X-Ray Tomography in Material Science

Embed Size (px)

Citation preview

  • 8/20/2019 X-Ray Tomography in Material Science

    1/209

  • 8/20/2019 X-Ray Tomography in Material Science

    2/209

    X-Ray Tomography

    in  Material Science

  • 8/20/2019 X-Ray Tomography in Material Science

    3/209

     

    ERMES Science Publications Paris 2000

    HERMES Science Publications

    8 quai du MarchC-Neuf

    75004 Paris

    Serveur web

    http://www.hermes science.com

    ISBN

    2-7462-0115-

    All rights reserved. o part of this publication may be reproduced stored in

    a

    retrieval

    system or transmitted in any form or by any means electronic mechanical photocopying

    recording

    or

    otherwise without prior permission in writing from the publisher.

    Disclaimer

    While every effort has been made to check the accuracy of the information in this book no

    responsability is assumed by Author o r Publisher for any damage or injury to o r loss of

    property or persons as a matter

    of

    product liability negligence or otherwise

    or

    from any

    use

    of materials techniques methods instructions or ideas contained herein.

  • 8/20/2019 X-Ray Tomography in Material Science

    4/209

    X-Ray

      Tomography

    in

     Material

     Science

    Jose Baruchel

    Jean-Yves  Buffiere

    Eric

     Maire

    Paul Merle

    Gilles

     Peix

    •cience

  • 8/20/2019 X-Ray Tomography in Material Science

    5/209

      his page intentionally left blank

  • 8/20/2019 X-Ray Tomography in Material Science

    6/209

    Authors

    A N D E R S O N   P., Department  of Biophysics  in Relation  to D entistry,  St Bartholomew's

    and

      The

      Royal London  Scool

      of

      Medecine

      and

      Dentistry, Queen Mary

      and

    Westfield College, Mile End Road, London, E l  4NS, U K

    B A B O T   D., Laboratoire CNDI, INSA, Batiment 303,  69621  Villeurbane Cedex,

    France

    B A R U C H E L

      J.,

     European S ynchrotron Ra diation F acility,

     B P

     220, F-38043 Grenoble,

    France

    BELLET

     D., Laboratoire GP M2,

     INPG,

     BP 46, 38402

      Saint-Martin-d'Heres

    B E N O U A L I   A.-H., Department of Metallurgy and  Materials  Engineering,  Katholieke

    Universiteit Leuven, D e Croylaan 2, B-3001 Heverlee, B elgium

    B E R N A R D

      D .,

      ICMCB,  CNRS, 87 avenue du docteur Albert Schweitzer,

      33608

    Pessac, France

    B L A N D I N

      J.-J., Genie physique et mecanique des materiaux, ENSPG-UJF, BP 46,

    F-38402 Sa int-Martin-d'Here

     Cedex, France

    B O L L E R   E., European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble,

    France

    B O U C H E T

      S.,

      Ecole

      des

      mines

      ,

      ENSMP,

      35 rue St

      Honore,

      77300

     Fontainebleau,

    France

    B R A C C I N I

      M.,

      Genie physique

     et

      mecanique

      des

      materiaux, ENSPG-UJF,

      BP 46,

    F-38402

     Saint-Martin-d'Here Cedex, France

    BUFFIERE

      J.-Y., GEMPPM INSA Lyon, 20 avenue Albert Einstein, 69621

    Villeurbane

      Cedex, France

    CLOETENS P .,  European Synchrotron Radiation Facility,  BP 220, F-38043  Grenoble,

    France

    D A V I S

      G .,

      Department

      of

     Biophysics

     in

     R elation

     to

      Dentistry,

      St

     Bartholomew's

     and

    The Roy al London Scool of Medecine and D entistry, Queen Mary and W estfield

    College, Mile

     End

     Road, London,

     E l

      4NS,

     U K

    D E G I S C H E R   H.P., Institute

     of

      Materials Science

      and

      Testing, Vienna University

     of

    Technology,

      Karlsplatz  13 , A-1040 W ien

  • 8/20/2019 X-Ray Tomography in Material Science

    7/209

    6

      X-ray tomography

     in

     material

     science

    DERBY

      B.,

      Manchester Materials Science Centre,  UMIST

      and the  University  of

    Ma nchester, G rosvenor Street, M anchester, M l  7HS,UK

    DUVAUCHELLE

      P .,  Laboratoire  CNDI ,  INSA, Batiment 303, 69621 Villeurbane

    Cedex, France

    ELLIOTT

      J.,

      Department

      of

      Biophysics

      in

      Relation

      to

      Dentistry,

      St

     Bartholomew 's

    and   The

      Royal London

      Scool  of

      Medecine

      and

      Dentistry, Queen Mary

      and

    Westfield  College, Mile

     E nd

     Road, London,

     E l

      4NS,

     U K

    FOROUGHI

      B .,

      Institute

      of

      Materials Science

      and

      Testing, Vienna University

      of

    Technology, Ka rlsplatz  13, A-1040 W ien

    FREUD  N., Laboratoire CNDI, INSA, Batiment 303, 69621 Villeurbane Cedex,

    France

    FROYEN

      L .,

      Department

      of

      Metallurgy

      and

      M aterials Eng ineering, K atholieke

    Universiteit L euven, De Croylaan 2,

     B-3001

     H everlee, Be lgium

    GuiGAY

      J .-P., University

      of

      Antwerp, RUCA Groenenborgerlaan 171, B-2020

    Antwerp,

     Belgium

    HEINTZ   J .-M.,

      ICMCB,

      C NR S ,  87  avenue  du  docteur Albert Schweitzer, 33608

    Pessac, France

    JOSSEROND

      C., Genie physique et

      mecanique

      des materiaux, ENSPG-UJF,  BP 46,

    F-38402

      Saint-Martin-d'Here Cedex, France

    JUSTICE  I.,  Department

      of

      Materials, University

     of

      O xford, Parks

      Rd,

      Oxford ,

      O X 1

    3PH, UK

    KAFTANDJIAN

      V .,

      Laboratoire CNDI, INSA, Batiment 303, 69621 Villeurbane

    Cedex, France

    KOTTAR  A .,  Institute  of  Materials Science  and  Testing, Vienna University  of

    Technology, Karlsplatz

      13,

     A-1040 W ien

    LUDWIG

      W., European Synchrotron Radiation Facility, BP 220, F-38043  Grenoble,

    France

    MAIRE  E., GEMPPM INSA Lyon, 20 avenue Albert Einstein,

     69621

      Villeurbane

    Cedex, France

    MARC

      A.,

      LETI-CEA/Grenoble,  17 rue des martyrs, 38054 Grenoble Cedex 9,

    France

    MARTIN  C.F., Genie physique  et  mecanique  des  materiaux, ENSPG-UJF,  BP 46 ,

    F-38402

      Saint-Martin-d'Here Cedex, France

    PEK

      G ., Lab oratoire CN D I, INSA , Batiment 303, 69621 V illeurbane Cedex, France

    PEYRIN

     F .,

     CR EATIS,

      INSA-Lyon ,

      69621 Villeurbane, France

    ROBERT-COUTANT  C.,

     LETI-CEA/Grenoble,

      17 rue des ma rtyrs, 38054 G renoble

    Cedex 9,

     France

    SALVO

      L .,

      Genie physique et mecanique des materiaux, ENSPG-UJF, BP 46,

    F-38402

     Saint-Martin-d'Here

     Cedex,

     France

    SAVELLI

      S.,  GEMPPM INSA Lyon ,  20  avenue A lbert Einstein, 69621 Villeurba ne

    Cedex, France

    SCHLENKER M., C N RS, Laboratoire L ouis

     N eel,

     BP 166, F-38042 Grenoble, France

    SUERY  M., Genie physique

      et

      mecanique

      des

      materiaux, ENSPG-UJF,

      BP 46,

    F-38402

     Saint-Ma rtin-d'Here Cedex, France

  • 8/20/2019 X-Ray Tomography in Material Science

    8/209

    Authors  7

    VAN

      DYCK  D.,  University  of  A ntwerp, RU CA G roenenborgerlaan 171,

      B-2020

    Antwerp, Belgium

    V E R R I E R   S., Genie physique et  mecanique  des  materiaux,  ENSPG-UJF, BP 46,

    F-38402

     Saint-Martin-d'Here Cedex, France

    VIGNOLES  G.-L., LCTS, CNRS-SNECMA-CEA, Universite Bordeaux

      1, 3

      allee

      La

    Boetie, F-33600

      Pessac, France

    WEVERS

      M., Department

      of

      Metallurgy

      and

      Materials Engineering, Katholieke

    Universiteit Leuven,

      De

     Croylaan

     2 ,

     B-3001  Heverlee, Belgium

  • 8/20/2019 X-Ray Tomography in Material Science

    9/209

      his page intentionally left blank

  • 8/20/2019 X-Ray Tomography in Material Science

    10/209

    Table of  contents

    Foreword

      13

    Chapitre

      1.

