = −σ

σ = 0

Figure3.2x-t diagramin 1-D.

t = 0

σ

v

d

L/c 2L/c 3L/c 4L/c 5L/c 6L/c

Incident Wave Reflections

Figure 3.3 Analytical solution for displacementd, velocity v andstressσ in the middle of thebeamfor the1-D waveproblemdescribedin Figure3.1.

48

Page 60: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

3.2 Multi-T ime StepNodal SubcyclingResults

Employing themulti-time stepnodalsubcycling algorithmpresentedby Smolinski(1989)and

describedin Chapter2, we apply it to thesimple1-D beamproblemdiscussedabove. In orderto

verify our implementationof thesubcycling algorithmwe compareour resultsto thosepresented

by Smolinski (CaseC) in his paper. The 1-D problemis discretizedinto threeregions of 10

elementseach,aspresentedin Figure3.4. Themiddle region is discretizedinto 0 G 1 m segments,

while theothertwo have1 G 0 m segments.Usingthepropertiesselectedfor thereferenceproblem,

thecritical timestepis 0 G 1s, whichfurtherreducedto 0 G 075s to ensurethatany instabilitiespresent

in thesolutionarea resultof thealgorithmandnotof aninadequatetimestep.

1 5 11 15 21 25 31F

m m1

length = 1.010 elements10 elements

length = 0.1length = 1.010 elements

Figure3.4Subcycling testdescribedby Smolinski(1989)by CaseC.

As in CaseC, we give thetwo non-subcycledboundaryregionsa parameterof m D 10, while

the middle subcycled region retainsthe critical time step. The simulationis run for 1000 time

stepsor 75G 0 s, while we trackthevelocitiesof nodes#5,#15and#25,representingthemiddleof

eachof thethreeregions. Comparingthevelocity profilesin Figures3.5-3.7,we canseethat the

subcycledsolutioncloselymatchesthereferencesolutionfor eachnode.Furthermore,theresults

obtainedareindistinguishablefrom thoseof CaseC presentedby Smolinski,suggestingthatour

implementationis correct.

49

Page 61: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

referencem = 10

Figure3.5Velocityprofileof node#5 with subcycling parameterm D 10.

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

referencem = 10

Figure3.6Velocityprofileof node#15with subcycling parameterm D 10.

50

Page 62: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

referencem = 10

Figure3.7Velocityprofileof node#25with subcycling parameterm D 10.

Althoughsubcycling is ableto provide fairly accurateresults,thelevel of accuracy in thenon-

subcycled regionsdecreasesas their time stepgrows closerto the critical valuefor that region.

The advantageof the larger time stepratio is that morecomputationalsavings is achieved since

the non-subcycled regionsareupdatedlessoften. Figure3.8 shows how the increasedtime step

ratioaffectsthedifferencesin displacementsandvelocitiesof node#5 for oursubcycling problem

at node.We cansee,thatasthetime stepratio increases,thedifferenceof thedisplacementsand

velocitiesbetweenthe referenceand the subcycled casesincreases.The differencesat the start

andendof thesimulationarenot displayedbecausethedisplacementsdiffer significantlyrelative

to eachotherbut arequitesmall in respectto therestof thesimulation.As a result,they arenot

plottedsincethey would maskthe effect that subcycling hason the solution. Similarly, for the

velocity profile, themiddle region representsa nearzerovelocity so thatevenminor differences

causelargerelativepercentages.

51

Page 63: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−8

−6

−4

−2

0

2

4

time (s)

% d

iffer

ence

in d

ispl

acem

ent

m=2m=4m=6m=8m=10

0 10 20 30 40 50 60 70 75−50

−40

−30

−20

−10

0

10

20

30

40

50

time (s)

% d

iffer

ence

in v

eloc

ity

m=2m=4m=6m=8m=10

Figure3.8Subcycling effect on (a) displacementsand(b) velocitiesat node5.

52

Page 64: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

In orderto getsometiming resultsandshow thesavingsgainedusingthesubcycling algorithm,

weselecteda largerproblemfor analysis.Figure3.9showsthe1-D beamwhich is discretizedinto

480equalsegmentseachof length1 G 0 m. The beampropertiesandforcesareselectedto match

theoriginal casepresentedat thebeginningof this chapter. Subcycling is appliedto thefirst and

lastgroupof elementsfor m D 6, 10and14,with atimestep0 G 025s (1/40ththecritical timestep).

The20 innerelementsaregiven thebasetime stepof ∆t, which givesusa ratio of 23 : 1, in the

numberof non-subcycledto subcyclednodes.

length = 1.0m20 elements230 elements

length = 1.0m230 elementslength = 1.0m

m m1

F

Figure 3.9Testcaseusedto gettiming resultsfor subcycling.

Thesimulationsarerun for 200@ 000time stepsor 5000s for eachsubcycling parameter, with

the resultsfor the internalforce vectorandtotal simulationtime presentedin Table3.1. At first

glancetheresultsdo not appearvery favorable.Eventhoughthetime requiredfor calculatingthe

internal force vectorsdecreases,with increasingm, the overall time for the entirecodeis above

thereferencetime. Therearetwo reasonsfor this timing discrepancy. Thefirst is that thecurrent

implementationof the subcycling algorithmmay not be the mostefficient. Whensubcycling is

usedthecomputercodemustmakecopiesof thenodaldisplacements,velocitiesandaccelerations

for every time step. Copying, in itself, is not very expensive but whenusedmultiple times for

eachnodeandfor eachtimestep,this timecostcanaccumulate.Thesecondreasonfor thetiming

discrepancy is that the1-D calculationof the internalforce is very simpleandasa resultis very

fast. In higherdimensions,the complexity of the internalforce vectorcalculationincreasesand

hasa bigger impacton the time of the solution - making it a more ideal testof the subcycling

algorithm.

53

Page 65: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Subroutine ReferenceCase[s], m D 1 m D 6 m D 10 m D 14

Rin 10.19 6.55( 36%) 4.87( 52%) 4.45( 56%)Total 49.66 62.13(-25%) 56.52(-14%) 52.68( -6%)

Table 3.1Timing resultsfor subcycling. TheCPUtimesaving (in %) is givenin parentheses.

3.3 Dynamic CohesiveNodeInsertion Results

As inidcatedearlier, whensolving dynamicfractureproblemsusing the CVFE scheme,the

conservativeapproachdictatesthatcohesiveelementsor nodesbeplacedeverywherein thedomain

at thebeginningof thesimulation.Althoughthis insuresthatall possiblefailureswill becaptured,

thecostof suchanimplementationis extremelylarge. An alternative approachis to dynamically

insertcohesiveelementsatany timein thedomain.In thisway, wecanobtainsometimesavingsby

not performingcomplex cohesive calculations,aswell asmemorysavingssincefewer nodeswill

bepresentin thedomain. In this section,we detail a dynamiccohesive nodeinsertionalgorithm

on simple1-D beamproblems.

Going backto the referenceproblemdescribedin Figure3.10,we insertcohesive nodesinto

the nodes#12 through#20. In orderto avoid cohesive failure, we setthe failing stressesof the

cohesive elementsto be very high. Furthermore,we reducethe critical time stepbasedon the

volumetricelementsby 1H 30th, to avalueof ∆t D 0 G 0025s, whichensuresthatany instabilitiesin

thesystemarea resultof theinsertionalgorithmandnotdueto thecohesiveelementsthemselves.

21 22151110

10 elementslength = 1.0

10 elementslength = 1.0

10 elementslength = 0.1

= normal node = cohesive node

Figure3.10Nodes12 through20 aremadecohesive.

54

Page 66: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Thefirst testis a blind insertionproblemwherenodesareinsertedwithout any thoughtto the

equilibriumof system.As will bepresentedin thenext section,blind insertioncausessomenodal

oscillations,which affect theaccuracy of thesolution. As a result,we attemptto minimize these

oscillationsthroughtheuseof damping.Althoughthis hassomefavorableresults,theimplemen-

tation of dampingis not very efficient, so we insteadpresenta third methodof pre- stretching

cohesive nodesduring insertion. This allows us to minimize the oscillationsmuchmoreeasily

while still maintaininganaccurateresult. Lastly we presentthe resultsfrom combiningdynamic

insertionwith multi-timestepnodalsubcycling to furtherincreaseourcomputationalsavings.

3.3.1 Blind CohesiveNodeInsertion Results

In orderto analyzetheeffect of blind insertion,we dynamicallyinserttheselectednodes(#12

through#20) at time step0 (0 G 0 s), 2500(6 G 25 s), 5000(12G 5 s) or 10000(25G 0 s). Node15 is

monitoredin Figures3.11 through3.14 to determinethe effect of varying the time of insertion.

From thesefigureswe can seethat blind insertionappearsto have an oscillatory effect on the

nodalvelocities.Theamplitudeof theoscillationsincreasesif theinsertionis performedafterthe

dilatationalwave haspassed,or somestresshasbuilt up neartheproposednodes.For thecurrent

case,having a wave speedof 1 G 0 mH s andtime stepof 0 G 0025s, it takesthewave approximately

4000time steps(or 10 s) to reachthefirst cohesive node- node#12. Prior to this time, the local

stressis zeroandsotheblind insertionis stableasseenby Figures3.11and3.12.

55

Page 67: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

Figure3.11Velocityprofileof node#15resultingfrom blind insertionat the0th timestep(0 G 0 s).

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

Figure 3.12 Velocity profile of node#15 resultingfrom blind insertionat the 2500th time step(6 G 25s).

56

Page 68: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

velo

city

(m

/s)

Figure 3.13 Velocity profile of node#15 resultingfrom blind insertionat the 5000th time step(12G 5 s).

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

velo

city

(m

/s)

Figure 3.14Velocity profile of node#15 resultingfrom blind insertionat the 10000th time step(25G 0 s).

57

Page 69: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Theseseverevelocity oscillationsarelikely theresultof thesuddenapplicationof volumetric

stresseson thecohesiveelementsduringthedynamicinsertion.Althoughtheoscillatoryeffect in

1-D appearsto belimited to the local node.Theneighbornodesexperienceonly minimal effects

whicharenearlyindistinguishable.This localizationof thedisturbancesis very importantbecause

we areableto insertcohesivenodeswithout fearof affectingtherestof thesystemtoo adversely.

In thenext sectionswewill attemptto completelyremovetheseoscillationsthrougheithertheuse

of dampingor pre-deformationof cohesiveelements.

