Yang–Mills Existence and Mass Gap (Unsolved … · International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 1 ISSN 2250-3153 Yang–Mills

  • Upload
    vutuyen

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 1

    ISSN 2250-3153

    www.ijsrp.org

    Yang Mills Existence and Mass Gap

    (Unsolved Problem): Aufklrung La

    Altagsgeschichte: Enlightenment of a Micro

    History

    Dr. K.N.P. Kumar

    Post doctoral fellow, Department of mathematics, Kuvempu University, Shimoga, Karnataka, India

    Abstract: Yang Mills theory is the (non-Abelian) quantum field theory underlying the Standard Model of

    particle physics; \mathbb{R}^4 is Euclidean 4-

    particle predicted by the theory. Therefore, the winner must first prove that YangMills theory exists and

    that it satisfies the standard of rigor that characterizes contemporary mathematical physics, in particular

    constructive quantum field theory, which is referenced in the papers 45 and 35 cited in the official problem

    description by Jaffe and Witten. The winner must then prove that the mass of the least massive particle of

    the force field predicted by the theory is strictly positive. For example, in the case of G=SU (3) - the strong

    nuclear interaction - the winner must prove that glueballs have a lower mass bound, and thus cannot be

    arbitrarily light. Biagio Lucini, Michael Teper, Urs Wenger studied Glueballs and k-strings in SU (N) gauge

    theories : calculations with improved operators testing a variety of blocking and smearing algorithms for

    constructing glueball and string wave-functionals, and find some with much improved overlaps onto the

    lightest states. They use these algorithms to obtain improved results on the tensions of k-strings in SU (4),

    SU (6), and SU (8) gauge theories. Authors emphasise the major systematic errors that still need to be

    controlled in calculations of heavier k-strings, and perform calculations in SU (4) on an anisotropic lattice

    in a bid to minimise one of these. All these results point to the k-string tensions lying part-way between the

    `MQCD' and `Casimir Scaling' conjectures, with the power in 1/N of the leading correction lying in [1,2].

    (See the paper). They also obtain some evidence for the presence of quasi-stable strings in calculations that

    do not use sources, and observe some near-degeneracies between (excited) strings in different

    representations. We also calculate the lightest glueball masses for N=2... 8, and extrapolate to N=infinity,

    obtaining results compatible with earlier work. Biagio Lucini et al show that the N=infinity factorization of

    the Euclidean correlators that are used in such mass calculations does not make the masses any less

    calculable at large N. JHEP0406:012,2004DOI: 10.1088/1126-6708/2004/06/012 arXiv: hep-

    lat/0404008.Quantum field theory (QFT) is a theoretical framework for constructing quantum mechanical

    models of subatomic particles in particle physics and quasiparticles in condensed matter physics, by treating

    a particle as an excited state of an underlying physical field. These excited states are called field quanta. For

    example, quantum electrodynamics (QED) has one electron field and one photon field, quantum

    chromodynamics (QCD) has one field for each type of quark, and in condensed matter there is an atomic

    displacement field that gives rise to phonon particles. Ed Witten describes QFT as "by far" the most difficult

    theory in modern physics. Towards the end of consummation of solution of this long outstanding problem

    we make two assumptions that the statements are true or not and the properties is testified by manifested

    actions. This bears ample testimony, infallible observatory and impeccable demonstration of the fact that

    state mental propositions in either case shall testify the prediction, projection, stability analysis results by

    experiments to prove or disprove the theory. In essence the method is that of false princeps and reductio ad

    absurdum. Quintessentially it is one model. Towards the end of circumvention of repeated projection of

    superscripts and subscripts which is of the order 56, we give the model in two sections. Notwithstanding

    variables are all to be taken as different and concatenation is to be done. As said towards the end of

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 2

    ISSN 2250-3153

    www.ijsrp.org

    obtention of felicity of expression and avoiding the extensive superscriptal and subscriptal typing which

    might cause systemic errors, model is bifurcated in to two. Section two is only progressive of section one.

    INTRODUCTION VARIABLES USED

    Source: Wikipedia

    The problem is phrased as follows:

    Yang Mills Existence and Mass Gap

    (1) For any compact simple gauge group G, a non-trivial quantum YangMills theory exists (eb)

    on

    strong as those cited in Streater & Wightman (1964), Osterwalder & Schrader (1973)

    and Osterwalder & Schrader (1975).

    (2) For any compact simple gauge group G, a non-trivial quantum YangMills theory does not exist

    (eb) on

    as strong as those cited in Streater & Wightman (1964), Osterwalder & Schrader (1973)

    and Osterwalder & Schrader (1975).

    (3) In this statement, Yang Mills theory is (=) the (non-Abelian) quantum field theory underlying

    the Standard Model of particle physics; is Euclidean 4-space

    (4) The mass gap ted by the theory.

    (5) Therefore, the winner must first prove that Yang Mills theory exists and that it (eb) satisfies the

    standard of rigor that characterizes contemporary mathematical physics, in particular constructive

    quantum field theory, which is referenced in the papers 45 and 35 cited in the official problem

    description by Jaffe and Witten.

    (6) The winner must then prove that the mass of the least massive particle of the force field predicted

    by the theory is (=) strictly positive.

    (7) For example, in the case of G=SU (3) - the strong nuclear interaction - the winner must prove

    that glueballs have (e) a lower mass bound

    (8) Thus glueballs cannot (e) be arbitrarily light.

    (9) Yang Mills theories are a special example of gauge theory with a non-abelian symmetry group

    given by the Lagrangian

    with the generators of the Lie algebra corresponding to the F-quantities (the curvature or field-strength form)

    satisfying

    and the covariant derivative defined as

    where I is the identity for the group generators, is the vector potential, and g is the coupling constant.

    In four dimensions, the coupling constant g is a pure number and for a SU(N) group one

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 3

    ISSN 2250-3153

    www.ijsrp.org

    has

    The relation

    can be derived by the commutator

    The field has the property of being self-interacting and equations of motion that one obtains are said to be

    semilinear, as nonlinearities are both with and without derivatives. This means that one can manage this

    theory only by perturbation theory, with small nonlinearities.

    Note that the transition between "upper" ("contravariant") and "lower" ("covariant") vector or tensor

    components is trivial for a indices (e.g.

    e.g. to the usual Lorentz signature, .

    From the given Lagrangian one can derive the equations of motion given by

    Putting , these can be rewritten as

    A Bianchi identity holds

    which is equivalent to the Jacobi identity

    since . Define the dual strength tensor , then

    the Bianchi identity can be rewritten as

    A source enters into the equations of motion as

    Note that the currents must properly change under gauge group transformations.

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 4

    ISSN 2250-3153

    www.ijsrp.org

    We give here some comments about the physical dimensions of the coupling. We note that, in D dimensions,

    the field scales as and so the coupling must scale as . This implies

    that YangMills theory is not renormalizable for dimensions greater than four. Further, we note that, for D =

    4, the coupling is dimensionless and both the field and the square of the coupling have the same dimensions

    of the field and the coupling of a massless quartic scalar field theory. So, these theories share the scale

    invariance at the classical level.

    NOTATION

    Module One

    For any compact simple gauge group G, a non-trivial quantum YangMills theory exists (eb) on and

    has a mass

    in Streater & Wightman (1964), Osterwalder & Schrader (1973) and Osterwalder & Schrader (1975).

    13 : Category one of For any compact simple gauge group G, a non-trivial quantum YangMills theory

    14 : Category two of For any compact simple gauge group G, a non-trivial quantum YangMills theory.

    Systemic differentiation. There are various systems to which Yang Mills theory is applicable and mass

    gap exists. Characterstics of these systems are taken I to consideration in the consummation of the

    diaspora fabric of the classification doxa.

    15 : Category three of For any compact simple gauge group G, a non-trivial quantum YangMills theory

    13 : Category one of exists (eb) on

    axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder &

    Schrader (1973) and Osterwalder & Schrader (1975).

    14 : Category two of exists (eb) on

    axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder &

    Schrader (1973) and Osterwalder & Schrader (1975).

    15 : Category three of exists (eb) on

    axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder &

    Schrader (1973) and Osterwalder & Schrader (1975).

    Module Two

    For any compact simple gauge group G, a non-trivial quantum YangMills theory does not exist (eb)

    on

    those cited in Streater & Wightman (1964), Osterwalder & Schrader (1973) and Osterwalder & Schrader

    (1975)

    16 : Category one of For any compact simple gauge group G, a non-trivial quantum YangMills theory

    does not

    17: Category two of For any compact simple gauge group G, a non-trivial quantum YangMills theory

    does not

    18: Category three of For any compact simple gauge group G, a non-trivial quantum YangMills theory

    does not

    16 : Category one of existence (eb) on 0. Existence includes establishing

    axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder &Schrader

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 5

    ISSN 2250-3153

    www.ijsrp.org

    (1973) and Osterwalder & Schrader (1975)

    17 : Category two of existence (eb) on xistence includes establishing

    axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder &

    Schrader (1973) and Osterwalder & Schrader (1975)

    18 : Category three of existence (eb) on stence includes establishing

    axiomatic properties at least as strong as those cited in Streater & Wightman (1964), Osterwalder &

    Schrader (1973) and Osterwalder & Schrader (1975)

    Module three

    In this statement, Yang Mills theory is (=) the (non-Abelian) quantum field theory underlying the Standard

    Model of particle physics; is Euclidean 4-space

    20 : Category one of(non-Abelian) quantum field theory underlying the Standard Model of particle

    physics; is Euclidean 4-space

    21 : Category two of(non-Abelian) quantum field theory underlying the Standard Model of particle

    physics; is Euclidean 4-space

    22 : Category three of(non-Abelian) quantum field theory underlying the Standard Model of particle

    physics; is Euclidean 4-space

    20 : Category one ofYang Mills theory. Systemic differentiation is undertaken for execution. There are

    various systems in the world that satisfy the axiomatic predications, postulation alcovishness, and

    phenomenological correlates of the Yang mills Theory. Some of them are under experimental observation.

    Characterstics of these systems so mentioned in the foregoing and which are under the investigation form the

    bastion for the classification scheme.

    21 : Category two ofYang Mills theory

    22 : Category three ofYang Mills theory

    Module four

    The mass gap

    24 : Category one of mass of the least massive particle predicted by the theory

    25 : Category two of mass of the least massive particle predicted by the theory

    26 : Category three of mass of the least massive particle predicted by the theory

    24 : Category one ofmass gap

    under consideration and has mass gap syndrome form the stylobate and sentinel , the fulcrum of the

    classification scheme.

    25 : Category two ofmass gap

    26 : Category three ofmass gap

    Module five

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 6

    ISSN 2250-3153

    www.ijsrp.org

    Therefore, the winner must first prove that Yang Mills theory exists and that it (eb) satisfies the standard of

    rigor that characterizes contemporary mathematical physics, in particular constructive quantum field theory,

    which is referenced in the papers 45 and 35 cited in the official problem description by Jaffe and Witten. We

    assume the proposition and give the model. Model gives prediction, projection and prognostication of the

    variables involved, and in the eventuality of the correctness of the statement it shall remain with the

    initial conditions stated in unmistakable terms in the final results in the dovetailed mathematical

    exposition.

    28 : Category one ofYang Mills theory exists and that it

    29 : Category two ofYang Mills theory exists and that it

    30 : Category three ofYang Mills theory exists and that it

    28 : Category one ofstandard of rigor that characterizes contemporary mathematical physics, in

    particular constructive quantum field theory, which is referenced in the papers 45 and 35 cited in the official

    problem description by Jaffe and Witten

    29 : Category two ofstandard of rigor that characterizes contemporary mathematical physics, in

    particular constructive quantum field theory, which is referenced in the papers 45 and 35 cited in the official

    problem description by Jaffe and Witten

    T30 : Category three of standard of rigor that characterizes contemporary mathematical physics, in

    particular constructive quantum field theory, which is referenced in the papers 45 and 35 cited in the official

    problem description by Jaffe and Witten

    Module six

    The winner must then prove that the mass of the least massive particle of the force field predicted by the

    theory is (=) strictly positive. We assume the proposition and delineate and disseminate the model.

