37
Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua | June 30, 2016

Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

Zhong-Zhi Xianyu(CMSA Harvard)

Tsinghua | June 30, 2016

Page 2: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• We are directly observing the history of the universe as we look deeply into the sky.

JUN 30, 2016 ZZXianyu (CMSA) 2

Page 3: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• At ~104yrs the universe becomes so hot and dense that light cannot penetrate CMB• It is manifest from the observation of CMB that the

universe is highly homogeneous and isotropic at large scales with ~10-5 fluctuations.• But why?

JUN 30, 2016 ZZXianyu (CMSA) 3

)

CMB sky (Planck 2015)

Page 4: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

JUN 30, 2016 ZZXianyu (CMSA) 4

• Big-bang cosmology:1) The universe has a starting point2) The universe expands “slower” than light cone

1’) Observable universe at a given time is finite2’) Observable region is larger at late time

A B C D E F G H I J K

t

xA B C D E F G

t

x

non-expanding slowly-expanding

t1

t2t2

Page 5: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

JUN 30, 2016 ZZXianyu (CMSA) 5

• Big-bang cosmology:1) The universe has a starting point2) The universe expands “slower” than light cone

1’) Observable universe at a given time is finite2’) Observable region is larger at late time

A B C D E F G H I J K

t

xA B C D

t

x

non-expanding fast-expanding

t1

t2t2

Page 6: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

JUN 30, 2016 ZZXianyu (CMSA) 6

• Solution to horizon problem:A period of fast expansionbefore the thermal big-bang.

Cosmic inflation.

• The expansion ofuniverse can beparameterized bythe scale factor

. In simplestcase .

last scattering

inflation

big-bang

)

a(t)

Page 7: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• A period of exponential expansion before the thermal big-bang era, driven by vacuum energy:

• Inflation ends with vacuum energy decaying to SM particles, thermalizing the universe. Reheating.

• Slow-roll paradigm: A scalar field – inflatonVery flat potential during inflationFast decay during reheating

JUN 30, 2016 ZZXianyu (CMSA) 7

Page 8: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

inflation big-bang

Last scattering

• Quantum fluctuations: the most fascinating aspect of cosmic inflation.

JUN 30, 2016 ZZXianyu (CMSA) 8

ds2 = N

2dt2 � gij(Nidt+ dxi)(N jdt+ dxj)

gij = e

2(Ht+⇣)(�ij + hij)

scalar mode tensor mode

com

ovin

gsc

ale

time

k3

k2

k1

Page 9: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Both scalar and tensor modes are frozen outside the horizon, and set the initial condition for the evolution of large scale structure as they reenter the horizon.

• Power spectrum:Scalar mode:

Tensor mode:

Planck Collaboration: Cosmological parameters

0

1000

2000

3000

4000

5000

6000

DT

T�

[µK

2]

30 500 1000 1500 2000 2500�

-60-3003060

�D

TT

2 10-600-300

0300600

Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averagedtemperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2 ` 29, we plot the power spectrumestimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoreticalspectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown inthe lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-dependent analysis pipelines. Some of these are described inPlanck Collaboration XI (2015). The most highly developed ofthese are the CamSpec and revised Plik pipelines. For the2015 Planck papers, the Plik pipeline was chosen as the base-line. Column 6 of Table 1 lists the cosmological parameters forbase ⇤CDM determined from the Plik cross-half-mission like-lihood, together with the lowP likelihood, applied to the 2015full-mission data. The sky coverage used in this likelihood isidentical to that used for the CamSpec 2015F(CHM) likelihood.However, the two likelihoods di↵er in the modelling of instru-mental noise, Galactic dust, treatment of relative calibrations andmultipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik andCamSpec parameters agree to within 0.2�, except for ns, whichdi↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-prising, since this parameter is sensitive to small di↵erences inthe foreground modelling. Di↵erences in ns between Plik andCamSpec are systematic and persist throughout the grid of ex-tended ⇤CDM models discussed in Sect. 6. We emphasise thatthe CamSpec and Plik likelihoods have been written indepen-dently, though they are based on the same theoretical framework.None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantiveway had we chosen to use the CamSpec likelihood in place ofPlik. The overall shifts of parameters between the Plik 2015likelihood and the published 2013 nominal mission parametersare summarized in column 7 of Table 1. These shifts are within0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-sitive to the low multipole polarization likelihood and absolutecalibration.