3.3.2 Damping of Blind Insertion

Using the referenceproblemwe apply dampingduring the blind insertionof cohesive nodes

#12 through#20. From trial anderrorwe find that theoptimaldampingparameter, describedin

Chapter2, is η D 450.Figures3.15and3.16show theeffect thatlineardampinghason node#15

at time steps5000( 12G 5 s ) and10000( 25G 0 s ), respectively. Comparedto thevelocity profiles

dueto blind insertionat thesesametimes(Figures3.13 and3.14), dampingdoesminimize the

previousoscillatoryeffect. Only minoroscillationsarepresentat thetimeof insertion,but arethen

completelydampenedout.

58

Page 70: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

Figure3.15Velocityprofileof node#15resultingfrom blind insertionwith dampingat the5000thtimestep(12G 5 s).

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

Figure 3.16 Velocity profile of node #15 resulting from blind insertion with dampingat the10000th timestep(25G 0 s).

59

Page 71: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Althoughdampingdoesminimizethenodaloscillations,it is quitecumbersometo implement

sincewe usea trial anderrorapproachto determinetheoptimaldampingcoefficients. In orderto

usedampingasefficiently aspossible,werequireananalyticalcorrelationbetweenagivensystem

andtheappropriatedampingparameters.Unfortunately, derivationof suchacorrelationis outside

thescopeof this researchandis left for futureinvestigation.

3.3.3 Dynamic Insertion with Pre-Stretch

To minimize thenodaloscillationsresultingfrom blind insertion,we employ a pre-stretchto

cohesivenodesduringinsertion.With this pre-stretchthecohesivenodeis insertedin astatemost

closelyapproximatingthe stateit would be in hadthe insertionoccurredat the beginningof the

simulation.Usingagainthereferenceproblemdescribedat thebeginningof this chapter, we pre-

stretchnodes#12through#20duringdynamicinsertionat the5000th and10000th timestep.The

velocityprofilesfor node#15arepresentedin in Figures3.17and3.18,for eachof theinsertions.

Comparingthesevelocity profilesto theblind insertionprofilesin Figures3.13and3.14,we

canseethat pre-stretchingis able to minimize the oscillationsquite well. This methodis also

able to avoid the minor stabilizationperiod that is requiredwith damping. Furthermore,Fig-

ures3.19and3.20plot theseparationdistancefor two cohesive halvesof node#15,for dynamic

pre-stretchedinsertionat the 10000th time step. From thesetwo figureswe canclearly seehow

oscillatorytheseparationscohesivenodeare,aswell ashow significantlypre-stretchingminimizes

them.

60

Page 72: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

Figure3.17Velocityprofileof node#15resultingfrom insertionwith pre-stretchingat the5000thtimestep(12G 5 s).

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

Figure3.18Velocityprofileof node#15resultingfrom insertionwith pre-stretchingatthe10000thtimestep(25G 0 s).

61

Page 73: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−8

−6

−4

−2

0

2x 10

−5

time (s)

sepa

ratio

n (m

)

Figure 3.19Cohesive separationfor node#15resultingfrom blind insertionat 10000th time step(25G 0 s)

0 10 20 30 40 50 60 70 75−8

−6

−4

−2

0

2x 10

−5

time (s)

sepa

ratio

n (m

)

Figure 3.20 Cohesive separationfor node #15 resulting from insertion with pre-stretchingat10000th timestep(25G 0 s)

62

Page 74: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

In order to obtain timing information we have increasedthe size of the referenceproblem

to onehaving 300 segmentsof length1 G 0 m, asseenin Figure3.21,The middle 180 nodesare

madecohesive at the110@ 000th time stepor 2750s for a critical time stepreducedby 1H 40th to

∆t D 0 G 025s Thetotal simulationis run for 200@ 000timesteps(5000s).

length = 1.0m60 elements

length = 1.0m180 elements

length = 1.0m60 elements

F

cohesive region

Figure 3.21Testcasefor dynamiccohesivenodeinsertionwith pre-stretching.

Table3.2givesthetiming resultsfor thecohesiveandinternalforcecalculationsaswell asthe

total simulationtime. We gaina 58 % time savings in the cohesive calculationswhich is on par

with theapproximatetime of insertion,110@ 000th time stepout of 200@ 000,or 55 % throughthe

simulation.Theinternalforcecalculationsareincreasedslightly becausethenumberof nodeshas

increasedandhencethenumberof internalforcecalculationshasalsoincreased.

Subroutine ReferenceCase[s] DynamicCase[s]

Rco 9.17 3.82( 58%)Rin 6.74 6.88( 0%)

Total 60.91 51.34( 16%)

Table3.2Timing resultsfor dynamiccohesivenodeinsertionwith pre-stretching.CPUtimesaving(in %) is givenin parentheses.

3.3.4 Combined Insertion with Subcycling

To further increasethe time savings of our problemwe combinethe dynamiccohesive node

insertionandmulti-time stepsubcycling algorithms.As a testcasewe chosea beamdiscretized

into 800 equalsegmentsof length= 1 G 0 m. Subcycling is appliedto the left andright regions

63

Page 75: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

with thesubcycling parameterm D 10,asshown in Figure3.22. Cohesivenodesaredynamically

insertedat the150@ 000th time step(3750s), into themiddle200nodes,with thesimulationbeing

run for 300@ 000timesteps(7500s) usinga ∆t D 0 G 025s.

length = 1.0m200 elements

1m m

300 elementslength = 1.0m

300 elementslength = 1.0m

F

cohesive region

Figure3.22Testcasefor dynamicinsertionwith subcycling.

64

Page 76: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 1000 2000 3000 4000 5000 6000 7000 7500−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

referencem = 10

Figure 3.23Velocity profile of node400of dynamiccohesive nodeinsertionat time step150000(3750s) with nodalsubcycling usingm D 10.

FromTable3.3wecanseethatthecombinedmethod,usingdynamicinsertionwith subcycling,

is moreefficient for the individual internalandcohesive force subroutines,althoughthe overall

savings is minimal. This low time savings is dueto thecostly implementationof thesubcycling

algorithmaswell asthe increasednumberof nodalupdatesof the displacements,velocitiesand

accelerationsin themaincode.

Subroutine ReferenceCase[s] CombinedCase,m D 10 [s]

Rco 14.32 9.16( 36%)Rin 27.33 15.93( 42%)

Total 117.80 114.57( 3%)

Table 3.3Timing resultsfor dynamiccohesive nodeinsertionat time step150@ 000(3750s) withnodalsubcycling usingm D 10. CPUtimesaving (in %) is givenin parentheses.

65

Page 77: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

3.4 Conclusions

In this chapterwe presentedthe resultsof applyingthedynamiccohesive nodeinsertionand

the multi-time stepnodalsubcycling methodto 1-D systems.Analysisin 1-D allowedus to use

simpleproblemswith verifiablesolutions.Basedon theanalysisof severaldifferentproblems,we

gainedabetterunderstandingof thebestandworstmethodsandwaysto tacklefutureproblemsin

2-D.

Theresultshaveshown thatmulti-timestepnodalsubcycling is agoodapproximatingmethod

which allows for differenttime stepsin differentregionsor a problem. As a result,we areable

to distribute the lower time stepsto morecritical regionswhile larger time stepscanbe usedin

lesscritical ones.Implementingthis algorithmin a standardfinite elementformulationgenerates

significantcomputationalsavings for problemshaving significantly more non-subcycled nodes.

Whentheratio of non-subcycledto subcyclednodesis small, thecostdueto the implementation

of thealgorithmoffsetsany savingsachievedthroughits use.In addition,subcycling is inherently

andapproximationmethodandsosomeinformationis lost which, in turn,decreasestheaccuracy

of thesolution.

We have alsoshown thatdynamicinsertionrequiressomeform of pre-stretchingof cohesive

nodesto minimize the nodaloscillationsassociatedwith blind insertion. The timing resultsfor

this methodhave generatedsignificantcomputationalsavings while the solution wasstill quite

accurate.

66

Page 78: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

CHAPTER 4

2-D ANALYSIS AND RESULTS

Having gainedvaluableexperiencefrom ourone-dimensionalanalysisof thepreviouschapter,

we cannow applythevariousoptimizationmethodsto themorecomplex, two-dimensionalprob-

lems. We begin our analysiswith themulti-time stepnodalsubcycling algorithmusinga simple

modeI testproblemwherewe vary the numberof non-subcycled to subcyclednodes.Next, we

analyzethe dynamiccohesive elementinsertionalgorithmon a simplified 2-D problem. Using

two cohesive elementselectioncriteria, the boundingbox methodandthe stress-basedselection

method,weapplytheinsertionalgorithmto aseriesof complex problems,from whichweareable

to gaugetheaccuracy andtiming informationof thesolutions.Finally, weusetheCharm++ code

parallelizationtechniqueto takeadvantageof thebenefitsof multipleprocessorsin solvingagiven

problem.

4.1 Multi-T ime StepSubcyclingResults

In order to verify the 2-D nodalsubcycling algorithmdescriberdin Chapter2, we test it on

a homogeneouslydiscretizedmodeI crackproblempresentedin Figure4.1. The middle region

containscohesive elementswhich defineit as the critical or subcycled region, sincethe overall

domaintime stepmustbereduceddueto thecohesive elements.ThemodeI loadingis dueto an

appliedvelocityof 0 G 25mH s on thetopandbottomof thedomain.

67

Page 79: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Cohesive

Non−Cohesive

Non−Cohesive

Figure4.1Cohesiveelementdistribution.

The entiredomainis composedof PMMA materialwith a Young’s ModulusE D 3 G 24 GPa,

Poisson’s ratio ν D 0 G 35, anddensityρ D 1190kgH m3. Thecohesive elementshave a maximum

stressσmax D 32G 4 MPa, initial strengthparameterSinit D 0 G 995andanormalandtangentialcritical

separationsof ∆nc D ∆tc D 2 G 2 M 10N 5 m. Thetime stepis reducedby thirty to ∆t D 3 G 0 M 10N 9 s,

andthesimulationis run for 60000time steps,or 0 G 00018s, on a PentiumIII, 600MHz, 750Mb

RAMprocessor, runningMandrakeLinux7.2.

In ourprimarily analysis,wewish to seetheeffect thattheratioof non-subcycledto subcycled

nodes- also known as the region ratio - hason the timing and accuracy of the solutions. We

test the algorithm for region ratios of 1 : 1, 2 : 1 and 4 G 5 : 1. For eachof thesecaseswe use

subcycling parametersof m D 4 @ 10@ 16and20in thenon-criticalregionsof thedomain.Optimally,

we shouldbe able to usea maximumof m D 30 sincewe reducethe original time stepby this

amount. Previous resultshave shown that the optimal parametercannotbe achieved dueto the

severeoscillationsthatoccur, asa resultwemaximizeour parameterat m D 20.

