Transcript
Page 1: 3D gravity inversion by planting anomalous densities

   

3D gravity inversion by planting anomalous densities

Leonardo Uieda and Valéria C. F. Barbosa

August, 2011

Observatório Nacional

Page 2: 3D gravity inversion by planting anomalous densities

   

Outline

Page 3: 3D gravity inversion by planting anomalous densities

   

Forward Problem

Outline

Page 4: 3D gravity inversion by planting anomalous densities

   

Inverse ProblemForward Problem

Outline

Page 5: 3D gravity inversion by planting anomalous densities

   

Inverse Problem Planting AlgorithmForward Problem

Inspired by René (1986)

Outline

Page 6: 3D gravity inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data

Forward Problem

Inspired by René (1986)

Outline

Page 7: 3D gravity inversion by planting anomalous densities

   

Inverse Problem Planting Algorithm

Synthetic Data Real Data

Forward Problem

Inspired by René (1986)

Outline

Page 8: 3D gravity inversion by planting anomalous densities

   

Forward problem

Page 9: 3D gravity inversion by planting anomalous densities

   

Surface of the Earth

Page 10: 3D gravity inversion by planting anomalous densities

   

Observations      of gz

Surface of the Earth

Page 11: 3D gravity inversion by planting anomalous densities

   

Observations      of gz

Group in a vector:

g=[g1

g2

⋮gN

]N×1

 = observed datag

Surface of the Earth

Page 12: 3D gravity inversion by planting anomalous densities

   

 = observed datag

Page 13: 3D gravity inversion by planting anomalous densities

   

 = observed datag

Assume caused by anomalous sources

Page 14: 3D gravity inversion by planting anomalous densities

   

 = observed datag

Assume caused by anomalous sources

ΔρDensity contrast = 

Page 15: 3D gravity inversion by planting anomalous densities

   

Parametrize the gravitational effect

Page 16: 3D gravity inversion by planting anomalous densities

   

Parametrize the gravitational effect

Linearize

Page 17: 3D gravity inversion by planting anomalous densities

   

Parametrize the gravitational effect

Discretize intoM elements

Linearize

Interpretative model

Page 18: 3D gravity inversion by planting anomalous densities

   

Right rectangular prisms

Parametrize the gravitational effect

Discretize intoM elements

Homogeneous density contrast

jth element

Linearize

 (Nagy et al., 2000)

Interpretative model

p j

Page 19: 3D gravity inversion by planting anomalous densities

   

Arrange M density contrasts in a vector:

Parametrize the gravitational effect

Discretize intoM elements

p=[p1

p2

⋮pM

]M×1

Parameter vector

Linearize

Interpretative model

Page 20: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

p j=Δρ

Prisms with not shown

p j=0

Page 21: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

g≈d

Prisms with not shown

p j=0

p j=Δρ

Page 22: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

g≈dPredicted data

Prisms with not shown

p j=0

p j=Δρ

Page 23: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

d=∑j=1

M

p j a j

g≈dPredicted data

Prisms with not shown

p j=0

p j=Δρ

Page 24: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

d=∑j=1

M

p j a j

Density contrast of jth prism

g≈dPredicted data

Prisms with not shown

p j=0

p j=Δρ

Page 25: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

d=∑j=1

M

p j a j

g≈dPredicted data

Effect of prism with unit density Prisms with not shown

p j=0

p j=Δρ

Page 26: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 27: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

Parameter vector

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 28: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

Jacobian (sensitivity) matrix

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 29: 3D gravity inversion by planting anomalous densities

   

Discretize intoM elements

Parametrize the gravitational effect

Gravitational effect is linear

g≈dPredicted data

Column vector of A

d=∑j=1

M

p j a j=A p

Prisms with not shown

p j=0

p j=Δρ

Page 30: 3D gravity inversion by planting anomalous densities

   

Solved forward problem:

p dd=∑j=1

M

p j a j

Page 31: 3D gravity inversion by planting anomalous densities

   

p̂ g?How to do the inverse?

Page 32: 3D gravity inversion by planting anomalous densities

   

Inverse problem

Page 33: 3D gravity inversion by planting anomalous densities

   

Minimize difference between

Page 34: 3D gravity inversion by planting anomalous densities

   

Minimize difference between g

Observed data

Page 35: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

Predicted data

Page 36: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Page 37: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Residual vector

Page 38: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Residual vector

Data­misfit function: ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Page 39: 3D gravity inversion by planting anomalous densities

   

Minimize difference between andg d

r=g−d

Residual vector

Data­misfit function: ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

 ℓ2­norm of r

Least­squares fit

Page 40: 3D gravity inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

Page 41: 3D gravity inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

constraints

Page 42: 3D gravity inversion by planting anomalous densities

   

ill­posed problem

non­existent

non­unique

non­stable

well­posed problem

exist

unique

stable

constraints

Page 43: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact

Page 44: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

Page 45: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

Page 46: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

Similar to René (1986)

