YGShul

Embed Size (px)

Citation preview

  • 7/27/2019 YGShul

    1/48

    Nano Material Applicationsin Fuel Cell

    Dept. of Chemical Eng. Yonsei Univ.

    Prof. Y.G. Shul, H.S. Kim

  • 7/27/2019 YGShul

    2/48

    Nano Materials in Fuel Cell

    Hydrogen

    Release Catalyst Novel Anode Catalyst

    Organic-Inorganic

    Membrane

  • 7/27/2019 YGShul

    3/48

    Fuel Cell Applications

    Heteropolyacid(HPA)-SiO2 nanoparticles for high

    temperature operation of a direct methanol fuelcell

    Preparation and characterization of new carbon

    for fuel cell application Pulse Electrodeposition for Preparing PEM Fuel

    Cell Electrode

    Investigation of alloy catalyst for acceleratinghydrogen release from NaBH4

  • 7/27/2019 YGShul

    4/48

    In this study

    SiO2

    Heteropoly acid

    Nano scale. .. .

    ..... .

    ...

    . ... .

    . .

    ..... .

    .... .

    .

    . .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .

    . .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .. .. ...... .

    .... .

    .

    Preparation nanohybride particle (HPA/SiO2)By micro emulsion technique

    Characterization :

    TEM, Solid state NMR, TMP adsorption, N2 adsorption, FT-IR

  • 7/27/2019 YGShul

    5/48

    Heteropolyacid-SiO2 nanoparticles

    TEM image of heteropolyacid-SiO2 nanoparticle(R=2, HPA 30%, 24hr)

    TEM image of heteropolyacid-SiO2 nanoparticle(R=2, X=30%, 12hr)

    100 nm 100nm

    R= [H2O]/[AOT]X=[Heteropolyacid]

  • 7/27/2019 YGShul

    6/48

    31P MAS NMR

    Chemical shift (, ppm)

    -20-18-16-14-12-10

    Heteropolyacid

    100nm

    500nm

    Bulk

    Dehydration

    Fig. 31P MAS NMR spectra of heteropolyacid and HPA/SiO2

    H3PW12O406H2O

    -15.6ppm

    -15.3ppm

    -15.1ppm

    -15.0ppm

    Referenced from

    - M.Misono et al., J.Phys.Chem.B., 104 (2000) 8108

    - F.Lefebvre et al., J.Chem.Soc.Chem.Commun, (1992) 756

    Dehydration of heteropolyacidHeteropolyacid < nanoparticle < Bulk powder

    Trapping of acidic proton to OH group

    Si

    OHH+

    Si

    OHH+

    Si

    OHH+

    34012 ][ OPW

  • 7/27/2019 YGShul

    7/48

    13C CP MAS NMR

    13C CP MAS NMR spectra(a) thiol- and (b) sulfonic-functionalized heteropolyacid-SiO2 nanoparticle.

    Chemical shift (, ppm)

    0102030405060

    (a)

    (b)

    27.9 ppm

    11.4 ppm18.2 ppm

    54.0 ppm

    Chemical shift (, ppm)

    0102030405060

    (a)

    (b)

    27.9 ppm

    11.4 ppm18.2 ppm

    54.0 ppm

  • 7/27/2019 YGShul

    8/48

    Preparation of inorganic particlesin microemulsion

    H2O

    HPA

    Cyclohexane

    TEOS

    Si(OR)4

    + 4H2O Si(OH)

    4+ 4ROH

    Si-OH + HO-Si Si-O-Si + H2O

    Sol-gel process

    O

    O

    O

    O

    SO3

    -Na

    +

    Aerosol-OT

  • 7/27/2019 YGShul

    9/48

    Surface area vs. nano HPA/SiO2

    Pore size (A)

    0 20 40 60 80

    DV/D

    R(cm

    3/g)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    100nm HPA/SiO2

    500nm HPA/SiO2Bulk HPA/SiO2

    1 2 3

    Porefraction

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1 2 3 4

    BETSurfacearea

    (m2/g)

    0

    100

    200

    300

    400

    500

    600

    Surface area Pore size distribution

    HPA 100nm00nmulk

    Pore ratio

    R > 3nm

    100nm00nmulk

    R < 1nm

  • 7/27/2019 YGShul

    10/48

    Application to DMFC

    Pressure gauge

    Methanol

    2M solution.