Basedonourresultsin 1-D, for low low regionratiosaswell aslow subcycling parameters,the

costof thealgorithmimplementationcanpotentiallyoffsetthesavingsgainedthroughsubcycling.

In increasingbothof theseratioswewill show thatthecomputationalsavingsis increasedalthough

theaccuracy of thesolutionsdecreaseswith thehighersubcycling parameters.

68

Page 80: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.1.1 Equal Subcycledto Non-SubcycledRegionRatio of 1:1

We first testsubcycling on an equaldistribution of non-subcycled andsubcycled nodes,i.e.

a region ratio of 1 : 1, with 7896nodes,15256edgesand8700volumetricelements.Selectinga

randomnodeaheadof theinitial notch,weplot its nodaldisplacementsin Figure4.2for thevarious

subcycling parameters.Fromthis figurewe canseethatsubcycledsolutionsarevery closeto the

referencesolution,althoughtheiraccuraciesdecreasewith anincreasingsubcycling parameter.

Thetiming resultsfor theinternalandcohesiveforcesubroutines,themainloopandtheoverall

solutionarepresentedin Table4.5. As expected,the time for the internalforce calculationsde-

creasesasthesubcycling parametergrows,althoughfor m D 4, thecostresultingfrom thecohesive

forcesandmainsolutionloopoffsetsthesavingsof theinternalforces- a11%loss.

0 1 2

x 10−4

−2.5

−2

−1.5

−1

−0.5

0

0.5x 10

−5

time (s)

noda

l dis

plac

emen

t (m

)

referencem=4m=10m=16m=20

Figure4.2Nodaldisplacementsof a randomnodeaheadof thenotchfor aproblemwith anequalregion ratio (1 : 1) with subcycling parametersof m D 1 @ 4 @ 10@ 16and20.

69

Page 81: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Subroutine ReferenceCase[s], m= 1 m = 4 m= 10 m = 16 m = 20

Rco 424.13 628.72 503.81 479.24 469.56Rin 733.89 472.52 300.37 256.66 238.05Main 427.29 652.91 499.89 469.59 439.78Total 1628.54 1811.59 1359.70 1259.68 1201.80% Total Savings -11% 17% 23% 26%

Table 4.1 Timing results(in s) for a problemwith an equalregion ratio (1 : 1) with subcyclingparametersof m D 1 @ 4 @ 10@ 16and20.

4.1.2 UnequalSubcycledto Non-SubcycledRegionRatio

Over thenext two problems,we increasetheregion ratio to 2 : 1 ( having 12294nodes,28341

edges,and17381volumetricelements) and4 G 5 : 1 ( having 30889nodes,81148edges,and52020

volumetricelements). We plot thedisplacementprofilesof a randomnodefor eachof theregion

ratiosin Figures4.3 and4.4, respectively. Thecorrespondingtiming resultsarepresentedin Ta-

bles4.2 and4.3. For the4 G 5 : 1 region ratio case,them D 20 resultis not presentedbecausethe

solutionbecameunstablelatein thesimulation,possiblydueto lackof local computermemory.

As we canseefrom the two figures,thedisplacementsfor eachof thesubcycling parameters

arevery closeto thereferencesolution;in fact,thedifferencesarenearlyimperceptibleat certain

pointsin the simulation. In addition,the time savings for bothcasesincreasesasthe subcycling

parameterincreases;with thebiggestincreaseoccurringfor the lower subcycling parametertran-

sitions.For example,for the2 : 1 region ratio results,theincreasefrom m D 4 to m D 10generates

a savingsof 28%,while from m D 10 to m D 16 it is only 4%. The resultsfor the4 G 5 : 1 region

ratio fair slightly betterwith savingsof 32%and6%,for bothsubcycling parametertransitions.

70

Page 82: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Subroutine ReferenceCase[s], m= 1 m = 4 m= 10 m = 16 m = 20

Rco 438.42 634.97 499.39 487.99 473.49Rin 1561.98 893.63 483.02 376.92 339.56Main 704.72 994.00 742.12 736.87 700.87Total 2853.85 2693.81 1894.97 1774.19 1682.16% Total Savings 6% 34% 38% 41%

Table 4.2 Timing results(in s) for a problemwith an equalregion ratio (2 : 1) with subcyclingparametersof m D 1 @ 4 @ 10@ 16and20.

Subroutine ReferenceCase[s], m = 1 m = 4 m = 10 m= 16

Rco 600.59 886.33 703.14 653.98Rin 4215.44 2670.78 1264.39 911.16Main 1119.75 1115.83 1114.14 1116.31Total 7930.09 7577.06 5072.81 4604.52% Total Savings 4% 36% 42%

Table 4.3 Timing results(in s) for a problemwith anequalregion ratio (4 G 5 : 1) with subcyclingparametersof m D 1 @ 4 @ 10and16.

71

Page 83: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 1 2

x 10−4

−1

0

1

2

3

4

5x 10

−6

time (s)

noda

l dis

plac

emen

t (m

)

referencem=4m=10m=16m=20

Figure 4.3 Nodal displacementsof a randomnodefor the 2 : 1 region ratio with subcycling pa-rametersof m D 1 @ 4 @ 10@ 16and20.

0 1 2

x 10−4

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0x 10

−5

time (s)

noda

l dis

plac

emen

t (m

)

referencem=4m=10m=16

Figure 4.4 Nodal displacementsof a randomnodefor the 4 G 5 : 1 region ratio with subcyclingparametersof m D 1 @ 4 @ 10and16.

72

Page 84: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.1.3 Multi-T ime StepNodal SubcyclingObservations

Having appliedmulti-time stepnodalsubcycling to variousproblemswe can concludethat

this methodis ableto provide a significanttime savingsat a minimal costto theaccuracy of the

solution.Althoughit is mostoptimalfor problemswherethenumberof calculations(or nodes)in

thenon-subcycledregion is at leasttwicemorethanin thesubcycledregion.

In addition,asthesubcycling parameter, m, is increased,thesavingsalsoincreasesdueto the

decreasednumberof explicit updatesfor eachcycle. In Figure4.5,we presentthecomparisonof

the% savingsobtainedfor thevarioussubcycling parametersasafunctionof theregionratio. The

biggestincreaseoccursasthe region ratio is doubled,with an averageincreaseof 15% for each

subcycling parameter;beyondthis, thesavingsappearsto plateauout.

Althoughsubcycling is ableto achievesignificanttime savings,it comesat thecostdueto the

increasein the sizeof the nodalarraysrequiredto track the displacements,velocitiesandaccel-

erations. Furthermore,as the subcycling parameteris increased,the numberof approximations

alsoincreaseswhich leadsto a lossin accuracy of thesolution. Fromour results,thesubcycling

parametershouldnot bebegreaterthanhalf of thecritical valuefor thesubcyclednodalregions,

to avoid many of theinstabilitiesresultingfrom thenodalapproximations.

73

Page 85: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

1 2 4.5−20

−10

0

10

20

30

40

50

Subcycled/Non−subcycled region ratios

% s

avin

gs

m = 4m = 10m = 16m = 20

Figure4.5Percenttime savingsvs region ratio for varioussubcycling parameters.

74

Page 86: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2 Dynamic CohesiveElement Insertion

In many dynamicfractureproblemswe arenot ableto easilypredictthecohesive failureloca-

tionsor paths.And so, for conservative CVFE analysis,thedomainis discretizedwith cohesive

elementseverywherefrom the beginning. As a result,theseproblemsincur the greatestcompu-

tationalcosts,especiallyif actualcohesive failuresdo not occuruntil late in the simulation. A

preferredapproachis to placecohesiveelementsanywhereandatany timeduringasimulation.In

thisway, weareableto savemuchcomputationaleffort sincecohesiveelementswon’t beinserted

until they areneeded.We presentthis dynamicinsertionmethodusingblind insertion,damping

andpre-stretchingof cohesive elementson a simple2-D problem. We thenapply thealgorithm,

usingthe two aforementionedselectionmethods:theboundingbox methodandthestressbased

stress-basedapproachto severalproblems.

4.2.1 Insertion Analysis

As a first stepin our insertionanalysiswe selectthetwo simple2-D testproblems,presented

in Figure4.6. Eachdomainis 2 G 5 m tall and1 G 5 m wide,with a fixedbaseandanappliedvelocity

of 0 G 056mH s pulling on thetop. Thematerialpropertiesfor thesystemareselectedsuchthat the

dilatationalwave speedis 10 mH s anda conservative time stepvalueof ∆t D 0 G 0004s is usedto

ensurethatany instabilitiesarea directresultof theinsertionandnot thecohesiveelements.

The two casesdiffer in the orientationof the cohesive elementswith respectto the applied

load. In the first case,all threecohesive elementsareperpendicularto the appliedforce,so that

only normaltractionsandseparationswill bepresenton thesecohesiveelements,with thesecond

having aninclinedcohesiveelementthatwill havebothnormalandsheartractionsandseparations.

In the upcomingsectionswe will presentthe threemain insertionmethods,which include

blind insertion,insertionwith damping,andpre-stretchedinsertion. From our 1-D analysis,we

havedeterminedthatthesolutionfor a dynamicinsertionproblemis dependenton thestresslevel

of the cohesive elementat the time of its insertion. Using the averagestressesfor volumetric

elements#23and#14,thecohesiveelementsareinsertedat timesteps0 (0 G 0 s), 2500∆t (1 G 0 s) or

75

Page 87: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

ElementsCohesive

Applied Velocity

TrackingNode

#23

#14ElementsCohesive

Applied Velocity

TrackingNode

#23

#14

Figure 4.6 Simple2-D mesheswith threecohesive elementsinsertedalong(a) ”horizontal” and(b) ”mixed” interfaces.

5000∆t (2 G 0 s) of a 10000(4 G 0 s) time stepsimulation.correspondingto stresslevelsof 0%,23%

and43%,respectively, asseenin Figure4.7. In eachcasewe will follow thenodalseparationof

thetrackingnodepresentedin Figure4.6.

76

Page 88: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 0.5 1 1.5 2 2.5 3 3.5 4−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

stre

ss p

erce

ntag

e (σ

xx /

σ max

)

2500

5000

σ11

σ12

σ22

Figure 4.7 Normalizedaveragestresslevels for the volumetricelementsof the middle cohesiveelement. Vertical lines at the 0th (0 G 0 s), 2500th (1 G 0 s) and5000th (2 G 0 s) time steprepresentdynamicinsertiontimes.

77

Page 89: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.1.1 Blind Insertion

Blind insertionis thesimplestinsertionmethod,by whichacohesiveelementis placeddirectly

betweenthevolumetricelements,without thoughtto the local stressesor stability of thesystem.

