1
Lateral Variations in the Scattering and Viscoelastic Properties of the Inner Core Vernon F. Cormier 1 and Anastasia Stroujkova 2 1 Physics Department, University of Connecticut, Storrs, CT 06269-3046 [email protected] 2 Weston Geophysical Corporation, Lexington, MA 02420 [email protected] DI31A-0256 (a) Contours thickness of anomalous lower velocity layer in the uppermost inner core determined in the study by Stroujkova and Cormier [4]. (b) excitation of backscattered PKiKP coda from heterogeneity in the uppermost inner core determined in the study by Leyton and Koper [5. (c) summary of lateral variations in attenuation and P velocity in the equatorial region of the inner core determined in the study by Yu and Wen [6]. INNER CORE EQUATORIAL STRUCTURAL VARIATIONS Processed PKiKP coda with numbered events keyed to the map on the right.Note changes in onset and duration of the coda as a function of the direction of the ray with respect to the earth axis AZIMUTHAL VARIATIONS IN PKiKP CODA BENEATH PACIFIC CONCLUSIONS 1. The equatorial region of the upper inner core is characterized by lateral variations in the scattering and attenuation of elastic waves. This lateral variation may be correlated with lateral variations in the solidificaiton fabric of the inner core and flow in the liquid oter core. 2. Long PKiKP coda is observed almost exclusively in the area of the equatorial and northern pacific [5]. These codas are characterized by long duration (hundreds of seconds in some cases) and unusually high frequencies (1-5 Hz), possibly suggesting low intrinsic attenuation in the upper layer of the inner core in this area. 3. The coda of PKiKP in the equatorial Pacific exhibits azimuthal variations in coda length, with equatorial paths having a longer duration high frequency coda compared to polar paths. 4. This azimuthal variation in PKiKP coda may be explained by longer time lengths of travel in a region of more intense scattering in the equatorial Pacific or by an anisotropic distribution of heterogeneity scale lengths in the upper inner core. REFERENCES [1] Cormier, V.F., Earth Planet. Sci. Lett., 258, (2007) 442-453, doi: 10.1016/j.epsl.2007.04.003. [2] Shearer, P.M. and P.S Earle, Geophys. J. Int., 158, (2004), 1103-1117. [3] Cormier, V.F., and X. Li, J. Geophys. Res. 107(B12) (2002), doi: 10.1029/2002JB1796 [4] Stroujkova, A., and V.F. Cormier, , J. Geophys. Res., 109(B10) (2004), doi: 10.129/2004JB002976. [5] Leyton, F.., and K.D. Koper, J. Geophys. Res., 112, (B05317) (2007), doi:10.1029/2006JB004370. [6] Yu, W., and L. Wen, Earth Planet. Sci, Lett., 245 (2006), 581-594. ACKNOWLEDGEMENTS: National Science Foundation Grant EAR 02-29586 supported this work. Abstract Recent studies [5] find unusual high-frequency coda following the PKiKP phase, reflected from the inner core boundary in the area of the Central Pacific and observed at teleseismic distances between 50to 90range. The majority of the observations of such codas were made at short-period teleseismic arrays in the USA, Eastern Asia and Australia. An array analysis of the coda wavetrains shows the apparent horizontal velocity of the coda to be consistent with scattering from the uppermost inner core. The PKiKP codas have different durations and frequency content depending on the location and the azimuth of the ray reflection point on the inner core boundary, as well as the distance between source and receiver. Radiative transport modeling of PKiKP coda shapes in the 1-4 Hz band is combined with pseudospectral modeling of PKIKP pulses in the 0.2 to 1 Hz band to assess and separate the effects of scattering by small-scale heterogeneity from the effects of viscoelasticity in the uppermost inner core. Observed lateral variations in elastic attenuation and scattering in the uppermost inner core may record lateral variations in the solidification process of the inner core and lateral variations in fluid velocities of the outer core near the inner core boundary. WAVEFIELD MODELING AND STRUCTURAL SENSITIVITY 0 5 10 1000 1100 1200 -0.10 -0.05 -0.00 0.05 0.10 V P /V P km/s 0 5 10 1000 1100 1200 -0.10 -0.05 -0.00 0.05 0.10 V P /V P km/s 0 5 10 1000 1100 1200 -0.10 -0.05 -0.00 0.05 0.10 V P /V P