Transcript
Page 1: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 1

Introduction to Chapter 6(from Chapter 3 of the lecture notes)

Quantum treatment of JJ

Page 2: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 2

Classical treatment of Josephson junctions (so far)

Phase ๐œ‘ and charge ๐‘„ = ๐ถ๐‘‰ โˆ๐‘‘๐œ‘

๐‘‘๐‘ก Purely classical variables

(๐‘„, ๐œ‘) are assumed to be measurable simultaneously

Dynamics Tilted washboard potential, rotating pendulum

Classical energies:

Potential energy ๐‘ˆ(๐œ‘)(Josephson coupling energy / Josephson inductance)

Kinetic energy ๐พ แˆถ๐œ‘

(Charging energy via1

2๐ถ๐‘‰2 =

๐‘„2

2๐ถโˆ

๐‘‘๐œ‘

๐‘‘๐‘ก

2/ junction capacitance)

Current-phase & voltage-phase relation from macroscopic quantum model

Quantum origin

Primary macroscopic quantum effects

Second quantization

Treat (๐‘„, ๐œ‘) as quantum variables (commutation relations, uncertainty)

Secondary macroscopic quantum effects

3.6 Full Quantum Treatment of Josephson JunctionsSecondary Quantum Macroscopic Effects

Page 3: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 3

E

j

2๐ธJ0

3.6.1 Quantum Consequences of the small Junction Capacitance

Validity of classical treatment

Classical treatment valid for ๐ธ๐ฝ0

โ„๐œ”๐‘โ‰ƒ

๐ธ๐ฝ0

๐ธ๐ถ

1/2โ‰ซ 1 (Level spacing โ‰ช Potential depth)

Enter quantum regime by decreasing junction area ๐ด

Consider an isolated, low-damping junction, ๐ผ = 0 Cosine potential, depth 2๐ธ๐ฝ0 Close to potential minimum

Harmonic oscillatorFrequency ๐œ”p, level spacing โ„๐œ”p

Vacuum energyโ„๐œ”p

2

โ‰ƒโ„๐œ”p

2

โ‰ƒ โ„๐œ”p

Page 4: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 4

Example 1Area ๐ด = 10 ฮผm2, Tunnel barrier ๐‘‘ = 1 nm, ๐œ€ = 10,

๐ฝc = 100A

cm2

๐ธJ0 = 3 ร— 10โˆ’21 J

๐ธJ0/โ„Ž = 4500 GHz

๐ถ =๐œ€๐œ€0๐ด

๐‘‘= 0.9 pF

๐ธ๐ถ = 2 ร— 10โˆ’26 J

๐ธ๐ถ

โ„Ž= 30 MHz

Classical junction

We also need ๐‘‡ โ‰ช 500 mK for ๐‘˜B๐‘‡ โ‰ช ๐ธJ0, ๐ธ๐ถ!

3.6.1 Quantum Consequences of the small Junction Capacitance

Parameters for the quantum regime

Example 2Area ๐ด = 0.02 ฮผm2

๐ถ โ‰ƒ 1 fF ๐ธ๐ถ โ‰ƒ ๐ธJ0 Quantum junction

Page 5: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 5

Kinetic energy:

Total energy:

๐‘ˆ ๐œ‘ โˆ 1 โˆ’ cos๐œ‘ Potential energy๐พ แˆถ๐œ‘ โˆ แˆถ๐œ‘2

Kinetic energy

Energy due to extra charge ๐‘„ on one junction electrode due to ๐‘‰

Consider ๐ธ ๐œ‘, แˆถ๐œ‘ as junction Hamiltonian, rewrite kinetic energy

๐พ = ๐‘2/2๐‘€

๐‘ =โ„

2๐‘’๐‘„

3.6.1 Quantum Consequences of the small Junction Capacitance

Position coordinate associated to phase ๐œ‘, momentum associated to charge ๐‘„

Hamiltonian of a strongly underdamped junction (with ๐‘‘๐œ‘

๐‘‘๐‘กโ‰  0)