     General principles

    G .   P E I X ,   P .

      D U V A U C H E L L E ,

      N .

      F R E U D

      1 5

    1.1. Introd uction 15

    1 . 2 .  X and gamm a-ray tomography : physical basis 16

    1.3.

     D ifferent

      scales,

      different

      applications  20

    1 . 4 .

      Q untitative tomography 23

    1.5

     C onclusion 26

    1 . 6 .

      R eferences 26

    Chapitre

     2. Phase

     contrast tomography

    P .

      C l o E T E N S ,

      W .

      L U D W I G ,

     J.-P .

      G U I G A Y ,

      J .

      B A R U C H E L ,

      M .   S C H L E N K E R ,

    D.

      V A N D Y C K

      29

    2.1.

     Introduction

      29

    2.2. X-ray phase modulation

      30

    2.3. Phase sensitive imaging methods

      32

    2.4. Direct imaging

      38

    2.5. Q uantitative imag ing 38

    2.6. Conclusion

      42

    2.7. References

      43

    Chapitre 3. Microtomography  at a third generation

     syncrotron

    radiation

      facility

    J.   B A R U C H E L ,   E.  B O L L E R ,   P.  C L O E T E N S ,   W.  L U D W I G ,  F.  P E Y R I N   45

    3.1. Introduction  45

    3.2. Syncrotron radiation

     and

     m icrotomography

      46

  • 8/20/2019 X-Ray Tomography in Material Science

    11/209

    10 X-ray tomography

      in

      material science

    3.3. Improvement

      in the

     signal

      to

     noise ratio

     in the 3D

     images

      49

    3.4. Imp rovem ent in the spatial resolution 50

    3.5. Q uantitative measurement (absorption case)  51

    3.6. Present state

     of

      "local" tomography

      53

    3.7. Sample env ironmen t in microtomography 54

    3.8. Phase Imaging  55

    3.9. O ther  new  approaches  in microtomography  56

    3.10. Conclusion  57

    3.11. R eferences  57

    Chapitre

     4. Introduction to reconstruction

     methods

    C.

     RO BERT-COUTA N T,

     A.

      MA RC

      61

    4.1. Introduction  61

    4.2. Description

      of

     projection m easurements

      62

    4.3. B ackprojection

      65

    4.4. P rojection-slice theorem

      66

    4.5. Fourier reconstruction methods  67

    4.6. Filtering  in Fourier methods  69

    4.7. ART-type methods  70

    4.8. Conclusion

      74

    4.9. References

      74

    Chapitre

      5.

     Study

     of

     materials

      in the

     semi-solid

      state

    S .   V E R R E E R ,   M .   B R A C C I N I ,   C .   J O S S E R O N D ,   L .   S A L V O ,   M .   S U E R Y ,   W .   L U D W I G ,

    P.   C L O E T E N S ,  J.  B A R U C H E L   77

    5.1. Introduction  77

    5.2. Experimental device  and procedure  79

    5.3. Results on Al-Si alloys  80

    5.4. Results on

     Al-Cu

     alloys  85

    5.5. Conclusion

     and

     perspectives

      86

    5.6. References  ,...

      87

    Chapitre

      6. Characterisation of

     void

     and

     reinforcement  distributions

    by edge contrast

    I .

      J U S T I C E ,

      B .

      D E R B Y ,

      G .

      D A V I S ,

      P .

      A N D E R S O N ,

      J .

      E L L I O T T

      8 9

    6.1. Intro du ction 89

    6.2. Dual energy X-ray microtomography   90

    6.3. Experimental materials  92

    6.4. Results and discussion 94

    6.5. Conclusions  100

    6.6. References  101

  • 8/20/2019 X-Ray Tomography in Material Science

    12/209

    Table of

      contents

      1 1

    Chapitre 7. Characterisation of MMCp  and cast A luminium  alloys

    J . - Y . B U F F I E R E ,   S .   S A V E L L I ,   E .   M A I R E   1 0 3

    7.1. Introduction

      103

    7.2. Experimental methods  104

    7.3. Results and discussion  107

    7.4. Conclusion  112

    7.5. References

      113

    Chapitre  8. X-ray tomography of  Aluminium foams and Ti/SiC composites

    E.   M A I R E , J .- Y . B U F F I E R E   115

    8.1. General introduction

      115

    8.2. A luminium foams

      116

    8.3. Titanium composites

      121

    8.4. G eneral conclusion  124

    8.5. References  125

    Chapitre  9.  Simulation tool  for X-ray imaging techniques

    P.   D U V A U C H E L L E ,  N.  F R E U D ,   V.  K A F T A N D J I A N ,  G.  P E I X ,   D.  B A B O T   127

    9.1. Introduction  127

    9.2. Background

      128

    9.3. S imu lation possibilities

      129

    9.4. Simulation

      examples

     in tomography  13 2

    9.5. C onclusions and  future  directions 135

    9.6. References  136

    Chapitre  10. Micro focus computed tomogrgraphy  of Aluminium  foams

    A.-H.

      BENAOULI, L.  FROYEN, M.  WEVERS  139

    10.1. Introduction  139

    10.2. Production

     process

     of

     A luminium foams

      140

    10.3. Mechanics

     of

     foams

      142

    10.4. N on-destructive investigation of A lum iniu m foams 144

    10.5. Conclusion

      151

    10.6. References  152

    Chapitre

     11. 3D

     observation

     of

     grain boundary penetration

     in

     Al alloys

    W .

      L U D W I G ,

     S.

      BOU C HE T,

     D .

      BELLET, J.-Y. BUF FIERE

      .*.  15 5

    11.1.

     Introduction

      155

    11.2. Experimental set-up

      15 7

    11.3. Result

      158

    11.4.

     C onclusions

      160

    11.5.

     References

      163

  • 8/20/2019 X-Ray Tomography in Material Science

    13/209

    12 X-ray tomography

      in

      material science

    Chapitre 12. Determination of local mass density

      distribution

    H . P . D E S I S C H E R ,

      A .   K O T T A R ,   B .

      F O R O U G H I

      1 6 5

    12.1. Introduction

      165

    12.2. Material  166

    12.3. X-ray rad iography

      166

    12.4. R esult

      168

    12.5. Application of the  mean local density distribution  17 2

    12.6. References  175

    Chapitre  13. Modelling  porous materials  evolution

    D .

      B E R N A R D ,

     G .-L.

      V I G N O L E S ,

      J.-M.

      H E I N T Z

      1 7 7

    13.1. Introduction  177

    13.2. E volution of sand stone reservoir rocks  by pressure solution

      179

    13.3. C-C 185

    13.4. Ceramics sintering

      187

    13.5. Conclusions a nd forthcoming w orks  190

    13.6. References  191

    Chapitre 14.

     Study

     of damage during

     superplastic

      deformation

    C . - F . M A R T I N ,

     J.-J.

      B L A N D I N ,

      L .

      S A L V O ,

      C .

      J O S S E R O N D ,

      P .   C L O E T E N S ,

    E.

