29
B. Lee Roberts Lepton Photon 99 Boston University 10 August 1999 or 78 Years of Lepton-Photon Physics x x x x Recent Results from the Muon (g-2) Experiment

x x Recent Results from the Muon (g-2) Experiment · x x x x Otto Stern and W. Gerlach Annalen der Physik, 74, 673 (1924) Otto Stern, Z. Phys. 7, 249 (1921) Lepton-Photon Physics

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • B. Lee Roberts

    Lepton Photon 99

    Boston University

    10 August 1999

    or

    78 Years of Lepton-Photon Physics

    x x

    xx

    Recent Results from theMuon (g-2) Experiment

  • xx

    xx

    Otto Stern and W. GerlachAnnalen der Physik, 74, 673 (1924)

    Otto Stern, Z. Phys. 7, 249 (1921)

    Lepton-Photon Physics began in 1921

  • Magnetic Moments, g factors, etc.

    ~�s = gs

    � e2m

    �~s

    If �e = 1 Bohr Magneton, gs = 2.

    γ

    µ

    γ

    µγ

    απ+

    Schwinger, 1947Kusch and Foley,

    g = 2

    � = (1 + a)e�h

    2m

    where

    a =

    �g � 2

    2

  • THEORETICAL VALUE FOR (g � 2)

    Electron:

    a�(Standard Model) = a� (QED) to 4ppb

    Muon:

    Relative Contribution of heavier things : �

    �m�

    me

    �2

    a�(SM) = a� (QED) + a� (hadronic) + a� (weak)

    a�(New Physics) = a�(Measured)� a�(SM)

    QED Contribution

    a�(QED) = C1��

    �+C2

    ��

    �2+C3

    ��

    �3+C4

    ��

    �4+

    C5

    ��

    �5Taking the value of � from the electron (g�2), T. Kinoshita,

    Rep. Prog. Phys. 59, 1459 (1996), yields the total QED value

    a� (QED) = 116 584 705:7 (1:8) (0:5)�10�11 (�16ppb)

    γ

    µγ

    απin

    Higher Order Terms+

    α2π

    =

  • First Order Hadronic Contribution

    ����������

    ����������µhγ

    γ

    Determined experimentally from e+e� ! Hadronsor using hadronic � decays (assuming CVC, isospin

    conservation and the absence of 2nd class currents)

    h

    +e

    -e

    γ -ττ

    W-

    ν

    h

    a� (had; 1) =��m�

    3�

    �2Z1

    4m2�

    ds

    s2K (s)R (s)

  • Values of 1stOrder Hadronic Contribution

    + −e ,(e τ)

    + −(e e )

    a µ * 1011

    (had;1)

    + - τ(e e , , theory)

    Bro.-Wor.

    Eid.-Jeg .

    Kin.-Niz.-Oka.

    ADH

    Al.-Dav.-Hoc.

    DH

    75007000

    DH

    a� (had; 1) = 7011 (94)�10�11 (60:13� 0:81) ppm

    R. Alemany, M. Davier, A. Hocker, Eur.Phys.J. 2C (1998)123.

    a� (had; 1) = 6951 (75)�10�11 (59:62� 0:64) ppm

    M. Davier and A. Hocker, Phys. Lett. 419 (1998) 419.

    a� (had; 1) = 6924 (62)�10�11 (59:39� 0:53) ppm

    M. Davier and A. Hocker, Phys. Lett. 435 (1998) 427.

  • Higher Order Hadronic Contribution

    -e

    X-11

    -101 (6) 10

    ��������

    ��������

    ������

    ������

    ��������

    ��������

    ����������

    ����������

    +e

    µ

    γ

    h

    µ

    h h

    γ

    µ

    h

    γ

    Bernd Krause, Phys. Lett. B 390 (1997) 392

    Hadronic Light-on-Light Contribution

    ���������������������������������������������������������������������������������������������������������������������������������������

    ���������������������������������������������������������������������������������������������������������������������������������������

    X32-11

    -85 ( ) 10

    ��������������������������������������������������������������������������������������������

    µ

    γ

    γ

    h

    M. Hayakawa and T. Kinoshita, Phys. Rev. D57 (1998) 465and J. Bijnens, E. Pallante and J. Prades, Nucl. Phys. B474(1996) 379.

