48
XANES: MXAN and FPMS codes Keisuke Hatada 1,2 Maurizio Benfatto 2 1 Dipartimento di Fisica, Università Camerino 2 Laboratori Nazionali di Frascati - INFN

XANES: MXAN and FPMS codes

  • Upload
    others

  • View
    44

  • Download
    0

Embed Size (px)

Citation preview

Page 1: XANES: MXAN and FPMS codes

XANES: MXAN and FPMScodes

Keisuke Hatada1,2

Maurizio Benfatto21 Dipartimento di Fisica, Università Camerino

2 Laboratori Nazionali di Frascati - INFN

Page 2: XANES: MXAN and FPMS codes

Acknowledgement

• Isabella Ascone   Grazie mille!• Joaquin García Ruiz   ¡Muchas gracias!• Hiroyuki Oyanagi   どうもありがとう御座います。

Many thanks!

Page 3: XANES: MXAN and FPMS codes

Recent active contributorsCalogero R. Natoli1

Maurizio Benfatto1

Stefano Della Longa2

Kuniko Hayakawa1,3

Keisuke Hatada1,4

1 INFN Laboratori Nazionali di Frascati2 Università L’Aquila3 Museo Storico della Fisica e Centro Studi e Ricerche ``Enrico Fermi”4 Università Camerino

Page 4: XANES: MXAN and FPMS codes

Multiple scattering approach

KKR (band): Korringa (1947), Kohn and Rostoker (1954)SCF-SW (Quantum Chemistry:MO): Slater and Johnson (1966), Smith and Johnosn (1969)

For spectroscopy,

LEED: PendryXPD : Rennert, Natoli & SebilleauXAFS: Natoli (1980), Rehr (FEFF code), Benfatto, Brouder, Foulis, Ebert, Fujikawa, Sipr, …

Also for ELNES, RXS

wide application of MS theoryK. Hatada, IXAS Web Magazine, 2nd issue, July (2010)

Page 5: XANES: MXAN and FPMS codes

4 atoms

Gii = G0

ii + G0inT nG0

ni

n! + G0

inT nG0nmT mG0

mi

nm! +!

lj

k

i

Obtain Gii:

G0ii :isolated

G0inT nG0

ni

n! :single scattering

G0inT nG0

nmT mG0mi

nm!

:double scattering

G0ij

G0ji

T j

G0ik G0

kl

G0li

T k

T l

Multiple scattering with Muffin-tin approximation :Green’s function picture

Page 6: XANES: MXAN and FPMS codes

Gii = G0

ii + G0inT nG0

ni

n! i" + G0

inT nG0nmT mG0

mi

n!m! i" +!

= [G0 (I !G0T )!1]ii

Full Multiple Scattering

Page 7: XANES: MXAN and FPMS codes

!(ri;k) = BLi (k)"L

i (ri )L#

!(rj ;k) = BLj (k)"L

j (rj )L#

!(rk ;k) = BLk (k)"L

k (rk )L#

!(rl ;k) = BLl (k)"L

l (rl )L#

lj

k

i

Site i:

Site j:

Site k:

Site l:

: local solution of SE

: amplitudeBLi (k)

!L (ri )

!(ri;k): global solution of SE

Matches WF and itsderivative on thesurface of cells!

WF is expanded by local solutions

Multiple scattering : wave function (WF) picture

Page 8: XANES: MXAN and FPMS codes

[T !1(I ! TG0 )]LL 'ij BL '

j

jL '" = IL

i (k)

This gives amplitudes on each sites. In other wordsmatching will be done implicitly by solving thisequation.

:Boundary condition of the cluster for the cite i centered.

ILi (k)

Page 9: XANES: MXAN and FPMS codes

Many applications have been done.

M. Benfatto and S. Della Longa, J. Synchrotron Rad., 8, 1087 (2001)

• XANES (X-ray Absorption Near Edge Structure) from edge to ~100 eV

• 3 dimensional information, sensitive to atomic species

MXAN code: fitting structural and electronic properties by XANES spectra for molecule, protein and amorphous. (disordered system)

Page 10: XANES: MXAN and FPMS codes

• S. Della Longa et al. Biophy. Jour. 85, 549 (2003)• P. Frank et al. Inorganic Chemistry 44, 1922 (2005)• C Monesi et al. PRB 72, 174104 (2005)• R. Sarangi et al. Inorganic Chemistry 44, 9652 (2005)• P. D’Angelo et al. JACS 128, 1853 (2006)• S. Marino et al. Biophy. Jour. 93, 2781 (2007)• ....• M. Bortolus et al. JACS 132, 18057 (2010)

Page 11: XANES: MXAN and FPMS codes

70

Two ways to calculate the scattering path operator Exactly: all MS

contributions are included

by series:

We have developed a new fitting method, called MXAN, that use the exact calculation of the scattering path operator

i) We work in the energy spaceii) We can start from the edgeiii) We can use polarization dependent spectra

Page 12: XANES: MXAN and FPMS codes

71

To perform structural fits

• Initial geometrical configurations• Exp. data

We generate hundred of theor. spectra by moving atomic coordinates

By comparison with exp. data we can fit relevant structural parameters

Minimization of error function

x

y

z

R

N

1iii

2i

2.expi

N

1inn

.thi

2sq w/w}/]y,..),r(..y{[R

The potential is calculated at each step – Norman criterion

M. Benfatto and S. Della Longa (2001) J. Synch. Rad. 8, 1087S. Della Longa et al. (2001) PRL 87, 155501 M. Benfatto et al. (2003) J. Synch. Rad. 10, 51

Page 13: XANES: MXAN and FPMS codes

72

(E) Behaves like the universal form and starts from energy Es with a jump As . Both Es , c and As are derived at each step of computation on the basis of Monte Carlo fit.

(E) contains all the intrinsic and extrinsic inelastic processes

Es

As

This jump is made via an arctang function

c

0

5

10

15

20

25

0 20 40 60 80 100

(E)

energy (eV)

To avoid the problems coming from the use of the full HL potential, the Exchange and Correlation part of the potential is calculated on the basis of a phenomenological approach real HL potential + convolution via a Lorentzian function with

tot (E)= c + (E)

Page 14: XANES: MXAN and FPMS codes

73

Transition metals in water solution

fits include fits include HydrogenHydrogen atomsatoms

R(Å) R(Å)

Co2+ 2.06(0.03) 2.092(0.002)

Ni2+ 2.04(0.03) 2.072(0.002)

Zn2+ 2.06(0.02) 2.078(0.002)

MXANGNXAS

P. D’Angelo et al. (2002) Phys. Rev B 66, 064209

Page 15: XANES: MXAN and FPMS codes

74

exp

best-fit

Fe (CN)6 in water

The bestThe best--fit condition corresponds to an octahedralfit condition corresponds to an octahedralsymmetry with Fesymmetry with Fe--C distance of 1.92(0.01) C distance of 1.92(0.01) ÅÅ and Cand C--N N distance of 1.21(0.01) distance of 1.21(0.01) ÅÅPrevious GNXAS analysis (Westre et al. JACS 117 (1995))reports Fe-C and Fe-N distances of 1.92 Å and 1.18 Å respectively

-50 0 50 100 150 2000

0,5

1

1,5

2

Energy(eV)

Fe K

-edg

e (a

rb. u

nits

)

Rsq =8.2

Page 16: XANES: MXAN and FPMS codes

75

0

0.5

1

1.5

2

0 20 40 60 80 100 120Energy(eV)

0

0.5

1

1.5

2

Rsq =28.78

Rsq =50.94

Fit with CO moleculesFe-C =1.94Å and C-O =1.11Å

Fit with NO moleculesFe-N =1.91Å and N-O =1.16Å

Chemical sensitivity

Page 17: XANES: MXAN and FPMS codes

76

just an increase of the error bar in the structural numbers

Three key points:

The use of a phenomenological dampingThe use of a phenomenological damping

The potential is calculated at each step of the The potential is calculated at each step of the atomic movement keeping the same Norman atomic movement keeping the same Norman criterioncriterionThe used energy range is wide enough to The used energy range is wide enough to minimize errors in the potential determinationminimize errors in the potential determination

Test cases indicate a good structural reconstruction Test cases indicate a good structural reconstruction at the atomic resolutionat the atomic resolution

high sensitivity to the structural changeshigh sensitivity to the structural changes

the fit results are weakly affected by the errors the fit results are weakly affected by the errors in the potential determinationin the potential determination

Page 18: XANES: MXAN and FPMS codes

111

thermal and structural disorder

We use MD to generate thousands of geometrical configurations – each snapshot with a time step of 50 fs is used to generated one XANES spectrum – average using ~ 104 geometrical configuration

2/121 )]()([)( i

N

ii

Nf EENR

Merkling et al. JACS 124 (2002)Campbell et al. Jour.Synch.Rad. 6 (1999)

Incremental Average

Rf < 10-4 ?averaged XANES spectrum

Total MD trajectories

Sequential snapshot extraction around the absorber

MXAN run MXAN run ………… Parallel calculations

yes no

Page 19: XANES: MXAN and FPMS codes

112

average

Ni2+ in water – Ni Kedge

Calculations for some particular snapshots

Page 20: XANES: MXAN and FPMS codes

113

Comparison between the averaged theoretical spectrum and a single theoretical spectrum at the symmetrical first shell configuration

Arrows indicate the damping - very weak effect - it can be included in the phenomenological treatment of the inelastic losses in MXAN

Page 21: XANES: MXAN and FPMS codes

114

including the second shell

average

first shell average

first + second shells average

Page 22: XANES: MXAN and FPMS codes

115

one shell fit

two shells fit

sizeable effects in the energy range 0 - 30 eV

P. D’Angelo et al. JACS 128 (2006)

Page 23: XANES: MXAN and FPMS codes

116

The water solvation of I-

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

-20 0 20 40 60 80 100Energy (eV)

L1 - L3 XAS data

as in the previous case we analyze those data by MD snapshots generate by QM/MM and DFT methods

in collaboration with Chergui’s group

Page 24: XANES: MXAN and FPMS codes

117

I-O pair distribution function from MD

the calculated coordination number varies from 7 to 9.7 - difficulty to define a solvation shell

Page 25: XANES: MXAN and FPMS codes

118

We have used more than 1000 frames - three of them at L3 edge

Very disordered system!

The calculation includes atoms (H and O) up to 7 Å

Page 26: XANES: MXAN and FPMS codes

119

L3 Fits

DFT

QM/MM

0

0,5

1

1,5

2

-20 0 20 40 60 80 100 120

L3-QM/MM simulation

fit-l3-mm-4Angexp-l3-mm-4Angfit-l3-mm-5.5Angexp-l3-mm-5.5Ang

energy (eV)

0

0,5

1

1,5

2

-20 0 20 40 60 80 100 120

L3-DFT simulation

fit-l3-dft-4Angexp-l3-dft-4Angfit-l3-dft-5.5Angexp-l3-dft-5.5Ang

fit-l3

-dft-

4Ang

energy (eV)

Page 27: XANES: MXAN and FPMS codes

120

L1 Fits

0

0,5

1

,5

2

-20 0 20 40 60 80 100 120

fit-l1-mm-4Angexp-l1-mm-4Angfit-l1-mm-5.5Angexp-l1-mm-5.5Ang

energy (eV)

L1-QM/MM simulation

0

0,5

1

1,5

2

-20 0 20 40 60 80 100 120

fit-l1-dft-4Angexp-l1-dft-4Angfit-l1-dft-5.5Angexp-l1-dft-5.5Ang

fit-l1

-dft-

4Ang

L1-DFT-simulation

QM/MM

DFT

Page 28: XANES: MXAN and FPMS codes

121

The QM/MM calculations reproduces better than DFT the experimental data for both L1 and L3 edges - Increasing the cluster size DFT becomes worse than QM/MM

It seems that DFT introduces a partial order that is not verify in the reality

Page 29: XANES: MXAN and FPMS codes

122

some conclusions

It is possible to fit the XANES energy range It is possible to fit the XANES energy range starting from the edge to obtain quantitative starting from the edge to obtain quantitative structural informationstructural information

We can treat, although numerically, very We can treat, although numerically, very disorder systems disorder systems –– possible application on possible application on nanonano--materialsmaterials

Future: new MXAN using the non-MT theory - improvements for the exchange-correlation potential

Page 30: XANES: MXAN and FPMS codes

MT approximation (MXAN)

Use sphericalshaped andaveraged potential

outside the cellspotential is flat

Non-MT (FPMS)

No interstitial region!

Potential inside cell isanisotropic Empty Cells (EC)

Page 31: XANES: MXAN and FPMS codes

For discontinued functionspherical harmonicsexpansionnever converges inpractice.(Gibbs phenomenon)

Radial component oscillate!

V (r) = VL (r)YL (r̂)L! (L=(l,m))

So called moon region.In this regionexpansion byspherical harmonicsnever converges.

FPMS

There are two types of lmax in MS1. potential power2. anisotropy

Page 32: XANES: MXAN and FPMS codes

L2!(r) = l(l +1)RL (r)YL (r̂)L"

We treat it as inhomogeneus term in Schrödinger equation.

To solve the equation efficiently, we developed modifiedNumerov method.

Since the wave function and its first derivative are continuous,the series converges uniformly even with truncated potential.

=> We expand the wave function.

!(r) = RL (r)YL (r̂)L" (L=(l,m))

Kellog, potential theory (1967)

K. Hatada et al, PRB (2007)

Page 33: XANES: MXAN and FPMS codes

Multiple scattering : Green’s function picture

Gii = G0

ii + G0inT nG0

ni

n! i" + G0

inT nG0nmT mG0

mi

n!m! i" +!

1

2 3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

19

Gii

:Green’s function on cite i

All cites have centers.

G0ii :isolated

G0inT nG0

ni

n!

:single scattering

G0inT nG0

nmT mG0mi

nm!

:double scattering

G012

G021

T 2

G01,9

T 9

G01,12

T 12

G012,1

Page 34: XANES: MXAN and FPMS codes
Page 35: XANES: MXAN and FPMS codes

Missing!

Check Natoli’s predictionof 30 years ago.

Page 36: XANES: MXAN and FPMS codes

Ge K-edge of GeCl4

1 Ge + 4 Cl + 38 EC(Empty cells)

Page 37: XANES: MXAN and FPMS codes

Other spectroscopies

• Energy-Loss Near-Edge Structure(ELNES)

• Resonant X-ray Scattering (RXS)• X-ray Photoelectron Diffraction (XPD)

Page 38: XANES: MXAN and FPMS codes

ELNES (NMT vs MT)

K. Hatada et. al, J. Phys. Cond. (2008)

Page 39: XANES: MXAN and FPMS codes

PHD of Ge 1s of GeCl4

Page 40: XANES: MXAN and FPMS codes

• You can find MXAN and FPMSprograms at,

http://www.lnf.infn.it/theory/CondensedMatter/index.html

Programs are free, but registration isobligated.

Page 41: XANES: MXAN and FPMS codes

THE MXAN PROCEDURE

Page 42: XANES: MXAN and FPMS codes

How to runFlow diagram of MXAN

Exp. file Coordinate file Commands file

MXAN MINUIT

Select structure VGEN CONTINUUM !2 test

Best fit files

Recalculate potential

Potential fixed

Page 43: XANES: MXAN and FPMS codes

We need three inputs

Experimental data: two columns file with thenormalized experimental data

energy(eV) abs-10.00 0.034048-9.000 0.037412-8.000 0.043628-7.000 0.052225-6.000 0.068452-5.000 0.098043-4.000 0.14981-3.000 0.23317-2.000 0.35128-1.000 0.532140.0000 0.747631.0000 1.00092.0000 1.28783.0000 1.5565…….. ………

We can use anyenergy step

Page 44: XANES: MXAN and FPMS codes

Starting geometry file – The prototype isgenerated by MXAN – Users must change itfor own use

&JOBfname ='NiH2'nsca = 19lmax = 3absorber= 1outersph=.false.edge ='k 'emin = -3.000emax = 150.000delta = 0.200xscale = 1.400gamma = .000typot ='hlrel'charelx ='ex'norman ='extrad'ovlpfac = .120coor ='angs'potcalc ='Y'symcalc ='Y'parcalc ='Y'v0imp = .000rhoimp = .000&END

tit1tit2tit3tit4 iz x y z rad ilig ------- comm ----------

28 .00000 .00000 .00000 1.26000 0 .00000 Ni________000 8 .00000 -1.90711 .00000 .90000 1 2.02119 O_________eq1……………………………………………………………………………………….

Page 45: XANES: MXAN and FPMS codes

----------------------------------------------------------------- CuN square piramid with O ax with H and more N --------------------------------------------------------------- CuNH --parameter- in.deviat. - init.err. --- phys.limits --- 1 r001 0.0000 0.0200 -0.1000 0.1000 2 f001 0.0000 3.0000 -20.0000 20.0000 3 t001 0.0000 0.0000 -10.0000 10.0000 4 r002 0.0000 0.0200 -0.1000 0.1000…………34 r012 0.0000 0.0000 -0.1500 0.150035 f012 0.0000 0.0000 -10.0000 10.000036 t012 0.0000 0.0000 -10.0000 10.0000

--------- Control options --------- 36 ! n of parameters (fixed + variable)NORM 1SHE ! Mode(NORM,EXTE,RECO),Search(1SHE,CXYZ,OPTN)U ! U (Unpol) XY (PolarXY) Z (Pol.z) P (Pol.)1 ! not active... --------- INPUT files -------------CuNH3.exp ! EXP. FILE to fit 0.01000 ! EXP. ERRORDATA.CuN8OH ! Coords and options for potentialN 1 ! Other th. calc. sites? How many? 0.5 CuN2H-22.BEST 0.0 ! Fract,Input calc.othersite, Shift? -------- INTERMEDIATE files -------------CuNH.PARM ! params for MSCuNH.SYMM ! File with symmetry info and lmaxCuNH.XALP ! X-alpha potentialCuNH.COUL ! Coulomb potentialCuNH.RHOD ! Charge densities --------- OUTPUT PREFIX ------------CuN8OH-1 ! Output files prefix (MAX 8 CHAR) -------- PARAMETERS align, norm, broad -------------- 0.025 0.004 1.500 3.000 !norm,+/-,Exp.shift,+/- Y 45000 ! Broad? Tot trials -3.500 2.000 ! E.Fermi -- +/- 1.600 0.400 ! Broad -- +/- 0.800 0.600 ! Broad_Exp -- +/- Y ! mf ? 1 ! # plasmons 14.000 10.000 10.000 8.000 ! En. +/- , Ampl. +/- N 0.02 70.0 0.02 !Extra Exc? ampl,energy,width-------- OTHER OPTIONS -------------- Y 6 ! Correlation links? How many? 1 7 4 10 2 8 5 11 16 22 19 25 ! between which params ? Y N !Slope?,Concerted motions? N 30.000 10.000 !weight?(N,A,T,G) xcentr, width

SET PRINT 3 SEEK 90! SCAN 13 10 -.2 .2! FIX 2. SIMPLEX 100 0.03 CALL FCN -2 MIGRAD SET OUT 70 HESSE SET OUT 8 SAVECALL FCN 3! CALL FCN -1! CONTOUR 1 4 3

Page 46: XANES: MXAN and FPMS codes

Control file – general information – methodsfor fitting – It is always calledCOMMAND.MIN

We get several outputs, the most important isthe BEST file where you find all informationabout the fit

Page 47: XANES: MXAN and FPMS codes

FPMS

Page 48: XANES: MXAN and FPMS codes

• Input file must be named as "data.ms".

• In principle the way to use parameters arethe same as "data.ms" of program POTGENor "DATA.****" of MXAN.

• For non-MT calculation, you should add, NMT = "NM" truncate = .true. (voronoi)or truncate = .false. (ASA)