27
Geothermal Energy Pile Monday, 09 April 2018 1 Dr Rao Martand Singh Asst Prof (Geotechnical Engineering) Department of Civil & Environmental Engineering University of Surrey

*XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Geothermal Energy Pile

Monday, 09 April 2018 1

Dr Rao Martand SinghAsst Prof (Geotechnical Engineering)

Department of Civil & Environmental Engineering

University of Surrey

Page 2: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 2

University of Surrey, Guildford, UK

Page 3: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 3

Presentation overview

• Why

• What

• How

• Geothermal Energy Pile: Thermo-Mechanical study

• Outcome

Page 4: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 4

Why• 73% energy is being used for

heating/cooling and hot water

• Every house is responsible for 20,000 kg (20 tonnes) of greenhouse gas emissions (GHG) per year

• Conventional heating/cooling system efficiency 50% to 80%

• Carbon tax, energy is getting more expensive

• Reduce energy use and GHG emission save the world

Average home energy use

Page 5: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 5

What is ground energy

• Ancient concept: caves, underground houses, wine cellar

• Ground has stable temperature throughout the year and it is equal to the average annual temperature

• Ground is warmer than air in winter and cooler than air in summer

Page 6: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 6

Confusion with terminology

• Types of geothermal energy– Deep

– Shallow

• Deep geothermal energy– available at few kms

– comes from hot rock due to radioactivity

– used for electricity generation

• Shallow geothermal energy – under our feet

– solar radiation

– heating/cooling the buildings

Page 7: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 7

How does it work?• What do we need?

– Ground

– Heat exchanging loop

– Heat Pump

• What is heat exchanging loop?– Plastic pipe (HDPE)

– Fluid (water or water + glycol)

• Horizontal loop– Lot of space available

– Trenches

– Horizontal bore holes

• Vertical loop– Limited space

– Vertical Bore hole

Page 8: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 8

How does it work?

• Open loop– Pond, lake, river

– Water table is high and stable

– Low installation cost

Page 9: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 9

Heat pump

Image source: Geoexchange

Heating cycle

Page 10: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 10

Heat pump

Image source: Geoexchange

Cooling cycle

Page 11: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 11

What is a Geothermal Energy Pile?

• What is a Pile?

• Deep foundation

• Soft ground

• High-rise buildings

• Skin friction and end bearing

Page 12: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 12

What is a Geothermal Energy Pile?

• Vertical loop

• Cost effective

• Land

Page 13: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 13

Challenges

• What will happen if heat is transferred in and out of the pile foundation:

– Pile load capacity (friction)

– Surrounding soil bearing capacity

– Heat transfer and storage in pile and surrounding soils

– Pile expansion, contraction, stress and strain

– Soil deformation, consolidation

– Does the concrete crack?

Page 14: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 14

Project at Monash• Laboratory study

– Thermal conductivity

– Specific heat capacity

– Thermo-mechanical properties> Thermo-consolidation

> Thermo-triaxial shear strength

> Thermo-elastoplastic theory

– Lab-scale model pile test

• Field study

– Thermo-Mechanical testing of a fully instrumented Geothermal Energy Pile

• Cost-benefit analysis

• Numerical study – Thermo-hydro-mechanical (THM) study

For selected Victorian soils and concrete

Page 15: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 15

How to do pile mechanical testing?Pile static load testing

Page 16: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 16

Pile static load testing

Page 17: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 17

Pile dynamic load testing

Page 18: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 18

Field testing at Monash

• Static load test using Osterberg cell

• Thermal loading via heat pump

• Fully instrumented bore pile– Vibrating wire strain gages

> Vertical and radial strain

> Temperature

– LVDT

> Pile displacement

– Thermocouples

> Temperature in soil

Page 19: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 19

Site for field test

• Monash University, Clayton

Page 20: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 20

Pile installation

Page 21: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 21

Pile installation

Page 22: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 22

Schematic of field pile

Page 23: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 23

Thermo-Mechanical testing

• Short term thermal loading

– Heated (2.4 KW) for 9 days

– Cooled for 45 days

• Long term thermal loading

– Heated (2.4 KW) for 52 days

– Cooled for 78 days

• Pile tested using O-cells before and after each heating and cooling cycle to investigate the effect of heating/cooling on pile load capacity.

Page 24: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 24

Result

• Pile load capacity does not get affected by heating/cooling of energy pile

• Instead pile load capacity increased after heating

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35

Lo

ad (

kN

) -

Gro

ss

Total Displacement (mm)

Pile load capacity Pre-Heat load Post-Heat load (9 days) Post-Cool load (45 days)Post-Heat load (52 days) Post-Cool Load (78 days) Maximum O-Cell load

Page 25: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 25

Case studies• Geoscience Australia Building in Canberra

– First building in Australia

– 352 vertical bores, 100 m deep

– Saving of £80,000 a year

• Kingsmill Hospital, Mansfield, UK

– Open loop lake system

– 10.5 MW system, largest in Europe which required peak heating and cooling capacity of 5000 kW each

– Save 9600 MWh of gas and electricity a year

– Prevent 1,700 tonnes of CO2 entering into atmosphere which is equivalent to removing 600 cars off the road

– Saving of £120,000 a year

• Lambeth College, London, UK

– 141 Energy piles

– 426 kW cooling and 268 kW heating, 4 reversible heat pumps

– Prevent 253 tonnes of CO2 entering into atmosphere annually which is equivalent to removing 80 cars off the road

– Saving of £35,000 a year

Page 26: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 26

Summary

• It is the most energy efficient, environmental friendly and cost effective way of heating or cooling a building (International Energy Agency)

• It is renewable, sustainable and reduces green house gas (GHG) emission

• 300% to 600% efficient

• One system for both heating and cooling and hot water supply

• Swimming pool can be heated as well.

• No maintenance, small space required for heat pump

• No noise

• Ground source systems are saving the equivalent of 13 million barrels of oil a year

• An average home fitted with ground source system reduces CO2

emissions by the same amount as planting an acre of trees

Page 27: *XLOGIRUG 8.cics.prp.usp.br/wp-content/uploads/2018/11/Apresentacao...±+HDW WUDQVIHU DQG VWRUDJH LQ SLOH DQG VXUURXQGLQJ VRLOV ±3LOH H[SDQVLRQ FRQWUDFWLRQ VWUHVV DQG VWUDLQ ±6RLO

Monday, 09 April 2018 27

ObrigadoThanks for listening

Dr Rao Martand SinghAsst Prof (Geotechnical Engineering)Department of Civil & Environmental EngineeringUniversity of SurreyGuildford, Surrey, GU2 7XHUKEmail: [email protected]