    The Total Hadronic Contribution

    a� (had; 1 + 2 + lol) = 6738 (70)�10�11 (57:79� 0:60)

  • Weak Contribution

    µνµ

    W W

    γ

    (a) (b)

    µ

    γ

    Z0

    µ

    γ

    Z0

    f

    f-

    µW

    νµ νµ

    γ

    µ

    γ G

    W G

    H

    γ

    (c) (d) (e)

    +389 -194

    + many other 2nd order diagrams

    bosonicfermionic

    2nd order

    1st order

    a� (weak; 1) = 195� 10�11 (1:7) ppm

    a� (weak; 1 + 2) = 151 (4)�10�11 (1:30� 0:03) ppm

    A. Czarnecki, B. Krause and W.J. Marciano, Phys. Rev. D52

    (1995) R2619 and Phys. Rev. Lett. 76 (1996) 3267

  • Summary

    Theoretical and Experimental Information

    a� (QED) = 1 165 847 05:7 (2)�10�11 (�17 ppb)

    a� (had) = 6738 (70)� 10�11 (57:79� 0:60) ppm

    a� (weak) = 151 (4)� 10�11 (1:30� 0:03) ppm

    The Total Standard Model Value of a� is

    a� (SM) = (116 591 594:7 � 70)�10�11 (�0:60 ppm)

    The experimental value is

    a� (exp) = (116 592 350 � 730)�10�11 (�6:3 ppm)

    or

    a� (exp)� a� (theory) = (755� 733)� 10�11

    E821 goal: � 40�10�11 or � 0:35 ppm

  • (g � 2) is Sensitive to New Physics

    If �a� = 0:35 ppm then:

    MUON SUBSTRUCTURE

    �a� �m

    2�

    �2� � 5 TeV LHC domain

  • WCOMPOSITENESS/ANOMALOUS COUPLINGS

    � � 400 GeV LEPII � 100� 200 GeV

    �W =e

    2mW(1 + �+ �)

    a� (�; �) 'GFm

    2�

    4p2�2

    "(�� 1) ln �

    2

    m2

    W

    � 13�

    #

    Bounds

    F

    ure

    ut

    2W2Wy = f

    M2Λ

    2W2Bx = f

    M2Λ

    ????????????????????????????????????????

    ????????????????????????????????????????????

    ????????????????

    -0.2

    b

    LEP2

    +(g-2)

    -0.1

    0

    -0.1

    -0.2

    -0.4 0 0.4 0.8 1.2

    +R (LEP1)Λ = 1 TeV∆κ = x+yγ∆κ =κ −1γγ

    (1997) 398

    Renard, et al.PL B409

  • SUPER SYMMETRY (SUSY)

    ∼µ ∼+

    γ

    0χµµ

    µ

    ν∼

    −− χ µµ

    γ

    χ

    a� is sensitive to any SUSY model with largetan�

    If tan� >> 1 the �� ~� diagram dominates.For large tan�:

    a� (SUSY) '�

    8� sin2 �W

    m2�

    ~m2tan�

    ' 140� 10�11�100 GeV

    ~m

    �2

    tan�

    (1:23 ppm)

    If ~m = 750 GeV and tan� = 40 then:

    a� (SUSY) = 100� 10�11

    � BNL Goal is � 40 � 10�11 (� 0:35 ppm)

    � (g � 2)� already improves LEP2 bounds.

  • � If ~� is light, chargino production is supressed.

    � If the chargino is only slightly heavier than

    the ~�, the decay products are hard to de-

    tect.