      B O L L E R

      193

    14.1. Introduction  to damage  in superplas ticity 193

    14.2. U sual techniqu es

     of

      characterisation

      197

    14.3. E xperimen tal procedure

      198

    14.4. X-ray microtomography results

      199

    14.5. Quantification of the

     coalescence

     process  200

    14.6. Conclusions  203

    14.7. References  204

  • 8/20/2019 X-Ray Tomography in Material Science

    14/209

    Foreword

    This book collects

      the

      texts

      of the

      lectures given during

      the

      Workshop

      on the

    application  ofX Ray  tomography  in   material science  which wa s organised by the

    G roupe d'Etudes

     de

     M etallurgie P hysique

     et de

     Physique

     des

      Materiaux (GEMPPM)

    in  V illeu rba nne on O ctober 28-29 1999. R esearchers  from  several European

    universities,  research centres

      and

     companies  attended

      the lectures

      which were given

    by  experts in both materials science and X-ray tomography. The workshop was

    subsidised

      by the

      INSA  Lyon,

      the

      MMC

      Assess

      european network

      and the

    Region Rhone

      Alpes and we

     w ould like

     to

     acknow ledge their support.

    The

     scope

      of  this European workshop  was to  provide material scientists with  a

    detailed presentation of X-Ray tomography  techniques,  including the latest

    developments, and to present recent applications of these techniques in the field of

    structural materials.

    The interest of material scientists in X ray tomography arises

      from

      two facts:

      1)

    most structural materials are opaque, and 2) it is of very crucial importance to

    observe what occurs in the bulk of materials when they are subjected to a

    mechanical loading.

      The

      apparent contradiction between

      these

      tw o

      facts

      ha s

      been

    overcome by recent progress in X Ray tomography which has allowed 3D non

    destructive images  of  structural materials, with  a  resolution around  1 micron,  to be

    achieved. Synchrotron radiation sources  are  necessary  to  record these very high

    resolution images. Moreover,

      the

      phase contrast images, easily obtainable with

      X

    ray  sources  emitting photons with  a  high

      spatial

      coherence,  even  permits  the

    visualisation of features with weak attenuation differences. This technique is

    especially well adapted for studying metal matrix composites which are among the

    most promising structural materials  and for  which damage development under

      stress

    is of

      crucial importance.

    Within

      this framework, the workshop was divided into two parts. The

      first

      one

    included

      a

      global description

      of the

      technique itself,

      an

      introduction

      to the

  • 8/20/2019 X-Ray Tomography in Material Science

    15/209

    14

      X-ray tomography in ma terial  science

    reconstruction  algorithms,  and an  overview  of the new  possibilities  offered  by

    synchrotron  X ray  sources with  an  emphasis  on the  phase contrast images.  The

    second part was devoted  to the  presentation of  some examples of the application of

    X - R a y

      tomography

      to

      investigating micro-heterogeneous structural materials.

      The

    use

     of synchrotron and laboratory X-Ray sources  w as illustrated.

    The  workshop  was a stimulating event which  has  given scientists  with  various

    backgrounds  the opportunity to discuss and exchange ideas and experiences. We do

    hope that this book will bring  useful  information

      to

      material scientists looking

      for

    new

     characterisation methods  in their research  fields.

    The

      organisers,

    Jose Baruchel

    Staff Scientist, Group Leader ESRF

    Jean-Yves

      Buffiere

    Maitre de conferences INSA Lyon

    Eric Maire

    Charge de recherches INSA Lyon

    Paul

     Merle

    Professeur INSA Lyon

    Gilles Peix

    Maitre de

     conferences  INSA Lyon

  • 8/20/2019 X-Ray Tomography in Material Science

    16/209

    Chapitre

     1

    General principles

    Among the  different  methods allowing  to  obtain,  in a  non-invasive way,  the

    image

      of a

      slice

      of

      matter within

     a

      bulky object, X-ray transmission tomography

      is

    widely  used

      in

      both

      the

      medical

      and the

      industrial fields.

      In the

      latter case,  defect

    detection, dimensional inspection  as  well as  local characterization  are  possible.

    Non

      destructive testing,

      process

      tomography

      and

     reverse

      engineering

      are

      thus

    feasible. A

     w ide range

     of

      sizes

     can be 1 mm

      small inspected, starting from

      a

     sample,

    up to a  whole rocket motor (several meters  in d iameter). The present paper describes

    the  physical basis  and  give examples  of  some industrial applications.  The  main

    reconstruction

     a rtifacts are described.

    1.1. Introduction

    Tomography

      is

      referred

      to as the

      quantitative description

      of a

      slice

      of

      matter

    within  a bulky object. Several methods are available, delivering specific images,

    depending  on the

     selected

     physical

     excitation:

    - ultrasonics,

    -  magnetic field (in the case of nuclear magnetic resonance imaging),

    - X and gamma-rays (y rays) ,

    -

      electric

      field (in the

     case

     of

     electrical imped ance

     or

     capacitance tomograp hy).

    In the

      field

     of

      indus trial non-de structive testing

     (NOT),  as

     w ell

      as in the  field  of

    materials characterization, X -ray or

     y-ray

      tomography is mostly used today.

    Tom ography is a relatively "new" technique. The very first images w ere obtained

    in  1957 by Bartolomew and Casagrande [BAR 57]: they characterized the d ensity of

  • 8/20/2019 X-Ray Tomography in Material Science

    17/209

    16  X-ray tomography in material

     science

    particles

      of a

      fluidized bed, inside

      a

     steel-walled  riser.

     The

      first  medical images

    were performed by H ounsfield in 1972, and most indu strial applications w ere

    developed much later, in the 1980's. This slow development can be explained by the

    huge amount of data to handle, and thus by the need for high speed and high

    memory computers. Industrial benefits of what is called computed tomography (CT)

    today   are  numerous. This  is due to the  wide range  of  potential applications, starting

    from  the small sample, 1mm in size, dedicated to the characterization of advanced

    composite materials, and displayed in three dimensions  with  a one micrometer (urn)

    voxel size,  up to the  single

     slice

      image, across  a 1 meter diameter riser,  with  a  five

    centimeter pixel size.

    1.2.

     X and gamma-ray

     tomography:

     physical basis

    1.2.1.

     D ifferent

      acquisition set ups

    The  simplest set-up consists  in  detecting  the  photons which  are  transmitted

    through  the  investigated object (Fig. 1.1): transmission tomography delivers  a map

    of u, the linear attenua tion coefficient, q ua ntity wh ich is in  turn  a

      function

      of p (the

    density) and Z   (the atomic number).

    Figure

      1.1.  X-ray transmission tomography

    The  clear separation between  p and Z   implies  to  perform either  bi-energy

    tomography   or scattered photons  tomography [ZHU 95, DUV 98]  (Fig. 1.2). This

    last technique  is  based  on the  clear differentiation between Compton  and  Rayleigh

    scattered photons.  The  ratio between those  tw o  measured quanti t ies  is  purely

    proportional

      to Z and is not

      affected

     by the

     density.

    The

      third possibility

      is to

      detect photons emitted

      by the

      investigated object itself.

    Such  is the

      case

      when gamma-ray sources  are  distributed inside  a  nuclear waste

    container,  for  instance. Emission tomography  is thus performed [THI  99]  (Fig. 1.3).

    A n  alternative

      is

      encountered when

      the

      distributed source

      is a

      positon emitter:

      the

  • 8/20/2019 X-Ray Tomography in Material Science

    18/209

    General  principles  17

    local  positon annihilation delivers pairs  of 0.51  M eV annihilation photons which are

    detected outsid e. This is the PET tech niqu e, used in the medical field.

    Figure

      1.2.

      Scattered photons tomography  Figure

      1.3.

      Emission  tomography

    1.2.2. X ray  transmission tomography

    The present paper

      will

      be focused on transmission tomography, which is widely

    used in both industrial and medical fields. It is based on the application of equation

    [1], known

      as the

      Beer-Lambert law,

      or

      attenuation law. Figure

      1.4

     describes

      the

    basic experimental set-up

     for

     transmission tomography inside

      a

     single

     slice.

    N

    l =

      A r

    0

    e x p [ -  v ( x , y i ) d x ]  [ 1 ]

    path

    Measuring the num ber N

    0

     of photons emitted by the source and the nu mb er N, of

    photons  transmitted throughout a single line across the sample allows to calculate

    the  integral of ja along the  considered path:

    [2]

    N

    l  path

    The term  ( ( x , y )

     represents

     the  value of the  linear attenuation coefficient  at the

    point (x,y). Repeating such a measurement along a   sufficient  number of straight

    lines

      within

      the same slice delivers the Radon transform of the object. Radon

    demonstrated   in  1917  the po ssibility to

      find

      an  inverse  to  that transform and  thus to

    reconstruct the n( x, y) map of the slice [KA K 87].