Page 6: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 6

Canonical quantization (operator replacement)

with ๐‘ =๐‘„

2๐‘’ # of Cooper pairs

we get the Hamiltonian

Describes only Cooper pairs

๐ธ๐ถ =๐‘’2

2๐ถnevertheless defined as

charging energy for a single electron charge

๐‘ โ‰ก๐‘„

2๐‘’ Deviation of # of CP in electrodes from equilibrium

3.6.1 Quantum Consequences of the small Junction Capacitance

Commutation rules for the operators

Heisenberg uncertainty relation

ฮ”๐ดฮ”๐ต โ‰ฅ1

2แˆ˜๐ด, ๐ต

Page 7: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 7

Hamiltonian in the flux basis (๐œ™ =โ„

2๐‘’๐œ‘ =

ฮฆ0

2๐œ‹๐œ‘)

3.6.1 Quantum Consequences of the small Junction Capacitance

Commutator ๐œ™, ๐‘„ = ๐‘–โ„

๐œ™ and Q are canonically conjugate (analogous to x and p)

Circuit variables are now quantized

Superconducting quantum circuits

Page 8: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 8

Lowest energy levels localized near bottom of potential wells at ๐œ‘๐‘› = 2๐œ‹ ๐‘›

Taylor series for ๐‘ˆ ๐œ‘ Harmonic oscillator,

Frequency ๐œ”p, eigenenergies ๐ธ๐‘› = โ„๐œ”p ๐‘› +1

2

Ground state: narrowly peaked wave function at ๐œ‘ = ๐œ‘๐‘›

Large fluctuations of ๐‘„ on electrodes since ฮ”๐‘„ โ‹… ฮ”๐œ‘ โ‰ฅ 2๐‘’(small EC pairs can easily fluctuate, large ฮ”๐‘„)

Small phase fluctuations ฮ”๐œ‘Negligible ฮ”๐œ‘ โ‡’ classical treatment of phase dynamics is good approximation

3.6.2 Limiting Cases: The Phase and Charge Regime

The phase regime

โ„๐œ”p โ‰ช ๐ธJ0 , ๐ธ๐ถ โ‰ช ๐ธJ0 Phase ๐œ‘ is a good quantum number!

Page 9: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 9

Hamiltonian

define ๐‘Ž = ๐ธ โˆ’ ๐ธ๐ฝ0 /๐ธ๐ถ, ๐‘ = ๐ธ๐ฝ0/2๐ธ๐ถ and ๐‘ง = ๐œ‘/2

known from periodic potential problem in solid state physics Energy bandsGeneral solution

Bloch waves

Charge/pair number variable ๐‘ž is continuous (charge on capacitor!) ๐›น ๐œ‘ is not 2๐œ‹-periodic

3.6.2 Limiting Cases: The Phase and Charge Regime

Mathieu equation

The phase regime

Page 10: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 10

1D problem Numerical solution straightforwardVariational approach for approximate ground state

Trial function for ๐ธ๐ถ โ‰ช ๐ธJ0

Choose ๐œŽ to find minimum energy:

๐‘ฌ๐‘ช

๐‘ฌ๐‰๐ŸŽ= ๐ŸŽ. ๐Ÿ

๐‘ฌ๐ฆ๐ข๐ง = ๐ŸŽ.๐Ÿ ๐‘ฌ๐‰๐ŸŽ

first order in EJ0

Emin โ‰ƒ 0 for EC โ‰ช EJ0

3.6.2 Limiting Cases: The Phase and Charge Regime

The phase regime

Page 11: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 11

Tunneling coupling โˆ exp โˆ’2๐ธJ0โˆ’๐ธ

โ„๐œ”p Very small since โ„๐œ”p โ‰ช ๐ธJ0

Tunneling splitting of low lying states is exponentially small

3.6.2 Limiting Cases: The Phase and Charge Regime

The phase regime

๐‘ฌ๐‘ช

๐‘ฌ๐‰๐ŸŽ= ๐ŸŽ. ๐Ÿ

๐‘ฌ๐ฆ๐ข๐ง = ๐ŸŽ.๐Ÿ ๐‘ฌ๐‰๐ŸŽ

Page 12: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 12

Kinetic energy โˆ ๐ธ๐‘๐‘‘๐œ‘

๐‘‘๐‘ก

2dominates

Complete delocalization of phase Wave function should approach constant value, ฮจ ๐œ‘ โ‰ƒ const. Large phase fluctuations, small charge fluctuations (๐›ฅ๐‘„ โ‹… ๐›ฅ๐œ‘ โ‰ฅ 2๐‘’)