In summary, the Planck 2013 cosmological parameters werepulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K linesystematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect ofthis systematic is relatively small, leading to shifts of 0.5� orless in cosmological parameters. Changes to the low level dataprocessing, beams, sky coverage, etc. and likelihood code alsoproduce shifts of typically 0.5� or less. The combined e↵ect ofthese changes is to introduce parameter shifts relative to PCP13of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The mainscientific conclusions of PCP13 are therefore consistent with the2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived fromfull-mission DetSet, cross-year, or cross-half-mission spectra arein extremely good agreement, demonstrating that residual (i.e.uncorrected) cotemporal systematics are at low levels. This is

8

JUN 30, 2016 ZZXianyu (CMSA) 9

h⇣~k⇣�~ki

hh~kh�~ki

⇣k = � Hp4✏k3

(1 + ik⌧)e�ik⌧ ⌧ = �H�1e�Ht, ⌧ 2 (�1, 0)

(Planck 2015)

Page 10: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Scalar power spectrum has been measured with impressive precision (almost but not exact scale invariant spectrum).

JUN 30, 2016 ZZXianyu (CMSA) 10

⇣k = � Hp4✏k3

(1 + ik⌧)e�ik⌧

h⇣2ki0 =H2

4✏k3

ns ' 1� 6✏+ 2⌘r ' 16✏

✏ = 12 (V

0/V )2, ⌘ = V 00/V

(Planck 2015)

Page 11: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Scalar power spectrum has been measured with impressive precision (almost but not exact scale-invariant spectrum).

• Tensor mode (primordialgravitational wave) hasn’tbeen observed yet. But the observation of tensormode would provide veryvaluable information, e.g.,quantum gravity, and thescale of inflation.

JUN 30, 2016 ZZXianyu (CMSA) 11

(Planck 2015)

Page 12: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• However valuable it may be, the information in power spectrum is limited. (~ scale invariance)• A far more fascinating world beyond linear

perturbation theory: Non-Gaussianity.• Simplest possibility: 3-point function / bispectrum

• Scale invariant limit: powerspectrum becomes a singlenumber, while bispectrum isa function of the shape oftriangles.

JUN 30, 2016 ZZXianyu (CMSA) 12

k1

k2

k3

h⇣1⇣2⇣3i, hh1h2h3i, · · ·

Page 13: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• However valuable it may be, the information in power spectrum is limited. (~ scale invariance)• A far more fascinating world beyond linear

perturbation theory: Non-Gaussianity.• Simplest possibility: 3-point function / bispectrum:

• Bispectrum probesinteractions during inflation,and therefore possible newphysics.

Cosmological collider!

JUN 30, 2016 ZZXianyu (CMSA) 13

k1

k2

k3

h⇣1⇣2⇣3i, hh1h2h3i, · · ·

)N. Arkani-Hamed, J. Maldacena, arXiv:1503.08043

Page 14: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

JUN 30, 2016 ZZXianyu (CMSA) 14

• The most observable signals are usually not the most informative or distinguishable ones, and vice versa.

• Example: Decay of Higgs boson into two photons.

ATLAS 2011

Page 15: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Squeezed limit of bispectrum:

• Quantum interference: massive particle & inflaton.

JUN 30, 2016 ZZXianyu (CMSA) 15

h⇣1⇣2⇣3ih⇣21 ih⇣23 i

=

C(µ)

⇣ k3k1

⌘�+

+ C⇤(µ)⇣ k3k1

⌘���Ps(k1 · k3)

k1 ' k2 � k3

k1

k2k3

k1

k2

k3m

Page 16: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Squeezed limit of bispectrum:

• : oscillations; Quantum Primordial Clock.

• : characteristic real power.

• Angular dependence: spin spectrum. (higher spins?)

JUN 30, 2016 ZZXianyu (CMSA) 16

h⇣1⇣2⇣3ih⇣21 ih⇣23 i

=

C(µ)

⇣ k3k1

⌘�+

+ C⇤(µ)⇣ k3k1

⌘���Ps(k1 · k3)

k1 ' k2 � k3

m > 32 H

m < 32 H

X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013

X. Chen, Y. Wang, JCAP1004 (2010) 027

Page 17: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

JUN 30, 2016 ZZXianyu (CMSA) 17

LHC

GUT

Planckscale

100

102104

106108

10101012

10141016

1018

GeV

• The Hubble scale during inflation can be much higher than any artificial collider. • The energy density during inflation

can be as high as GUT scale.• Relatively low

statistics

Page 18: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Our knowledge of new physics is poor, but we do know Standard Model very well.

• It is important to calibrate the cosmological collider using knonw physics (SM) before exploring new physics.

• Inflaton must couple to SM fields to ensure efficient reheating.

JUN 30, 2016 ZZXianyu (CMSA) 18

SM fields

inflaton

X. Chen, Y. Wang, ZZX, arXiv:1604.07841

Page 19: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• The mass spectrum of SM is determined by:1) Higgs couplings 2) Higgs VEV

• When :• Quarks, leptons,

and W/Z are massive.• Photon and gluon

are massless.

h�i 6= 0

MX = gXh�i

JUN 30, 2016 ZZXianyu (CMSA) 19

Page 20: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• The mass spectrum of SM is determined by:1) Higgs couplings 2) Higgs VEV

• Symmetry phase:

• Broken phase:

v

14�v

4

Higgs potential

v ' 246GeV, � ' 0.1

MX = gXh�i

JUN 30, 2016 ZZXianyu (CMSA) 20

E � v ) h�i = 0

E ⌧ v ) h�i = v

Page 21: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• In inflation , at least 3 possibilities:

• : Usual electroweak broken phase. All fermions and W/Z massive.

• : (Typical) Electroweak symmetry restored. All SM fields are effective massless at tree level.

• Higgs field itself is the inflaton (Higgs inflation):, fermions and W/Z pick

up huge and time-dependent mass.

E ⇠ H

H ⌧ v = O(102GeV)

H � v

h�i ⇠ O(1019GeV) � H

JUN 30, 2016 ZZXianyu (CMSA) 21

Page 22: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Typical inflation: all SM fields are massless.• No longer true when quantum corrections are

included.

• For massless fields, higher order loops are as important as leading tree diagrams, because zero modes are strongly coupled in de Sitter space.

JUN 30, 2016 ZZXianyu (CMSA) 22

Page 23: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Analogy with thermal fields in flat spacetime.

• In massless theory with finite temperature T, the scalar field gets a thermal mass

• The BD vacuum in de Sitter appears to be a thermal state for any time-like geodesic observer with temperature .

• The naïve guess for effective mass in de Sitteris incorrect.

JUN 30, 2016 ZZXianyu (CMSA) 23

��4

m2e↵ ⇠ �T 2 ⇠ �H2

Page 24: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• This can already be understood using mean field theory, in which the effective mass is .• For thermal in flat space, .• In dS, two competing factors: • classical rolling-down along the potential: • quantum fluctuation:

• The equilibrium is reached at

in agreement with solving zero-mode partition function on Euclidean dS, .

JUN 30, 2016 ZZXianyu (CMSA) 24

��4

S4

t ⇠ (p�H)�1

) h�2i ⇠ H2/p� )

h�2i ⇠ H3t

Page 25: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Photon mass?• Thermal field theory in flat spacetime breaks Lorentz

symmetry “Electric mass” is allowed for photon.

• The gauge invariant mass corresponds to the nontrivial Wilson loop winding around compact imaginary time direction.

• BD vacuum is dS invariant. The Euclidean version doesn’t allow nontrivial Wilson loop

No gauge-invariant photon mass?

JUN 30, 2016 ZZXianyu (CMSA) 25

)

)

Page 26: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Subtleties of Wick rotation.• No IR divergence or late-time divergence can occur

in Euclidean dS (compact and bounded by Hubble radius).• For studies of inflation, it is conceptually safer to

work with real-time Schwinger-Keldysh formalism without Wick rotation.• SK formalism: calculating in-in correlators using

Feynman diagrams:

JUN 30, 2016 ZZXianyu (CMSA) 26

hin|OO|ini =X

out

hin|O|outihout|O|ini

Page 27: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• The late-time divergences all come from Higgs loops.

• Intuitively, a massless scalar field is frozen outside horizon and leads to late-time divergence. Massless fermion and vector boson dies away

• The action for massless fermion and vector boson is (classically) Weyl invariant.

• Power counting of scale factor: “safe interaction” and “dangerous interaction” à la Weinberg.

JUN 30, 2016 ZZXianyu (CMSA) 27

Page 28: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Two different types of loops: similar in UV but qualitatively different in IR / late-time.

• The loop integral itself is time independent by de Sitter symmetry; mass insertion.

• The leading order late-time divergence is from the region where all momenta go soft.

⇠Rd4xG(x,x)

⇠Rd4xd4y G2(x, y)

JUN 30, 2016 ZZXianyu (CMSA) 28

Page 29: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Two different types of loops: similar in UV but qualitatively different in IR / late-time.

JUN 30, 2016 ZZXianyu (CMSA) 29

• when .

• when .

/ ln(�k⌧) ⌧ ! 0

/ ln3(�k⌧) ⌧ ! 0

⌧ = �H�1e�Ht

⌧ 2 (�1, 0)

⇠Rd4xG(x,x)

⇠Rd4xd4y G2(x, y)

Page 30: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• One loop results and Resummation: example.

• Resummation by Dynamical Renormalization Group

JUN 30, 2016 ZZXianyu (CMSA) 30

��4

�i(1 + �1-loop

)GS =

H2

2k3

1 +

�H2

2(2⇡)2m2

log(�k⌧)

· · ·GS

���r=

H2

2k3(�k⌧)�H

2/2(2⇡m)2

“ ”

Page 31: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Resummed scalar propagator:

• Compare it with massive propagator:

• Effective mass:

• Partial resum: order 1 uncertainty; exact in large N limit; canceled out in the ratios of spectrum.

JUN 30, 2016 ZZXianyu (CMSA) 31

GS

���r=

H2

2k3(�k⌧)�H

2/2(2⇡m)2

GS(m) / (�⌧)2m2/3H2

Page 32: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Fermions and vector bosons.• Fermion’s propagator receives late-time divergence

from Yukawa interaction :

• Charged scalar corrects “photon” propagator with both types of diagrams:

JUN 30, 2016 ZZXianyu (CMSA) 32

yp�g�

�iGF =

H3⌧3

2k

k�0 � exp

⇣ y2

(2⇡)2log

3(�k⌧)

⌘k · �

� i(GV )00 =

1

2k(�k⌧)6e

2H2/(2⇡m)2⌘00

� i(GV )ij =1

2kexp

e2

24(2⇡)2log

3(�k⌧)

�⌘ij

Page 33: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Photon:

• Compare it with massive photon:

• Photon gets a nonzero “electric mass”:

• Only true when .

JUN 30, 2016 ZZXianyu (CMSA) 33

� i(GV )00 =

1

2k(�k⌧)6e

2H2/(2⇡m)2⌘00

� i(GV )ij =1

2kexp

e2

24(2⇡)2log

3(�k⌧)

�⌘ij

GV (M) / (�⌧)2M2/H2

M2 =p3e2H2/(⇡

p�)

e2/p� ⌧ 1

Page 34: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

Self-consistency check: • finiteness of resummed propagator

the coefficient of leading late-time divergenceshould be positive.

• Quantum corrections don’t generate oscillatory behavior (clock signal), at least in perturbation theory.• Mass relation of general spin s>0,

scalars and photons can receive nonzero massfrom loops while spin-1/2 fermion cannot.

JUN 30, 2016 ZZXianyu (CMSA) 34

)

µ =

rm2

H2�

⇣s� 1

2

⌘2

)

Page 35: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

• Typical Inflation: characteristic power dependence on momentum ratio in squeezed limit of bispectrum, from Higgs boson and massive gauge bosons.

• Very low scale inflation: Standard clock signals with full SM spectrum in the broken phase.

• Higgs inflation: Clock signals from relatively light fermion loops, with time-dependent mass.

A possible new way of model discrimination.

JUN 30, 2016 ZZXianyu (CMSA) 35

X. Chen, Y. Wang, ZZX, in preparation

)

Page 36: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

1. Inflation: the large scale structure of our universe has a quantum origin!

2. The primordial non-Gaussianity can be utilized as a super particle collider: Cosmological Collider

3. SM has nontrivial dynamics during inflation and can be used to calibrate the cosmological collider.

JUN 30, 2016 ZZXianyu (CMSA) 36

Page 37: Zhong-Zhi Xianyu · 5000 6000 D TT ! [µ K 2] 30 500 1000 1500 2000 2500 ... X. Chen, M. H. Namjoo, Y. Wang, JCAP1602 (2016) 013 X. Chen, Y. Wang, JCAP1004 (2010) 027. JUN 30, 2016

JUN 30, 2016 ZZXianyu (CMSA) 37