    Fuel pump

    Fuel heater

    Cell

    Needlevalve

    flowmeter

    2way

    valve

    O2

    Tank

    G.C

    6 way

    valve

    Pressure gauge

    Methanol

    2M solution.

    Fuel pump

    Fuel heater

    Cell

    Needlevalve

    flowmeter

    2way

    valve

    O2

    Tank

    G.C

    6 way

    valve

    Heteropolyacid Proton conductivity

    Silica particle Methanol blocker

  • 7/27/2019 YGShul

    11/48

    Polysulfone/nanoparticle compositemembrane

    45 50 55 60 65 70 75 80 85 90 95 100 105 1100

    20

    40

    60

    80

    100

    Z''(o

    hm)

    Z'(ohm)Cell temperature (

    oC)

    20 40 60 80 100 120 140

    Methanolc

    rossoverrate

    (mol/cm

    2m

    in)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    Sulfonated polysulfone membraneComposite membrane

    Heteropolyacid-SiO2 nanoparticleHeteropolyacid-SiO2 nanoparticle

    1.4 10-3 S/cm 6.510-5 S/cm

    Complex impedance response(a) and methanol crossover rate(b) of the sulfonated polysulfone

    and sulfonated polysulfone / heteropolyacid SiO2 nanoparticle composite membrane.

    (a) (b)

  • 7/27/2019 YGShul

    12/48

    Nafion/nanoparticle composite membrane

    Content of nanoparticles (%)

    0 5 10 15 20 25

    condu

    ctivityx10

    2(

    S/cm)

    0

    2

    4

    6

    8

    10

    Temperature (oC)

    0 20 40 60 80 100 120 140 160

    Crossove

    rrate(mol/cm

    2*min)

    0

    20

    40

    60

    80

    100

    Nafion membrane

    Composite membrane

    Proton conductivity(a) and methanol crossover rate(b) of the sulfonated polysulfoneand sulfonated polysulfone / heteropolyacid SiO2 nanoparticle composite membrane.

    (a) (b)

    Reduction of methanol crossover

    A little decrease of proton conductivity

  • 7/27/2019 YGShul

    13/48

    Nafion-HPA/SiO2 composite membrane

    Current density (mA/cm2)

    0 50 100 150 200 250 300

    Ce

    llvo

    ltage

    (V)

    0.0

    0.2

    0.4

    0.6

    0.8

    80oC

    160oC

    200oC

    Power

    dens

    ity

    (mW/cm

    2)

    0

    10

    20

    30

    40

    50

    60

    Wavenumber (cm-1

    )

    1000150020002500300035004000

    Transmi

    ttance

    (%)

    0

    20

    40

    60

    80

    100

    Heteropolyacid - SiO2

    nanoparticle

    Sulfonated heteropolyacid - SiO2

    nanoparticle

    FT-IR spectra of sulfonated heteropolyacid-SiO2 nanoparticle

    (Nafion / sulfonated heteropolyacid-SiO2 nanoparticle composite membrane)

    H2O H3O+

    DMFC performance of composite membrane

    Improvement of DMFC performance by increasing the cell temperature

  • 7/27/2019 YGShul

    14/48

    Research of carbon material application

    Caronstructure

    FCapplication

    Performance remark Reference

    Pt/CNT PEMFC 0.7V,

    0.7 mA/cm2

    (50oC)

    high electrocatalytic activity for oxygen reduction

    3.60.3nm

    J.of powersources

    139(2005) 73

    Pt/mesoporous carbon

    (SBA-15)

    DMFC 0.4V,

    135 mA/cm2 (65oC)

    Great potentiality for DMFC support

    Johnson Mattheyat

    0.4V, 135 mA/cm2 (80oC)

    J.Of powersources

    130 (2005)

    PtSn/

    MWNT

    DEFC 0.4V,

    100 mA/cm2Improvement in liquid mass transfer for catalyst-

    3nm

    PtSn/XC-72

    0.4V, 80 mA/cm2

    Carbon 42

    (2004)

    Carbon

    fiber

    Mg-H2O2

    Semi-fuelcell

    1.5V,

    300mA/cm2

    Similar reference with Pt-Ir on carbon paper

    Mg: anode

    Microfiber carbon :cathode

    cathode side: 0.20M H2O2

    J.Of power

    sources 96(2001) 240

    Carbonnanocoil

    DMFC 0.4V ,

    170mA/cm2

    (60oC)

    Great potentiality for DMFC support material Angew. Chem

    2003,115,

    4488

    Carbonnanohorn

    DMFC 0.4V ,

    130mA/cm2NEC

  • 7/27/2019 YGShul

    15/48

    I-V curve for electrodes with commercialPt/C and Pt/C+ Pt/ACF (900)

    Current density ( A/cm2

    )

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    Vo

    ltage(V)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    Commercial Pt/C

    Commertial Pt/C (70%)+ Pt/ACF(30%.400oC)

    Commertial Pt/C (70%)+ Pt/ACF(30%.900

    o

    C)

    Performance increasing

    Commercial Pt/C Pt/C+Pt/ACF (400) Pt/C+Pt/ACF (900)Current density ( mA/cm2 ) 710 807 960

    Cell Temp. : 80, Humidify condition : RH% 100 anode and cathode, Flow rate: Stoichiometry 1.5(Anode):2.0(Cathode)

  • 7/27/2019 YGShul

    16/48

    Impedance for the electrodes manufacturedwith Pt/C, Pt/ACF(900) catalysts

    Z' / Ohm

    0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26

    -Z''/O

    hm

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    Pt/ACF ( 400oC )

    Pt/ACF ( 900oC )

    Z' / Ohm

    0.0 0.1 0.2 0.3 0.4 0.5

    -Z''/O

    hm

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Pt/ACF ( 400oC )

    Pt/ACF ( 900oC )

    Impedance spectra at 0.8VImpedance spectra at 0.7V

  • 7/27/2019 YGShul

    17/48

    Specific surface area and average porediameter of the CNF treated by KOH

    58.01303.54950-1h

    62.37341.87900-3h

    54.41375.52Modified method

    44.33460.10900-2h

    48.0645.53900-1h48.80509.95800-1h

    46.07444.18750-1h

    62.21107.60No activation

    5H

    Avg. Pore diameter( )

    Surf. area(m2 /g)ctivation conditionNF

    58.01303.54950-1h

    62.37341.87900-3h

    54.41375.52Modified method

    44.33460.10900-2h

    48.0645.53900-1h48.80509.95800-1h

    46.07444.18750-1h

    62.21107.60No activation

    5H

    Avg. Pore diameter( )

    Surf. area(m2 /g)ctivation conditionNF

  • 7/27/2019 YGShul

    18/48

    SEM - CNFs named 5H

    pristine

    MDF(900-2h)

    800-1h

    900-2h

  • 7/27/2019 YGShul

    19/48

    TEM - 60wt% Pt-Ru/CNF

    50 nm 50 nm 50 nm

    (a) (b) (c)A/(900-2h) B/(900-2h) B/MDF(900-2h)

  • 7/27/2019 YGShul

    20/48

    Growth of nanofiber on ACF

    micropores

    Surface and Pores of

    Activated Carbon Fiber

    Reduction in He/H2

    Synthesis from C2H

    4/H2

    a

    b a, b

    c

    inactive

    H2 C2H4

    Impregnation of metal salt solution

  • 7/27/2019 YGShul

    21/48

    Preparation of various carbon substrates

    CNF/ACF

    Fig. SEM images of carbon nano fibers grown on ACFFig. SEM images of carbon nano fibers grown on ACFFig. SEM images of carbon nano fibers grown on ACF

  • 7/27/2019 YGShul

    22/48

    Preparation of platinum on ACF-CNFs

    TEM Image of Pt/ACF-CNFs

    Fig. TEM images of Platinum oncarbon nanofibers grown on ACF

  • 7/27/2019 YGShul

    23/48

    Preparation of platinum on ACF-CNFs

    XRD patterns of Pt/ACF-CNFs

    Fig. XRD pattern of Pt/ACF-CNFs

    2 th e ta

    3 0 4 0 5 0 6 0 7 0 8 0

    Intensity(a.u.)

    P t / A C F - C N F s

    P t / C ( C o m m e r c ia l )

    Pt(1 1 1)

    Pt(2 0 0)Pt(2 2 0)

  • 7/27/2019 YGShul

    24/48

    Single cell performance

    Fig. The performance of Pt/ACF-CNFs used in anode catalyst

    Cell Temp. : 80, Humidify condition : RH% 100 anode and cathode, Stoichiometry anode: cathode = 1.5: 2.0Membrane : nafion 112:, anode : 20%Pt/C, cathode : 20%Pt/C and 20%Pt/ACF-CNFs+20%Pt/C, Back pressure : 1bar

    Current density(A/cm2)

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Vo

    ltage

    (V)

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Pt/ACF-CNFs 30%

    Pt/C

    Pt/ACF-CNFs 20%

    Pt/ACF-CNFs 100%

  • 7/27/2019 YGShul

    25/48

  • 7/27/2019 YGShul

    26/48

    Schematic Diagram of The ElectrodePrepared by Pulse Electrodeposition

    Ion exchange

    membrane

    Carbon clothe Hydrophobic

    carbon layer

    Catalystparticle

    Reactant gas

    Hydrophilic

    carbon layer

  • 7/27/2019 YGShul

    27/48

    Back-Scattered Electron Image and Pt LineScan of The Cross Section of MEA using

    EPMA

    PC deposition Pt/C layer

    membrane

    E-TEK Pt/C layer

    E-TEK GDL

    100.0

    0.0

    0.0

    200.0

    161.0Microne

    Pt

    Distance (m)

    PC layer

    membraneGDL GDLETEK layer

  • 7/27/2019 YGShul

    28/48

    ESEM Image and Pt Concentration Profile ofthe Cross Section of MEA Using EDX Spot

    Analysis

    Distance from membrane (m)

    0 2 4 6 8 10 12 14

    Ptw

    t%

    0

    20

    40

    60

    80

    E-TEK electrode

    PC deposition electrode

    E-TEK electrode

    PC deposition electrode

    Membrane

  • 7/27/2019 YGShul

    29/48

    Comparison of MEA performance betweenpulse electrodeposited electrode and TKK

    Current density (A/cm

    2

    )

    0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

    Potential(V)

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    TKK (0.4mg/cm2

    )PC (0.32mg/cm

    2)

  • 7/27/2019 YGShul

    30/48

    High Throughput Screening (HTS) test

    Hydrogen release rate of metal catalysts can bemeasured without catalyst synthesis procedure

    To apply metal alloy catalyst, amounts of precursorsolutions can be mixed to accurate ratios.

    Schematic diagram of simplified HTS test microreactors

    Coolant

    Coolant

    H2

    NaBH4Reduction Hydrolysis

    H2Mixed

    Precursor

    SolutionRuCl3

    Co(NO3)2

    FeCl2

    ..

  • 7/27/2019 YGShul

    31/48

    Hydrogen release test (Ternary alloy)

    0

    5

    10

    15

    20

    25

    30

    Hydrogen

    Ge

    nerationRate(Lmin-1g-1)

    Ru

    Co Ni

    0

    5

    10

    15

    20

    25

    30

    Hydrogen

    GenerationRate(Lmin-1g-1)

    Ru

    Co Fe

    Ru:Co:Fe = 60:20:20

    (wt%)

    Hydrogen release rate of (a) Ru-Co-Ni, (b) Ru-Co-Fefrom 10 wt% NaBH4 solution with 4 wt% NaOH

    (Temperature fixed to 25C)

  • 7/27/2019 YGShul

    32/48

    XRD Patterns

    XRD Patterns of (a) Ru/ACF; (b) NaBH4-reduced

    Ru0.6Co0.2Fe0.2/ACF; (c) NaBH4 and H2-reducedRu0.6Co0.2Fe0.2/ACF catalyst

    2 theta

    30 40 50 60 70

    Intensity

    RuCoFe

    CoFe2O

    4

    (a)

    (b)

    (c)

    Co and Fe were notreduced completely

    when NaBH4 only wasused for reduction. After the additional

    reduction by usinghydrogen, CoFe alloywere shown

  • 7/27/2019 YGShul

    33/48

    RuCoFe/ACF nanocatalyst

    1000 / T

    3.20 3.25 3.30 3.35 3.40 3.45 3.50

    lnk

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    (a)

    (b)

    (d)

    (e)

    (c)

    T / oC

    10 15 20 25 30 35 40

    H2ReleaseRate/Lm

    in-1gRu

    -1

    0

    20

    40

    60

    80

    100

    (a)

    (b)

    (d)

    (e)

    (c)

    catalyst Reduction

    Agent

    hydrogen release rate

    at 25 C (Lmin-1gRu-1)

    Activation Energy

    (kJmol-1)

    (a)

    10 wt% Ru/ACF H2 14.21 59.23

    (b)

    16 wt% Ru0.6Co0.2Fe0.2/ACF H2 22.63 47.91

    (c) 16 wt% Ru0.6Co0.2Fe0.2/ACF NaBH4 34.37 50.54

    (d)

    13 wt% Ru0.75Co0.25/ACF NaBH4 + H2 37.12 45.44

    (e 16 wt% Ru0.6Co0.2Fe0.2/ACF NaBH4 + H2 41.73 44.01

  • 7/27/2019 YGShul

    34/48

    Conclusions

    Nano materials may lead to drastic improvement in fuel cellapplication

    1)Nanohybride electrolyte (HPA-SiO2+Nafion) waseffective for the high temperature operating of DMFC

    2)New nano carbons are promising to enhance the catalytic

    activity in fuel cell3) Nano alloy will be effective to release control of the H2from chemical hydride (NaBH4, NH3BH3)

    4) Electrodeposition is effective to reduce the amount of Ptloading

  • 7/27/2019 YGShul

    35/48

    Acknowledgement

  • 7/27/2019 YGShul

    36/48

    Backup slides

  • 7/27/2019 YGShul

    37/48

    Impedance spectra

    Fig. Impedance spectra of single cell

    Z'/Ohm

    0.05 0.10 0.15 0.20 0.25

    -Z''/Ohm

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    Pt/ACF-CNFs 30%

    Pt/C

    Pt/ACF-CNFs 20%

    Pt/ACF-CNFs 100% Membrane resistance 0.063

    Interfacial resistance

    (Mixture ratio 20%Pt/C:20%Pt/ACF-CNFs)

    Only 20% Pt/C 0.069

    Only 20% Pt/ACF-CNFs 0.175

    2:8 0.096

    3:7 0.065

  • 7/27/2019 YGShul

    38/48

    Cyclic voltammogram

    E /V

    -0.2 0.0 0.2 0.4 0.6 0 .8 1.0 1.2

    i/A

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    Pt/C

    Pt /ACF -CNT s 30%

    Fig. Cyclic voltammograms of Pt/ACF-CNFs used oxygen

  • 7/27/2019 YGShul

    39/48

    Technical Barriers of Electrodes for PEMFuel Cells

    Electrode performance 400 mA/cm2 at 0.8V with H

    2

    /Air and 1atm

    Novel method of pulse electrodeposition

    Pt-X alloy

    Material Cost 0.2 g (Pt loading)/peak kW Non-precious catalyst (Pt-free)

    Durability 40,000 hours operation with

  • 7/27/2019 YGShul

    40/48

    Why Pulse Electrodeposition(Dependence of Nucleation Rate on

    Overpotential)