3.6.2 Limiting Cases: The Phase and Charge Regime

โ„๐œ”p โ‰ซ ๐ธJ0 , ๐ธ๐ถ โ‰ซ ๐ธJ0 Charge ๐‘„ (momentum) is good quantum number

Appropriate trial function:

Hamiltonian

Approximate ground state energy

second order in EJ0

๐›ผ โ‰ช 1

The charge regime

Page 13: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 13

๐‘ฌ๐‘ช๐‘ฌ๐‘ฑ๐ŸŽ

= ๐Ÿ. ๐Ÿ“

๐‘ฌ๐’Ž๐’Š๐’ = ๐ŸŽ. ๐Ÿ—๐Ÿ“ ๐‘ฌ๐‘ฑ๐ŸŽ

Periodic potential is weak Strong coupling between neighboring phase states Broad bands Compare to electrons moving in strong (phase regime) or weak (charge regime) periodic

potential of a crystal

3.6.2 Limiting Cases: The Phase and Charge Regime

The charge regime

Page 14: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 14

Voltage ๐‘‰ Charge ๐‘„ = ๐ถ๐‘‰, energy ๐ธ =๐‘„2

2๐ถ

Observation of CB requires small thermal fluctuations

๐ธ๐ถ =๐‘’2

2๐ถ> ๐‘˜๐ต๐‘‡ โ‡’ ๐ถ <

๐‘’2

2๐‘˜๐ต๐‘‡

๐ถ โ‰ƒ 1 fF at T = 1 K, ๐‘‘ = 1 nm, and ๐œ€ = 5 ๐ด โ‰ฒ 0.02 ฮผm2 Small junctions!

Observation of CB requires small quantum fluctuations

Quantum fluctuations due to Heisenberg principle ฮ”๐ธ โ‹… ฮ”๐‘ก โ‰ฅ โ„ Finite tunnel resistance ๐œ๐‘…๐ถ = ๐‘…๐ถ (decay of charge fluctuations)

ฮ”๐‘ก = 2๐œ‹๐‘…๐ถ, ฮ”๐ธ =๐‘’2

2๐ถ ๐‘… โ‰ฅ

โ„Ž

๐‘’2= ๐‘…๐พ = 24.6 kฮฉ Typically satisfied

3.6.3 Coulomb and Flux Blockade

Coulomb blockade in normal metal tunnel junctions

Single electron tunneling

Charge on one electrode changes to ๐‘„ โˆ’ ๐‘’

Electrostatic energy ๐ธโ€ฒ =๐‘„โˆ’๐‘’ 2

2๐ถ

Tunneling only allowed for ๐ธโ€ฒ โ‰ค ๐ธ Coulomb blockade: Need ๐‘„ โ‰ฅ ๐‘’/2 or ๐‘‰ โ‰ฅ ๐‘‰CB = ๐‘‰c = ๐‘’/2๐ถ

Page 15: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 15

Coulomb blockade in superconducting tunnel junctions

For ๐‘„2

2๐ถ> ๐‘˜๐ต๐‘‡, ๐‘’๐‘‰ (๐‘„ = 2๐‘’) No flow of Cooper pairs

Threshold voltage ๐‘ฝ โ‰ฅ ๐‘ฝ๐‘ช๐‘ฉ = ๐‘ฝ๐’„ =๐Ÿ๐’†

๐Ÿ๐‘ช=

๐’†

๐‘ช

Coulomb blockade Charge is fixed, phase is completely delocalized

3.6.3 Coulomb and Flux Blockade

S S2e-

Page 16: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 16

Current ๐ผ Flux ๐›ท = ๐ฟ ๐ผ, energy ๐ธ = ๐›ท2/2๐ฟ

In presence of fluctuations we need

๐ธJ0 โ‰ซ ๐‘˜B๐‘‡ (large junction area)