  • 8/20/2019 X-Ray Tomography in Material Science

    19/209

    18 X-ray

      tomography

      in

     material

     science

    As industrial tomography makes

      frequently

      use of an X-ray generator, we  wil l

    focus  our discussion on that kind of experimental set-up. Nevertheless, some

    comments

      wil l be

     made

     on

      gamma-ray tomography.

    Figure 1.4. Physical basis of transmission  tomography inside a slice

    f

    1.2.3.  The linear

     attenuation

     co efficient

    Transmission tomography delivers

      a map of

      (x,y),

      the

      linear attenuation

    coefficient,  which is correlated  to i) the photon energy E, ii) the density p and  iii

    the atomic number Z of the investigated material . Figure 1.5 displays the

    dependance between those quantit ies for carbon (Z=6) and iron   (Z=26).  It must be

    noticed that the quantity displayed on Fig. 1.5 is in  fact  the ratio /p, the mass

    attenuation coefficient.

    Figure 1.5. Value  of  the

     m ass attenu ation

     coefficient  for

      carbon

     and  iron

    Tw o

      main domains appear

      in

      Fig. 1.5. Below

      200

      keV,

      the

     photoelectric

      effect

    dominates

      and

      jj/p

      is

      sharply dependant

      on E and Z.

      Equat ion

      [3] is  often

      used

      to

    describe this behaviour [ATT 68]:

  • 8/20/2019 X-Ray Tomography in Material Science

    20/209

    General principles

      19

    [ ]

    where  K  is a consta nt. Such an equ ation implies that, for any given pho ton energy ,

    is

      proportional to p and to Z

    4

    . Performing images in the photoelectric domain

    implies

     two

      main characteristics:

    - a  comparison  of p  between  two  areas of the  object  (or between  two  objects)

    can

      be

      achieved only

      in the

      case when

     Z is

      constant (same atomic element

      or

      same

    composition),

    - a

     change

      in p

      between

      two

     areas

     can be

     cancelled

     by a

     change

     in Z in the

    opposite direction.

    It  thus appears that a  clear separation between Z and p can not be  obtained,  in

    the photoelectric  domain, unless two  tomographic images  are  performed, using two

    different

      energies.

    Within  the  Compton domain,  above 200  keV,  u can be considered  as  weakly

    dependant on Z and on photon energy. Tomography thus delivers an information

    which  is

      nearly proportional

      to p.

      However ,

      due to the

      higher photons energy,

      and

    hence

      to the

      lower value

      of u, the

      contrast within

     the

      object image

      is

      lower,

      as can

    be

     derived from Beer-Lamb ert law.

    1.2.4.

     D ifferent

      experimen tal set ups

    In

      th e  field  of  industrial tomography, three

      different

      configurat ions are  mainly

    encountered. They are displayed on figu re 1.6.

    Figure

     1.6. D i ff e r e n t  expe rimental set-ups

      in the field

      of  industrial tomography:

      a) first

    generation scanner, b fan-beam  scanner, c)

     cone-beam scanner

  • 8/20/2019 X-Ray Tomography in Material Science

    21/209

    20 X-ray tomography in material science

    Figure 1.6.a corresponds

      to the

      simplest experimental set-up.

      A

      single sensitive

    element

      is

      used

      and a

      rather long scanning time

      is

      needed,

      as the

      acquisi t ion

      of a

    single linear "projection" needs  a set of  elementary translations. Successive

    projections are then acquired, corresponding to

      different

      value of the angle of

    rotation.

      A

      half turn

      is

      sufficient

      to

      reconstruct

      the

      image

      of a

      slice. Figure 1.6.b

    implies  the use of a  linear array. Acquisition is  shorter,  as a w hole linear projection

    is acquired  at a  time.  A  complete turn  is  needed since  the  beam diverges. Figure

    1.6.c makes

      the best  use of the

      X-ray cone-beam;

      one

      turn

      of the

      object

      is

      needed.

    The  Feldkamp algorithm [PEL  84] allows  the direct  3D reconstruction  of the w hole

    object.

    1.3. D ifferent

     scales,

     different applications

    1.3.1. Industrial tomogra phy

    The main application in the field of X-ray tomography is Non-Destructive

    Testing  (NOT)  of  manufactured components, i.e. detection  of  internal defects.

    Among other issues there

      are i)

      "reverse  engineering", whose purpose

      is the

    geometrical inspection  of a  component,  in  such  a way to  assist  the  design,  ii)  local

    characterization

      of

      materials (density measurements,

      for

      instance)

      and

      Hi)

      process

    tomog raphy , able to deliver some kind of control on a con tinuou s ma nu factu ring

    process.  A s  industrial applications involve a broad range  of sizes  and a great variety

    of  materials  to be inspected,  the  corresponding devices may be very  different.

    1.3.1.1. Different  photon  sources

    Inspection   of  small components  can be  performed using a  standard industrial X -

    ra y

      tube

     (160

     kV for instance). Much attention must be paid to the stability of both

    the

      high-voltage

     and the anode current, because  the consecutive projections must be

    acquired within constant conditions. A focus size within the range 1 to 3 mm is

    acceptable. Inspecting heavier components  may  require  a 450kV  tube,  or  even  a

    linear

      accelerator.

      Tw o  different  high capacity scanners were constructed  by the

    french  Atomic Energy Commission

      (CEA-LETI,

      Grenoble).

      A 420 kV

      X-ray

    generator

      in the

      first case

      and an 8 MeV

      linear

      accelerator  in the

      other  case  allow

    the  complete inspection  of a  whole (empty) rocket motor,  up to 2.3  meters  in

    diametre,

      of a

      nuclear waste container

     or of a

     w hole

     ca r

     engine.

    Gamma-ray sources

      can be

      used,

      in

      spite

      of the

      very

      low

      emitted photon  flux.

    The Elf  Research Centre (Solaize-France) uses  a cesium  137  source with an activity

    up

      to 18 GBq

      (gigabecquerels).

      The

      high monochromatic energy (662 keV)

    delivered

      by the

      source allows

      to map the

     density

     of

      solid particles inside

      a  fluidized

  • 8/20/2019 X-Ray Tomography in Material Science

    22/209

    General principles 21

    bed,  through the steel wall of the riser (0.85 meter in diametre). A single source and

    a  single

      detector (Nal)

      are  used, thus constituting  a  first  generation  tomograph,  as

    shown  in Fig. 1.6a. The scan lasts 3 hours [BER  95]. The University of Bergen and

    the

      Norsk-Hydro Company built

     a

      static device using

      a set of

      five

      americium

      241

    sources (energy:  60  keV) distributed around  a  pipe [JOH  96].  A  linear array

    comprising

      17

      semiconductor detectors

      is set

      opposite

      to

      each source, allowing

      a

    near real-time

      (0.1

      second) imaging

      of the

      slice.

      The

      purpose

      is to

      visualize

      the

    liquid  components (oil, water) apart  from  gas  within  a pipe. This application is an

    example of process tomography, i.e.  fast  imaging dedicated to the control of a

    manufacturing  process.

    1.3.1.2.

     Different

      families

      of

      detectors

    Four ma in families

     of

     detectors

     can be

     found:

    1. gas ionisation detectors were used in the early medical scanners. They are  still

    in  use  today  in  some industrial applications. Their main characteristic  is  their high

    dynamic

     range. Filled  with gas having a high atomic number, they can be used even

    with high energies. Linear arrays are av ailable.

    2.

      image intensifiers  (I.I.)  are  used  in

     "desktop"

     scanners  for  industrial  NDT of

    small components. Their low d yn am ic range and the inherent distortion of the image

    need some care. Significative 3D images  can nevertheless  be obtained.

    3.

      scintillation detectors, composed

      of a

      fluorescent material (e.g. gadolinium

    oxysulphide

      Gd

    2

    O

    2

    S,

      or  caesium  iodide  Csl)  are  nowadays widely  used.  Those

    detectors are of two kinds: i) the fluorescent material is directly coupled to an array

    of  photodiodes [KAF

      96] or of

      photomultipliers

      (in

      some cases

      the

      coupling

      is

    realized using tapered optic fibers), ii) the fluorescent material is spread on a screen,

    which is optically coupled to a CCD camera v ia a lens [CEN

     99].