km/s 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) 8 12 16 20 24 DISTANCE (deg) 930 940 950 960 970 T (sec) pPcSp400p PcPPcP PKiKP 0 600 1200 1800 2400 3000 T (sec) 0 30 60 90 120 150 180 D(deg) Left: Possible texture in the equatorial eastern hemisphere to explain isotropic velocities and high isotropic attenuation of transmitted PKIKP (120 o to 140 o ) and lack of backscattered coda of PKiKP. Middle: possible dominant texture in the equatorial western hemisphere to explain more pronounced equatorial versus polar anisotropy in velocity and attenuation of transmitted PKIKP (120 o to 140 o ) and weaker backscattered coda of PKiKP. Right: possible texture in certain regions of the western hemisphere to explain isotropic velocities, weak isotropic attenuation of transmitted PKIKP (120 o to 140 o ), and high amplitudes of backscattered coda of PKiKP. TEXTURAL MODELS TO EXPLAIN AZIMUTHAL VARIATIONS Longitude Latitude N-S Depth Upwelling Outer Core Flow (Driven by Compositional Convection at ICB) Figure 7 Slow + High Q Fast + Low Q Fast + Low Q E-W Weak Backscattering Longitude E-W Latitutde N-S Depth Tangential Outer Core Flow at ICB (Driven by Compositional Convection) Fast + Low Q Slow + High Q Slow + High Q Weak Backscattering Longitude Latitude N-S Depth Externally Driven Outer Core Downwelling (Tangential/no preferred direction at ICB) Fast + Low Q Slow + High Q Slow + High Q E-W Strong Backscattering 2-D pseudospectral modeling of PKiKP and its coda in textures of the uppermost inner core [1]. Radiative transport modeling of coda energy envelopes [2] in a model having small scale heterogeity in the crust, mantle and inner core. Array processing isolates scattered high frequency coda of PKiKP, removing noise and contaiminating phases arriving at different azimuths and slownesses.This example shows that the PKiKP coda has higher frequencies than other phases, and sometimes can be only observed after high-pass filtering. ARRAY DATA 1030 1040 1050 1060 1070 1080 1090 1100 1030 1040 1050 1060 1070 1080 1090 1100 Raw data t, sec 1030 1040 1050 1060 1070 1080 1090 1100 1030 1040 1050 1060 1070 1080 1090 1100 Bandpassed between 1-5 Hz t, sec Bandpassed between 2-5 Hz 1030 1040 1050 1060 1070 1080 1090 1100 1030 1040 1050 1060 1070 1080 1090 1100 t, sec PKiKP 1040 1045 1050 1055 1060 1065 1070 t, sec PKiKP f, Hz 1040 1045 1050 1055 1060 1065 1070 0 2 4 6 Back azimuth Vp, m/s 0 50 100 150 200 250 300 350 10 20 30 40 50 Continuous wavelet transform MUSIC estimator Processing window Enhanced f-k processoing (MUSIC) t, sec Apparent velocity and backazimuth estimate using MUSIC estimator. Mapped PKiKP reflection points on ICB and orientation of ray paths 160180200220240260-200204060ILAR PDAR TXAR 140 CMAR NVAR 1 4 5 3 2 Seismic data observed at following arrays: 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 PKiKP 1000 1020 1040 1060 1080 1100 1120 1140 1160 1000 1020 1040 1060 1080 1100 1120 1140 1160 PKiKP 2002.10.04 19:05 ILAR Distance 89Azimuth at the ICB 131000 1020 1040 1060 1080 1100 1120 1140 1160 1000 1020 1040 1060 1080 1100 1120 1140 1160 PKiKP Time, s Time, s 2002.10.04 19:05 PDAR Distance 90Azimuth at the ICB 41Time, s 2004.04.09 15:23 NVAR Distance 87Azimuth at the ICB 50980 1000 1020 1040 1060 1080 1100 1120 1140 1160 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 PKiKP 2002.01.31 16:27 ILAR Distance 84Azimuth at the ICB 19Time, s 1020 1040 1060 1080 1100 1120 1140 1160 1180 1020 1040 1060 1080 1100 1120 1140 1160 1180 PKiKP Time, s 2002.01.31 16:27 PDAR Distance 88Azimuth at the ICB 740 200 400 600 800 1000 0 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12 14 16 x 10 3 Radius (km) Global Orientation w.r.t. pole Q 1 at 1 Hz 1/Q P versus radius and angle w.r.t. rotation axis measured from PKIKP waveform modeling [3]. Event 1998.02.28 ILAR Ray pathsof PKiKP and PKIKP 0.0 0.2 0.4 0.6 0.8 1.0 coda/PKiKP Equatorial PKIKP Observations High Q α Slow Low Q α Fast Transition Layer (a) (b) (c) Figure 6 Radiative transport modeling [2] of coda energy envelopes in a model having small heterogeneity scale lengths in the crust, mantle, and inner core. 90 o W 90 o E 180 o E 180 o W 0 o PKIKP PKiKP Mantle Outer Core Inner Core