And ๐›ฅ๐ธ โ‹… ๐›ฅ๐‘ก โ‰ฅ โ„ with ๐›ฅt = 2๐œ‹๐ฟ

๐‘…and ๐›ฅ๐ธ = 2๐ธ๐ฝ0 ๐‘… โ‰ค

โ„Ž

(2๐‘’)2=

1

4๐‘…๐พ

3.6.3 Coulomb and Flux Blockade

Phase or flux blockade in a Josephson junction

Phase is blocked due to large ๐ธJ0 = ๐›ท0๐ผ๐‘/2๐œ‹

๐ผc takes the role of ๐‘‰CB Phase change of 2๐œ‹ equivalent to flux change of ๐›ท0

Flux blockade ๐ผ โ‰ฅ ๐ผFB = ๐ผc =ฮคฮฆ0 2๐œ‹

๐ฟc

Analogy to CB ๐ผ โ†” ๐‘‰, 2๐‘’ โ†”๐›ท0

2๐œ‹, ๐ถ โ†” ๐ฟ

Page 17: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 17

Coherent charge statesIsland charge continuously changed by gate

Independent charge states (๐ธJ0 = 0)

Parabola ๐ธ ๐‘„ = ๐‘„ โˆ’ ๐‘› โ‹… 2๐‘’ 2/2๐ถฮฃ

Cooper pair box

3.6.4 Coherent Charge and Phase States

๐ธJ0 > 0

Interaction of |๐‘›โŸฉ and |๐‘› + 1โŸฉ at the level crossing points ๐‘„ = ๐‘› +1

2โ‹… 2๐‘’

Avoided level crossing (anti-crossing)

Coherent superposition states ๐›นยฑ = ๐›ผ ๐‘› ยฑ ๐›ฝ ๐‘› + 1

Page 18: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 18

Average charge on the island as a function of the applied gate voltage Quantized in units of 2๐‘’ (no coherence yet)

3.6.4 Coherent Charge and Phase States

First experimental demonstration of coherent superposition charge states by Nakamura, Pashkin, Tsai (1999, not this picture)

Coherent charge states

Page 19: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 19

Coherent phase states Interaction of two adjacent phase states Example is rf SQUID

magnetic energy

of flux ๐œ™ =ฮฆ0

2๐œ‹๐œ‘ in the ring ๐šฝ๐’†๐’™๐’• = ๐šฝ๐ŸŽ/๐Ÿ

Tunnel coupling Experimental evidence for quantum coherent superposition (Mooij et al., 1999)

3.6.4 Coherent Charge and Phase States

Page 20: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 20

Violation of conservation of energy on small time scales, obey ฮ”๐ธ โ‹… ฮ”๐‘ก โ‰ฅ โ„

Creation of virtual excitations Include Langevin force ๐ผ๐น with adequate statistical properties Fluctuation-dissipation theorem

๐ธ ๐œ”, ๐‘‡ = energy of a quantum oscillator

Transition from โ€œthermalโ€ Johnson-Nyquist noise to quantum noise:

classical limit (โ„๐œ”, ๐‘’๐‘‰ โ‰ช ๐‘˜๐ต๐‘‡):

quantum limit (โ„๐œ”, ๐‘’๐‘‰ โ‰ซ ๐‘˜๐ต๐‘‡):

3.6.5 Quantum Fluctuations

vacuumfluctuations

occupation probabilityof oscillator (Planck distribution)

Page 21: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 21

Escape of the โ€œphase particleโ€ from minimum of washboard potential by tunneling

Macroscopic, i.e., phase difference is tunneling (collective state) States easily distinguishable

Competing process

Thermal activation Low temperatures

Neglect damping

Dc-bias Term โˆ’โ„๐ผ๐œ‘

2๐‘’in Hamiltonian

Curvature at potential minimum:

(Classical) small oscillation frequency:

3.6.6 Macroscopic Quantum Tunneling

๐‘– = ๐ผ/๐ผ๐‘

(attempt frequency)

Page 22: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 22

Quantum mechanical treatment

Tunnel coupling of bound states to outgoing waves Continuum of states But only states corresponding to quasi-bound states have high amplitude In-well states of width ฮ“ = โ„/๐œ (๐œ = lifetime for escape)

Determination of wave functions

Wave matching method Exponential prefactor within WKB approximation Decay in barrier:

decay of wave function of particle with mass M and energy E

3.6.6 Macroscopic Quantum Tunneling

for ๐‘ˆ ๐œ‘ โ‰ซ ๐ธ0 = โ„๐œ”A/2

mass effective barrier height

Page 23: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 23

Constant barrier height Escape rate

Increasing bias current

๐‘ˆ0 decreases with ๐‘– ๐›ค becomes measurable

Temperature ๐‘‡โ‹† where ๐›คtunnel = ๐›คTA โ‰ˆ exp โˆ’๐‘ˆ0

๐‘˜๐ต๐‘‡

for ๐ผ > 0: For ๐œ”p โ‰ˆ 1011 ๐‘ โˆ’1

T* 100 mK

very small for ๐‘– โ‰ƒ 0

3.6.6 Macroscopic Quantum Tunneling

for ๐ผ โ‰ƒ 0:

Page 24: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 24

Junction couples to the environment (e.g., Caldeira-Leggett-type heat bath)

Crossover temperature ๐‘˜๐ต๐‘‡โ‹† โ‰ˆ

โ„๐œ”R

2๐œ‹with ๐œ”R = ๐œ”๐ด 1 + ๐›ผ2 โˆ’ ๐›ผ and ๐›ผ โ‰ก

1

2๐‘…N๐ถ๐œ”A

Strong damping ๐›ผ โ‰ซ 1 ๐œ”R โ‰ช ๐œ”A Lower ๐‘‡โ‹†

Damping suppresses MQT

3.6.6 Macroscopic Quantum Tunneling

Additional topic: Effect of damping

lightly damped(small capacitance)

moderately damped(larger capacitance)

After: Martinis et al., Phys. Rev. B. 35, 4682 (1987).

๐œ”R/๐œ”

A

๐›ผ10310โˆ’1 10 105

1.0

010โˆ’3

0.8

0.6

0.4

0.2

Phase diffusion by MQTSee lecture notes

Page 25: 3. Physics of Josephson Junctions: The Voltage Stateย ยท s e, d r-r-ut Phase -2019) AS-Chap. 3.6 - 2 Classical treatment of Josephson junctions (so far) ๐œ‘and charge = โˆ ๐œ‘ ๐‘ก

R. G

ross, A

. M

arx

, F.

De

pp

e,

an

dK

. Fe

do

rov ยฉ

Wa

lth

er-

Me

iรŸn

er-

Insti

tut

(20

01

-2

01

9)

AS-Chap. 3.6 - 25

Classical description only in the phase regime (large junctions): ๐ธ๐ถ โ‰ช ๐ธ๐ฝ0

For ๐ธ๐‘ โ‰ซ ๐ธ๐ฝ0: quantum description (negligible damping):

Phase difference ๐œ‘ and Cooper pair number ๐‘ =๐‘„

2๐‘’are canonically conjugate variables

phase regime: ฮ”๐œ‘ โ†’ 0 and ฮ”๐‘ โ†’ โˆžcharge regime: ฮ”๐‘ โ†’ 0 and ฮ”๐œ‘ โ†’ โˆž

Charge regime at ๐‘‡ = 0

Coulomb blockade Tunneling only for ๐‘‰CB โ‰ฅ๐‘’

๐ถ

Flux regime at ๐‘‡ = 0

Flux blockade Flux motion only for ๐ผFB โ‰ฅฮฆ0

2๐œ‹๐ฟc

At ๐ผ < ๐ผc Escape out of the washboard by thermal activation or macroscopic quantum tunneling

TA-MQT crossover temperature ๐‘‡โ‹†

Summary (secondary quantum macroscopic effects)


Recommended