Figure4.8and4.9presentsthenodalseparationsfor thetrackingnodeof theinsertioncaseusing

the”horizontal” and”mixed” cohesiveelements.

Whenthe cohesive elementsarepresentat the startof the simulation,the nodalseparations

are simply increasingdue to the appliedconstantvelocity. On the other hand,when insertion

occursaftersometime, thenodalseparationsoscillateseverelyaroundthereferencesolution.The

amplitudeof theseoscillationsis directly proportionalto the local stressat the time of insertion,

which increasesover time for a constantvelocity loading,asseenin Figure4.7.

4.2.1.2 Damping of Blind Insertion

Thenodaloscillationsresultingfrom blind insertionmustbeminimizedin orderto obtainan

accuratesolution.Oneknown methodof minimizinggeneraloscillationsis to removesomeenergy

from asystemthroughtheuseof lineardamping,asdiscussedin Chapter2.

Figures4.10and4.11show theresultof applyinglineardampingon thedynamicallyinserted

cohesiveelementsfor the“horizontal” and“mixed” cases.Fromtrial anderrortheoptimaldamp-

ing coefficientsfor insertionat t D 2500∆t and5000∆t areη D 3 G 8 andη D 4 G 4 for the”horizontal”

case,andη D 2 G 4 andη D 4 G 3 for the “mixed” case,respectively. From the figures,we cansee

that linear dampingdoesminimize the oscillationsafter someinitial time, although,our experi-

mentationhasshown thatif thecoefficient is too large,thesolutioncandivergefrom thereference

solution.

78

Page 90: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.000

0.005

0.010

0.015

0.020

time (s)

∆ / ∆

crit

Insertion at t = 2.0 sInsertion at t = 1.0 sReference Solution

Figure 4.8 Normalizedseparationof thetrackingnodefor ”horizontal” blind insertionat the0th(0 G 0 s), 2500th (1 G 0 s) and5000th (2 G 0 s) timestep.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.000

0.005

0.010

0.015

0.020

time (s)

∆ / ∆

crit

Insertion at t = 2.0 sInsertion at t = 1.0 sReference Solution

Figure 4.9Normalizedseparationof thetrackingnodefor ”mixed” blind insertionat the0th (0 G 0s), 2500th (1 G 0 s) and5000th (2 G 0 s) timestep.

79

Page 91: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.000

0.005

0.010

0.015

0.020

time (s)

∆ / ∆

crit

Insertion at t = 2.0 sInsertion at t = 1.0 sReference Solution

Figure4.10Normalizedseparationof thetrackingnodefor ”horizontal” blind insertionwith damp-ing at the0th (0 G 0 s), 2500th (1 G 0 swith η D 3 G 8) and5000th (2 G 0 s with η D 4 G 4) timestep.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.000

0.005

0.010

0.015

0.020

time (s)

∆ / ∆

crit

Insertion at t = 2.0 sInsertion at t = 1.0 sReference Solution

Figure4.11Normalizedseparationof thetrackingnodefor ”mixed” blind insertionwith dampingat the0th (0 G 0 s), 2500th (1 G 0 s with η D 2 G 4) and5000th (2 G 0 s with η D 4 G 3) timestep.

80

Page 92: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.1.3 Insertion with Pre-Stretch

Thusfar, we have seenthatblind insertioncausesseverenodaloscillationswhich aredirectly

relatedto the local stressat the insertiontime. Althoughdampingwasableto slightly minimize

theseoscillations,it is not theoptimalmethod.Insteadweapplyapre-stretchto cohesiveelements

during their insertionso that the equilibrium andstability of the local systemis maintainedand

betterminimizationcanbeachieved.

Usingthereferenceproblemwe testthepre-stretchinsertionmethodat the0th (0 G 0 s), 2500th

(1 G 0 s) and5000th (2 G 0 s) timestep.Figures4.12and4.13show theseparationprofilesfor tracking

nodeof the”horizontal” and”mixed” insertioncases.As we canseefrom thesefigures,thesepa-

rationsfor eachinsertionarevery closeto thereferencesolution. We canthereforeconcludethat

thecohesiveelementinsertionwith pre-stretchingmethodis ableto capturethesolutionaccurately

andat any insertiontime (or local stresslevel).

Although greatlyminimized,the oscillationsaremorepronouncedfor the ”mixed” insertion

casewhich hasanangledcohesive elements.This is mostlikely dueto theshearseparationsthat

this angledcohesiveelementexperiences.Underthecurrentinsertionmethod,theseparationsfor

eachcohesivenodeareequallydistributedto theneighboringcohesivenodes.Theneachcohesive

nodeusesan averageof all of the separationscontributed to by the variouscohesive elements.

Although, this hasfound to be the bestmethodthusfar, it is unableto completelyminimize all

of the nodaloscillationssincean averagedseparationis used. Futureresearchin this areamay

provideamoreoptimalmethodfor applyingtheseparations.

81

Page 93: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.000

0.005

0.010

0.015

0.020

time (s)

∆ / ∆

crit

Insertion at t = 2.0 sInsertion at t = 1.0 sReference Solution

Figure 4.12Normalizedseparationof thetrackingnodefor “horizontal” insertionwith with pre-stretchingat the0th (0 G 0 s), 2500th (1 G 0 s) and5000th (2 G 0 s) timestep.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.000

0.005

0.010

0.015

0.020

time (s)

∆ / ∆

crit

Insertion at t = 2.0 sInsertion at t = 1.0 sReference Solution

Figure 4.13 Normalizedseparationof the tracking node for “mixed” insertionwith with pre-stretchingat the0th (0 G 0 s), 2500th (1 G 0 s) and5000th (2 G 0 s) timestep.

82

Page 94: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.1.4 Insertion Analysis Observations

As in 1-D, we have foundthatblind insertionof cohesive elementsin 2-D systemscausesse-

verenodaloscillations(Figures4.8and4.9),which, in turn,decreasetheaccuracy of thesolution.

Althoughlineardampingdoesminimizetheoscillations(Figures4.10and4.11),theeffect is not

enoughto justify its use. Instead,we have adaptedthe pre-stretchtechniqueusedin 1-D to the

morecomplex 2-D problems.Theresultsof Figures4.12and4.13show thatthenodaloscillations

arenearlycompletelyminimizedfor eachinsertiontime. Theonly drawbackto thepre-stretching

methodis that its effectivenessis diminishedat greaterstresslevelsduring insertion.Figure4.14

shows the amplitudeof the oscillationsasa function of the local stresslevel, at the time of in-

sertion.Thenodalamplitudesarerepresentedby theamplitudeof the tractions,normalizedwith

themaximumcohesivestress.For boththe“horizontal” and“mixed” testcases(presentedearlier)

theoscillationsaresignificantlyminimizedasaresultof pre-stretching,althoughthe“mixed” case

retainsgreateroscillationsafterthepre-stretchingthenthe”horizontal” case.

0.0 0.1 0.2 0.3 0.4 0.50.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

stress insertion level (σins

/ σmax

)

trac

tion

osci

llatio

n am

plitu

de /

σ max

blind insertion (horizontal)blind insertion (mixed)insertion with pre−stretch (horizontal)insertion with pre−stretch (mixed)

Figure4.14Effectof blind insertionvspre-stretchingon theamplitudeof thetractionoscillationsfor increasingstressinsertionlevels,for the“horizontal” and“mixed” cases.

83

Page 95: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.2 Insertion Results

In the analysissectionabove, we have found that blind insertionof cohesive elementsintro-

ducesoscillationsof the local nodes.And, althoughdampingwasableto minimize theseoscil-

lations,it wasnot theoptimalmethodbecauseof its cumbersomeimplementationrequiringtrial

anderror to find thedampingcoefficients. Insteadwe have developeda methodwherethecohe-

siveelementsarepre-stretchedduringtheir dynamicinsertion.This methodis ableto completely

minimizetheoscillationswhile maintainingtheaccuracy of thesolution.

Wenow applythis dynamicinsertionmethodto severalproblemsby usingtwo differentcohe-

sive elementselectioncriteria. Thesecriteriaareusedto determinetheoptimal locationandtime

for insertionof cohesiveelements.Thefirst is basedon a boundingbox approachwhereall edges

within a growing boundingbox aremadecohesive. The secondusesa stresscriteria, basedon

theaveragevolumetricstresses,to determineif a particularedgeshouldhave a cohesive element

inserted. We presentboth of thesemethodsbelow, aswell as the resultsof their applicationto

variousproblems.

4.2.2.1 Bounding Box Insertion

Theboundingboxmethodreliesonachangingboundaryto selectcohesiveedges.At periodic

intervals during the simulation, the boundingbox methodcalculatesthe farthestextentsof all

failing cohesive elementswithin the domain. Wherea failing elementis definedasonewhose

strengthparameteris below the initial value,but hasnot yet reachedzero. The initial bounding

box is theincreasedslightly andall non-cohesiveedgeswithin this new box aremadecohesive.

As a testof theboundingbox method,we have selectedthemodeI crackproblempresented

in Figure 4.15. We apply an appliedvelocity of 0 G 25 mH s along the left and right boundaries.

The bulk materialis PMMA with a Young’s modulusE D 3 G 24 GPa, Poisson’s Ratio ν D 0 G 35,

anddensityρ D 1190kgH m3. Thecohesive elementshave a maximumstressσmax D 32G 4 MPa,

initial strengthparameterSinit D 0 G 995andanormalandtangentialcritical separationsof ∆crit ON D∆crit O T D 2 G 2 M 10N 5 m. Thedomainis meshedinto 4043nodes,11857edges,and7815volumetric

elements.Theresultingcritical timestepfor theproblemis reducedto ∆t D 2 G 8 M 10N 9 s.

84

Page 96: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Velocity Velocity

0.02 m

0.02 m

Figure4.15Schematicof amodeI crackproblem.

Usinga PentiumIII, 600MHz,750MbRAMprocessor, runningMandrake Linux 7.2, thesim-

ulationswererun for 72000time steps- or approximately0 G 0002seconds.For thereferencesim-

ulation,cohesive elementsarepresenteverywherein thedomainfrom time t D 0. Thebounding

boxsimulationrequiresonly a few initial cohesiveelementsin thevicinity of thecracktip, sothat

failurecanbegin. Theselectiontestoccursevery500timestepsatwhichtime theboundingbox is

scaledupby 4 characteristiclengthsin eachof theprincipaldirections.Both theselectioninterval

andscalingfactorscanbe selectedto bestfit a givenproblem. Decreasingthe selectioninterval

increasesthe frequency of the boundingbox selections,which resultsin an increasedcomputa-

tional time aswell asan increasein cohesive insertions.Thesizeof thescalingfactoris directly

proportionalto thenumberof new cohesive elementsthatwill be insertedduring eachbounding

boxselectioncycle. As aresult,if thisscalingfactoris large,thedomaincanbecomequickly filled

with cohesiveelements.

Thetiming resultsfor theboundingbox selectioncasearepresentedin Table4.5 for thecohe-

siveandinternalforcesubroutines,themainsolutioncodeandthetotalsimulation.Fromthistable

we canseethattheboundingbox methodsavesnearly65%of thetime neededto solve themode

I crackproblem.A majorportionof thesavings is dueto thedecreasednumberof internalforce

85

Page 97: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

calculations,which savedapproximately42%of the total time. This canbeseenin Figure4.16,

wherethe numberof cohesive elementspresentin the domainwasvery limited for mostof the

simulation.Themajor influx of new cohesive elementsoccurredat approximatelythesametime

asthemaincrackbeganto form. Thesenew cohesiveelementsextendedthecohesive failurezone

allowing for theformationandpropagationof thiscrack.Figure4.17showsthegrowth in thecrack

lengthoccurringat nearlythreequartersof theway throughthesimulation- immediatelyafterthe

cohesive elementinsertions.This figurealsoshows how well theboundingbox selectionmethod

wasableto trackthecracktip distanceover time.

Thefinal solutions,at time t D to P 72000∆t, for boththereferencecaseaswell asthebound-

ing box selectioncasearepresentedin Figures4.18and4.19. In both figures,the non-cohesive

edgesarerepresentedby thin lines, while the cohesive edgesor elementsaredark. Any failing

cohesive elementsarerepresentedby a dashedbold line, andcompletelyfailedonesarebold. In

the boundingbox selectioncase,we canseethat the part of the upperregion is free of cohesive

elements.In addition,thefinal solutionappearsto havemany morefailing cohesiveelements,both

nearthecrackitself, aswell asin fringe regions. This is mostlikely theresultof theoscillations

thatoccurasapartof theinsertion.Sincetheboundingboxmethodselectsnew cohesiveelements

basedon any neighboringcohesive elements,certainregionsmay be underhigh stressalthough

havenoexistingcohesiveelementsin theirvicinity. As aresult,whenacohesiveelementis finally

insertedinto oneof theseregions,evenpre-stretchingis not ableto compensatewell for thehigh

stressesalreadypresent.

Subroutine ReferenceCase[s] BoundingBox Case

Rco 3013.84 619.30Rin 1035.90 794.97Main 1645.03 561.36Total 5749.17 2040.19% Total Savings 65%

Table 4.4 Mode I casetiming results,in seconds,for the referenceandboundingbox insertioncases.

86

Page 98: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−4

0

2000

4000

6000

8000

10000

12000

time (s)

# of

Coh

esiv

e E

lem

ents

referencebounding box

Figure 4.16 Numberof cohesive elementspresentin the domainover time for boundingboxinsertion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10−4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

time (s)

crac

k tip

dis

tanc

e (m

)

referencebounding box

Figure 4.17ModeI casecracktip distanceversustime.

87

Page 99: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 4.18 Mode I referencecasewith cohesive elementspresentfrom the beginning of thesimulation(10xexaggeration).

Figure4.19ModeI boundingboxsolution(10xexaggeration)(edgekey: thin = normaledge,dark= cohesiveelement,dashed= failing cohesiveelement,bold= failedcohesiveelement).

88

Page 100: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.2.2 StressBasedInsertion in L-Angle Specimen

Although, theboundingbox cohesive elementselectionmethodis capableof large computa-

tionalsavings,themethodhassomedrawbacks.Thismethodis notselfstarting,insteadit requires

somecohesive elementsto be presentin regionswherecohesive failure is expected. For fairly

predictableproblems,it canprovide goodresults,but whenthe failure regionsarenot known a

priori , themethodis not optimal. An improvedinsertionmethodusestheaveragestressesof the

neighborvolumetricelementsto determineif theinterfacebetweentheseelementsshouldbemade

cohesive. In effect, this allows us to begin a cohesive elementfree solutionandonly insert the

elementsasthestressesbuild to somepredefinedlevels- definedby Equation2.34.

As a testof the stressbasedinsertionmethod,we usean L-angleproblempresentedin Fig-

ure 4.20. The top andright boundariesarefixed in placeanda vertical velocity of 1 G 25 mH s is

placedin shearalongtheleft boundary. Thebulk materialof thedomainis PMMA with aYoung’s

ModulusE D 3 G 24 GPa, Poisson’s Ratio, ν D 0 G 35, anddensityρ D 1190kgH m3. The cohesive

elementshave a maximumstressσmax D 32G 4 MPa, initial strengthparameterSinit D 0 G 995anda

normalandtangentialcritical separationsof ∆crit ON D ∆crit O T D 2 G 2 M 10N 5 m. Thedomainis dis-

cretizedinto 3263nodes,9531edgesand6269volumetricelements.Takinginto accounttheinsta-

bility of thecohesiveelementsto beinserted,thecritical timestepis reducedto ∆t D 3 G 0 M 10N 9s.

We run four differentsimulationsfor a durationof 60000time stepsor 0 G 00018s, with the

stressinsertionselectionoccurringevery500timesteps.Thefirst representsthereferencesolution

wherecohesive elementsareinsertedeverywherein the domainat the start. The otherthreeuse

thestressbasedinsertionmethodfor stresslevel of 15%,30%and45%,respectively.

In orderto verify theaccuracy of thevarioussolutionsweobservethecracktip distanceversus

time, presentedin Figure4.22. Fromthis figure,we canseethat thecracktip distance,andindi-

rectly thespeed,arevery closeto thereferencesolution.Furthermore,from Figures4.23through

4.26,wecanseethatthecrackprofilesat theendof thesimulationareverysimilar. In addition,to

thecrackprofiles,we canseethat thecohesive elementstendto concentratein thehigh stressre-

gionswith thefewestelementspresentfor the45% stressinsertionlevel. Eventhoughweachieve

thegreatestsavings for the largerstressinsertionlevels, theseresultscontaingreaterinstabilities

89

Page 101: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Velocity

0.02 m

0.02 m

0.01 m

0.01 m

Figure 4.20Schematicrepresentationof L-angletestspecimenwith boundaryconditions.

in the solution. This is visually apparentby the greaternumberof failing cohesive elementson

thefringesof thedomain- representedby dashedlines. For lower stresslevels,aswell asfor the

referencesolution,thefailing cohesive elementstendto belimited to only theimmediatevicinity

of thecrack.

The timing resultsfor thereferenceandstressinsertioncasesarepresentedin Table4.5. The

largestsavings,of 76%,occursfor thestressinsertionof 45%,which usesthe fewestnumberof

cohesiveelementsto obtainthesolution,asseenin Figure4.21.

Subroutine ReferenceCase[s] 15% 30% 45%

Rco 2070.92 988.10 403.28 105.45Rin 773.04 690.75 612.00 536.14Main 1273.18 790.65 465.09 261.64Total 4150.37 2615.30 1585.66 980.68% Total Savings 37% 62% 76%

Table4.5Anglecasetiming results,in seconds,for variousstressinsertionlevels.

90

Page 102: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

time (s)

# of

Coh

esiv

e E

lem

ents

reference15%30%45%

Figure4.21Numberof cohesiveelementspresentin thedomainovertimefor variousstressinser-tion levels.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

time (s)

crac

k tip

dis

tanc

e (m

)

reference15%30%45%

Figure 4.22L-anglecasecracktip distanceversustime, for variousstressinsertionlevels.

91

Page 103: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 4.23 L-angle referencecasewith cohesive elementspresentfrom the beginning of thesimulation(10xexaggeration).

Figure 4.24L-anglecasewith stressbasedcohesiveelementinsertionfor a 15%stresslevel (10xexaggeration)(edgekey: thin = normaledge,dark= cohesive element,dashed= failing cohesiveelement,bold= failedcohesiveelement).

92

Page 104: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 4.25L-anglecasewith stressbasedcohesiveelementinsertionfor a 30%stresslevel (10xexaggeration).

Figure 4.26L-anglecasewith stressbasedcohesiveelementinsertionfor a 45%stresslevel (10xexaggeration)(edgekey: thin = normaledge,dark= cohesive element,dashed= failing cohesiveelement,bold= failedcohesiveelement).

93

Page 105: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.2.3 Stress-basedInsertion in Vertical Interface Specimen

In orderto moreclearlyobservetheadaptivecapabilitiesof ourdynamicinsertionalgorithmwe

haveselectedasimplemodeI problemcomposedof two differentmaterialsseparatedby avertical

interfaces,as seenin Figure 4.27. The bulk materialof the pre-notchedregion hasa Young’s

modulusE1 D 3 G 24 M 109Pa andthemaximumnormalandshearstressfor its cohesive elements

is σmaxO 1 D 3 G 24 M 107Pa. Thesecondregion is 100timesstrongerwith E2 D 100E1 andσmaxO 2 D100σmaxO 1, while theinterfacecohesiveelementsareweakenedby 100times.Figures4.28through

4.30 are snapshotsof the solution at varioustime stepsduring the 72000time stepsimulation

usingthe45%stressinsertioncriteria. Fromthesefigureswe canseethebuild-up of thecohesive

elements- andconsequentlythestresses- bothat thecracktip aswell asfarfield alongthevertical

interface.As themaincrackbeginsto propagatethroughthesolution,thebuild-upof stressesnear

theinterfacecausesit to delaminate,prior to thearrival of themaincrack.But oncethemaincrack

finally reachesthe interface,it becomestrappedandgrows in bothdirectionsalongthe interface

till completefailureof thesystemoccurs.

Velocity

Velocity

0.016 m

Inte

rfac

e

0.014 m 0.006 m

E = 3.24e9 Paσmax = E / 100

σ / 100max

100 σmax

Figure4.27Schematicrepresentationof interfacetestspecimenwith boundaryconditions.

94

Page 106: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure4.28Deformationafter5000timestepsfor stressinsertionof 45%(10xexaggeration).

Figure4.29Deformationafter17500timestepsfor stressinsertionof 45%(10x exaggeration).

Figure 4.30 Deformationafter 25500time stepsfor stressinsertionof 45% (10x exaggeration)(edgekey: thin = normaledge,dark= cohesive element,dashed= failing cohesive element,bold= failedcohesiveelement).