    4.  arrays of semiconductors (e.g. CdTe or Z nCdTe), w hich allow a direct photo n

    detection

      are

     promising. H igh energy applications

     are

     possible.

    1.3.2.

      Microtomography

    Considering advanced materials characterization, the need of 3D images with a

    very

     h igh resolution

     (a few

     um ) obtained through

     a non

      invas ive method

      is

     growing.

    Figures  1.7 and 1.8  show  two  specific examples  of 3D  tomographic images

    performed  with  tw o  different  scanners, conceived  and  built  in our  laboratory [KAF

    96]

     [CEN

     99].

     Such

     3D

     images

      are

     then used

     by the

     researchers

     for the

      modelisation

    of

      the  mechanical  properties  of  materials, within

      finite  elements models

    computations. For such applications micro-focus X-ray tubes, with a focus size in

    the  range

     5 - 1 0

      micrometers,  are  used.  A  very  low  focus size allows  to set the

    investigated object directly at the window of the tube. A geometrical magnification

  • 8/20/2019 X-Ray Tomography in Material Science

    23/209

    22 X-ray tomogra phy in material science

    can  thus  be  obtained.  Figure  1.9 shows  that  th e

      magnification

      can be easily

    modified.

    A

      limit

     exists to the

      magnification:

      the geometrical unsharpness

      [HAL

      92]

      m us t

    be

      kept

      lower  than  p, the

      size

      of the  sensitive element  of the

      detector

      (sampling

    step).  In

      practice,  this  upper

      boundary  to the  magnification  G

    g

      can be

      computed

    according

     to equation  [4],

      where

      represents the size of the focus:

    [ ]

    Figure

      1.7.

      3D

      rendered view

      of a

    tomographic image of a composite material

    with  400 yon glass balls inside  an  organic

    matrix.

      (Herve

      Lebail; Laboratory

    G EMP P M) .

      The voxe l size is set to 42 jjm

    Figure 1.8.

      3D rendered view of a

    tomographic image of an aluminium foam

    (density

      0.06)

      (Eric

      M aire; Laboratory

    G EMP P M) .

      The  voxel size  is 150 pm. The

    size of

      the

     sample

      is 3cm

    Figure 1.9.  According

      to the

      location

      of  the

     inve stigated

      object

      between

      the

     focus

      and the

    screen,

      d i f f e r e n t

      geome trical magnifications

      are

      attained

  • 8/20/2019 X-Ray Tomography in Material Science

    24/209

    General principles

      23

    Designing  and b uilding such a kind of  scanner implies some care  in at  least three

    domains:

    - the low  photon

      flux

      delivered by the  micro-focus X-ray tube results  in  long

    exposure times;  the camera must therefore deliver  a very low  noise,

    - the  choice  of the  photon energy  is  important:  low  energy photons deliver

    images w ith an  higher contrast,  but also with an  higher relative noise,

    - the accuracy  of the mechanical setting mus t be better than the expected image

    resolution.

    Today,  the  most powerful tool involves  the use of  synchrotron radiation.  The

    European Synchrotron Radiation Facility (ESRF-Grenoble) delivers

      a

      huge X-ray

    flux

      and thus allows very short exposure times. A complete scan can be acquired

    within  a few  minutes, with  a  spatial resolution down  to 1 um. O n beam-line  ID 19,

    the source is located far

      from

      the working hutch (145 meters), thus delivering

    photons

      with

      a

      high spatial coherence. This property

      of the

      X-ray

      flux

      generates

    diffraction  features which underline

      the

      edges within

      the

      sample,

      and

      thus

    highlighting sharp defects. Such

      a

     phenomenon,

     the

     so-called  "phase  contrast" [CLO

    97], allows very small defects

      to be

      detected.

      As the

      beam

      is

      non-diverging,

      the

    resolution  is set by the  detector itself. Transparent luminescent screens  are  used,

    with a 5 jam sensitive layer  of an  yttrium-aluminium (YAG)  or  lutetium-aluminium

    (LUAG) garnet , epitaxially grown on a YAG monocrystal , 170 jim in thickness;

    they allows

     a

     high resolution

     (1

     fim)

     and a 4% to 8%  efficiency  for 14 keV

     photons .

    1.4.

     Quantitative

      tomography

    As  mentionned

      earlier,

      tomography offers many possibilities. If the  goal  is  just

    defect detection,

      the

     selected resolution m us t therefore

      be

     adjusted

      to the

     size

     of the

    details  to be  observed. Much attention must also be  paid to the  noise of the  camera

    or,   more precisely,  to its  dynamic range [CEN 99]. When  the  inspection's issue  is

    the  determination  of the

      accurate  size

      of  some internal feature,  or the

      local

    characterization of ma terials (dens ity measu rement for instance), then an increased

    attention must

     be

     paid

      to the reconstruction

     artifacts.  They create artificial patterns

    inside

      the  reconstructed

      slice

      (streak artifacts),  or  they locally modify  the

      pixels

    values (cupping effect),

      and

      hence

      the

      quantitative result [ISO

      99]

      [SCH 90].

      In the

    following  lines,  we  will  describe  the  main physical mechanisms leading  to

    erroneous reconstructions, as well as the shape of the corresponding artifact in the

    reconstructed image.

    -  Beam hardening

    As an X-ray tube delivers a polychromatic spectrum,  differential  attenuation of

    photons within the investigated object leads to the rapid attenuation of the lowest

  • 8/20/2019 X-Ray Tomography in Material Science

    25/209

    24

      X-ray tomography

      in material science

    energy photons,

      and

     hence

      to the  gradual

      increase

      of the

      mean energy along

      the

    path. The reconstruction algorithm uses, for the reconstruction of any single point,

    experimental data corresponding

      to

      individua l rays impinging

      the

     point

      of

      interest,

    but

      coming from

      different

      orientations. The corresponding information therefore

    corresponds

      to

      different  attenuations,

      and

      hence  different  energies,

      and

      different

    values of ji. Two kinds of artifacts are generated by beam-hardening: i) cupping

    effect and ii)  streaks. Cupping

     effect

      corresponds  to  measured values of  \ J L which  are

    corrupted, thus preventing the  measurement  of the  "true" density.  As the  measured

    values, inside

      an

     homogeneous sample,

      are

     lower

     a t the

     center than

     a t the

     edges,

      the

    name

      of

     cupping effect

      is

      generally used

      to

     describe this artifact. Projections

      can be

    corrected

     by

     acquiring

      an image of a

     step-wedge, made

     of the

      same material,

      in

     such

    a way to  correlate  the  mesured attenuation  to the  true material thickness. Streaks

    artifact  correspond

      to

      abnormal values along lines which correspond, inside

      the

    object, to high attenuation. Beam hardening artifacts can be avoided when using

    some filter, i.e. a metallic  foil,  directly set at the window of the X-ray tube and

    intended   to

     pre-harden

      the

      spectrum [KAF 96]. Figure 1.10 displays

      an

      example

     of

    streaks inside the tomographic image of a set of six samples surrounded by air (Fig

    l . lO .a ) ;  the streaks are suppressed by the use of a copper  filter,  0.1 mm in thickness

    (Fig. l . lO .b).

    Figure

      1.10.

      T he reconstructed  slice (l.lO.a)  is corrupted  by streaks  due to beam-

    hardening (l.lO.a).  Filtration

     with a

     foil  of  copper, (0.1

      mm)

      nearly suppresses

      the

      streaks

    (l.lO.b).  T he high  voltage used for

      both

     images is 100 kV

    Beam hardening

      is

      also avoided when using

     a

     monochromatic y-ray source.

      But

    it

     mus t be kept in mind that y-ray sources deliver a very low photon  flux  (typically

    one hundredth  of the  flux  delivered  by a  tube). Tomography using synchrotron

  • 8/20/2019 X-Ray Tomography in Material Science

    26/209

    General

     principles  25

    radiation  does  not generates artifacts because a monochromator is always used,

    thanks to the huge X-ray  f lux.

    -

     Detector saturation

    To

     obtain

     a

     reconstruction which

     is

      free

      of

     defect,

      the

     signal delivered

      by

     every

    cell of the detector must be strictly proportional to the photon f lux. Thus high values

    (approaching the upper limit of the digitization range) as well as low values

    (approaching the noise level) of the

      flux

     must be avoided. Streaks artifacts, similar

    to those obtained in the  case of beam-hardening, are generated along lines which

    correspond  to high attenuation.

    -

     Aliasing

    High  (spatial) frequencies  are encountered  in the signal corresponding  to every

    projection.

      They  are due to the  steep edges which  are  eventually present  in the

    object. As the detector samples the signal (all along the projection) with a non-zero

    step,

      high frequencies corrupt the data, within the Fourier domain. Streaks are

    generated [KAK 87].

     On

      figure  1.11, aliasing

     is

     visible

     at the

     corners

     of the

     objects.

    -

     Scattered photons

    Photons

      scattered

      by the

      sample

      or by its

      environment deliver

      a

      wrong

    information

      which leads  to  cupping  effect.  Collimation  can  improve  th e

    reconstructed image.

    Figure 1.11. A liasing at the corners  Figure 1.12. Ring

      artifacts

    -111 corrected detector

    The  signal delivered  by  every sensitive cell  of the  detector must  be  linearly

    spread between  the  offset  level (corresponding  to the  absence  of  photons)  and the

    gain  level (corresponding

      to the

     non-attenuated

      f lux).  A bad

      correction

      of one

      cell

    will generate,  in the  reconstructed image  a  "ring artifact", i.e.  the  image  of a ring,

  • 8/20/2019 X-Ray Tomography in Material Science

    27/209

    26

      X-ray tomography

      in

      material science

    centered on the  pixel  corresponding to the  location  of the  rotation axis.  On  figure

    1.12

     a great numb er of concentric rings are visible.

    -

      Spatial distortion

     of

     the

     detector

    Distortions  of the projections,  due for instance to the  camera (e.g. distortions  due

    to the

      lens) deliver artifacts which

     can be

     corrected

      by

      software.

    -  Centering error

    The reconstruction requires the knowledge of the location of the projection of

    the

      center

      of  rotation within  the

      detector.

      Distortions  are  generated  when  the

    reference

      to the

     centre

      is

      erroneous.

    1.5.

     Conclusions

    X and  y-ray tomography allow  a  great number  of  potential applications.  The

    measured quantity is in fact the linear attenuation coefficient  \i ,  and not directly the

    density. A careful choice of the pho tons energy a nd the selection of a detector w ith a

    high

      dynamic range allows

      to

      lessen

      the

      noise

      to a

      reasonable level.

      Coefficient  \ L

    can be

     estimated

     with

     an

      accuracy slightly

     better

     than

     1% .

    1.6. References

    [ATT  68]

     Anrx

     F.H.R.,  ROESCH  W.C. ,  Radiation  Dosimetry,  Academic Press, 1968.

    [BAR 57]  BARTHOLOMEW  R.N. ,  CASAGRANDE,  R.M., "Measuring solids

    concentration

      in

      fluidized

      systems

      by

      gamma-ray absorption",  Industrial

      and

    Engineering Chemistry, vol . 49, n. 3, p. 428-43 1, 1957.

    [ B E R

      95]

      BERNARD

     J .R. ,

      Frontiers

      in

      Industrial Process Tomography,

      Engineering

    Foundation,

     Ed. DM

      SCOTT&

     RA

     WILLIAMS,  New-York ,

     p.

      197, 1995.

    [CEN  99]  CENDRE,  E. et

      al.,

      "Conception of a high resolution X-ray com puted

    tomography device; Application  to  damage initiation imaging inside materials",

    Proceedings

      of the 1st

      World  Congress

      on

      Industrial Process Tom ography,

    Umist Univ. (U.K .) , p. 362-369,  1999.

    [CLO  97 ]  CLOETENS P .,  PATEYRON-SALOME M.,  BUFFIERE J.-Y.,

      PEK

     G.,

      BARUCHEL

    J.,   PEYRIN  F.,  SCHLENKER  M .,  "Observation  of  microstructure  and  damage  in

    materials by phase sensitive radiography and tomography",  J. Appl.  Phys.,  vol .

    81,

     n. 9, p. 5878-5886,  1997.

    [ D U V

     98]

      DUVAUCHELLE

      P .,

      Tomographie

      par

      diffusion

      Rayleigh

      et

      Compton avec

    un  rayonnement synchrotron: Application a la

      pathologic

      cerebrale,  these de

    doctoral, univ ersite de G renoble  1,  1998.

    [PEL  84 ]  FELDKAMP  L.A. ,

      DAVIS

      L.C.,

      KRESS

      J.W., "Practical cone-beam

    algorithm",

      J.

     Opt. Soc.,  vol.  1, n. 6, p. 612-619,  1984.

  • 8/20/2019 X-Ray Tomography in Material Science

    28/209

    General principles

      27

    [HAL  92]  HALMSHAW  R .,  "The  effect  of  focal spot size  in  industrial

    radiography",flrif/s/i  Journal

      of

      NOT, vol. 34, n. 8, p. 389-394, 1992.

    [HAR  99 ]  HARTEVELD  W.K.  et al. "A  fast  active  differencial  capacitance

    transducer

      fo r

      electrical capacitance tomography",  Proceedings

      of the 1st

     World

    Congress on Industrial Process Tomography, Umist Univ. (U.K.), p. 571-574,

    1999.

    [ISO

      99]  iso/TC  135/SC  5 , ISO   document  "NDT  Radiation methods- Computed

    tomography", Part I: Principles; Part II: Examination Practices, 1999.

    [JOH  96]

      J O HA N S E N

      G.A,  FR0YSTEIN  T.,

      HJERTAKER

      B.T.,  OLSEN  O., "A dual

    sensor  flow  imaging tomographic system",  M e as.

      Sci.

     Techn.,  vol. 7, n. 3, p.

    297-307, 1996.

    [KAF 96]  KAFTANDJIAN V.,  P E D C   G .,  BABOT  D .,  PEYRIN  F.,  "High resolution X-ray

    computed tomography using

      a

      solid-state linear

      detector",

      Journal  of  X-ray

    Science

     and

      Technology,

     vol. 6, p.

     94-106,

     1996.

    [KAK

     87 ]  KAK A.C.,  SLANEY M., Principles  of  Computerized Tomographic Imaging,

    IEEE

     Press,

     1987.

    [PIN  99]  PlNHEIRO P.A.T.  et  al.,  "Developments  of 3-D  Reconstruction Algorithms

    for  ERT",  Proceedings  of the 1st  World  Congress  on  Industrial Process

    Tomography,  Umist Univ. (U.K.), p. 563-570,

     1999.

    [SCH

     90],

     SCHNEBERK

     D.J.,

     AZ EVEDO

     S.G.,

     MARTZ H.E.,  SKEATE

     M.F., "Sources

      of

    error in industrial tomographic reconstruction", Materials Evaluation,

     vol.

     48, p.

    609-617,

     1990.

    [THI

      99]

      THIERRY

      R. et

      al.,  "Simultaneous Compensation

      fo r

     Attenuation, Scatter

    and Detector Response for 2D-Emission Tomography on Nuclear Waste  wi thin

    Reduced Data",

      Proceedings  of the 1st

      World

      Congress  on  Industrial Process

    Tomography,  Umist Univ. (U.K.), p. 542-551,

     1999.

    [ZHU  95] ZH U P. ,

      PEIX

      G.,  BABOT

      D.,

      MULLER  J.,  "In-line density measurement

    system using X-ray Compton scattering",  ND T & E International,

      vol.

     28, n.

      1,

    p. 3-7, 1995.

  • 8/20/2019 X-Ray Tomography in Material Science

    29/209

      his page intentionally left blank

  • 8/20/2019 X-Ray Tomography in Material Science

    30/209

    Chapitre 2

    Phase contrast tomography

    Hard X-ray radiography

      and

      tomography

      are

      common techniques

      fo r

      medical

    and industrial imaging. They normally rely on absorption contrast. However, the

    refractive  index  for  X-rays  is  slightly

      different from

      unity  and an  X-ray beam  is

    modulated in its optical phase after passing through a sample. The coherence of third

    generation synchrotron radiation beams makes

      a

      simple form

      of

      phase-contrast

    imaging, based  on  simple propagation, possible. Phase imaging  can be used either  in

    a

      quali tat ive way, mainly

      useful  for

      edge-detection,

      or in a

      quanti tat ive way,

    involving  numerical retrieval of the phase

      from

      images

      recorded

      at different

    distances from

     the

      sample.

    2.1.

     Introduction

    The

      phase

      of an X-ra y b eam tran sm itted by an object is shifted due to the inter-

    action  with  the electrons in the ma terial. Im ag ing usin g phase contra st as opposed to

    attenuation  contras t  is a  powerful method  for the  inv es t igat ion of  light ma terials  but

    also to dis tingu ish, in ab sorbing samples, phases w ith very similar X-ray attenua tion

    but

      different

      electron dens ities. Phase contrast im ag ing

     w as

      pioneered

      in the

      early

    seventies by

      A n d o

      and

      Hosoya  [AND 72] ,

      w ho

      obtained images

      of

      bone tissues

      and

    of

     a

     slice

     of

     granite us ing

     a

     Bonse-H art type interferometer [BO N 65]. This technique

    developed into a qua ntitativ e three-dim ensional ima ging technique. Because of the

    limited

     qu al i ty

     of

      available lenses, elaborate forms

     of

     phase contrast ima ging such

     as

    Zernike phase-contrast [ZER

      35] or

      off-axis

      holography [LEI

      62] are

     presently ruled

    out for hard X-rays.  Three  methods of phase sensitive imaging exist: the interfero-

    metric techniqu e [MO M

      95 , BEC

     97],

      the

     Schlieren technique [FOR

      80, ING 95] and

    the  propagation technique  [SNI

     95, CLO

     96].

      They are compared in

     section

     3. The

    main  advantages of the method used in this work, the propagation technique, are the

    extreme s imp licity of the set-up a nd the better spatial resolu tion.

  • 8/20/2019 X-Ray Tomography in Material Science

    31/209

    30

      X-ray tomography

      in

      material  science

    This techniq ue w as mostly used up to now in the so-called  'edge-detection regime'

    to   image directly  th e  discontinuities  in  refractive index  in the  object.  It is  how-

    ever possible

      to  fully

      exploit

      th e

      quantitative information entangled

      in the

      Fresnel

    diffraction

      patterns towards h igh resolution qu antita tive phase tomography.  The

      'holo-

    tomographic'  reconstruction  is performed  in two steps:  first the  optical phase  of the

    w ave exiting the sample is retrieved n um erica lly from images recorded at different  dis-

    tances from the sample. The refractive ind ex dis tribu tion is then reconstructed from a

    large num be r of phase m aps us ing a classical tomographic a lgorithm . Res ults of q ua n-

    titative phase tomography

      on

     sam ples

      of

     interest

     to

     materials science

      are

      discussed.

    2.2. X-ray

     phase modulation

    The interaction of a wave w ith matter affects its am plitu de and phase. This can

    formally  be described  by the  complex refractive index n  of the  medium. Because  its

    value is

      nearly  unity,

     it is

     usually w ritten

     for

      X-rays

     as

    n =  l - < J +

      i/?

      [1]

    A

      plane monochromatic wave prop aga ting along

     th e

      z -axi s

      in

     vacuum

     is of the

      form

    exp(i^

    L

    z)

      with  A the  X-ray wavelength.  In a  material with refractive index

      n

      this

    becomes  exp(m^

    L

    z).  The refractive index decrement

      6

      results in a phase va riation

    compared

     to propagation  in vacuum. The imaginary part  J determines the attenuation

    of

     the wav e. The X -ray intens ity is the squared m odu lus of the wave and the absorption

    index

     (3

     is  simply proportional  to the  linear absorption

      coefficient

      p.

     = f >   [2]

    The  absorption index  has a  complex energy  and  composition dependence.  It va ries

    abruptly near the characteristic edges of the elements. The

      refractive

      index decrement

    6

      on the other hand is prima rily due to Thomson scattering and has a much sim pler

    dependency   on the energy and the m aterial characteristics . S is es sentially proportional

    to the  electron density in the  material. Generally, it can be expressed  as

    where

      the sum

      extends over

      a ll

      atoms

     p,

     with atomic num ber

     Z

    p

    ,

      in the

      vo lume

      V,

    r

    c

      =  2.8  fm  is the  classical electron radius,  and  f'

    p

      is the real part of the wav elength-

    dependent dispersion correction,  s ignificant  near absorption edges,

      to the

      atomic scat-

    tering factor.  If the  composition  of the  material  is  known  in

     terms

     of

     mass

     fractions

    q

    p

    , the follow ing equ iva lent expressions  can be used

  • 8/20/2019 X-Ray Tomography in Material Science

    32/209

    Phase contrast tomography  31

    [5]

    with  NA

      Av ogadro 's num ber and A

    p

      the mass number.

     6

    P

      and p

    p

      are respectively the

    refractive index decrement

      and mass

     density

      of the

     pure species.

    If  the

      dispersion correction

      f

    p

      can be

      neglected,

     6  is

     proportional

      to the

      electron

    density

     p

    e

    ,

      i.e.

      S

     =

     r

    c

    A

    2

    p

    e

    / ( 2 7 r ) . The

     ratios

     Z

    P

    /A

    P

      appearing

      in

     Equ at ion

     4 are

     simi-

    la r for ma ny atomic species  «  1/2),  and 6 is thus to a good approx imation determined

    by

      the

      mass density

     p

     of the

      material [GUI

      94 ]

    [6]

    Both 6 and ft are small, typically 10~

    5

     -  10~

    6

     and 10~

    8

     -  10~

    9

     respectively  for l ight

    materials, ind icatin g the power of phase sensitive ima ging compared to the absorp-

    tion.  Figure

      1

     shows

      the

      ratio

      S /ft,  a

      figure

      of

      merit

      fo r

      phase effects compared

      to

    attenuation  effects,

      as a  function  of the X-ray energy  E  fo r

      a luminium.

      The energy

    range includes

      soft

      X-rays

      and

      hard X-rays.

      In the

      soft  X-ray range, more precisely

    in

      th e  'water w indow '

      where

     soft

     X -ray microscopes u sua lly operate,

      a

     gain exists

     b ut

    it

      is relatively mod est. O n the other hand in the hard X-ray range (energies ab ove 6

    keV) this ratio increases with energy

     to

      huge values

     (up to  1000).

      Practically,

      if one

    selects

      for exam ple an X -ray energy of 25 keV to be able to cross a thick alu m iniu m

    sample,

      a

     hole

     in

     this metal should hav e

     a

     diameter

     of at

      least

      20

      /zm

      to

     produce

      1 %

    Figure 2.1.

      Ratio  S / / 3

      of the

      refractive  ondex decrement

      and the

      absorption index

      as a

    function

      of the

      X-ray energy

      for the

      element  aluminiu.  This

      is a

      figure

      of

      merit

      for  phase

    e f f e c t s   compared  to attenu ation  e f f e c t s

  • 8/20/2019 X-Ray Tomography in Material Science

    33/209

    32  X-ray tomography  in material  science

    absorption contrast. Using

      the

      effect

      on the

      phase,

      the

      minimum detectable hole

      is

    reduced

      to

      about

     0.05  y u m .

      X-rays

      are

      adapted

      fo r

      imaging

      of

      thick samples thanks

    to   their  low  absorption  at high  energies.  If it is possible  to  visualise  the  phase of the

    transmitted w ave,  the  sensitivity and  spatial resolution remain good.

    For

      inhomogeneous samples

      the

     wave

      at the

     exit

     of the

     sample

      will  be

      modulated

    in

      both phase and attenuation. Propagation inside the sample itself can

      usually

      be

    neglected

      and it is

     possible

      to

      project

      the

      object onto

      a

     single plane perpendicular

      to

    the propagation direction.  The  transmission  function  T(x, y)  gives  the  ratio  of the

    transmitted

     a nd the

     incident amplitude s.