  • Current E821 Collaboration

    R.M. Carey, W. Earle, E. Efstathiadis, M. Hare, E.S. Hazen,

    F. Krienen, J.P. Miller, J. Paley, O. Rind, B.L. Roberts, L.R.

    Sulak, A. Tro�mov, - Boston University

    H.N. Brown, G. Bunce, G.T. Danby, M. Grosse-Perdekamp, R.

    Larsen, Y.Y. Lee, W. Meng, J.-L. Mi, W.M. Morse, C. Ozben,

    C. Pai, R. Prigl, R. Sanders, Y.K. Semertzidis, D. Warburton

    - Brookhaven National Laboratory

    Y. Orlov - Cornell University

    D. Winn - Fair�eld University

    A. Grossmann, K. Jungmann, I. Rheinhardt, G. zu Putlitz -

    University of Heidelberg

    P.T. Debevec, W. Deninger, F. Gray, D.W. Hertzog, C.J.G.

    Onderwater, C. Polly, S. Sedyk, M. Sossong, D. Urner - Uni-

    versity of Illinois

    U. Haeberlen -Max Planck Institiute fur Med. Forschung,

    Heidelberg

    P. Cushman, L. Duong, S. Giron, J. Kindem, I. Kronkvist,

    R. McNabb, D. Miller, C. Timmermans, D. Zimmerman -

    University of Minnesota

    V.P. Druzhinin, G.V. Fedotovich, B.I. Khazin, I. Logashenko,

    N.M. Ryskulov, S. Serednyakov, Yu.M. Shatunov, E. Solodov

    - Budker Institute of Nuclear Physics, Novosibirsk

    A. Yamamoto - KEK

    M. Iwasaki, M. Kawamura - Tokyo Institute of Technology

    H. Deng, S.K. Dhawan, F.J.M. Farley, V.W. Hughes, D. Kawall,

    J. Pretz, S.I. Redin, A. Steinmetz - Yale University

  • The Technique

    � Use the AGS to make a 3.1 GeV � beam.� 115 m beamline choose � or � at a momentumslit and bring the � or � beam through aniron-free Superconducting Inector.

    � Store ~� in Ring by a kick, � spin motion:

    ~!a =d�Rdt

    =e

    mc

    �a� ~B �

    �a� �

    1

    2 � 1

    �~� � ~E

    for magic

    �a� �

    1

    2 � 1

    �= 0

    = 29:3 and p� = 3:094 GeV/c.

    = emcω aaµB

    Momentum Spin

  • � Count High Energy Electrons, Ee � 1:5 GeV,from

    �+! e+ + ��� + �eas a Function of Time.

    � Fit Time Spectrum to

    N (t) = N0e�t=� [1�A cos (!at+ �)]

    to determine the (g � 2) frequency

    �" =�!a

    !a=

    p2

    2�fa��N1

    2A

    t t

    -t /e γτ

    cos tω

  • t (µs)0 10 20 30 40 50 60 70 80 90 100

    coun

    ts /

    500n

    s

    102

    103

    104

    105

    106 45-100

    100-200

    200-300

    300-400

    400-500

    500-600

    600-700

    700-735

    N (t) = N0e�t=� [1�A cos (!at+ �)]

    E > 1.8 GeV, 357 X 10 e 6A Sample of the 1999 Data:

  • -5-4-3-2-1012345

    -4 -2 0 2 4x [cm]

    y [c

    m]

    0

    -10ppm

    10ppm

    July 1997 field map

    -5-4-3-2-1012345

    -4 -2 0 2 4x [cm]

    y [c

    m]

    -2ppm

    2ppm

    August 1998 field map

    1 m

    edge shims

    wedges

    R = 711.2 cm

    r = 4.5 cm

    2 ppm contours

    CERN B Field

    Muon (g-2) Storage Ring and B FieldX

    B = 1.4513 T0

  • 200 600400 800 1000

    Kic

    ker

    Cur

    rent

    (kA

    )

    time (ns)