    Should the correctness exist then the prognostication and prediction formulas given at the end of the

    paper should be correct in consistent with the observation of any data or experimental observation.

    Lest the converse is true namely, that the force field predicted by the theory is (=) not strictly positive.

    32 : Category one of strictly positive

    33 : Category two of strictly positive

    34 : Category three of strictly positive

    T32 : Category one ofmass of the least massive particle of the force field predicted by the theory. Systemic

    differentiation. Kindly note that whatever explanation is given of the predicational anteriorities, character

    constitution and phenomenological correlates must hold good for all the systems which satisfy the essence of

    the statement under question.

    33 : Category two ofmass of the least massive particle of the force field predicted by the theory

    34 : Category three ofmass of the least massive particle of the force field predicted by the theory

    Module seven

    For example, in the case of G=SU (3) - the strong nuclear interaction - the winner must prove

    that glueballs have (e) a lower mass bound. We assume the proposition and give the model. In the next

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 7

    ISSN 2250-3153

    www.ijsrp.org

    part we assume the inverse and give the results. One of them must hold good.

    36 : Category one oflower mass bound

    37 : Category two of lower mass bound

    38: Category three oflower mass bound

    T36 : Category one ofG=SU (3) - the strong nuclear interaction glueballs

    37 : Category two ofG=SU (3) - the strong nuclear interaction glueballs

    38 : Category three ofG=SU (3) - the strong nuclear interaction glueballs

    Module eight

    Thus glueballs cannot (e) be arbitrarily light

    40 : Category one of arbitrarily light

    41 : Category two of arbitrarily light

    42 : Category three of arbitrarily light

    T40 : Category one ofglueballs

    41 : Category two ofglueballs

    42 : Category three ofglueballs

    Module Nine

    Yang Mills theories are a special example of gauge theory with a non-abelian symmetry group given by

    the Lagrangian

    with the generators of the Lie algebra corresponding to the F-quantities (the curvature or field-strength form)

    satisfying

    and the covariant derivative defined as

    where I is the identity for the group generators, is the vector potential, and g is the coupling constant.

    In four dimensions, the coupling constant g is a pure number and for a SU(N) group one

    has

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 8

    ISSN 2250-3153

    www.ijsrp.org

    The relation

    can be derived by the commutator

    The field has the property of being self-interacting and equations of motion that one obtains are said to be

    semilinear, as nonlinearities are both with and without derivatives. This means that one can manage this

    theory only by perturbation theory, with small nonlinearities.

    Note that the transition between "upper" ("contravariant") and "lower" ("covariant") vector or tensor

    components is trivial for a indices (e.g. rivial, corresponding

    e.g. to the usual Lorentz signature, .

    From the given Lagrangian one can derive the equations of motion given by

    Putting , these can be rewritten as

    A Bianchi identity holds

    which is equivalent to the Jacobi identity

    since . Define the dual strength tensor , then

    the Bianchi identity can be rewritten as

    A source enters into the equations of motion as

    Note that the currents must properly change under gauge group transformations.

    We give here some comments about the physical dimensions of the coupling. We note that, in D dimensions,

    the field scales as and so the coupling must scale as . This implies

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 9

    ISSN 2250-3153

    www.ijsrp.org

    that YangMills theory is not renormalizable for dimensions greater than four. Further, we note that, for D =

    4, the coupling is dimensionless and both the field and the square of the coupling have the same dimensions

    of the field and the coupling of a massless quartic scalar field theory. So, these theories share the scale

    invariance at the classical level.

    Note: When we write A+B, it means that we are adding B to A until B is exhausted. There may be time

    lag or may not be time lag. It is almost like adding water to milk. When we write B+A it means adding

    water to milk until water is fully exhausted, which we are familiar. A-B implies removing B from A,

    with or without time lag. All these commentaries are true for all additions, subtractions, mappings

    and transformations. In the eventuality of multiplication, logarithms can be taken to separate the

    variables and hence the terms becomes separate and give results of the prediction for a time t in the

    model. As said, there are many systems with phenomenological correlates, differential contiguities,

    presuppositional resemblances and ontological consonance and primordial exactitude. Those systems

    which are under the scanner can be classified in to three compartments as we have done based on

    their characterstics. These statements hold good for the entire monograph. We shall not repeat this

    again. We have done this exercise term by term in earlier papers and shall not repeat the same. Kindly

    bear with me.

    44 : Category one of LHS of all the equations stated in the foregoing (Yang Mills Theory including the

    Lagrangian and the Hamiltonian)

    45 : Category two of LHS of all the equations stated in the foregoing (Yang Mills Theory including the

    Lagrangian and the Hamiltonian)

    46 : Category three of LHS of all the equations stated in the foregoing (Yang Mills Theory including the

    Lagrangian and the Hamiltonian)

    T44 : Category one of RHS of all the equations stated in the foregoing (Yang Mills Theory including the

    Lagrangian and the Hamiltonian)

    45 : Category two of RHS of all the equations stated in the foregoing (Yang Mills Theory including the

    Lagrangian and the Hamiltonian)

    46 : Category three of RHS of all the equations stated in the foregoing (Yang Mills Theory including the

    Lagrangian and the Hamiltonian)

    The Coefficients:

    131 , 14

    1 , 151 , 13

    1 , 141 , 15

    116

    2 , 172 , 18

    216

    2 , 172 , 18

    2 :

    203 , 21

    3 , 223 ,

    203 , 21

    3 , 223

    244 , 25

    4 , 264 , 24

    4 , 254 , 26

    4 , 285 , 29

    5 , 305 ,

    285 , 29

    5 , 305 , 32

    6 , 336 , 34

    6 , 326 , 33

    6 , 346

    367 , 37

    7 , 387 , 36

    7 , 377 , 38

    7

    408 , 41

    8 , 428 , 40

    8 , 418 , 42

    8

    449 , 45

    9 , 469 , 44

    9 , 459 , 46

    9

    are Accentuation coefficients

    131 , 14

    1 , 151 , 13

    1 , 141 , 15

    1 , 162 , 17

    2 , 182 ,

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 10

    ISSN 2250-3153

    www.ijsrp.org

    162 , 17

    2 , 182 , 20

    3 , 213 , 22

    3 , 203 , 21

    3 , 223

    244 , 25

    4 , 264 , 24

    4 , 254 , 26

    4 , 285 , 29

    5 , 305

    285 , 29

    5 , 305

    , 326 , 33

    6 , 346 , 32

    6 , 336 , 34

    6

    367 , 37

    7 , 387 , 36

    7 , 377 , 38

    7 ,

    408 , 41

    8 , 428 , 40

    8 , 418 , 42

    8 ,

    449 , 45

    9 , 469 , 44

    9 , 459 , 46

    9 ,

    are Dissipation coefficients

    Module Numbered One

    The differential system of this model is now (Module Numbered one)

    13= 13

    114 13

    1 + 131

    14 , 13 1

    14= 14

    113 14

    1 + 141

    14 , 14 2

    15= 15

    114 15

    1 + 151

    14 , 15 3

    13= 13

    114 13

    113

    1 , 13 4

    14= 14

    113 14

    114

    1 , 14 5

    15= 15

    114 15

    115

    1 , 15 6

    + 131

    14 , = First augmentation factor

    131 , = First detritions factor

    Module Numbered Two

    The differential system of this model is now ( Module numbered two)

    16= 16

    217 16

    2 + 162

    17 , 16 7

    17= 17

    216 17

    2 + 172

    17 , 17 8

    18= 18

    217 18

    2 + 182

    17 , 18 9

    16= 16

    217 16

    216

    219 , 16

    10

    17= 17

    216 17

    217

    219 , 17

    11

    18= 18

    217 18

    218

    219 , 18

    12

    + 162

    17 , = First augmentation factor

    162

    19 , = First detritions factor

    Module Numbered Three

    The differential system of this model is now (Module numbered three)

    20= 20

    321 20

    3 + 203

    21, 20 13

    21= 21

    320 21

    3 + 213

    21, 21 14

    22= 22

    321 22

    3 + 223

    21, 22 15

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 11

    ISSN 2250-3153

    www.ijsrp.org

    20= 20

    321 20

    320

    323, 20

    16

    21= 21

    320 21

    321

    323, 21

    17

    22= 22

    321 22

    322

    323, 22

    18

    + 203

    21 , = First augmentation factor

    203

    23, = First detritions factor

    Module Numbered Four

    The differential system of this model is now (Module numbered Four)

    24= 24

    425 24

    4 + 244

    25, 24 19

    25= 25

    424 25

    4 + 254

    25, 25 20

    26= 26

    425 26

    4 + 264

    25, 26 21

    24= 24

    425 24

    424

    427 , 24

    22

    25= 25

    424 25

    425

    427 , 25

    23

    26= 26

    425 26

    426

    427 , 26

    24

    + 244

    25 , = First augmentation factor

    244

    27 , = First detritions factor

    Module Numbered Five:

    The differential system of this model is now (Module number five)

    28= 28

    529 28

    5 + 285

    29, 28 25

    29= 29

    528 29

    5 + 295

    29, 29 26

    30= 30

    529 30

    5 + 305

    29, 30 27

    28= 28

    529 28

    528

    531 , 28

    28

    29= 29

    528 29

    529

    531 , 29

    29

    30= 30

    529 30

    530

    531 , 30

    30

    + 285

    29, = First augmentation factor

    285

    31 , = First detritions factor

    Module Numbered Six

    The differential system of this model is now (Module numbered Six)

    32= 32

    633 32

    6 + 326

    33, 32 31

    33= 33

    632 33

    6 + 336

    33, 33 32

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 12

    ISSN 2250-3153

    www.ijsrp.org

    34= 34

    633 34

    6 + 346

    33, 34 33

    32= 32

    633 32

    632

    635 , 32

    34

    33= 33

    632 33

    633

    635 , 33

    35

    34= 34

    633 34

    634

    635 , 34

    36

    + 326

    33 , = First augmentation factor

    Module Numbered Seven:

    The differential system of this model is now (Seventh Module)

    36= 36

    737 36

    7 + 367

    37, 36 37

    37= 37

    736 37

    7 + 377

    37, 37 38

    38= 38

    737 38

    7 + 387

    37, 38 39

    36= 36

    737 36

    736

    739 , 36

    40

    37= 37

    736 37

    737

    739 , 37

    41

    38= 38

    737 38

    738

    739 , 38

    42

    + 367

    37 , = First augmentation factor

    Module Numbered Eight

    The differential system of this model is now

    40= 40

    841 40

    8 + 408

    41, 40 43

    41= 41

    840 41

    8 + 418

    41, 41 44

    42= 42

    841 42

    8 + 428

    41, 42 45

    40= 40

    841 40

    840

    843 , 40

    46

    41= 41

    840 41

    841

    843 , 41

    47

    42= 42

    841 42

    842

    843 , 42

    48

    Module Numbered Nine

    The differential system of this model is now

    44 = 449

    45 449 + 44

    945, 44 49

    45= 45

    944 45

    9 + 459

    45, 45 50

    46= 46

    945 46

    9 + 469

    45, 46 51

    44= 44

    945 44

    944

    947 , 44

    52

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 13

    ISSN 2250-3153

    www.ijsrp.org

    45= 45

    944 45

    945

    947 , 45

    53

    46= 46

    945 46

    946

    947 , 46

    54

    + 449

    45 , = First augmentation factor

    449

    47 , = First detrition factor

    13 = 131

    14

    131 + 13

    114 , + 16

    2,2,17 , + 20

    3,3,21 ,

    + 244,4,4,4,

    25 , + 285,5,5,5,

    29, + 326,6,6,6,

    33,

    + 367,7

    37, + 408,8

    41 , + 449,9,9,9,9,9,9,9,9

    45 ,

    13

    55

    14= 14

    113

    141 + 14

    114 , + 17

    2,2,17 , + 21

    3,3,21,

    + 254,4,4,4,

    25 , + 295,5,5,5,

    29, + 336,6,6,6,

    33,

    + 377,7

    37 , + 418,8

    41, + 459,9,9,9,9,9,9,9,9

    45,

    14

    56

    15= 15

    114

    151 + 15

    114 , + 18

    2,2,17 , + 22

    3,3,21,

    + 264,4,4,4,

    25, + 305,5,5,5,

    29, + 346,6,6,6,

    33 ,

    + 387,7

    37 , + 428,8

    41, + 469,9,9,9,9,9,9,9,9

    45,

    15

    57

    Where 131

    14 , , 141

    14, , 151

    14 , are first augmentation coefficients for

    category 1, 2 and 3

    + 162,2,

    17 , , + 172,2,

    17 , , + 182,2,

    17 , are second augmentation coefficient for

    category 1, 2 and 3

    + 203,3,

    21 , , + 213,3,

    21 , , + 223,3,

    21 , are third augmentation coefficient for

    category 1, 2 and 3

    + 244,4,4,4,

    25, , + 254,4,4,4,

    25, , + 264,4,4,4,

    25 , are fourth augmentation

    coefficient for category 1, 2 and 3

    + 285,5,5,5,

    29, , + 295,5,5,5,

    29, , + 305,5,5,5,

    29, are fifth augmentation coefficient

    for category 1, 2 and 3

    + 326,6,6,6,

    33, , + 336,6,6,6,

    33 , , + 346,6,6,6,

    33, are sixth augmentation coefficient

    for category 1, 2 and 3

    + 387,7

    37 , + 377,7

    37 , + 367,7

    37, are seventh augmentation coefficient for 1,2,3

    + 408,8

    41, + 418,8

    41, + 428,8

    41, are eight augmentation coefficient for 1,2,3

    + 449,9,9,9,9,9,9,9,9

    45, , + 459,9,9,9,9,9,9,9,9

    45, , + 469,9,9,9,9,9,9,9,9

    45, are ninth

    augmentation coefficient for 1,2,3

    13= 13

    114

    131

    131 , 16

    2,2,19, 20

    3,3,23,

    244,4,4,4,

    27, 285,5,5,5,

    31, 326,6,6,6,

    35,

    367,7,

    39, 408,8

    43 , 449,9,9,9,9,9,9,9,9

    47,

    13

    58

    14= 14

    113

    141

    141 , 17

    2,2,19, 21

    3,3,23,

    254,4,4,4,

    27, 295,5,5,5,

    31, 336,6,6,6,

    35,

    377,7,

    39, 418,8

    43 , 459,9,9,9,9,9,9,9,9

    47,

    14

    59

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 14

    ISSN 2250-3153

    www.ijsrp.org

    15= 15

    114

    151

    151 , 18

    2,2,19, 22

    3,3,23,

    264,4,4,4,

    27, 305,5,5,5,

    31, 346,6,6,6,

    35,

    387,7,

    39, 428,8

    43 , 469,9,9,9,9,9,9,9,9

    47,

    15

    60

    Where 131 , , 14

    1 , , 151 , are first detrition coefficients for category 1,

    2 and 3

    162,2,

    19, , 172,2,

    19, , 182,2,

    19, are second detrition coefficients for

    category 1, 2 and 3

    203,3,

    23, , 213,3,

    23, , 223,3,

    23, are third detrition coefficients for

    category 1, 2 and 3

    244,4,4,4,

    27, , 254,4,4,4,

    27, , 264,4,4,4,

    27, are fourth detrition coefficients

    for category 1, 2 and 3

    285,5,5,5,

    31, , 295,5,5,5,

    31, , 305,5,5,5,

    31, are fifth detrition coefficients for

    category 1, 2 and 3

    326,6,6,6,

    35, , 336,6,6,6,

    35, , 346,6,6,6,

    35, are sixth detrition coefficients for

    category 1, 2 and 3

    377,7,

    39, , 367,7,

    39, , 387,7,

    39, are seventh detrition coefficients for

    category 1, 2 and 3

    408,8

    43 , 418,8

    43 , 428,8

    43 , are eight detrition coefficients for category 1,

    2 and 3

    449,9,9,9,9,9,9,9,9

    47 , , 459,9,9,9,9,9,9,9,9

    47 , , 469,9,9,9,9,9,9,9,9

    47, are ninth detrition

    coefficients for category 1, 2 and 3

    16 = 162

    17

    162 + 16

    217 , + 13

    1,1,14 , + 20

    3,3,321,

    + 244,4,4,4,4

    25 , + 285,5,5,5,5

    29, + 326,6,6,6,6

    33 ,

    + 367,7,7

    37, + 408,8,8

    41, + 449,9

    45,

    16

    61

    17= 17

    216

    172 + 17

    217 , + 14

    1,1,14 , + 21

    3,3,321 ,

    + 254,4,4,4,4

    25, + 295,5,5,5,5

    29, + 336,6,6,6,6

    33 ,

    + 377,7,7

    37, + 418,8,8

    41, + 459,9

    45,

    17

    62

    18= 18

    217

    182 + 18

    217 , + 15

    1,1,14 , + 22

    3,3,321 ,

    + 264,4,4,4,4

    25, + 305,5,5,5,5

    29, + 346,6,6,6,6

    33 ,

    + 387,7,7

    37, + 428,8,8

    41, + 469,9

    45,

    18

    63

    Where + 162

    17, , + 172

    17 , , + 182

    17 , are first augmentation coefficients for

    category 1, 2 and 3

    + 131,1,

    14 , , + 141,1,

    14 , , + 151,1,

    14 , are second augmentation coefficient for

    category 1, 2 and 3

    + 203,3,3

    21 , , + 213,3,3

    21, , + 223,3,3

    21, are third augmentation coefficient for

    category 1, 2 and 3

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 15

    ISSN 2250-3153

    www.ijsrp.org

    + 244,4,4,4,4

    25 , , + 254,4,4,4,4

    25 , , + 264,4,4,4,4

    25 , are fourth augmentation

    coefficient for category 1, 2 and 3

    + 285,5,5,5,5

    29, , + 295,5,5,5,5

    29, , + 305,5,5,5,5

    29, are fifth augmentation

    coefficient for category 1, 2 and 3

    + 326,6,6,6,6

    33 , , + 336,6,6,6,6

    33, , + 346,6,6,6,6

    33 , are sixth augmentation

    coefficient for category 1, 2 and 3

    + 367,7,7

    37 , , + 377,7,7

    37, , + 387,7,7

    37, are seventh augmentation coefficient

    for category 1, 2 and 3

    + 408,8,8

    41, , + 418,8,8

    41, , + 428,8,8

    41, are eight augmentation coefficient for

    category 1, 2 and 3

    + 449,9

    45, , + 459,9

    45, , + 469,9

    45, are ninth augmentation coefficient for

    category 1, 2 and 3

    16= 16

    217

    162

    162

    19, 131,1, , 20

    3,3,3,23,

    244,4,4,4,4

    27, 285,5,5,5,5

    31, 326,6,6,6,6

    35,

    367,7,7

    39, 408,8,8

    43 , 449,9

    47 ,

    16

    64

    17= 17

    216

    172

    172

    19, 141,1, , 21

    3,3,3,23,

    254,4,4,4,4

    27, 295,5,5,5,5

    31, 336,6,6,6,6

    35,

    377,7,7

    39, 418,8,8

    43 , 459,9

    47 ,

    17

    65

    18= 18

    217

    182

    182

    19, 151,1, , 22

    3,3,3,23,

    264,4,4,4,4

    27, 305,5,5,5,5

    31, 346,6,6,6,6

    35,

    387,7,7

    39, 428,8,8

    43 , 469,9

    47 ,

    18

    66

    where b162 G19, t , b17

    2 G19, t , b182 G19, t are first detrition coefficients for

    category 1, 2 and 3

    131,1, , , 14

    1,1, , , 151,1, , are second detrition coefficients for category 1,2

    and 3

    203,3,3,

    23, , 213,3,3,

    23, , 223,3,3,

    23, are third detrition coefficients for

    category 1,2 and 3

    244,4,4,4,4

    27, , 254,4,4,4,4

    27, , 264,4,4,4,4

    27, are fourth detrition

    coefficients for category 1,2 and 3

    285,5,5,5,5

    31, , 295,5,5,5,5

    31, , 305,5,5,5,5

    31, are fifth detrition coefficients

    for category 1,2 and 3

    326,6,6,6,6

    35, , 336,6,6,6,6

    35, , 346,6,6,6,6

    35, are sixth detrition coefficients

    for category 1,2 and 3

    367,7,7

    39, , 377,7,7

    39, , 387,7,7

    39, are seventh detrition coefficients for

    category 1,2 and 3

    408,8,8

    43 , , 418,8,8

    43 , , 428,8,8

    43 , are eight detrition coefficients for

    category 1,2 and 3

    449,9

    47 , , 469,9

    47 , , 459,9

    47 , are ninth detrition coefficients for category

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 16

    ISSN 2250-3153

    www.ijsrp.org

    1,2 and 3

    20= 20

    321

    203 + 20

    321, + 16

    2,2,217 , + 13

    1,1,1,14 ,

    + 244,4,4,4,4,4

    25, + 285,5,5,5,5,5

    29, + 326,6,6,6,6,6

    33 ,

    + 367,7,7,7

    37 , + 408,8,8,8

    41, + 449,9,9

    45,

    20

    67

    21= 21

    320

    213 + 21

    321, + 17

    2,2,217 , + 14

    1,1,1,14 ,

    + 254,4,4,4,4,4

    25, + 295,5,5,5,5,5

    29, + 336,6,6,6,6,6

    33,

    + 377,7,7,7

    37 , + 418,8,8,8

    41, + 459,9,9

    45,

    21

    68

    22= 22

    321

    223 + 22

    321, + 18

    2,2,217 , + 15

    1,1,1,14 ,

    + 264,4,4,4,4,4

    25, + 305,5,5,5,5,5

    29, + 346,6,6,6,6,6

    33 ,

    + 387,7,7,7

    37 , + 428,8,8,8

    41, + 469,9,9

    45,

    22

    69

    + 203

    21 , , + 213

    21, , + 223

    21, are first augmentation coefficients for category

    1, 2 and 3

    + 162,2,2

    17 , , + 172,2,2

    17 , , + 182,2,2

    17, are second augmentation coefficients

    for category 1, 2 and 3

    + 131,1,1,

    14 , , + 141,1,1,

    14 , , + 151,1,1,

    14 , are third augmentation coefficients

    for category 1, 2 and 3

    + 244,4,4,4,4,4

    25 , , + 254,4,4,4,4,4

    25 , , + 264,4,4,4,4,4

    25 , are fourth augmentation

    coefficients for category 1, 2 and 3

    + 285,5,5,5,5,5

    29, , + 295,5,5,5,5,5

    29, , + 305,5,5,5,5,5

    29, are fifth augmentation

    coefficients for category 1, 2 and 3

    + 326,6,6,6,6,6

    33 , , + 336,6,6,6,6,6

    33 , , + 346,6,6,6,6,6

    33, are sixth augmentation

    coefficients for category 1, 2 and 3

    + 367,7,7,7

    37, , + 377,7,7,7

    37 , , + 387,7,7,7

    37, are seventh augmentation

    coefficients for category 1, 2 and 3

    + 408,8,8,8

    41, , + 418,8,8,8

    41, , + 428,8,8,8

    41, are eight augmentation coefficients

    for category 1, 2 and 3

    + 449,9,9

    45, , + 459,9,9

    45, , + 469,9,9

    45 , are ninth augmentation coefficients for

    category 1, 2 and 3

    20= 20

    321

    203

    203

    23, 162,2,2

    19, 131,1,1, ,

    244,4,4,4,4,4

    27, 285,5,5,5,5,5

    31, 326,6,6,6,6,6

    35,

    367,7,7,7

    39, 408,8,8,8

    43, 449,9,9

    47,

    20

    70

    21= 21

    320

    213

    213

    23, 172,2,2

    19, 141,1,1, ,

    254,4,4,4,4,4

    27, 295,5,5,5,5,5

    31, 336,6,6,6,6,6

    35,

    377,7,7,7

    39, 418,8,8,8

    43, 459,9,9

    47,

    21

    71

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 17

    ISSN 2250-3153

    www.ijsrp.org

    22= 22

    321

    223

    223

    23, 182,2,2

    19, 151,1,1, ,

    264,4,4,4,4,4

    27, 305,5,5,5,5,5

    31, 346,6,6,6,6,6

    35,

    387,7,7,7

    39, 428,8,8,8

    43, 469,9,9

    47,

    22

    72

    203

    23, , 213

    23, , 223

    23, are first detrition coefficients for category 1,

    2 and 3

    162,2,2

    19, , 172,2,2

    19, , 182,2,2

    19, are second detrition coefficients for

    category 1, 2 and 3

    131,1,1, , , 14

    1,1,1, , , 151,1,1, , are third detrition coefficients for category

    1,2 and 3

    244,4,4,4,4,4

    27, , 254,4,4,4,4,4

    27, , 264,4,4,4,4,4

    27, are fourth detrition

    coefficients for category 1, 2 and 3

    285,5,5,5,5,5

    31, , 295,5,5,5,5,5

    31, , 305,5,5,5,5,5

    31, are fifth detrition

    coefficients for category 1, 2 and 3

    326,6,6,6,6,6

    35, , 336,6,6,6,6,6

    35, , 346,6,6,6,6,6

    35, are sixth detrition

    coefficients for category 1, 2 and 3

    367,7,7,7

    39, , 377,7,7,7

    39, 387,7,7,7

    39, are seventh detrition coefficients for

    category 1, 2 and 3

    408,8,8,8

    43, , 418,8,8,8

    43, , 428,8,8,8

    43 , are eight detrition coefficients for

    category 1, 2 and 3

    469,9,9

    47 , , 459,9,9

    47, , 449,9,9

    47, are ninth detrition coefficients for

    category 1, 2 and 3

    24= 24

    425

    244 + 24

    425, + 28

    5,5,29, + 32

    6,6,33,

    + 131,1,1,1

    14 , + 162,2,2,2

    17 , + 203,3,3,3

    21,

    + 367,7,7,7,7

    37, + 408,8,8,8,8

    41 , + 449,9,9,9

    45,

    24

    73

    25= 25

    424

    254 + 25

    425 , + 29

    5,5,29, + 33

    6,633,

    + 141,1,1,1

    14 , + 172,2,2,2

    17 , + 213,3,3,3

    21,

    + 377,7,7,7,7

    37, + 418,8,8,8,8

    41 , + 459,9,9,9

    45,

    25

    74

    26= 26

    425

    264 + 26

    425, + 30

    5,5,29, + 34

    6,6,33,

    + 151,1,1,1

    14 , + 182,2,2,2

    17 , + 223,3,3,3

    21,

    + 387,7,7,7,7

    37, + 428,8,8,8,8

    41 , + 469,9,9,9

    45,

    26

    75

    244

    25 , , 254

    25 , , 264

    25 ,

    1,2 3

    + 285,5,

    29, , + 295,5,

    29, , + 305,5,

    29,

    1,2 3

    + 326,6,

    33 , , + 336,6,

    33 , , + 346,6,

    33 ,

    1,2 3

    + 131,1,1,1

    14 , , + 141,1,1,1

    14 , , + 151,1,1,1

    14, 1,2 3

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 18

    ISSN 2250-3153

    www.ijsrp.org

    + 162,2,2,2

    17 , ,

    + 172,2,2,2

    17 , , + 182,2,2,2

    17 , 1,2 3

    + 203,3,3,3

    21, , + 213,3,3,3

    21 , ,

    + 223,3,3,3

    21, 1,2 3

    + 367,7,7,7,7

    37 , , + 377,7,7,7,7

    37, ,

    + 387,7,7,7,7

    37 , 1,2 3

    + 408,8,8,8,8

    41 , , + 418,8,8,8,8

    41, , + 428,8,8,8,8

    41,

    1,2 3

    + 469,9,9,9

    45, , + 459,9,9,9

    45, , + 449,9,9,9

    45, are ninth detrition coefficients for

    category 1 2 3

    24= 24

    425

    244

    244

    27, 285,5,

    31, 326,6,

    35,

    131,1,1,1 , 16

    2,2,2,219, 20

    3,3,3,323,

    367,7,7,7,7

    39, 408,8,8,8,8

    43, 449,9,9,9

    47 ,

    24

    76

    25= 25

    424

    254

    254

    27, 295,5,

    31, 336,6,

    35,

    141,1,1,1 , 17

    2,2,2,219, 21

    3,3,3,323,

    377,7,7,7,7

    39, 418,8,8,8,8

    43, 459,9,9,9

    47 ,

    25

    77

    26= 26

    425

    264

    264

    27, 305,5,

    31, 346,6,

    35,

    151,1,1,1 , 18

    2,2,2,219, 22

    3,3,3,323,

    387,7,7,7,7

    39, 428,8,8,8,8

    43, 469,9,9,9

    47 ,

    26

    78

    244

    27, , 254

    27, , 264

    27,

    1,2 3

    285,5,

    31, , 295,5,

    31, , 305,5,

    31,

    1,2 3

    326,6,

    35, , 336,6,

    35, , 346,6,

    35,

    1,2 3

    131,1,1,1 , , 14

    1,1,1,1 ,

    , 151,1,1,1 , 1,2 3

    162,2,2,2

    19, , 172,2,2,2

    19, ,

    182,2,2,2

    19, 1,2 3

    203,3,3,3

    23, , 213,3,3,3

    23 , , 223,3,3,3

    23, 1,2 3

    367,7,7,7,7

    39, , 377,7,7,7,7

    39,

    , 387,7,7,7,7

    39, 1,2 3

    408,8,8,8,8

    43, , 418,8,8,8,8

    43 , , 428,8,8,8,8

    43 ,

    1,2 3

    469,9,9,9

    47 , , 459,9,9,9

    47, , 449,9,9,9

    47 , are ninth detrition coefficients for

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 19

    ISSN 2250-3153

    www.ijsrp.org

    category 1 2 3

    28 = 285

    29

    285 + 28

    529, + 24

    4,4,25 , + 32

    6,6,633,

    + 131,1,1,1,1

    14 , + 162,2,2,2,2

    17 , + 203,3,3,3,3

    21 ,

    + 367,7,7,7,7,7

    37, + 408,8,8,8,8,8

    41 , + 449,9,9,9,9

    45,

    28

    79

    29= 29

    528

    295 + 29

    529, + 25

    4,4,25 , + 33

    6,6,633 ,

    + 141,1,1,1,1

    14 , + 172,2,2,2,2

    17, + 213,3,3,3,3

    21,

    + 377,7,7,7,7,7

    37, + 418,8,8,8,8,8

    41, + 459,9,9,9,9

    45,

    29

    80

    30= 30

    529

    305 + 30

    529, + 26

    4,4,25 , + 34

    6,6,633,

    + 151,1,1,1,1

    14 , + 182,2,2,2,2

    17 , + 223,3,3,3,3

    21 ,

    + 387,7,7,7,7,7

    37, + 428,8,8,8,8,8

    41, + 469,9,9,9,9

    45,

    30

    81

    + 285

    29, , + 295

    29, , + 305

    29,

    1,2 3

    + 244,4,

    25 , , + 254,4,

    25 , , + 264,4,

    25 ,

    1,2 3

    + 326,6,6

    33 , , + 336,6,6

    33, , + 346,6,6

    33,

    1,2 3

    + 131,1,1,1,1

    14 , , + 141,1,1,1,1

    14, , + 151,1,1,1,1

    14 , are fourth augmentation

    coefficients for category 1,2, and 3

    + 162,2,2,2,2

    17 , , + 172,2,2,2,2

    17, , + 182,2,2,2,2

    17 , are fifth augmentation

    coefficients for category 1,2,and 3

    + 203,3,3,3,3

    21 , , + 213,3,3,3,3

    21 , , + 223,3,3,3,3

    21 , are sixth augmentation

    coefficients for category 1,2, 3

    + 367,7,7,7,7,7

    37 , , + 377,7,7,7,7,7

    37, , + 387,7,7,7,7,7

    37, are seventh augmentation

    coefficients for category 1,2, 3

    + 408,8 ,8,8,8,8

    41, , + 418,8,8,8,8,8

    41, , + 428,8,8,8,8,8

    41, are eighth augmentation

    coefficients for category 1,2, 3

    + 469,9,9,9,9

    45 , , + 459,9,9,9,9

    45, , + 449,9,9,9,9

    45, are ninth augmentation

    coefficients for category 1,2, 3

    28= 28

    529

    285

    285

    31, 244,4,

    27, 326,6,6

    35 ,

    131,1,1,1,1 , 16

    2,2,2,2,219, 20

    3,3,3,3,323,

    367,7,7,7,7,7

    39, 408,8,8,8,8,8

    43 , 449,9,9,9,9

    47 ,

    28

    82

    29= 29

    528

    295

    295

    31, 254,4,

    27, 336,6,6

    35,

    141,1,1,1,1 , 17

    2,2,2,2,219, 21

    3,3,3,3,323,

    377,7,7,7,7,7

    39, 418,8,8,8,8,8

    43, 459,9,9,9,9

    47,

    29

    83

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 20

    ISSN 2250-3153

    www.ijsrp.org

    30= 30

    529

    305

    305

    31, 264,4,

    27, 346,6,6

    35 ,

    151,1,1,1,1, , 18

    2,2,2,2,219, 22

    3,3,3,3,323,

    387,7,7,7,7,7

    39, 428,8,8,8,8,8

    43 , 469,9,9,9,9

    47 ,

    30

    84

    285

    31, , 295

    31, , 305

    31, 1,2 3

    244,4,

    27, , 254,4,

    27, , 264,4,

    27,

    1,2 3

    326,6,6

    35, , 336,6,6

    35, , 346,6,6

    35,

    1,2 3

    131,1,1,1,1 , , 14

    1,1,1,1,1 , , 151,1,1,1,1, , are fourth detrition coefficients for

    category 1,2, and 3

    162,2,2,2,2

    19, , 172,2,2,2,2

    19, , 182,2,2,2,2

    19, are fifth detrition coefficients

    for category 1,2, and 3

    203,3,3,3,3

    23, , 213,3,3,3,3

    23, , 223,3,3,3,3

    23, are sixth detrition coefficients

    for category 1,2, and 3

    367,7,7,7,7,7

    39, , 377,7,7,7,7,7

    39, , 387,7,7,7,7,7

    39, are seventh detrition

    coefficients for category 1,2, and 3

    428,8,8,8,8,8

    43 , , 418,8,8,8,8,8

    43 , , 408,8,8,8,8,8

    43, are eighth detrition

    coefficients for category 1,2, and 3

    469,9,9,9,9

    47, , 459,9,9,9,9

    47 , , 449,9,9,9,9

    47 , are ninth detrition coefficients

    for category 1,2, and 3

    32= 32

    633

    326 + 32

    633, + 28

    5,5,529, + 24

    4,4,4,25,

    + 131,1,1,1,1,1

    14, + 162,2,2,2,2,2

    17 , + 203,3,3,3,3,3

    21 ,

    + 367,7,7,7,7,7,7

    37 , + 408,8,8,8,8,8,8

    41, + 449,9,9,9,9,9

    45,

    32

    85

    33= 33

    632

    336 + 33

    633 , + 29

    5,5,529, + 25

    4,4,4,25 ,

    + 141,1,1,1,1,1

    14, + 172,2,2,2,2,2

    17 , + 213,3,3,3,3,3

    21 ,

    + 377,7,7,7,7,7,7

    37 , + 418,8,8,8,8,8,8

    41, + 459,9,9,9,9,9

    45,

    33

    86

    34= 34

    633

    346 + 34

    633, + 30

    5,5,529, + 26

    4,4,4,25,

    + 151,1,1,1,1,1

    14, + 182,2,2,2,2,2

    17 , + 223,3,3,3,3,3

    21 ,

    + 387,7,7,7,7,7,7

    37 , + 428,8,8,8,8,8,8

    41, + 469,9,9,9,9,9

    45,

    34

    87

    + 326

    33 , , + 336

    33 , , + 346

    33,

    1,2 3

    + 285,5,5

    29, , + 295,5,5

    29, , + 305,5,5

    29,

    1,2 3

    + 244,4,4,

    25, , + 254,4,4,

    25, , + 264,4,4,

    25 ,

    1,2 3

    + 131,1,1,1,1,1

    14 , , + 141,1,1,1,1,1

    14 , , + 151,1,1,1,1,1

    14 , - are fourth augmentation

    coefficients

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 21

    ISSN 2250-3153

    www.ijsrp.org

    + 162,2,2,2,2,2

    17 , , + 172,2,2,2,2,2

    17 , , + 182,2,2,2,2,2

    17 , - fifth augmentation

    coefficients

    + 203,3,3,3,3,3

    21 , , + 213,3,3,3,3,3

    21 , , + 223,3,3,3,3,3

    21, sixth augmentation

    coefficients

    + 367,7,7,7,7,7,7

    37, , + 377,7,7,7,7,7,7

    37, ,

    + 387,7,7,7,7,7,7

    37, seventh augmentation coefficients

    + 408,8,8,8,8,8,8

    41, , + 418,8,8,8,8,8,8

    41, , + 428,8,8,8,8,8,8

    41 ,

    Eighth augmentation coefficients

    + 449,9,9,9,9,9

    45 , , + 459,9,9,9,9,9

    45, , + 469,9,9,9,9,9

    45, ninth augmentation

    coefficients

    32= 32

    633

    326

    326

    35, 285,5,5

    31, 244,4,4,

    27,

    131,1,1,1,1,1 , 16

    2,2,2,2,2,219, 20

    3,3,3,3,3,323,

    367,7,7,7,7,7,7

    39, 408,8,8,8,8,8,8

    43 , 449,9,9,9,9,9

    47,

    32

    88

    33= 33

    632

    336

    336

    35, 295,5,5

    31, 254,4,4,

    27,

    141,1,1,1,1,1 , 17

    2,2,2,2,2,219, 21

    3,3,3,3,3,323,

    377,7,7,7,7,7,7

    39, 418,8,8,8,8,8,8

    43 , 459,9,9,9,9,9

    47,

    33

    89

    34= 34

    633

    346

    346

    35, 305,5,5

    31, 264,4,4,

    27,

    151,1,1,1,1,1 , 18

    2,2,2,2,2,219, 22

    3,3,3,3,3,323,

    387,7,7,7,7,7,7

    39, 428,8,8,8,8,8,8

    43 , 469,9,9,9,9,9

    47,

    34

    90

    326

    35, , 336

    35, , 346

    35,

    1,2 3

    285,5,5

    31, , 295,5,5

    31, , 305,5,5

    31,

    1,2 3

    244,4,4,

    27, , 254,4,4,

    27, , 264,4,4,

    27,

    1,2 3

    131,1,1,1,1,1 , , 14

    1,1,1,1,1,1 , , 151,1,1,1,1,1 , are fourth detrition coefficients

    for category 1, 2, and 3

    162,2,2,2,2,2

    19, , 172,2,2,2,2,2

    19, , 182,2,2,2,2,2

    19, are fifth detrition

    coefficients for category 1, 2, and 3

    203,3,3,3,3,3

    23, , 213,3,3,3,3,3

    23, , 223,3,3,3,3,3

    23, are sixth detrition

    coefficients for category 1, 2, and 3

    367,7,7,7,7,7,7

    39, , 377,7,7,7,7,7,7

    39, , 387,7,7,7,7,7,7

    39, are seventh detrition

    coefficients for category 1, 2, and 3

    408,8,8,8,8,8,8

    43 , , 418,8,8,8,8,8,8

    43, , 428,8,8,8,8,8,8

    43,

    are eighth detrition coefficients for category 1, 2, and 3

    469,9,9,9,9,9

    47, , 459,9,9,9,9,9

    47 , , 449,9,9,9,9,9

    47, are ninth detrition

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 22

    ISSN 2250-3153

    www.ijsrp.org

    coefficients for category 1, 2, and 3

    36= 36

    737

    367 + 36

    737 , + 16

    2,2,2,2,2,2,217 , + 20

    3,3,3,3,3,3,321 ,

    + 244,4,4,4,4,4,4

    25 , + 285,5,5,5,5,5,5

    29, + 326,6,6,6,6,6,6

    33,

    + 131,1,1,1,1,1,1

    14 , + 408,8,8,8,8,8,8,8,

    41, + 449,9,9,9,9,9,9

    45,

    13

    91

    37= 37

    736

    377 + 37

    737, + 17

    2,2,2,2,2,2,217 , + 21

    3,3,3,3,3,3,321 ,

    + 254,4,4,4,4,4,4

    25 , + 295,5,5,5,5,5,5

    29, + 336,6,6,6,6,6,6

    33,

    + 131,1,1,1,1,1,1

    14 , + 418,8,8,8,8,8,8,8

    41, + 459,9,9,9,9,9,9

    45,

    14

    92

    38= 38

    737

    387 + 38

    737, + 18

    2,2,2,2,2,2,217 , + 22

    3,3,3,3,3,3,321 ,

    + 264,4,4,4,4,4,4

    25, + 305,5,5,5,5,5,5

    29, + 346,6,6,6,6,6,6

    33,

    + 151,1,1,1,1,1,1

    14 , + 428,8,8,8,8,8,8,8

    41, + 469,9,9,9,9,9,9

    45,

    15

    93

    Where 367

    37 , , 377

    37 , , 387

    37 , are first augmentation coefficients for

    category 1, 2 and 3

    + 162,2,2,2,2,2,2

    17 , , + 172,2,2,2,2,2,2

    17 , , + 182,2,2,2,2,2,2

    17 , are second

    augmentation coefficient for category 1, 2 and 3

    + 203,3,3,3,3,3,3

    21, , + 213,3,3,3,3,3,3

    21 , , + 223,3,3,3,3,3,3

    21 , are third augmentation

    coefficient for category 1, 2 and 3

    + 244,4,4,4,4,4,4

    25, , + 254,4,4,4,4,4,4

    25 , , + 264,4,4,4,4,4,4

    25, are fourth

    augmentation coefficient for category 1, 2 and 3

    + 285,5,5,5,5,5,5

    29, , + 295,5,5,5,5,5,5

    29, , + 305,5,5,5,5,5,5

    29, are fifth augmentation

    coefficient for category 1, 2 and 3

    + 326,6,6,6,6,6,6

    33, , + 336,6,6,6,6,6,6

    33, , + 346,6,6,6,6,6,6

    33 , are sixth augmentation

    coefficient for category 1, 2 and 3

    + 131,1,1,1,1,1,1

    14 , , + 131,1,1,1,1,1,1

    14 , , + 151,1,1,1,1,1,1

    14 , are seventh

    augmentation coefficient for category 1, 2 and 3

    + 428,8,8,8,8,8,8,8

    41 , , + 418,8,8,8,8,8,8,8

    41, , + 408,8,8,8,8,8,8,8,

    41,

    are eighth augmentation coefficient for 1,2,3

    + 469,9,9,9,9,9,9

    45, , + 459,9,9,9,9,9,9

    45, , + 449,9,9,9,9,9,9

    45, are ninth augmentation

    coefficient for 1,2,3

    36= 36

    737

    367

    367

    39, 162,2,2,2,2,2,2

    19, 203,3,3,3,3,3,3

    23,

    244,4,4,4,4,4,4

    27, 285,5,5,5,5,5,5

    31, 326,6,6,6,6,6,6

    35,

    131,1,1,1,1,1,1 , 40

    8,8,8,8,8,8,8,843 , 44

    9,9,9,9,9,9,947 ,

    13

    94

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 23

    ISSN 2250-3153

    www.ijsrp.org

    37= 37

    736

    377

    377

    39, 172,2,2,2,2,2,2

    19, 213,3,3,3,3,3,3

    23,

    254,4,4,4,4,4,4

    27, 295,5,5,5,5,5,5

    31, 336,6,6,6,6,6,6

    35,

    141,1,1,1,1,1,1 , 41

    8,8,8,8,8,8,8,843 , 45

    9,9,9,9,9,9,947 ,

    14

    38= 38

    737

    387

    387

    39, 182,2,2,2,2,2,2

    19, 223,3,3,3,3,3,3

    23,

    264,4,4,4,4,4,4

    27, 305,5,5,5,5,5,5

    31, 346,6,6,6,6,6,6

    35,

    151,1,1,1,1,1,1 , 42

    8,8,8,8,8,8,8,843 , 46

    9,9,9,9,9,9,947 ,

    15

    Where 367

    39, , 377

    39, , 387

    39, are first detrition coefficients for

    category 1, 2 and 3

    162,2,2,2,2,2,2

    19, , 172,2,2,2,2,2,2

    19, , 182,2,2,2,2,2,2

    19, are second detrition

    coefficients for category 1, 2 and 3

    203,3,3,3,3,3,3

    23, , 213,3,3,3,3,3,3

    23, , 223,3,3,3,3,3,3

    23, are third detrition

    coefficients for category 1, 2 and 3

    244,4,4,4,4,4,4

    27, , 254,4,4,4,4,4,4

    27, , 264,4,4,4,4,4,4

    27, are fourth detrition

    coefficients for category 1, 2 and 3

    285,5,5,5,5,5,5

    31, , 295,5,5,5,5,5,5

    31, , 305,5,5,5,5,5,5

    31, are fifth detrition

    coefficients for category 1, 2 and 3

    326,6,6,6,6,6,6

    35, , 336,6,6,6,6,6,6

    35, , 346,6,6,6,6,6,6

    35, are sixth detrition

    coefficients for category 1, 2 and 3

    151,1,1,1,1,1,1 , , 14

    1,1,1,1,1,1,1 , , 131,1,1,1,1,1,1 ,

    are seventh detrition coefficients for category 1, 2 and 3

    408,8,8,8,8,8,8,8

    43, , 418,8,8,8,8,8,8,8

    43 , , 428,8,8,8,8,8,8,8

    43, are eighth detrition

    coefficients for category 1, 2 and 3

    469,9,9,9,9,9,9

    47, , 459,9,9,9,9,9,9

    47 , , 449,9,9,9,9,9,9

    47 , are ninth detrition

    coefficients for category 1, 2 and 3

    40

    = 408

    41

    408 + 40

    841, + 16

    2,2,2,2,2,2,2,217 , + 20

    3,3,3,3,3,3,3,321 ,

    + 244,4,4,4,4,4,4,4

    25 , + 285,5,5,5,5,5,5,5

    29, + 326,6,6,6,6,6,6,6

    33,

    + 131,1,1,1,1,1,1,1

    14 , + 367,7,7,7,7,7,7,7

    37 , + 449,9,9,9,9,9,9,9

    45 ,

    13

    95

    41

    = 418

    40

    418 + 41

    841, + 17

    2,2,2,2,2,2,2,217 , + 21

    3,3,3,3,3,3,3,321,

    + 254,4,4,4,4,4,4,4

    25 , + 295,5,5,5,5,5,5,5

    29, + 336,6,6,6,6,6,6,6

    33 ,

    + 131,1,1,1,1,1,1,1

    14 , + 377,7,7,7,7,7,7,7

    37 , + 459,9,9,9,9,9,9,9

    45,

    14

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 24

    ISSN 2250-3153

    www.ijsrp.org

    42

    = 428

    41

    428 + 42

    841, + 18

    2,2,2,2,2,2,2,217 , + 22

    3,3,3,3,3,3,3,321 ,

    + 264,4,4,4,4,4,4,4

    25 , + 305,5,5,5,5,5,5,5

    29, + 346,6,6,6,6,6,6,6

    33,

    + 151,1,1,1,1,1,1,1

    14 , + 387,7,7,7,7,7,7,7

    37 , + 469,9,9,9,9,9,9,9

    45 ,

    15

    Where + 408

    41 , , + 418

    41, , + 428

    41, are first augmentation coefficients for

    category 1, 2 and 3

    + 162,2,2,2,2,2,2,2

    17, , + 172,2,2,2,2,2,2,2

    17 , , + 182,2,2,2,2,2,2,2

    17 , are second

    augmentation coefficient for category 1, 2 and 3

    + 203,3,3,3,3,3,3,3

    21 , , + 213,3,3,3,3,3,3,3

    21, , + 223,3,3,3,3,3,3,3

    21 , are third

    augmentation coefficient for category 1, 2 and 3

    + 244,4,4,4,4,4,4,4

    25 , , + 254,4,4,4,4,4,4,4

    25 , , + 264,4,4,4,4,4,4,4

    25, are fourth

    augmentation coefficient for category 1, 2 and 3

    + 285,5,5,5,5,5,5,5

    29, , + 295,5,5,5,5,5,5,5

    29, , + 305,5,5,5,5,5,5,5

    29, are fifth

    augmentation coefficient for category 1, 2 and 3

    + 326,6,6,6,6,6,6,6

    33 , , + 336,6,6,6,6,6,6,6

    33 , , + 346,6,6,6,6,6,6,6

    33 , are sixth

    augmentation coefficient for category 1, 2 and 3

    + 131,1,1,1,1,1,1,1

    14, + 141,1,1,1,1,1,1,1

    14 , + 151,1,1,1,1,1,1,1

    14 , are seventh

    augmentation coefficient for 1,2,3

    + 367,7,7,7,7,7,7,7

    37 , , + 377,7,7,7,7,7,7,7

    37 , , + 387,7,7,7,7,7,7,7

    37 , are eighth

    augmentation coefficient for 1,2,3

    + 469,9,9,9,9,9,9,9

    45, , + 459,9,9,9,9,9,9,9

    45, , + 449,9,9,9,9,9,9,9

    45, are ninth

    augmentation coefficient for 1,2,3

    40

    = 408

    41

    408

    408

    43, 162,2,2,2,2,2,2,2

    19, 203,3,3,3,3,3,3,3

    23,

    244,4,4,4,4,4,4,4

    27, 285,5,5,5,5,5,5,5

    31, 326,6,6,6,6,6,6,6

    35,

    131,1,1,1,1,1,1,1 , 36

    7,7,7,7,7,7,7,739, 44

    9,9,9,9,9,9,9,947,

    13

    41

    = 418

    40

    418

    418

    43, 172,2,2,2,2,2,2,2

    19, 213,3,3,3,3,3,3,3

    23,

    254,4,4,4,4,4,4,4

    27, 295,5,5,5,5,5,5,5

    31, 336,6,6,6,6,6,6,6

    35,

    141,1,1,1,1,1,1,1 , 37

    7,7,7,7,7,7,7,739, 45

    9,9,9,9,9,9,9,947,

    14

    42

    = 428

    41

    428

    428

    43, 182,2,2,2,2,2,2,2

    19, 223,3,3,3,3,3,3,3

    23,

    264,4,4,4,4,4,4,4

    27, 305,5,5,5,5,5,5,5

    31, 346,6,6,6,6,6,6,6

    35,

    151,1,1,1,1,1,1,1 , 38

    7,7,7,7,7,7,7,739, 46

    9,9,9,9,9,9,9,947,

    15

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 25

    ISSN 2250-3153

    www.ijsrp.org

    Where 367

    39, , 377

    39, , 387

    39, are first detrition coefficients for

    category 1, 2 and 3

    162,2,2,2,2,2,2,2

    19, , 172,2,2,2,2,2,2,2

    19, , 182,2,2,2,2,2,2,2

    19, are second

    detrition coefficients for category 1, 2 and 3

    203,3,3,3,3,3,3,3

    23, , 213,3,3,3,3,3,3,3

    23, , 223,3,3,3,3,3,3,3

    23, are third detrition

    coefficients for category 1, 2 and 3

    244,4,4,4,4,4,4,4

    27, , 254,4,4,4,4,4,4,4

    27, , 264,4,4,4,4,4,4,4

    27, are fourth detrition

    coefficients for category 1, 2 and 3

    285,5,5,5,5,5,5,5

    31, , 295,5,5,5,5,5,5,5

    31, , 305,5,5,5,5,5,5,5

    31, are fifth detrition

    coefficients for category 1, 2 and 3

    326,6,6,6,

    35, , 336,6,6,6,

    35, , 151,1,1,1,1,1,1,1 , are sixth detrition coefficients

    for category 1, 2 and 3

    131,1,1,1,1,1,1,1 , , 14

    1,1,1,1,1,1,1,1 , , 387,7,

    39, are seventh detrition

    coefficients for category 1, 2 and 3

    367,7,7,7,7,7,7,7

    39, , 377,7,7,7,7,7,7,7

    39, , 387,7,7,7,7,7,7,7

    39, are eighth detrition

    coefficients for category 1, 2 and 3

    449,9,9,9,9,9,9,9

    47, , 459,9,9,9,9,9,9,9

    47, , 469,9,9,9,9,9,9,9

    47, are ninth detrition

    coefficients for category 1, 2 and 3

    44

    = 449

    45

    449 + 44

    945, + 16

    2,2,2,2,2,2,2,2,217, + 20

    3,3,3,3,3,3,3,3,321 ,

    + 244,4,4,4,4,4,4,4,4

    25 , + 285,5,5,5,5,5,5,5,5

    29, + 326,6,6,6,6,6,6,6,6

    33 ,

    + 131,1,1,1,1,1,1,1,1

    14, + 367,7,7,7,7,7,7,7,7

    37 , + 408,8,8,8,8,8,8,8,8

    41,

    13

    96

    45

    = 459

    44

    459 + 45

    945, + 17

    2,2,2,2,2,2,2,2,217 , + 21

    3,3,3,3,3,3,3,3,321,

    + 254,4,4,4,4,4,4,4,4

    25 , + 295,5,5,5,5,5,5,5,5

    29, + 336,6,6,6,6,6,6,6,6

    33 ,

    + 141,1,1,1,1,1,1,1,1

    14 , + 377,7,7,7,7,7,7,7,7

    37, + 418,8,8,8,8,8,8,8,8

    41 ,

    14

    46

    = 469

    45

    469 + 46

    937, + 18

    2,2,2,2,2,2,2,2,217 , + 22

    3,3,3,3,3,3,3,3,321,

    + 264,4,4,4,4,4,4,4,4

    25 , + 305,5,5,5,5,5,5,5,5

    29, + 346,6,6,6,6,6,6,6,6

    33 ,

    + 151,1,1,1,1,1,1,1,1

    14, + 387,7,7,7,7,7,7,7,7

    37 , + 428,8,8,8,8,8,8,8,8

    41,

    15

    Where + 449

    45, , + 459

    45, , + 469

    37 , are first augmentation coefficients for

    category 1, 2 and 3

    + 162,2,2,2,2,2,2,2,2

    17 , , + 172,2,2,2,2,2,2,2,2

    17 , , + 182,2,2,2,2,2,2,2,2

    17 , are second

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 26

    ISSN 2250-3153

    www.ijsrp.org

    augmentation coefficient for category 1, 2 and 3

    + 203,3,3,3,3,3,3,3,3

    21 , , + 213,3,3,3,3,3,3,3,3

    21 , , + 223,3,3,3,3,3,3,3,3

    21 , are third

    augmentation coefficient for category 1, 2 and 3

    + 244,4,4,4,4,4,4,4,4

    25 , , + 254,4,4,4,4,4,4,4,4

    25, , + 264,4,4,4,4,4,4,4,4

    25 , are fourth

    augmentation coefficient for category 1, 2 and 3

    + 285,5,5,5,5,5,5,5,5

    29, , + 295,5,5,5,5,5,5,5,5

    29, , + 305,5,5,5,5,5,5,5,5

    29, are fifth

    augmentation coefficient for category 1, 2 and 3

    + 326,6,6,6,6,6,6,6,6

    33 , , + 336,6,6,6,6,6,6,6,6

    33 , , + 346,6,6,6,6,6,6,6,6

    33, are sixth

    augmentation coefficient for category 1, 2 and 3

    + 131,1,1,1,1,1,1,1,1

    14 , , + 141,1,1,1,1,1,1,1,1

    14 , , + 151,1,1,1,1,1,1,1,1

    14 , are Seventh

    augmentation coefficient for category 1, 2 and 3

    + 387,7,7,7,7,7,7,7,7

    37 , + 377,7,7,7,7,7,7,7,7

    37 , + 367,7,7,7,7,7,7,7,7

    37, are eighth

    augmentation coefficient for 1,2,3

    + 408,8,8,8,8,8,8,8,8

    41, , + 428,8,8,8,8,8,8,8,8

    41, , + 418,8,8,8,8,8,8,8,8

    41, are ninth

    augmentation coefficient for 1,2,3

    44

    = 449

    45

    449

    449

    47, 162,2,2,2,2,2,2,2,2

    19, 203,3,3,3,3,3,3,3,3

    23,

    244,4,4,4,4,4,4,4,4

    27, 285,5,5,5,5,5,5,5,5

    31, 326,6,6,6,6,6,6,6,6

    35,

    131,1,1,1,1,1,1,1,1 , 36

    7,7,7,7,7,7,7,7,739, 40

    8,8,8,8,8,8,8,8,843,

    13

    45

    = 459

    44

    459

    459

    47 , 172,2,2,2,2,2,2,2

    19, 213,3,3,3,3,3,3,3

    23,

    254,4,4,4,4,4,4,4

    27, 295,5,5,5,5,5,5,5

    31, 336,6,6,6,6,6,6,6

    35,

    141,1,1,1,1,1,1,1 , 37

    7,7,7,7,7,7,7,739, 41

    8,8,8,8,8,8,8,8,843 ,

    14

    46

    = 469

    45

    469

    469

    47 , 182,2,2,2,2,2,2,2

    19, 223,3,3,3,3,3,3,3

    23,

    264,4,4,4,4,4,4,4

    27, 305,5,5,5,5,5,5,5

    31, 346,6,6,6,6,6,6,6

    35,

    151,1,1,1,1,1,1,1 , 38

    7,7,7,7,7,7,7,739, 42

    8,8,8,8,8,8,8,8,843 ,

    15

    Where 449

    47, , 459

    47 , , 469

    47, are first detrition coefficients for

    category 1, 2 and 3

    162,2,2,2,2,2,2,2,2

    19, , 172,2,2,2,2,2,2,2,2

    19, , 182,2,2,2,2,2,2,2,2

    19, are second

    detrition coefficients for category 1, 2 and 3

    203,3,3,3,3,3,3,3

    23, , 213,3,3,3,3,3,3,3

    23, , 223,3,3,3,3,3,3,3

    23, are third detrition

    coefficients for category 1, 2 and 3

    244,4,4,4,4,4,4,4

    27, , 254,4,4,4,4,4,4,4

    27, , 264,4,4,4,4,4,4,4

    27, are fourth detrition

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 27

    ISSN 2250-3153

    www.ijsrp.org

    coefficients for category 1, 2 and 3

    285,5,5,5,5,5,5,5

    31, , 295,5,5,5,5,5,5,5

    31, , 305,5,5,5,5,5,5,5

    31, are fifth detrition

    coefficients for category 1, 2 and 3

    326,6,6,6,6,6,6,6

    35, , 336,6,6,6,6,6,6,6

    35, , 346,6,6,6,6,6,6,6

    35, are sixth detrition

    coefficients for category 1, 2 and 3

    151,1,1,1,1,1,1,1 , , 14

    1,1,1,1,1,1,1,1 , , 131,1,1,1,1,1,1,1,1 , are seventh detrition

    coefficients for category 1, 2 and 3

    377,7,7,7,7,7,7,7

    39, , 367,7,7,7,7,7,7,7

    39, , 387,7,7,7,7,7,7,7

    39, are eighth detrition

    coefficients for category 1, 2 and 3

    428,8,8,8,8,8,8,8,8

    43 , , 418,8,8,8,8,8,8,8,8

    43, , 408,8,8,8,8,8,8,8,8

    43 , are ninth

    detrition coefficients for category 1, 2 and 3

    Where we suppose

    1 , 1 , 1 , 1 , 1 , 1 > 0, , = 13,14,15

    The functions 1 , 1 are positive continuousincreasing and bounded.

    Definition of( ) 1 , ( ) 1 :

    1 ( 14 , ) ( )1 ( 13 )

    (1)

    1 ( , ) ( ) 1 ( ) 1 ( 13 )(1)

    97

    2

    114, = ( )

    1

    limG

    1 , = ( ) 1

    Definition of( 13 )(1) , ( 13 )

    (1) :

    Where ( 13 )(1) , ( 13 )

    (1) , ( ) 1 , ( ) 1 are positive constants and = 13,14,15

    98

    They satisfy Lipschitz condition:

    |( ) 1 14 , ( )1

    14 , | ( 13 )(1) | 14 14 |

    ( 13 )(1)

    |( ) 1 , ( ) 1 , | < ( 13 )(1) || || ( 13 )

    (1)

    99

    With the Lipschitz condition, we place a restriction on the behavior of functions

    ( ) 1 14 , and( )1

    14 , . 14, and 14 , are points belonging to the interval

    ( 13 )(1) , ( 13 )

    (1) . It is to be noted that ( ) 1 14 , is uniformly continuous. In the eventuality of

    the fact, that if ( 13 )(1) = 1 then the function ( ) 1 14 , , the first augmentation coefficient

    attributable to the system, would be absolutely continuous.

    Definition of ( 13 )(1) , ( 13 )

    (1) :

    ( 13 )(1) , ( 13 )

    (1) ,are positive constants

    100

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 28

    ISSN 2250-3153

    www.ijsrp.org

    ( ) 1

    ( 13 )(1)

    ,( ) 1

    ( 13 )(1)

    < 1

    Definition of( 13 )(1) , ( 13 )

    (1) :

    There exists two constants( 13 )(1) and ( 13 )

    (1)which together With ( 13 )(1) , ( 13 )

    (1) , ( 13)(1) and

    ( 13 )(1)and the constants( ) 1 , ( ) 1 , ( ) 1 , ( ) 1 , ( ) 1 , ( ) 1 , = 13,14,15,

    satisfy the inequalities

    1

    ( 13 )(1)

    [ ( ) 1 + ( ) 1 + ( 13 )(1) + ( 13 )

    (1) ( 13 )(1) ] < 1

    1

    ( 13 )(1)

    [ ( ) 1 + ( ) 1 + ( 13 )(1) + ( 13 )

    (1) ( 13 )(1) ] < 1

    101

    Where we suppose

    2 , 2 , 2 , 2 , 2 , 2 > 0, , = 16,17,18

    The functions 2 , 2 are positive continuousincreasing and bounded.

    Definition of(pi )2 , (r i )

    2 :

    217 , ( )

    216

    2 102

    2 ( 19, ) ( )2 ( ) 2 ( 16 )

    (2) 103

    lim2

    217 , = ( )

    2 104

    lim 2 19 , = ( )2 105

    Definition of( 16 )(2) , ( 16 )

    (2) :

    Where ( 16 )(2) , ( 16 )

    (2) , ( ) 2 , ( ) 2 are positive constants and = 16,17,18

    106

    They satisfy Lipschitz condition:

    |( ) 2 17 , ( )2

    17 , | ( 16 )(2) | 17 17 |

    ( 16 )(2)

    107

    |( ) 2 19 , ( )2

    19 , | < ( 16 )(2) || 19 19 ||

    ( 16 )(2)

    108

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 2 17 ,

    and( ) 2 17 , . 17, and 17, are points belonging to the interval ( 16 )(2) , ( 16 )

    (2) . It is to

    be noted that ( ) 2 17 , is uniformly continuous. In the eventuality of the fact, that if ( 16 )(2) = 1

    then the function ( ) 2 17 , , the first augmentation coefficient attributable to the system, would

    be absolutely continuous.

    Definition of ( 16 )(2) , ( 16 )

    (2) :

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 29

    ISSN 2250-3153

    www.ijsrp.org

    ( 16 )(2) , ( 16 )

    (2) ,are positive constants

    ( ) 2

    ( 16 )(2)

    ,( ) 2

    ( 16 )(2)

    < 1

    109

    Definition of ( 13 )(2) , ( 13 )

    (2) :

    There exists two constants( 16 )(2) and ( 16 )

    (2)which together

    with ( 16 )(2) , ( 16 )

    (2) , ( 16)(2) ( 16 )

    (2)and the

    constants( ) 2 , ( ) 2 , ( ) 2 , ( ) 2 , ( ) 2 , ( ) 2 , = 16,17,18,

    satisfy the inequalities

    1

    ( 16 )(2)

    [ ( ) 2 + ( ) 2 + ( 16 )(2) + ( 16 )

    (2) ( 16 )(2) ] < 1

    110

    1

    ( 16 )(2)

    [ ( ) 2 + ( ) 2 + ( 16 )(2) + ( 16 )

    (2) ( 16 )(2) ] < 1

    111

    Where we suppose

    3 , 3 , 3 , 3 , 3 , 3 > 0, , = 20,21,22

    The functions 3 , 3 are positive continuousincreasing and bounded.

    Definition of( ) 3 , (r i )3 :

    3 ( 21, ) ( )3 ( 20 )

    (3)

    3 ( 23, ) ( )3 ( ) 3 ( 20 )

    (3)

    112

    2

    321, = ( )

    3

    limG

    323, = ( )

    3

    Definition of( 20 )(3) , ( 20 )

    (3) :

    Where ( 20 )(3) , ( 20 )

    (3) , ( ) 3 , ( ) 3 are positive constants and = 20,21,22

    113

    They satisfy Lipschitz condition:

    |( ) 3 21 , ( )3

    21 , | ( 20 )(3) | 21 21 |

    ( 20 )(3)

    |( ) 3 23 , ( )3

    23, | < ( 20 )(3) || 23 23 ||

    ( 20 )(3)

    114

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 3 21 ,

    and( ) 3 21 , . 21 , And 21 , are points belonging to the interval ( 20 )(3) , ( 20 )

    (3) . It is to

    be noted that ( ) 3 21 , is uniformly continuous. In the eventuality of the fact, that if ( 20 )(3) = 1

    then the function ( ) 3 21 , , the first augmentation coefficient attributable to the system, would

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 30

    ISSN 2250-3153

    www.ijsrp.org

    be absolutely continuous.

    Definition of ( 20 )(3) , ( 20 )

    (3) :

    ( 20 )(3) ,( 20 )

    (3) ,are positive constants

    ( ) 3

    ( 20 )(3)

    ,( ) 3

    ( 20 )(3)

    < 1

    115

    There exists two constantsThere exists two constants( 20 )(3) and ( 20 )

    (3)which together

    with ( 20 )(3) , ( 20 )

    (3) , ( 20)(3) ( 20 )

    (3)and the

    constants( ) 3 , ( ) 3 , ( ) 3 , ( ) 3 , ( ) 3 , ( ) 3 , = 20,21,22,

    satisfy the inequalities

    1

    ( 20 )(3)

    [ ( ) 3 + ( ) 3 + ( 20 )(3) + ( 20 )

    (3)( 20 )(3) ] < 1

    1

    ( 20 )(3)

    [ ( ) 3 + ( ) 3 + ( 20 )(3) + ( 20 )

    (3) ( 20 )(3) ] < 1

    116

    Where we suppose

    4 , 4 , 4 , 4 , 4 , 4 > 0, , = 24,25,26

    The functions 4 , 4 are positive continuousincreasing and bounded.

    Definition of( ) 4 , ( ) 4 :

    4 ( 25, ) ( )4 ( 24 )

    (4)

    427 , ( )

    4 ( ) 4 ( 24 )(4)

    117

    2

    425, = ( )

    4

    limG

    427 , = ( )

    4

    Definition of( 24 )(4) , ( 24 )

    (4) :

    Where ( 24 )(4) , ( 24 )

    (4) , ( ) 4 , ( ) 4 are positive constants and = 24,25,26

    118

    They satisfy Lipschitz condition:

    |( ) 4 25 , ( )4

    25 , | ( 24 )(4) | 25 25 |

    ( 24 )(4)

    |( ) 4 27 , ( )4

    27 , | < ( 24 )(4) || 27 27 ||

    ( 24 )(4)

    119

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 4 25 ,

    and( ) 4 25 , . 25 , and 25 , are points belonging to the interval ( 24 )(4) , ( 24 )

    (4) . It is to

    be noted that ( ) 4 25 , is uniformly continuous. In the eventuality of the fact, that if ( 24 )(4) =

    1 then the function ( ) 4 25, , the first augmentation coefficient attributable to the system, would

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 31

    ISSN 2250-3153

    www.ijsrp.org

    be absolutely continuous.

    Definition of ( 24 )(4) , ( 24 )

    (4) :

    ( 24 )(4) ,( 24 )

    (4) ,are positive constants

    ( ) 4

    ( 24 )(4)

    ,( ) 4

    ( 24 )(4)

    < 1

    120

    Definition of ( 24 )(4) , ( 24 )

    (4) :

    There exists two constants( 24 )(4) and ( 24 )

    (4)which together

    with ( 24 )(4) , ( 24 )

    (4) , ( 24)(4) ( 24 )

    (4)and the

    constants( ) 4 , ( ) 4 , ( ) 4 , ( ) 4 , ( ) 4 , ( ) 4 , = 24,25,26,satisfy the inequalities

    1

    ( 24 )(4)

    [ ( ) 4 + ( ) 4 + ( 24 )(4) + ( 24 )

    (4)( 24 )(4) ] < 1

    1

    ( 24 )(4)

    [ ( ) 4 + ( ) 4 + ( 24 )(4) + ( 24 )

    (4) ( 24 )(4) ] < 1

    121

    Where we suppose

    5 , 5 , 5 , 5 , 5 , 5 > 0, , = 28,29,30

    The functions 5 , 5 are positive continuousincreasing and bounded.

    Definition of( ) 5 , ( ) 5 :

    5 ( 29, ) ( )5 ( 28 )

    (5)

    531 , ( )

    5 ( ) 5 ( 28 )(5)

    122

    2

    529, = ( )

    5

    limG

    531, = ( )

    5

    Definition of( 28 )(5) , ( 28 )

    (5) :

    Where ( 28 )(5) , ( 28 )

    (5) , ( ) 5 , ( ) 5 are positive constants and = 28,29,30

    123

    They satisfy Lipschitz condition:

    |( ) 5 29, ( )5

    29, | ( 28 )(5) | 29 29|

    ( 28 )(5)

    |( ) 5 31 , ( )5

    31 , | < ( 28 )(5) || 31 31 ||

    ( 28 )(5)

    124

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 5 29,

    and( ) 5 29, . 29, and 29, are points belonging to the interval ( 28 )(5) , ( 28 )

    (5) . It is to

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 32

    ISSN 2250-3153

    www.ijsrp.org

    be noted that ( ) 5 29, is uniformly continuous. In the eventuality of the fact, that if ( 28 )(5) = 1

    then the function ( ) 5 29, , the first augmentation coefficient attributable to the system, would

    be absolutely continuous.

    Definition of ( 28 )(5) , ( 28 )

    (5) :

    ( 28 )(5) ,( 28 )

    (5) ,are positive constants

    ( ) 5

    ( 28 )(5)

    ,( ) 5

    ( 28 )(5)

    < 1

    125

    Definition of ( 28 )(5) , ( 28 )

    (5) :

    There exists two constants( 28 )(5) and ( 28 )

    (5)which together

    with ( 28 )(5) , ( 28 )

    (5) , ( 28)(5) ( 28 )

    (5)and the

    constants( ) 5 , ( ) 5 , ( ) 5 , ( ) 5 , ( ) 5 , ( ) 5 , = 28,29,30,satisfy the inequalities

    1

    ( 28 )(5)

    [ ( ) 5 + ( ) 5 + ( 28 )(5) + ( 28 )

    (5)( 28 )(5) ] < 1

    1

    ( 28 )(5)

    [ ( ) 5 + ( ) 5 + ( 28 )(5) + ( 28 )

    (5) ( 28 )(5) ] < 1

    126

    Where we suppose

    6 , 6 , 6 , 6 , 6 , 6 > 0, , = 32,33,34

    The functions 6 , 6 are positive continuousincreasing and bounded.

    Definition of( ) 6 , ( ) 6 :

    6 ( 33, ) ( )6 ( 32 )

    (6)

    6 ( 35 , ) ( )6 ( ) 6 ( 32 )

    (6)

    127

    2

    633, = ( )

    6

    limG

    635 , = ( )

    6

    Definition of( 32 )(6) , ( 32 )

    (6) :

    Where ( 32 )(6) , ( 32 )

    (6) , ( ) 6 , ( ) 6 are positive constantsand = 32,33,34

    128

    They satisfy Lipschitz condition:

    |( ) 6 33 , ( )6

    33 , | ( 32 )(6) | 33 33 |

    ( 32 )(6)

    |( ) 6 35 , ( )6

    35 , | < ( 32 )(6) || 35 35 ||

    ( 32 )(6)

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 33

    ISSN 2250-3153

    www.ijsrp.org

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 6 33 ,

    and( ) 6 33 , . 33 , and 33 , are points belonging to the interval ( 32 )(6) , ( 32 )

    (6) . It is to

    be noted that ( ) 6 33 , is uniformly continuous. In the eventuality of the fact, that if ( 32 )(6) = 1

    then the function ( ) 6 33 , , the first augmentation coefficient attributable to the system, would

    be absolutely continuous.

    Definition of ( 32 )(6) , ( 32 )

    (6) :

    ( 32 )(6) ,( 32 )

    (6) ,are positive constants

    ( ) 6

    ( 32 )(6)

    ,( ) 6

    ( 32 )(6)

    < 1

    129

    Definition of ( 32 )(6) , ( 32 )

    (6) :

    There exists two constants( 32 )(6) and ( 32 )

    (6)which together

    with ( 32 )(6) , ( 32 )

    (6) , ( 32)(6) ( 32 )

    (6)and the

    constants( ) 6 , ( ) 6 , ( ) 6 , ( ) 6 , ( ) 6 , ( ) 6 , = 32,33,34,

    satisfy the inequalities

    1

    ( 32 )(6)

    [ ( ) 6 + ( ) 6 + ( 32 )(6) + ( 32 )

    (6)( 32 )(6) ] < 1

    1

    ( 32 )(6)

    [ ( ) 6 + ( ) 6 + ( 32 )(6) + ( 32 )

    (6) ( 32 )(6) ] < 1

    130

    Where we suppose

    (A) 7 , 7 , 7 , 7 , 7 , 7 > 0, , = 36,37,38

    (B) The functions 7 , 7 are positive continuousincreasing and bounded.

    Definition of( ) 7 , ( ) 7 :

    7 ( 37, ) ( )

    7 ( 36 )(7)

    7 ( 39, ) ( )

    7 ( ) 7 ( 36 )(7)

    131

    (C) lim2

    737, = ( )

    7

    (D)

    limG

    739 , = ( )

    7

    Definition of( 36 )(7) , ( 36 )

    (7) :

    Where ( 36 )(7) , ( 36 )

    (7) , ( ) 7 , ( ) 7 are positive constants and = 36,37,38

    132

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 34

    ISSN 2250-3153

    www.ijsrp.org

    They satisfy Lipschitz condition:

    |( ) 7 37 , ( )7

    37 , | ( 36 )(7) | 37 37 |

    ( 36 )(7)

    |( ) 7 39 , ( )7

    39 , | < ( 36 )(7) || 39 39 ||

    ( 36 )(7)

    133

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 7 37 ,

    and( ) 7 37 , . 37 , and 37 , are points belonging to the interval ( 36 )(7) , ( 36 )

    (7) . It is to

    be noted that ( ) 7 37 , is uniformly continuous. In the eventuality of the fact, that if ( 36 )(7) = 1

    then the function ( ) 7 37 , , the first augmentation coefficient attributable to the system, would

    be absolutely continuous.

    Definition of ( 36 )(7) , ( 36 )

    (7) :

    (E) ( 36 )(7) ,( 36 )

    (7) ,are positive constants

    ( ) 7

    ( 36 )(7)

    ,( ) 7

    ( 36 )(7)

    < 1

    134

    Definition of ( 36 )(7) , ( 36 )

    (7) :

    (F) There exists two constants( 36 )(7) and ( 36 )

    (7)which together

    with ( 36 )(7) , ( 36 )

    (7) , ( 36)(7) ( 36 )

    (7)and the

    constants( ) 7 , ( ) 7 , ( ) 7 , ( ) 7 , ( ) 7 , ( ) 7 , = 36,37,38,satisfy the inequalities

    1

    ( 36 )(7)

    [ ( ) 7 + ( ) 7 + ( 36 )(7) + ( 36 )

    (7)( 36 )(7) ] < 1

    1

    ( 36 )(7)

    [ ( ) 7 + ( ) 7 + ( 36 )(7) + ( 36 )

    (7)( 36 )(7) ] < 1

    135

    Where we suppose

    8 , 8 , 8 , 8 , 8 , 8 > 0, , = 40,41,42

    136

    The functions 8 , 8 are positive continuousincreasing and bounded

    Definition of( ) 8 , ( ) 8 :

    137

    8 ( 41, ) ( )8 ( 40 )

    (8)

    138

    8 ( 43 , ) ( )8 ( ) 8 ( 40 )

    (8) 139

    lim2

    841, = ( )

    8

    140

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 35

    ISSN 2250-3153

    www.ijsrp.org

    lim 8 43 , = ( )8 141

    Definition of( 40 )(8) , ( 40 )

    (8) :

    Where ( 40 )(8) , ( 40 )

    (8) , ( ) 8 , ( ) 8 are positive constants and = 40,41,42

    They satisfy Lipschitz condition:

    |( ) 8 41, ( )8

    41, | ( 40 )(8) | 41 41 |

    ( 40 )(8)

    142

    |( ) 8 43 , ( )8

    43 , | < ( 40 )(8) || 43 43 ||

    ( 40 )(8)

    143

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 8 41 , and

    ( ) 8 41, . 41, and 41, are points belonging to the interval ( 40 )(8) , ( 40 )

    (8) . It is to be

    noted that ( ) 8 41 , is uniformly continuous. In the eventuality of the fact, that if ( 40 )(8) = 1

    then the function ( ) 8 41, , the first augmentation coefficient attributable to the system, would

    be absolutely continuous.

    Definition of ( 40 )(8) , ( 40 )

    (8) :

    ( 40 )(8) ,( 40 )

    (8) ,are positive constants

    ( ) 8

    ( 40 )(8)

    ,( ) 8

    ( 40 )(8)

    < 1

    144

    Definition of ( 40 )(8) , ( 40 )

    (8) :

    There exists two constants( 40 )(8) and ( 40 )

    (8)which together with( 40 )(8) , ( 40 )

    (8) , ( 40)(8)

    ( 40 )(8)and the constants( ) 8 , ( ) 8 , ( ) 8 , ( ) 8 , ( ) 8 , ( ) 8 , = 40,41,42,

    Satisfy the inequalities

    1

    ( 40 )(8)

    [ ( ) 8 + ( ) 8 + ( 40 )(8) + ( 40 )

    (8) ( 40 )(8) ] < 1

    145

    1

    ( 40 )(8)

    [ ( ) 8 + ( ) 8 + ( 40 )(8) + ( 40 )

    (8)( 40 )(8) ] < 1

    146

    Where we suppose

    9 , 9 , 9 , 9 , 9 , 9 > 0, , = 44,45,46

    The functions 9 , 9 are positive continuousincreasing and bounded.

    Definition of( ) 9 , ( ) 9 :

    9 ( 45 , ) ( )9 ( 44 )

    (9)

    9 ( 47 , ) ( )9 ( ) 9 ( 44 )

    (9)

    146A

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 36

    ISSN 2250-3153

    www.ijsrp.org

    2

    945, = ( )

    9

    limG

    947 , = ( )

    9

    Definition of( 44 )

    (9) , ( 44 )(9) :

    Where ( 44 )(9) , ( 44 )

    (9) , ( ) 9 , ( ) 9 are positive constants and = 44,45,46

    They satisfy Lipschitz condition:

    |( ) 9 45, ( )9

    45, | ( 44 )(9) | 45 45 |

    ( 44 )(9)

    |( ) 9 47 , ( )9

    47 , | < ( 44 )(9) || 47 47 ||

    ( 44 )(9)

    With the Lipschitz condition, we place a restriction on the behavior of functions ( ) 9 45,

    and( ) 9 45, . 45 , and 45, are points belonging to the interval ( 44 )(9) , ( 44 )

    (9) . It is to

    be noted that ( ) 9 45 , is uniformly continuous. In the eventuality of the fact, that if ( 44 )(9) = 1

    then the function ( ) 9 45 , , the first augmentation coefficient attributable to the system, would be absolutely continuous.

    Definition of ( 44 )(9) , ( 44 )

    (9) :

    ( 44 )(9) , ( 44 )

    (9) ,are positive constants

    ( ) 9

    ( 44 )(9)

    ,( ) 9

    ( 44 )(9)

    < 1

    Definition of ( 44 )(9) , ( 44 )

    (9) : There exists two constants( 44 )

    (9) and ( 44 )(9)which together

    with ( 44 )(9) , ( 44 )

    (9) , ( 44)(9) ( 44 )

    (9)and the

    constants( ) 9 , ( ) 9 , ( ) 9 ,( ) 9 ,( ) 9 , ( ) 9 , = 44,45,46, satisfy the inequalities

    1

    ( 44 )(9)

    [ ( ) 9 + ( ) 9 + ( 44 )(9) + ( 44 )

    (9) ( 44 )(9) ] < 1

    1

    ( 44 )(9)

    [ ( ) 9 + ( ) 9 + ( 44 )(9) + ( 44 )

    (9) ( 44 )(9) ] < 1

    Theorem 1: if the conditions above are fulfilled, there exists a solution satisfying the conditions

    Definition of 0 , 0 :

    131

    131

    , 0 = 0 > 0

    ( ) ( 13 )(1) ( 13 )

    (1) , 0 = 0 > 0

    147

  • International Journal of Scientific and Research Publications, Volume 3, Issue 10, October 2013 37

    ISSN 2250-3153

    www.ijsrp.org

    Theorem 2 : if the conditions above are fulfilled, there exists a solution satisfying the conditions

    Definition of 0 , 0

    ( 16 )(2) ( 16 )

    (2) , 0 = 0 > 0

    ( ) ( 16 )(2) ( 16 )

    (2) , 0 = 0 > 0

    148

    Theorem 3 : if the conditions above are fulfilled, there exists a solution satisfying the conditions

    ( 20 )(3) ( 20 )

    (3) , 0 = 0 > 0

    ( ) ( 20 )(3) ( 20 )

    (3) , 0 = 0 > 0

    149

    Theorem 4 : if the conditions above are fulfilled, there exists a solution satisfying the conditions

    Definition of 0 , 0 :

    244

    244

    , 0 = 0 > 0

    ( ) ( 24 )(4) ( 24 )

    (4) , 0 = 0 > 0

    150

    Theorem 5 : if the conditions above are fulfilled, there exists a solution satisfying the conditions

    Definition of 0 , 0 :

    285

    285

    , 0 = 0 > 0

    ( ) ( 28 )(5) ( 28 )

    (5) , 0 = 0 > 0

    151

    Theorem 6 : if the conditions above are fulfilled, there exists a solution satisfying the conditions

    Definition of 0 , 0 :

    326

    326

    , 0 = 0 > 0

    ( ) ( 32 )(6) ( 32 )

    (6) , 0 = 0 > 0

    152

    Theorem 7: if the conditions above are fulfilled, there exists a solution satisfying the condi