z 2 DI31A-0256 f

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: z 2 DI31A-0256 f

Lateral Variations in the Scattering and Viscoelastic Properties of the Inner CoreVernon F. Cormier1 and Anastasia Stroujkova2

1Physics Department, University of Connecticut, Storrs, CT 06269-3046 [email protected] Geophysical Corporation, Lexington, MA 02420 [email protected]

(a) Contours thickness of anomalous lower velocity layer in the uppermost inner core determined in the study by Stroujkova and Cormier [4].

(b) excitation of backscattered PKiKP coda from heterogeneity in the uppermost inner core determined in the study by Leyton and Koper [5.

(c) summary of lateral variations in attenuation and P velocity in the equatorial region of the inner core determined in the study by Yu and Wen [6].

INNER CORE EQUATORIAL STRUCTURAL VARIATIONS

Processed PKiKP coda with numbered events keyed to the map on the right.Note changes in onset and duration of the coda as a function of the direction of the ray with respect to the earth axis

AZIMUTHAL VARIATIONS IN PKiKP CODA BENEATH PACIFIC

CONCLUSIONS

1. The equatorial region of the upper inner core is characterized by lateral variations in the scattering and attenuation of elastic waves. This lateral variation may be correlated with lateral variations in the solidificaiton fabric of the inner core and flow in the liquid oter core.2. Long PKiKP coda is observed almost exclusively in the area of the equatorial and northern pacific [5]. These codas are characterized by long duration (hundreds of seconds in some cases) and unusually high frequencies (1-5 Hz), possibly suggesting low intrinsic attenuation in the upper layer of the inner core in this area.3. The coda of PKiKP in the equatorial Pacific exhibits azimuthal variations in coda length, with equatorial paths having a longer duration high frequency coda compared to polar paths.4. This azimuthal variation in PKiKP coda may be explained by longer time lengths of travel in a region of more intense scattering in the equatorial Pacific or by an anisotropic distribution of heterogeneity scale lengths in the upper inner core.

REFERENCES[1] Cormier, V.F., Earth Planet. Sci. Lett., 258, (2007) 442-453, doi: 10.1016/j.epsl.2007.04.003.[2] Shearer, P.M. and P.S Earle, Geophys. J. Int., 158, (2004), 1103-1117.[3] Cormier, V.F., and X. Li, J. Geophys. Res. 107(B12) (2002), doi: 10.1029/2002JB1796[4] Stroujkova, A., and V.F. Cormier, , J. Geophys. Res., 109(B10) (2004), doi: 10.129/2004JB002976.[5] Leyton, F.., and K.D. Koper, J. Geophys. Res., 112, (B05317) (2007), doi:10.1029/2006JB004370.[6] Yu, W., and L. Wen, Earth Planet. Sci, Lett., 245 (2006), 581-594.

ACKNOWLEDGEMENTS: National Science Foundation Grant EAR 02-29586 supported this work.

AbstractRecent studies [5] find unusual high-frequency coda following the PKiKP phase, reflected from the inner core boundary in the area of the Central Pacific and observed at teleseismic distances between 50∞ to 90∞ range. The majority of the observations of such codas were made at short-period teleseismic arrays in the USA, Eastern Asia and Australia. An array analysis of the coda wavetrains shows the apparent horizontal velocity of the coda to be consistent with scattering from the uppermost inner core. The PKiKP codas have different durations and frequency content depending on the location and the azimuth of the ray reflection point on the inner core boundary, as well as the distance between source and receiver. Radiative transport modeling of PKiKP coda shapes in the 1-4 Hz band is combined with pseudospectral modeling of PKIKP pulses in the 0.2 to 1 Hz band to assess and separate the effects of scattering by small-scale heterogeneity from the effects of viscoelasticity in the uppermost inner core. Observed lateral variations in elastic attenuation and scattering in the uppermost inner core may record lateral variations in the solidification process of the inner core and lateral variations in fluid velocities of the outer core near the inner core boundary.

WAVEFIELD MODELING AND STRUCTURAL SENSITIVITY

0�5� 10�

1000

1100

1200

-0.10 -0.05 -0.00 0.05 0.10

∆VP/VP

km/s

0�5� 10�

1000

1100

1200

-0.10 -0.05 -0.00 0.05 0.10

∆VP/VP

km/s

0�5� 10�

1000

1100

1200

-0.10 -0.05 -0.00 0.05 0.10

∆VP/VP

km/s

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

8

12

16

20

24

DIS

TAN

CE

(deg

)

930 940 950 960 970

T (sec)

pPcS

p400

p

PcPP

cP

PKiK

P

0

600

1200

1800

2400

3000

T (s

ec)

0 30 60 90 120 150 180D(deg)

Left: Possible texture in the equatorial eastern hemisphere to explain isotropic velocities and high isotropic attenuation of transmitted PKIKP (120o to 140o) and lack of backscattered coda of PKiKP. Middle: possible dominant texture in the equatorial western hemisphere to explain more pronounced equatorial versus polar anisotropy in velocity and attenuation of transmitted PKIKP (120o to 140o) and weaker backscattered coda of PKiKP. Right: possible texture in certain regions of the western hemisphere to explain isotropic velocities, weak isotropic attenuation of transmitted PKIKP (120o to 140o), and high amplitudes of backscattered coda of PKiKP.

TEXTURAL MODELS TO EXPLAIN AZIMUTHAL VARIATIONS

Longitude

Latit

ude N-S

Dep

th

Upwelling Outer Core Flow(Driven by Compositional Convection at ICB)

Figure 7

Slow + High Q

Fast + Low Q

Fast

+ Lo

w Q

E-WWeak Backscattering

Longitude E-W

Latitutd

e N-S

Dep

th

Tangential Outer Core Flow at ICB (Driven by Compositional Convection)

Figure 8

Fast

+ Lo

w Q

Slow + High Q

Slow + High Q

Weak Backscattering

Longitude

Latit

ude N-S

Dep

th

Externally Driven Outer Core Downwelling(Tangential/no preferred direction at ICB)

Figure 9

Fast + Low Q

Slow + High Q

Slow

+ H

igh Q

E-W

Strong Backscattering

2-D pseudospectral modeling of PKiKP and its coda in textures of the uppermost inner core [1].

Radiative transport modeling of coda energy envelopes [2] in a model having small scale heterogeity in the crust, mantle and inner core.

Array processing isolates scattered high frequency coda of PKiKP, removing noise and contaiminating phases arriving at different azimuths and slownesses.This example shows that the PKiKP coda has higher frequencies than other phases, and sometimes can be only observed after high-pass filtering.

ARRAY DATA

1030 1040 1050 1060 1070 1080 1090 1100

1030 1040 1050 1060 1070 1080 1090 1100

Raw data

t, sec

1030 1040 1050 1060 1070 1080 1090 1100

1030 1040 1050 1060 1070 1080 1090 1100

Bandpassed between 1-5 Hz

t, sec

Bandpassed between 2-5 Hz

1030 1040 1050 1060 1070 1080 1090 1100

1030 1040 1050 1060 1070 1080 1090 1100

t, sec

PKiKP

1040 1045 1050 1055 1060 1065 1070t, sec

PKiKP

t, sec

f, H

z

1040 1045 1050 1055 1060 1065 10700246

Back azimuth

Vp, m

/s

0 50 100 150 200 250 300 3501020304050

Continuous wavelet transform

MUSIC estimator

Processing window

Enhanced f-k processoing (MUSIC)

t, sec

Apparent velocity and backazimuthestimate using MUSIC estimator.

Mapped PKiKP reflection points on ICB and orientation of ray paths

∞ 160∞ 180∞ 200∞ 220∞ 240∞ 260∞-20∞

0∞

20∞

40∞

60∞

ILAR PDAR TXAR

140

CMAR NVAR

1

4

5

3

2

Seismic data observed at following arrays:

1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

1020 1040 1060 1080 1100 1120 1140 1160 1180 1200

PKiKP

1000 1020 1040 1060 1080 1100 1120 1140 1160

1000 1020 1040 1060 1080 1100 1120 1140 1160

PKiKP

2002.10.04 19:05 ILARDistance 89∞ Azimuth at the ICB 13∞

1000 1020 1040 1060 1080 1100 1120 1140 1160

1000 1020 1040 1060 1080 1100 1120 1140 1160

PKiKP

Time, s

Time, s

2002.10.04 19:05 PDARDistance 90∞ Azimuth at the ICB 41∞

Time, s

2004.04.09 15:23 NVARDistance 87∞ Azimuth at the ICB 50∞

980 1000 1020 1040 1060 1080 1100 1120 1140 1160

980 1000 1020 1040 1060 1080 1100 1120 1140 1160

PKiKP

2002.01.31 16:27 ILARDistance 84∞ Azimuth at the ICB 19∞

Time, s

1020 1040 1060 1080 1100 1120 1140 1160 1180

1020 1040 1060 1080 1100 1120 1140 1160 1180

PKiKP

Time, s

2002.01.31 16:27 PDARDistance 88∞ Azimuth at the ICB 74∞

0200

400600

8001000

00.2

0.40.6

0.81

2

4

6

8

10

12

14

16

x 10 3

Radius (km)

Global

Orientation w.r.t. pole

Q1

at 1

Hz

1/QP versus radius and angle w.r.t. rotation axis measured from PKIKP waveform modeling [3].

Event 1998.02.28 ILAR

Ray pathsof PKiKP and PKIKP

0.0 0.2 0.4 0.6 0.8 1.0

coda/PKiKP

Equatorial PKIKP Observations

High QαSlow

Low QαFast

Transition Layer (a)

(b)

(c)Figure 6

Radiative transport modeling [2] of coda energy envelopes in a model having small heterogeneity scale lengths in the crust, mantle, and inner core.

90o W 90o E

180o E180o W

0o

PKIKP

PKiKP

Mantle

OuterCore

InnerCore