    Kicker Current

    Beam4

    0

    2

    Kickers

    Beamline

    Inflector

    x

    xx

    x

  • Parameter Value Comments

    (g-2) Frequency fa � 0:23� 106=s !a = 2�fa

    �a = 4:37�sMuon Lifetime � = 64:4 �sMuon kinematics p� = 3:094 GeV/c

    � = 29:3Cyclotron Period �cyc = 149 nsCentral Radius � = 7112 mm (28000)Magnetic Field B = 1:451 TStorage Aperture 9:0 cm circleIn one lifetime: 432 revolutions around ring

    14.7 (g-2) periods

    Brookhaven E821 Muon Storage Ring

  • muon momentum

    muon spinSci-Fi calorimeter

    module

    0 1 2 3

    SELECTED BY GEOMETRY

    ALL ELECTRONS

    ON LINE OFFLINE

    NU

    MB

    ER

    OF

    EL

    EC

    TR

    ON

    S

    E (GeV)

    ELECTRON ENERGY SPECTRA

    Shape of the ring vacuum chamber is designed tooptimize the decay electron detection.

    High energy electrons carry largest Asymmetry

  • = emcω aaµB

    ω p

    ω aω p

    R =

    ω aFit decay electron (positron) spectrum for ω aRemove offsets and divide to determine

    Calibrate plunging probe to sperical H O probe.2

    B (weighted)ω p B Track with 366 fixed NMR Probes,

    ω pDetermine and thus . Weight with the muon distribution. (B) ω p

    < B >=

    ZV

    M (r)B (r) d3r

    Data Analysis (Done blind):

    Calibrate trolley probes with plunging probe.Map field periodically with trolley.

    ,

    x x

    x x

  • Data VolumeData Volume

    ● Number of measured positrons withEnergy > 1.8 GeV.

    3 0 140 4504 5 140 8205 10 12846 19007 2100

    0

    500

    1000

    1500

    2000

    1 2 3 4 5 6 7

    Week

    Mill

    ion 97 pi eng

    98 mu eng99 mu phy

    CERNCERN

  • Results and Projections

    (1997 Data) R =!a

    !p

    = 3:707 220 (47) (11)

    a� =R

    ��R� =

    ��

    �p

    = 3:183 345 47 (47)

    a� (E821) = (116 592 501� 1516)�10�11 (�13 ppm)

    �BNL &

    CERN

    �= (116 592 344� 730)�10�11 (�6:3 ppm)

    (6.3

    ppm

    )<

    CE

    RN

    +E

    821>

    X 10

    a

    11µ

    projected errors with current value*

    116 593 000

    -

    E82

    1 (9

    7)

    + µµ −

    (10

    ppm

    )

    (10

    ppm

    )

    µ+

    (13

    ppm

    )

    (~ 4

    ppm

    )

    *

    CE

    RN

    CE

    RN

    Futu

    re G

    oal

    On

    Tap

    e

    Theory

    1998

    Dat

    a

    E82

    1 G

    oal (

    0.35

    )

    1999

    ~ +

    1 p

    pm

    * *

    New

    Ave

    rage*

    Com

    ing

    Soon

    (~ 5

    .2 p

    pm)

    116 595 000

    116 594 000

    116 592 000

    116 591 000

    116 590 000

  • Systematic Errors

    1997 Data:

    Systematic error = �2:9 ppm (13 ppm total error)

    � (< B >�) were 1.0 and 0.9ppm.

    !p B-Field Related Errors from 1997, and projectederrors for 1998 and 2000

    1997 1998 Est 2000 Est

    (ppm) (ppm) (ppm)

    !p 1 0.5 0.1 - 0.25

    < !p >� 0.9 0.2-0.3 0.1

  • A 5 ppm result will come soon.

    A 1 ppm result should come next year.

    The systematic errors are continuing todecrease faster than then statistical errors.

    production / running phase.The ( ) Experiment has entered the

    x x

    xx

    g-2

    Conclusions: