Transcript
Page 1: 2012-01-18 PhD-Thesis CRC - uni-goettingen.de

Ph.D.  Thesis    

Cellular  X-­‐ray  Imaging  with  ultra-­‐short  Pulses  

 Novel  X-­‐ray  sources  such  as  Free  Electron  Lasers  (FEL)  and  laser  driven  compact  X-­‐ray  sources  enable  entirely  new  imaging  capabilities.  High  resolution  density  maps  of  biological  cells  can  be  measured  by  ultra-­‐short  pulses,  circumventing  the  need  of  fixation  or  slicing  of  the  sample  as  well  as  effects  of  radiation  damage[1].  To   exploit   these   capabilities,   the   current   iterative   phase   reconstruction   algorithms   and  imaging  modes  will  be  surveyed  in  view  of  this  application.  The  use  of  single  pulses  and  the  size  of  the  eukaryotic  cells  as  opposed  to  small  bacteria  and  viruses,  which  have  been  imaged  so   far   at   FEL   sources,   necessitates   adaptation   of   the   experimental   design   and   algorithms.  Secondly,  appropriate  aqueous  sample  environment  for  sample  delivery  have  to  be  devised.  The  current  project  will  test  an  existing  microfluidic  water  jet  for  high  throughput  delivery  of  cells,  using  also  nano-­‐focused  synchrotron  radiation[2],  in  view  of  the  parameters  compatible  with   live   cells   delivery   and   high   hit   rates.   Finally,   proof-­‐of-­‐concepts   experiments   shall   be  carried  out.  The   research   is   funded   by   Nanoscale   Photonic  Imaging   SFB   755   as   well   as   the   Virtual   Institute  'In-­‐Situ   Nano-­‐Imaging   of   Biological   and   Chemical  Processes   provisional   schedule   line',   in   close  collaboration   with   the   group   of   Prof.   Dr.   Sarah  Köster,   as   well   as   with   collaborating   groups   at  HASAYLAB/DESY.        

[1]    Hajdu,  J.  et  al.  Single  mimivirus  particles  intercepted  and  imaged  with  an  X-­‐ray  laser.    Nature  470,  78–82  (2011)  

[2]    Priebe,  M.  et  al.  Orientation  of  biomolecular  assemblies  in  a  microfluidic  jet.    New  J.  Phys.  12,  043056  (2010)  

Figure:   Functional   principle   of   the   liquid   jet   as  sample   delivery   system.   Observed   diffraction  pattern  of  a  particle  within  the  water  jet  using  soft  X-­ray   FEL   (FLASH).   Radial   intensity   profile  exhibiting  a  strong  diffraction  streak  orthogonal  to  the   jet,   with   an   oscillatory   intensity   profile.   This  modulation  can  be  analyzed   in   terms  of   the  water  interface   (jet   geometry,   capillary   waves,   near-­molecular  density  profile,  break-­up  instabilities).  

Contact

Assistance: Dr. Dong-Du Mai Tel: +49 (0)551 - 39 - 14 41 4 · Email: [email protected]

Head of Institute: Prof. Dr. Tim Salditt Tel: +49 (0)551 - 39 - 94 27 · Email: [email protected]