95

Page 107: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.2.4 Stress-basedInsertion in Angled Interface Specimen

As yet anothertest of the stressbasedinsertionmethod,we attemptto simulatethe effect

of crack propagationanddeflectionat interfacesin homogeneousmaterials. This analysisis a

numericalexampleof recentwork performedby Xu, HuangandRosakis(2001). Their research

hasshown thataninitial crack,undermodeI loading,propagatesatvariousspeedstowardsinclined

interfacesof variousstrengths.Dependingontheinterfacestrengthaswell astheinterfacialangle,

thecrackmaybecometrappedalongtheinterfaceor simply passright throughit.

Forourcomparison,weuseaninterfacialangleof 60degreesandapplyashearvelocityloading

of 1 G 6 mH s alongthe left sidesof thespecimen,aspresentedin Figure4.31. Thebulk materialis

Homalite-100with Young’smodulusE D 3 G 45 GPa, densityρ D 1230kgH m3, andPoisson’s ratio

of ν D 0 G 35. Thecohesiveelementsusedin thebulk materialaregiventhepropertiesof Homalite-

100presentedin Table4.6.

0.2 m

0.12 m

Velocity

Velocity

60 degrees

Homalite−100

Homalite−100

Inte

rface

Figure4.31Schematicrepresentationof interfacetestspecimenwith boundaryconditions.

96

Page 108: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

The simulationis run for 70000time steps(∆t D 7 G 0 M 10N 9 s), for both a weakinterfaceof

Loctite-384andastronginterfaceof Weldon-10.Theconstitutivepropertiesof thesematerialsare

alsopresentedin Table4.6. anda stronginterface.

Homalite-100 Loctite-384(weak) Weldon-10(strong)KobayashiandMall (1978) Xu et al., (2001) Xu et al., (2001)

σmax? MPaA 11.0 7.74 6.75τmax? MPaA 25.0 22.0 7.47GIc ? J H m2 A 250.0 199.7 41.9GI Ic ? J H m2 A 568.0 568.0 46.4

Table 4.6 Constitutive cohesive elementpropertiesof thebulk materialandtheweakandstronginterfaces.

Theexperimentalresultsfor boththeweakandstronginterfaces,describedabove,haveshown

that the crackbecomestrappedalongthe interfacefor a shortdurationbeforeturning backinto

thebulk material.Theweakinterfacetrapsthecrackfor a longerdistanceaswe have verifiedin

Figure4.34,while thestrongerinterfacealmostimmediatelyturnsthecrackbackin to thesystem

(seeFigure4.35). Close-upsof thesecracksarepresentedin Figures4.36and4.37for theweak

andstronginterfaces,respectively.

Figures4.32and4.33presentthecracklengthandcrackspeedfor theweakinterfaceproblem.

Fromthesefigures,we canseethat the initial modeI cracktravelsat nearconstantspeeduntil it

reachestheinterface.At this time, it becomesa mixed-modeinterfacialcrackwhosecrackspeed

is increasedwhile travelingalongtheinterface.Comparisonof theseresults,with thosepresented

in Figure13by Xu etal. (2001),showsgoodagreementto thegeneralprofilesof thecracklengths

andspeedcurves.Sincewewereunableto matchall thenecessaryparametersof theexperimental

setup,we usedour bestjudgmentto duplicatetheproblem.Theactualcrackspeedsfoundin our

resultsarenearlytwice asgreatasthosepresentedin theexperimentalresults.This is mostlikely

dueto the applicationof the boundaryconditionsusedto mimic the effect of the impacton the

wedge.

97

Page 109: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−4

0

0.02

0.04

0.06

0.08

0.1

0.12

time (s)

crac

k le

ngth

(m

)

mode I incident crackmixed−mode interfacial crack

Figure 4.32Cracklengthhistoryfor aweak60degreeinterface.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−4

300

400

500

600

700

800

900

1000

1100

time (s)

crac

k sp

eed

(m/s

)

mode I incident crackmixed−mode interfacial crack

Figure4.33Crackspeedhistoryfor a weak60degreeinterface.

98

Page 110: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 4.34 Mode I crack trappedalong the weakLoctite-384interfacefor a 45% stress-basedinsertion(no exaggeration)(edgekey: thin = normaledge,dark = cohesive element,dashed=failing cohesiveelement,bold= failedcohesiveelement).

99

Page 111: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 4.35ModeI cracktrappedalongthestrongWeldon-100interfacefor a 45%stressbasedinsertion(no exaggeration)(edgekey: thin = normaledge,dark = cohesive element,dashed=failing cohesiveelement,bold= failedcohesiveelement).

100

Page 112: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure4.36Close-upof crackregionalongaweakinterface(no exaggeration).

Figure 4.37Close-upof crackregionalonga stronginterface(no exaggeration).

101

Page 113: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.2.5 Insertion Inter val Selection

Thusfar, eachof our simulationsuseda 500time stepinterval betweennew cohesiveelement

insertions. This valuewaschosenarbitrarily andcanbe changedto bestfit the given problem.

Varying this interval effectsboth thesimulationtime andtheaccuracy of thesolution. Table4.7

presentsthesolutiontimesfor theL-anglecase,usingstressinsertionof 30%at intervalsof 100,

500,1000,5000and10000timesteps.As theinterval decreases,thetotal solutiontime increases.

This time increaseis a resultof theincreasednumberof selectionsaswell asa greaternumberof

file outputs,which currentlyoccurafterevery insertion.Furthermore,theaccuracy of thesolution

alsoincreaseswith a smallerinterval sincethethe local stressesarenot ableto vary significantly

betweenthecohesive insertions.We have deducedthis throughobservationof thedistribution of

failing cohesiveelements;therearemany morefailing elements,representinggreaterinstabilities,

as the insertioninterval increases( asseenin Figures4.38 through4.39 ). In fact, in part b of

Figure 4.39, thereare many failing cohesive elementsaroundthe crack but very few cohesive

elementsdirectly aheadof the cracktip. The 10000time stepinsertioninterval doesnot allow

theprogramto insertenoughcohesiveelementsaheadof thecracktip soaccountfor thespeedof

thecrack.As a result,thecrackreachestheendof thecohesive region prior to thenext insertion,

causingit to stopabruptly. As new elementsareinsertedaheadof this cracktip, it is onceagain

ableto continuepropagatingthroughthesystem.Unfortunately, theperiodiccrackarrestingresults

in an inaccuratesolution as presentedin the figure. Overall, the numberof cohesive elements

presentovertime is alsoslightly decreasedfor thelargerinsertionintervals,asseenin Figure4.40.

This possiblyeffectstheaccuracy of thesolutionsincefewer elementsarepresentin thesystem,

althoughthedifferenceareonly about5%.

Insertion Interval 100 500 1000 5000 10000

Total Time [s] 1609.27 1585.66 1300.31 1220.11 1148.40

Table4.7Total simulationtimesfor insertionintervalsof 100,500,1000,5000and10000∆t

102

Page 114: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 4.38L-anglereferencecasewith cohesive elementsinsertedevery (a) 100 time steps(b)500timestepsat the30%stresslevel (10x exaggeration).

Figure 4.39L-anglereferencecasewith cohesive elementsinsertedevery (a) 1000time steps(b)10000timestepsat the30%stresslevel (10xexaggeration)(edgekey: thin = normaledge,dark=cohesiveelement,dashed= failing cohesiveelement,bold= failedcohesiveelement).

103

Page 115: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

time (s)

# of

Coh

esiv

e E

lem

ents

reference1005001000500010000

Figure 4.40Numberof cohesive elementspresentover time for insertionintervals of 100, 500,1000,5000and10000.

1.2 1.4 1.6 1.8

x 10−4

3000

3500

4000

4500

5000

5500

6000

time (s)

# of

Coh

esiv

e E

lem

ents

reference1005001000500010000

Figure 4.41Close-upof thethreeintervalspresentedin Figure4.40.

104

Page 116: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.2.2.6 Dynamic Insertion Combinedwith Subcycling

The multi-time stepnodal subcycling algorithm,presentedin the beginning of this chapter,

hasshown to generatesignificantcomputationaltime savings,while maintaininga fairly accurate

solution. The solutiondoesbegin to degradethoughfor excessive time stepdifferencesin the

subcycledandnon-subcycledregions,aswell asfor smallregion ratios.In this sectionwepresent

theresultsof combiningboththesubcycling anddynamicinsertionalgorithms.

As atestcasewepresentthemodeI crackspecimenshown in Figure4.42whosebulk material

haspropertiesof PMMA. The critical time stepfor this problemis ∆t D 2 G 8 M 109 s, which is a

1H 30 reductionof theproblem’s Courantcondition. In orderto initiate thesubcycling portionof

thesimulation,wepre-insertcohesiveelementsin asmallregion nearthecracktip. This region is

thereforegivena timestepof 1∆t while thelargerouterregionhasa timestepm∆t.

Thesimulationwasrunfor 60000timestepsfor a referencesolutionhaving cohesiveelements

presenteverywhereandnosubcycling, for asecondreferencesolutionusinga45%stressinsertion

andfor threesolutionsusingbothdynamicinsertionandsubcycling with parametersof m D 4 @ 10

and14. The final crackprofilesfor eachof the above simulationsarepresentedin Figures4.44

through4.46. From thesefigureswe can seethat the combinedsolutionsclosely matchboth

referencesolutions.Only them D 14 combinedsolutionappearsto havea differentfinal solution.

Carefulobservationof this solutionshows that therearelarge instabilitiesnearthe cracktip - as

seenby the large numberof failing cohesive elements.Theseinstabilitiesaswell as the effect

of a large time stepin thenon-subcycledregion have mostlikely compoundedtheerrorspresent

in the solution. In addition,at the endof the simulation,the region ratio is muchlower thanits

initial value- asseenin Figure4.43.This increasein subcyclednodesincreasestheinstabilitiesas

discussedin thesubcycling sectionearlierin this chapter.

Although the solution losessomeaccuracy for the larger subcycling parameters,significant

savings can still be achieved for the lower values- as presentedby Table4.8. The % savings

is presentedfor both the savings with respectto the referencesolutionusingcohesive elements

everywhereat the beginning aswell as the referencesolution of only dynamicinsertionat the

45% stresslevel - the latter savings is presentedin parenthesesin the table. We canseethat the

105

Page 117: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

majorsavingsfor thecombinedsolutionsis adirectresultsof thedynamicinsertionandonly small

overall percentageis obtainedthroughsubcycling.

Velocity Velocity

0.02 m

0.02 m

∆1 t

∆tm

Figure 4.42 Schematicof a modeI crack problemusing nodal subcycling and dynamicstressinsertionof 45%.

Subroutine Reference Dynamic,m = 1 m = 6 m = 10 m = 14

Rco 2627.37 76.71 95.23 88.18 79.20Rin 870.83 614.38 247.38 167.45 134.03Main 1425.46 251.39 344.63 291.36 271.16Total 4973.63 1005.79 739.50 617.36 528.33% Total Savings 79%(0%) 85%(26%) 87%(38%) 89%(47%)

Table 4.8 Timing results(in s) for combineddynamicstressinsertionof 45%with subcycling ofm D 6 @ 10 and14. Time savings from thereferencesolutionis givenfirst while thesavings fromthedynamicinsertioncaseis presentedin parentheses.

106

Page 118: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10−4

0

1

2

3

4

5

6

7

8

time(s)

regi

on r

atio

m = 6m = 10m = 14

Figure4.43Region ratioover time for thesubcycling solutionswith m D 6 @ 10and14.

Figure 4.44Referencesolutionwith cohesive elementspresenteverywherein the domainat thebeginningof thesimulation.No subcycling is used(10xexaggeration).

107

Page 119: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

Figure 4.45(a) Solutionhaving only dynamicinsertionat 45%of thelocal stresswith no subcy-cling. (b) Combineddynamicinsertionwith subcycling, m D 6 (10x exaggeration).

Figure 4.46(a) Combineddynamicinsertionwith subcycling, m D 10 (b) Combineddynamicin-sertionwith subcycling,m D 14(10xexaggeration)(edgekey: thin = normaledge,dark= cohesiveelement,dashed= failing cohesiveelement,bold= failedcohesiveelement).

108

Page 120: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.3 Parallelization UsingCharm++

As problemsgrow computationally, requiringmuchmorememoryresourcesor time to solve

them,we mustturn to usingmultiple processorsto solve them.No only arewe thenableto solve

larger and larger problemsbut we can also take advantageof the multiple processorsto solve

existingproblemsmorequickly.

For ourresearch,wehaveusedtheCharm++ FEM framework in orderto parallelizeourcode.

This framework is ideal for standardCVFE codesand thereforehasbeeneasily integratedinto

our dynamicversion.All of our simulationsarerun on PentiumIII, 600MHzprocessorsrunning

MandrakeLinux.

As a testof theparallelizationwe selectedtheL-angleproblemusingdynamicinsertionat the

30%stresslevel. Thesimulationswererun for 60000time stepson 1, 2, 4 and6 processors.The

dynamicinsertioninterval wasfixedat 500time steps.As expected,thesolutionsfor eachof the

simulationswereidentical,althoughthespeedupsdecreasedwhenmoreprocessorswereusedas

seenin Figure4.47. This decreasein speedupis primarily dueto the serialportion of the code.

Sincemostcodesarenot fully parallel,ratherthey have someserialportions,therelativesolution

times for the serial andparallel portionsof the codesgrow closeras the numberof processors

increases.In our problem,the serialportion correspondsto the initial readingof input files as

well astheperiodiccohesiveelementinsertionsandmeshrepartitioningoccurringevery500time

steps.Thespeedupscanbeincreasedif theinsertioninterval is increasedandif thepre-processing

of input datacanbeimproved.

109

Page 121: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

1 2 4 61

2

3

4

5

6

# of processors

spee

dup

ideal speedupparallel

Figure 4.47Speedupresultsfor L-anglecaseusing1, 2, 4, and6 processors.

110

Page 122: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

4.4 Conclusions

In this chapterwe presentedtheresultsof applyingthemulti-time stepnodalsubcycling, dy-

namiccohesive elementinsertionandcodeparallelizationmethodsto 2-D problems. From our

subcycling resultswe have foundthatthemostimportantfactorsleadingto anaccurateandstable

solutionarethesubcycling parameterandtheregionratio. Thegreatesttimesavingsis achievedat

highersubcycling parametervaluesalthoughthestability of thesolutiondecreases.Furthermore,

the region ratio mustbe at least2 : 1 to ensurethat thecomputationalsavingsoffsetsthecostof

thesubcycling algorithmimplementation.

Thedynamicinsertionalgorithmhasalsoprovento beextremelysignificant.Usingbothpre-

stretchingcombinedwith stressbasedcohesiveelementinsertionallowsusto generatethegreatest

computationalsavingswhile still maintaininganaccuratesolution.

Finally, weappliedtheCharm++ parallelizationtechniqueto ourcode.Theresultshaveshown

promisingspeedupsalthoughimprovementsin the pre-processingand meshrepartitioningcan

achievebetterresults.

111

Page 123: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Thestandardcohesivevolumetricfinite element(CVFE)methodhassuccessfullybeenapplied

to avarietyof dynamicfractureproblemsinvolving theformationandpropagationof cracks.How-

ever, themethodis computationallyinefficient for problemscontainingmany degreesof freedom

aswell many failurepaths.In its currentform, themethodrequiresthatdynamicfractureproblems

beevenlydiscretizedwith smallvolumetricelementsall interconnectedwith theinterfacial(cohe-

sive) elements.Thepresenceof thecohesive elementsrequiresnot only theduplicationof nodes

andthereforeanincreasein thenumberof degreesof freedom,but alsoa reductionin thecritical

time stepof the domain. This time stepreductionis necessaryto ensurethe cohesive element

stabilityandtheaccuracy of thesolution.

The purposeof this thesiswas to develop an adaptive versionof the CVFE schemewhich

addressesits critical issues.Wefirst investigatedtheuseof differenttimestepsin differentregions

throughthemulti-time stepnodalsubcycling algorithm. Next we developeda dynamicinsertion

algorithmto insertcohesive elementsanywherein thedomainandat any time. This allows usto

begin the simulationcohesive elementfree andonly inserttheseelementsasnecessary. Finally,

we implementeda parallelizationtechniquein orderto decreaseour simulationtime or increase

theproblemsize.We initially appliedall of themethodsandalgorithmsto 1-D problemsin order

to gainabetterunderstandingof theresultswhile usingverysimpleproblems.We thenmovedon

to 2-D problemswhereboththeproblemcomplexity andsolutiontimesincreased.Wepresentthe

conclusionsfrom our analysisin thenext section

112

Page 124: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

5.1 Conclusions

Thefirst methodappliedto thestandardCVFE schemewasthemulti-time stepnodalsubcy-

cling algorithmpresentedby Smolinski(1989).Thisalgorithmallowsusto usedifferenttimesteps

in differentregionsto solve thetime loopequations.Theprimarysavingsis gainedby approxima-

tionsthatoccurin thelarger time stepregions.Resultsfrom bothour 1-D and2-D analyseshave

shown thatsubcycling is a goodapproximationmethodwhenthetimestepof any regiondoesnot

exceedits local Courantcondition. As theratio of thenon-subcycledto subcycledtime stepsin-

creasestheapproximationseventuallycauseinstabilitiesin thesolutionresultingin its divergence.

Theoptimal time stepratio selectedshouldbeno greaterthanhalf of thecritical time stepof the

largestnon-subcycleddomain.Furthermore,theratioof thenumberof non-subcycledto subcycled

nodes- or region ratio - alsoplaysanimportantrole in thestabilityof thesolutionandin thetime

savings. In orderto maintainthelocal stability, this region ratio shouldbegreaterthan1:1 sothat

many morenon-subcycledthansubcyclednodesexits. This will alsoincreasethecomputational

time savingssincemany morenodeswill beapproximatedduringeachtime cycle. If the ratio is

toosmalltheimplementationof thesubcycling algorithmhasshown to offsetany savingsachieved

throughits use.

Thedynamiccohesive elementinsertionalgorithmthatwe have developedallows usto insert

cohesive elementsanywherein the domainand at any time in the simulation. Eachinsertion

requiresthat nodalandelementdataandconnectivity informationbe adjustedto insurethat all

insertionsarevalid. Furthermore,in orderto maintaintheequilibriumof thesystemwe mustalso

conserveboththemassandmomentumof thesystemby recalculatingthenodalmassdistributions

andduplicationdisplacement,velocityandaccelerationinformationasnecessary.

Initially weusedblind insertionof cohesiveelementswithin thedomain.This insertionsimply

placeda zero-thicknesscohesive elementin betweenthevolumetricelementsandduplicatedthe

nodal information. This insertionresultedin significantnodaloscillationsin both the displace-

ments,velocitiesandaccelerations.Theamplitudeof theseoscillationswasdirectly proportional

to thelocal stressat thetimeof insertion.Weappliedlineardampingto attemptto minimizethese

oscillations.Thoughdampingwasableto minimizetheoscillationsat low stresslevels,it wasless

113

Page 125: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

effective at higherlevelsduringwhich mostinsertionwill take place. As a result,we developed

a pre-stretchingtechniquebasedon the traction-separationlaw for thecohesive elements.Using

this techniquewedeformthecohesiveelementsat thetimeof insertionbasedonthelocal tractions

appliedto their interfaces.The elementsaretheninsertedin a statethatmorecloselyresembles

the statethey would be in had they beeninsertedat the start of the simulation. Pre-stretching

hasshown to greatlyminimize thenodaloscillationsat any insertiontime while maintainingthe

accuracy of thefinal solution.

Using the pre-stretchingtechniquewe then investigatedusingdifferentselectioncriteria for

placingthecohesive elementswithin thedomainmostefficiently. First, we useda boundingbox

selectionwherethe cohesive region was encasedin a growing box and all non-cohesive edges

within it wereconvertedto cohesive. This methodwasableto generatesignificanttime savings

but it wasnotveryrobustasit requiredsomestartingcohesiveelementsto definetheinitial bound-

ing box. This limited us to problemswherethe formationof crackscouldbe predicted.Instead,

we thenuseda stress-basedinsertionmethodby which cohesive elementwereinsertedasthe lo-

cal stressreachedsomepredefinedlevel. This methodcanbeusedon any problemanddoesnot

requireany initial cohesive elements.The resultsof applying this methodhave also generated

largecomputationalsavingsfor variousstressinsertionlevels.Althoughasthecritical stresslevel

for insertionis high, thesolutiontendsto bemoreunstablewhile the time savings is not signifi-

cantlymorethanfor smaller, morestableinsertions.A stresslevel of 30%hasshown to provide

significanttimesavingswhile still maintainingtheaccuracy of thesolution.

Finally, we have parallelizedour codeusingtheCharm++ FEM framework. This framework

allows us to easilyparallelizea serial codeusingonly a few directives. We testedour parallel

versiononthesimpleL-angledynamicinsertionproblemusing1, 2, 4 and6 PentiumIII, 600MHz

processors.Althoughwewerenotableto getaperfectspeedup,wedid getverygoodresults.Our

maincostin theimplementationwasdueto thepre-processingof inputfileswhich resultedin less

thenperfectspeedups.

114

Page 126: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

5.2 Recommendationsfor Futur eResearch

While someimportantmethodshave beendevelopedandmany encouragingresultspresented

in this research,variousissuesremainto beinvestigated.

Althoughthesubcycling algorithmwasableto generatesometimesavings,its implementation

requiresadditionalmemorystoragerequirementsnot presentin a non-subcycled scheme.Fur-

thermore,the stability of the solution is highly dependenton the time stepratio aswell as the

distribution of the time stepsacrossthe nodal regions. The solutionsmay be morestableif the

subcycledregion is givenabuffer zonewhosethenodesarealsosubcycled,sothatthetransitions

betweenthecritical andnon-criticalregionsarenot sosevere.

Thedynamicinsertionalgorithmcanalsobeimprovedby moreaccuratelyapplyingthenodal

separationsusedin pre-stretching.Underthecurrentimplementation,theseseparationsareaver-

agedfor eachcohesive nodeandequallydistributedacrosseachhalf. Futureresearchmay con-

centrateon applyinga weighteddistribution approachto furtherminimize thenodaloscillations.

Additionally, this methodcanalsobeextendedfor usewith six nodelinearstraintriangles(LST)

in orderto generateevenmoreaccuratesolutions.

As seenin thepreviouschapter, our codeparallelizationusingCharm++ wasnot ableto gen-

eratecompletelyideal speedups,althoughthe resultswerequite promising. Theprimary costof

theparallelizationwasdueto thepre-processingof input dataandserialinsertionportionsof the

code.Parallelizingtheseareascangreatlyimprove theperformanceof thecode.In particular, the

currentserialinsertionrequirestheperiodicassemblyandrepartitioningof theentiremesh.This

interval of this periodicupdatecanbe initially increasedsincemany insertionsarenot required

duringtheinitial stagesof thesimulation,wherethestresseshavenotyet reachedtheirdesiredlev-

els.Furthermore,extendingthedynamicinsertionalgorithmfrom serialbasedinsertionto parallel

canalsoimproveperformancesincenoassemblyandrepartitioningof themeshwouldberequired.

Lastly, wecanalsogeneratesignificantcomputationalsavingsby usingandadaptiveremeshing

technique,asillustratedin Figure5.1. Sincecracksmove throughthesystemsduringthesimula-

tion, theadaptiveremeshingtechniquewouldcontinuallyadjustthecritical region(s)to ensurethat

themostoptimalsolutioncanbeachieved.UsingtheCVFEschemein conjunctionwith theadap-

115

Page 127: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

tive remeshingwould requirenot only dynamicinsertionof cohesiveelementsbut alsoa dynamic

removal of failedor unloadedelements.

Figure5.1Adaptivecrackpropagation.

In our initial investigationsof this topic, we have applieda adaptive remeshingtechniqueto a

simple1-D problemshown in Figure5.2 The beamis composedof 21 equalsegmentsof length

1 G 0 m.

Thebeamis similar to thereference1-D beamproblempresentedin Chapter3. We breakthe

11th segmentinto 7 smallerpiecesat time step10000for a 30000time stepsimulation. After

elementbreakup, andcohesive nodeinsertion,the middle of the cohesive region is represented

by node26 for which we plot the velocity in Figure5.3, Comparingthis velocity profile to the

referenceprofile for node15 if thereferencecaseof Figure3.6,we canseethat they matchquite

well, althoughthevelocity for theadaptivemeshingcasearea little oscillatory.

11

11 23 24 25 282726

12

10 11 12

= normal node = cohesive node

12

Figure5.211thelementbrokeninto 7 pieces.

116

Page 128: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

0 10 20 30 40 50 60 70 75−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

velo

city

(m

/s)

Figure5.3Velocityprofile for new node#26afterelementbreakup at timestep10000.

Extendingthisinvestigationinto 2-Drequiresmorecomplex issuessuchaselementconformity,

databasemanagementandtime stepstability. Also, elementremoval presentssimilar, if not more

difficult, issuesbut combinedwith thedynamicinsertionandmulti-time stepnodalsubcycling it

cansignificantlydecreasethecomputationaleffort for solvingdynamicfractureproblems.

117

Page 129: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

REFERENCES

[1] J.Baylor. A numericalsimulationof impact-induceddamageof compositematerials.Mas-ter’s thesis,Universityof Illinois atUrbana-Champaign,1997.

[2] T. Belytschko, R. L. Chiapetta,andH. D. Bartel. Efficient large scalenon-lineartransientanalysisby finite elements. International Journal of NumericalMethodsin Engineering,10:579–596,1976.

[3] T. Belytschko andR.Mullen. Stabilityof explicit-implicit meshpartitionsin timeintegration.InternationalJournal for NumericalMethodsin Engineering, 12:1575–1586,1978.

[4] T. Belytschko, P. Smolinski,andW. K. Liu. Stability of multi-time partitionedintegratorsfor first-orderfinite elementsystems.InternationalMethodsin AppliedMechanicsandEn-gineering, 49:281–297,1985.

[5] X. Bi, Z. Li, P. H. Geubelle,andJ.Lambros.Dynamicdebondingandfrictional push-outinmodelcompositesystems:numericalanalysis.Submittedto MechanicalMaterials, 2001.

[6] G. T. CamachoandM. Ortiz. Computationalmodelingof impactdamagein brittle materials.InternationalJournal of SolidsandStructures, 33(20-22):2899–2938,1996.

[7] G.T. CamachoandM. Ortiz. Adaptivelagrangianmodellingof ballisticpenetrationof metal-lic targets.ComputerMethodsin AppliedMechanicsandEngineering, 142:269–301,1997.

[8] I. S.Chang,N. R. Patel,andS.Yang.Titan IV SRMUanomalyandredesignanalyses.AIAAPaper94-3284, June1994.

[9] W. J.T. Daniel. Thesubcyclednewmarkalgorithm.ComputationalMechanics, 20:272–281,Feb1997.

[10] A. de Andres, J. L. Perez,and M. Ortiz. Elastoplasticfinite elementanalysisof three-dimensionalfatiguecrackgrowth in aluminumshaftssubjectedto axial loading. Interna-tional Journal of SolidsandStructures, 36:2231–2258,1999.

[11] B. D. Ferney, M. R. DeVary, and K. J. Hsia. Oscillatory crack growth in glass. ScriptaMaterialia, 41(3):275–281,1999.

[12] P. H. GeubelleandJ.S.Baylor. Impact-induceddelaminationof composites:a2dsimulation.CompositesB, 29:589–602,1998.

118

Page 130: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

[13] P. H. Geubelle,C. Hwang,R. Fiedler, M. S.Breitenfeld,andA. Haselbacher. SimulationofDynamicFractureEventsin SolidPropellantRockets.AIAA Paper2001-3953, July2001.

[14] M. Heath,R. Fiedler, andW. Dick. Simulatingsolid propellantrocketsat csar. AIAA Paper2000-3455, July2000.

[15] T. J.R.HughesandW. K. Liu. Implicit-explicit finite elementsin transientanalysis:Stabilitytheory. Journalof AppliedMechanics, 45:371–378,1978.

[16] JohnWiley andSons,Inc. ConceptsandApplicationsof Finite ElementAnalysis, 1989.

[17] A. S. KobayashiandS. Mall. Dynamicfracturetoughnessof homalite-100.ExperimentalMechanics, (18):11–18,1978.

[18] K. K. KuoandD. E. Kooker. Couplingbetweennonsteadyburningandstructuralmechanicsof solidpropellantgrains.In L.DeLuca,E.W. Price,andM. Summerfield,editors,Chapter13of Nonsteadyburning andcombustionstabilityof solid propellants, Progressin AstronauticsandAeronautics,pages465–517.AIAA, New York, 1990.

[19] O. Lawlor. CHARM++ finite elementframework manual.2000.

[20] Y. C. Lu andK. K. Kuo. Modelingandnumericalsimulationof combustionprocessinsideasolidpropellantcrack.Propellant,Explosives,Pyrotechnics, 19:217–226,1994.

[21] M. O.NealandT. Belytschko. Explicit-explicit subcycling with non-integertimesteprationsfor structuraldynamicsystems.pages871–880,1998.

[22] A. Needleman.A continuummodelfor void nucleationby inclusiondebonding.Journal ofAppliedMechanics, 54:525–531,1987.

[23] A. Needleman. Numericalmodelingof crack growth underdynamic loading conditions.ComputationalMechanics, 19(6):463–469,1997.

[24] D. Padua.CS320Introductionto parallelprogrammingfor scientistsandengineers.Spring2000.

[25] T. Siegmund,N. A. Fleck,andA. Needleman.Dynamiccrackgrowth acrossan interface.InternationalJournal of Fracture, 85:381–402,1997.

[26] T. SiegmundandA. Needleman.A numericalstudy of dynamiccrack growth in elastic-viscoplasticsolids. InternationalJournalof SolidsandStructures, 34(7):769–787,1997.

[27] N. N. Smirnov. Convective burning in channelsand cracksin solid propellants. FizikaGoreniyaI Vzruva, 21(5):29–36,1985.

[28] P. Smolinski. An explicit multi-time stepintegrationmethodfor secondorder equations.ComputerMethodsin AppliedMechanicsandEngineering, pages25–34,1989.

[29] P. Smolinski. Subcycling integration with non-integer time stepsfor structuraldynamicsproblems.CompositesandStructures, 59(2):273–281,Sep1996.

119

Page 131: ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD …zaczek.com/research/ms_thesis2001.pdf · ADAPTIVE COHESIVE VOLUMETRIC FINITE ELEMENT METHOD ... for the degree of Master of Science

[30] P. Smolinski,T. Belytschko, andW. K. Liu. Stability of multi-time steppartitionedtransientanalysisfor first-ordersystemsof equations. InternationalMethodsin AppliedMechanicsandEngineering, 65:115–125,1987.

[31] P. Smolinski and Y. Wu. Stability of explicit subcylcing time integration with linear in-terpolationfor first-orderfinite elementsemidiscretizations.ComputerMethodsin AppliedMechanicsandEngineering, pages311–324,1998.

[32] W. G. Wilson, J. M. Anderson,andM. VanerMeyden. Titan IV SRM PQM-1 overview.AIAAPaper92-3819, July1992.

[33] L. R. Xu, Y. Y. Huang,and A. J. Rosakis. Dynamic crack deflectionand penetrationatinterfacesin homogeneousmaterials:Experimentalstudiesandmodelpredictions.Journalof theMechanicsandPhysicsof Solids, 2001.

120


Recommended