Page 47: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms

Similar to René (1986)

Page 48: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts ρs

Similar to René (1986)

Page 49: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts● Any n° of ≠ density contrasts

ρs

Similar to René (1986)

Not like René (1986)

Page 50: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any n° of ≠ density contrasts

orp j=0 p j=ρs

ρs

Similar to René (1986)

Not like René (1986)

Page 51: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact no holes inside

2. Concentrated around “seeds”

● User­specified prisms● Given density contrasts

3. Only 

● Any n° of ≠ density contrasts

orp j=0 p j=ρs

ρs

4.  of closest seed p j=ρs

Similar to René (1986)

Not like René (1986)

Page 52: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Page 53: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing parameter

Page 54: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

Page 55: 3D gravity inversion by planting anomalous densities

   

ill­posed problem well­posed problemconstraints

ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

Minimize data misfit Minimize goal function

Γ( p)=ϕ( p)+μθ( p)

Regularizing function

μ = tradeoff between fit and regularization

Page 56: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

Page 57: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)Similar to 

Silva Dias et al. (2009)

Page 58: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl jβ

Γ( p)=ϕ( p)+μθ( p)

ϵ = avoid singularity

l j = distance between jth prism and seed

β = how much compactness (3 to 7)

Similar to Silva Dias et al. (2009)

Page 59: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl jβ

Γ( p)=ϕ( p)+μθ( p)

For p j≠0 :

Page 60: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

distance from seeds

For p j≠0 :

Page 61: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

distance from seeds regularizing function

For p j≠0 :

Page 62: 3D gravity inversion by planting anomalous densities

   

Regularization:

θ( p)=∑j=1

M p j

p j+ϵl j

β

Γ( p)=ϕ( p)+μθ( p)

distance from seeds regularizing function

Imposes:

● Compactness ● Concentration around seeds

For p j≠0 :

Page 63: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”

3. Only  orp j=0 p j=Δρs

4.  of closest seed p j=Δρs

Regularization

Page 64: 3D gravity inversion by planting anomalous densities

   

Constraints:

1. Compact

2. Concentrated around “seeds”

3. Only  orp j=0 p j=Δρs

4.  of closest seed p j=Δρs

Regularization

Algorithm

Page 65: 3D gravity inversion by planting anomalous densities

   

Planting Algorithm

Page 66: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Overview:

Page 67: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

Overview:

Page 68: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

Overview:

Page 69: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds known density contrast & position

Overview:

Page 70: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds known density contrast & position

All other parameters set to 0

Overview:

Page 71: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow

Overview:

known density contrast & position

Page 72: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow add neighbor of seed

Overview:

known density contrast & position

Page 73: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow add neighbor of seed

accretion

Overview:

known density contrast & position

Page 74: 3D gravity inversion by planting anomalous densities

   

Based on René (1986)

Start with seeds

All other parameters set to 0

Iteratively grow add neighbor of seed

accretion

Controlled by goal function and data misfit function

Overview:

Γ( p)=ϕ( p)+μθ( p) ϕ( p)=∥r∥2=(∑i=1

N

(gi−d i)2)

12

known density contrast & position

Page 75: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Page 76: 3D gravity inversion by planting anomalous densities

   

Algorithm:Define interpretative model

Interpretative model

Page 77: 3D gravity inversion by planting anomalous densities

   

Algorithm:Define interpretative model

g = observed data

Interpretative model

Page 78: 3D gravity inversion by planting anomalous densities

   

Algorithm:Define interpretative model

All parameters zero

g = observed data

Interpretative model

Page 79: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

g = observed data

Interpretative model

Page 80: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Prisms with not shown

p j=0

Seeds

Page 81: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

Page 82: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Residual vector

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

Prisms with not shown

p j=0

Page 83: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Observed data

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

Prisms with not shown

p j=0

Page 84: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Predicted by seeds

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d = predicted data

Prisms with not shown

p j=0

Page 85: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d=∑j=0

M

p j a j

d = predicted data

Prisms with not shown

p j=0

Page 86: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d=∑j=0

M

p j a j

Many=0

d = predicted data

Prisms with not shown

p j=0

Page 87: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−d(0)

g = observed data

d=∑s=1

N S

ρs a jS

d = predicted data

Prisms with not shown

p j=0

Page 88: 3D gravity inversion by planting anomalous densities

   

Algorithm:

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

p j=0

Page 89: 3D gravity inversion by planting anomalous densities

   

Algorithm:

Density contrastof sth seed

seedsN S

Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

p j=0

Page 90: 3D gravity inversion by planting anomalous densities

   

seedsN S

Algorithm:Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)Column vector

of APrisms with not shown

g = observed data

d = predicted data

p j=0

Page 91: 3D gravity inversion by planting anomalous densities

   

seedsN S

Algorithm:Define interpretative model

All parameters zero

Include seeds

Compute initial residuals

r(0)=g−(∑s=1

N S

ρs a jS)

Prisms with not shown

g = observed data

d = predicted data

NeighborsFind neighbors of seeds

p j=0

Page 92: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

p j=0

Page 93: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

p j=0

Page 94: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

p j=0

Page 95: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

ϕ( p)=∥r∥2

p j=0

Page 96: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=0

Page 97: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

j = chosen

j

p j=0

Page 98: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

j

p j=0

(New elements)

Page 99: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

j

p j=0

(New elements)new predicted data

Page 100: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

Page 101: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

d(old )+ effect of j

Page 102: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

d(old )+ effect of j

∑s=1

N S

ρs a j Sp j a j+

Page 103: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−d(new)

p j=0

(New elements)new predicted data

j

d(old )+ effect of j

∑s=1

N S

ρs a j Sp j a j+

Page 104: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−∑

s=1

N S

ρs a j S− p j a j

p j=0

(New elements)new predicted data

j

Page 105: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

r(new)=g−∑

s=1

N S

ρs a j S− p j a j

p j=0

(New elements)new predicted data

j{

r(0)

Page 106: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

Try accretion to sth seed:

Choose neighbor:

1. Reduce data misfit

2. Smallest goal function

ϕ( p)=∥r∥2

Γ( p)=ϕ( p)+μθ( p)

p j=ρsj = chosen

Update residuals

p j=0

(New elements)new predicted data

jr(new)

=r(old )− p j a j

Page 107: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Page 108: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

Variable sizes

p j=0

Page 109: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

Page 110: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

p j=0

(New elements)

j

Page 111: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Page 112: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Page 113: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

(New elements)

j

Page 114: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

(New elements)

j

Page 115: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 116: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0j

Page 117: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 118: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0j

Page 119: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 120: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

j

Page 121: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

p j=0

Page 122: 3D gravity inversion by planting anomalous densities

    Prisms with not shown

Growth:

None found = no accretion

N S

Try accretion to sth seed:

1. Reduce data misfit

2. Smallest goal function

p j=ρsj = chosen

Update residuals

r(new)=r(old )

− p j a j

Choose neighbor:

At least one seed grow?

Yes No

Done!p j=0

Page 123: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 124: 3D gravity inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Page 125: 3D gravity inversion by planting anomalous densities

   

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

No matrix multiplication (only vector +)

Page 126: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Page 127: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Page 128: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed & delete after update

Page 129: 3D gravity inversion by planting anomalous densities

   

No matrix multiplication (only vector +)

Remember equations:

r(0)=g−(∑

s=1

N S

ρs a jS) r(new)=r(old )

− p j a j

Initial residual Update residual vector

Only need some columns of A

Calculate only when needed

Lazy evaluation

& delete after update

Page 130: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

Page 131: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Page 132: 3D gravity inversion by planting anomalous densities

   

Advantages:

Compact & non­smooth

Any number of sources

Any number of different density contrasts

No large equation system

Search limited to neighbors

No matrix multiplication (only vector +)

Lazy evaluation of Jacobian

Fast inversion + low memory usage

Page 133: 3D gravity inversion by planting anomalous densities

   

Synthetic Data

Page 134: 3D gravity inversion by planting anomalous densities

   

Page 135: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

Page 136: 3D gravity inversion by planting anomalous densities

   

Δρ=0.5 g/ cm3

● Sources = 1 km X 1 km X 1 km

Page 137: 3D gravity inversion by planting anomalous densities

   

Δρ=1.0 g/ cm3

Δρ=0.5 g/ cm3

● Sources = 1 km X 1 km X 1 km

Page 138: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

Depth=0.8 km

Page 139: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

Depth=1.6 km

Depth=0.8 km

Page 140: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km ● Data set = 375 observations

Depth=1.6 km

Depth=0.8 km

Page 141: 3D gravity inversion by planting anomalous densities

   

● Sources = 1 km X 1 km X 1 km

● Area = 5 km X 3 km

● Data set = 375 observations

Depth=1.6 km

Depth=0.8 km

Page 142: 3D gravity inversion by planting anomalous densities

   

● 0.05 mGal Gaussian noise

● Sources = 1 km X 1 km X 1 km

● Area = 5 km X 3 km

● Data set = 375 observations

Depth=1.6 km

Depth=0.8 km

Page 143: 3D gravity inversion by planting anomalous densities

   

● Interpretative model = 151,875 prisms

● Prisms = 66.7 m X 66.7 m X 66.7 m

Page 144: 3D gravity inversion by planting anomalous densities

   

● Used 2 seeds

Page 145: 3D gravity inversion by planting anomalous densities

   

● Used 2 seeds ● Placed in center of sources

Page 146: 3D gravity inversion by planting anomalous densities

   

● Used 2 seeds

● With corresponding density contrasts

● Placed in center of sources

Page 147: 3D gravity inversion by planting anomalous densities

   

Δρ=0.5 g/ cm3

● Used 2 seeds

● With corresponding density contrasts

● Placed in center of sources

Page 148: 3D gravity inversion by planting anomalous densities

   

Δρ=1.0 g/cm3

Δρ=0.5 g/ cm3

● Used 2 seeds

● With corresponding density contrasts

● Placed in center of sources

Page 149: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 150: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 151: 3D gravity inversion by planting anomalous densities

   

Inversion result

● compact● concentrated around seeds● recover correct geometry of sources 

Page 152: 3D gravity inversion by planting anomalous densities

   

Predicted data

Inversion result

● compact● concentrated around seeds● recover correct geometry of sources 

Page 153: 3D gravity inversion by planting anomalous densities

   

Predicted dataObserved data

Inversion result

● compact● concentrated around seeds● recover correct geometry of sources 

Page 154: 3D gravity inversion by planting anomalous densities

   

Predicted dataObserved data

Inversion result

● compact● concentrated around seeds

● fits observations

● recover correct geometry of sources 

Page 155: 3D gravity inversion by planting anomalous densities

   

Predicted dataObserved data

On laptop with 2.0 GHz

● 375 data● 151,875 prisms● Total time≈4.4 min

Page 156: 3D gravity inversion by planting anomalous densities

   

Real Data

Page 157: 3D gravity inversion by planting anomalous densities

   

After Carminatti et al. (2003)

Page 158: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC)

After Carminatti et al. (2003)

Page 159: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

After Carminatti et al. (2003)

Page 160: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

● Outcropping

● North of Goiás

● Tocantins Province

● Amazonian & São Francisco cratons

After Carminatti et al. (2003)

Page 161: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

Gravimetric data:

● 132 observations

● Residual Bouguer

● Max 45 mGal

After Carminatti et al. (2003)

Page 162: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

Previous interpretation:

After Carminatti et al. (2003)

● Carminatti et al. (2003)

● PVSS

● CVC● Max depth

Δρ=0.27 g/cm3

Δρ=0.39 g /cm3

≈6 km

Page 163: 3D gravity inversion by planting anomalous densities

   

Cana Brava complex (CBC) & Palmeirópolis sequence (PVSS)

Previous interpretation:

After Carminatti et al. (2003)

● Carminatti et al. (2003)

● PVSS

● CVC● Max depth

Δρ=0.27 g/cm3

Δρ=0.39 g /cm3

≈6 kmTest this hypothesis

Page 164: 3D gravity inversion by planting anomalous densities

   

Assign seeds

Green:z=0 km

Δρ=0.27 g /cm3

Blue:z=2 km

Δρ=0.27g /cm3

Red:z=0 km

Δρ=0.39 g /cm3

Total = 269

Assign seeds

Page 165: 3D gravity inversion by planting anomalous densities

   

Interpretative model

Size: 120 km X 50 km X 11 km

480,000 prisms

Prism size: 500 m X 500 m X 575 m

Page 166: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 167: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 168: 3D gravity inversion by planting anomalous densities

   

Inversion result

Predicted dataObserved data

Page 169: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 170: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 171: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 172: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 173: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 174: 3D gravity inversion by planting anomalous densities

   

Inversion result

Page 175: 3D gravity inversion by planting anomalous densities

   

Inversion result

≈6 kmMax depth

Agree with previous interpretation

Compact

Fits observations

Page 176: 3D gravity inversion by planting anomalous densities

   

Inversion result

On laptop with 2.0 GHz

● 132 data● 480,00 prisms● Total time≈3.75 min

Page 177: 3D gravity inversion by planting anomalous densities

   

Conclusions

Page 178: 3D gravity inversion by planting anomalous densities

   

● New 3D gravity inversion● Multiple sources● Interfering gravitational effects● Abrupt density­contrast distribution● No matrix multiplication● No need to solve large linear systems● Ideal for: ore bodies, intrusions, salt domes, etc

Conclusions

Page 179: 3D gravity inversion by planting anomalous densities

   

● Developed for gravity gradients

● Presented at EAGE 2011 preliminary results

● To be presented at SEG 2011:

● Final results 

● Robust method to handle non­targeted sources

Previous and future work

Page 180: 3D gravity inversion by planting anomalous densities

   

Thank you


Recommended