    2

    1 expbs

    J KzekT

    =

    log i = +

    K1 - rate constant

    S - surface area occupied by oneatom on the surface of the nucleus

    e - the charge of the electron

    z - the electronic charge of the ion

    k - the Boltzmann constant

    T- the temperature b=P2/4S, where P is the perimeter and

    S is the surface area

    i current applied

    , Tafel constants Overpotential 1: on time 2: off time Ip: peak current density

    Ia: average current density

    Duty cycle: 1/

    Rate of 2D-nucleation * Tafel expression for overpotential

    1 2

    t5t4t3t2t1

    Current

    density

    time

    ip

    ia

    Pulse electrodeposition

    Off time

    Concentration of electrolyte is recoveredElectrodeposition at high current density

  • 7/27/2019 YGShul

    41/48

    Comparison of the Limiting Current Densitybetween Pulse and Direct Electrodeposition

    diffusion model by H. Y. Cheh,

    ( )( )

    l

    dc l

    i

    i

    a

    0.4

    1 0.2

    =

    0.6

    0.8

    1.0

    a( )( )

    ( )( )( )( )( )

    2

    2

    22 21

    1

    exp 2 1 18 11

    2 1 exp 2 1 1

    p l

    dc l

    j

    i

    i j a

    j j a

    =

    =

    2 2 1/ 4 (sec )D a =

  • 7/27/2019 YGShul

    42/48

    TEM and SEM image of Pt electrodepositedelectrodes

    Pulse DC

  • 7/27/2019 YGShul

    43/48

    Polarization Curves of MEAs Prepared byDirect Current and Pulse Electrodeposition

    Current density (A/cm2)

    0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

    Po

    ten

    tia

    l(V)

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    50mA/cm2

    DC

    200mA/cm2

    PC

    The conditions of pulse electrodeposition: 200mA/cm2 of peak current density,

    5.2ms on time and 70ms off time. Total charge is fixed at 6C/cm

    2

    on both cases.

    Nafion 112

    Cell Temperature: 75 oC

    H2/O2 (flow rate: 1.5/2 stoichiometric)

    Pressure: 1atm

    SEM Images of Pt Electrodeposited

  • 7/27/2019 YGShul

    44/48

    SEM Images of Pt ElectrodepositedElectrodes by D.C or P.C mode. (Total

    charge is fixed at 6C/cm2 on both cases)

    50mA/cm2

    of D.C. electrodeposition 200mA/cm2

    of peak current density,5.2ms on time and 70ms off time

    Effect of the peak current density of pulse

  • 7/27/2019 YGShul

    45/48

    Effect of the peak current density of pulseelectrodeposition on the performance of the

    PEM fuel cell

    Current density (A/cm2)

    0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

    Po

    ten

    tia

    l(V)

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    10 mA/cm2

    DC

    30 mA/cm2

    PC

    100 mA/cm2 PC

    200 mA/cm2

    PC

    400 mA/cm2

    PC

    600 mA/cm2

    PC

    Cyclic Voltammograms of the Electrodes

  • 7/27/2019 YGShul

    46/48

    Cyclic Voltammograms of the ElectrodesPrepared at Different Peak Current

    Densities in Pulse Electrodeposition

    Potential (V. Hg/Hg2SO

    4)

    -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

    Curren

    tdens

    ity

    (mA/cm

    2)

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    200mA/cm2

    100mA/cm2

    400mA/cm2

    30mA/cm2

    600mA/cm2

  • 7/27/2019 YGShul

    47/48

    Effect of Charge Density on thePerformance of PEM Fuel Cell

    Current density (A/cm2)

    0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

    Potential(V)

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    6C/cm2

    8C/cm2

    13C/cm2

    16C/cm2

    Comparison of Pt line scan image in the

  • 7/27/2019 YGShul

    48/48

    Comparison of Pt line scan image in thecross section of the MEA

    (A) 8C/cm2 and (B) 20C/cm2

    Microns (m)

    Cps Cps

    300 300

    0

    0 0

    0

    40 40

    Microns (m)

    (A) (B)

    Microns (m)

    Cps Cps

    300 300

    0

    0 0

    0

    40 40

    Microns (m)

    (A) (B)