      It can be

     compared

      to

     exp(—

      f

      n(x,

     y,  z)dz)

    that

     gives

     the

     ratio

     of the

     transm itted

     and the

     incident intensities according

      to

     Lam bert-

    Beer's law.

     This transm ission

      function

      corresponds

      to the

      projection

     of the

     refractive

    index distribution through

    T(x,y)  = A(x,y)e

    i

    rt

    x

    >ri  [7]

    w ith the amplitude

    A(x,y) =e-W*'*)  and  B(x,y}

     

    y  j  0(x,y,z)dz  [8]

    and  the phase m odulation

    (p(x,  y) = Y

      /

     [1 -  < 5 ( z , y,

     z)]dz

      =  (?

    0

     -

     -̂   /

      6(x , y, z}dz  .

    [9]

    ( p

    0

      is the phase  modulation that would occur in the absence of the object. In classical

    absorption tomography  the  projection  of n  is  determined  for a  large number  of an-

    gular positions  of the

     sample.

      The  three-dimensional  (3D) distribution  of n(x,  y, z)

    or

     eq uivalently

      of  / 3 ( x , y ,

      z}

      is

      then reconstructed

      from  the set of

     projections using

     a

    tomographic reconstruction algorithm. Similarly if the phase map  (p(x,  y)  is known

    for

      a

      large enough number

      of

      angular positions

      of the

      object,

      it is

      straightforw ard

      to

    reconstruct

      th e

     d istribution

     of the

     refractive index decrement

      8(x,  y, z) .

    2.3.

      Phase

     sensitive

     imaging

     methods

    There

      are

      three methods

      of

      phase sensitive imaging:

      the

     interferometric techniq ue

    [MOM

      95 , EEC

     97],

     the

      Schlieren technique [FOR

      80, ING 95] and the

      propagation

    technique

      [SNI 95, CLO

     96].

      The

      co-existence

      of the

      different

      methods shows that

    they

      all

     have their advantages

      and

      disadvantages with respect

     to the

     accessible phase-

    information,

      the

     complexity

     of the

     set-up,

      the

      requirements

      on the

     beam

      or the

      spatial

    frequency

      range covered.

  • 8/20/2019 X-Ray Tomography in Material Science

    34/209

    Phase  contrast tomography

      33

    2.3.1.  The  interferom etric

      technique

    Here

     contrast

     is due to

     interference

     of the

     beam transm itted through

     the

     object w ith

    a reference beam . If the beams are coherent w ith each other, the intensi ty

     wil l

      be di-

    rectly  affected by the  local phase  shift.  Bragg-dif f ract ion by p erfect crystal slices  cut

    out

     from a large, almost perfect m ono lithic silicon crystal is used to s plit, dev iate and

    recombine the two bea ms. A possible configuration [HAR 75] is shown in Figure 2a.

    The recorded inter feren ce pattern cannot be exp loited as it is because the interference

    fringes  ca nno t be directly linked to a projection of the object and b ecause an intr ins ic

    fringe  pattern is alw ay s present. The image treatment to

     qu anti tat ively

     reconstru ct the

    phase mo du lat ion introduced

     by the

     sample

      is

     howev er rather s traightforw ard. Several

    images

      for

     different

      external phase

      shifts,

      typical ly

     8

     ( inc lud ing

     flatfield

     images) , mus t

    be recorded  to reconstruct a single phase-map.

    The pos sibility to perform phase tomograp hy a nd to reconstruct the local dis tribu tion

    of  the

     refractive index decrement w ith

     a n

      X-ray interferometer

      w as

      demonstrated

      by

    Momose  et al  and  Beckmann et al in  1995 [MOM  95, BEC

     95].

     The interest of phase

    imaging compared  to  absorption ima ging w as  frequently illustrated [MOM

     96].

      The

    complexity and stability requirements of this technique are however serious draw-

    backs.

      The

      sample must

     be

      immersed

      in a

     liquid that matches

      the

     refractive index

     of

    the

     sample. O therw ise large phase jum ps

     a t

     air-sample bou nda ries perturb

     th e

     interfer-

    ence fringes and the large deflection in the sam ple reduces the v isib ility of the fringes .

    Some

     blurring

     is

      necessarily associated

      to the

      passage

      of the

      beam through

     the

      anal-

    yser crystal. This limits the resolution to about 15 /^ m  in the best case  [BEC 97].  O n

    the

     other han d

     th e

     freq uency range covered

      is not

      limited towards

      the low

      frequencies

    and a spatially homogeneous phase  shift can be measured w ith respect to the  reference

    beam.

    2.3.2. Schlieren  technique

    This  differential  phase contrast method

      is

     sensitive

     to the

     angular deviations

     of the

    X-ray beam. Phase gra dients present in the object locally deviate  the beam by an angle

    Forster et al  [FOR  80] used  a  double crystal arrangement similar to the one  shown in

    Figure

      2b. The first

      crystal

     acts

      as a

      collimator

      in

      limiting

     the

      angular

      and

      spectral

    range.

      The

      angular deviations introduced

      by the

      sample change

      th e

      incidence angle

    with

     respect

      to the

      analyser that acts

      as an

     angular

      filter. The

      variety

      in the

      nomen-

    clature fo r this approach can be  noted: Schlieren-imaging [FOR  80, CLO   96], refrac-

    tion

      contrast [SOM  91],  phase dispersive imaging [ING  95, ING  96], phase contrast

    imaging [DAV   95] and  diffraction enhanced imaging [CHA  98] are the  most com-

  • 8/20/2019 X-Ray Tomography in Material Science

    35/209

    34  X-ray  tomography in material science

    Figure  2.2.

      Set-up  for  phase

      sensitive

      methods:  (a)  Interferometric techniqu e,  (b)  Schlieren

    technique and (c) Propagation technique

    mon names. The poss ibility to vis ua lise phase gradients (occu ring for exa mple at

    edges) was shown by many groups, but no reconstructed

      (differential)

      phase map was

    presented  and the method  was not extended  to 3D im aging through tomographic tech-

    niques .  Compared  to the  interferometric technique,  th e  experimental set-up  is  sim-

    plified

      and the

      stability requirements

      are

      less stringent.

      To

      obtain

      a

      good sensitivity

    to phase gradients, the width of the rocking curve for one of the crystals relative to

    th e

      other should

      be

      small, typically 2-10

      yurad,  and the

      angular s tability should

      be

    about 0.2 yurad  [ING 96]. A s the ali gnm ent is less critical, the collima tor and analy ser

    crystal  do not  need  to be  part  of a m onolithic block,  and the

     space

      available  for the

    sample and its env ironm ent increases. The samples are in general not immersed in a

    liquid. The spatial resolution is aga in affected by the passage of the wa ve thro ug h the

    analyser crystal. This method

      is

      less adapted than

      th e

      previous

      one to

      covering

      th e

    low  spatial frequen cy range,  and  very smooth variations of the phase  may  introduce a

    phase gradient that is too  small to be detected. This ima ging scheme  can be used on a

    laboratory X-ray source. Most of the published results w ere obtained und er these con-

    ditions, resulting  in  long exposure times  of  15-30 minutes [ING 96] for a  radiograph.

    This  technique corresponds  to  Schlieren imaging in  classical optics [HEC  98].

  • 8/20/2019 X-Ray Tomography in Material Science

    36/209

    Phase contrast tomography  35

    2.3.3.

      The propag ation technique

    The

     spatial redistrib ution

     of the

     photons

     due to

     deflections

     or

     more generally Fres-

    nel

     d iffraction

      is considered a nuisa nce in abs orption contact and projection radiogra-

    phy  and in interferometric and Schlieren phase imaging. It is however also a unique

    contrast mecha nism

      fo r

     phase s ensitive ima ging,

     with

      advantages

      in the

     sim plicity

     of

    the  set-up and the achieva ble resolution . In this case  there is no distinct reference

    beam as in the interferometric techniq ue, and the beam trans mitted throu gh the object

    plays this role itself.

      The

      occurrence

      of

      contrast

      can be

      understood

      as due to

      inter-

    ference  between parts  of the  w avefront that have  suffered  slightly

      different

      angular

    deviations

      associated

      to  different

      phase gradients.

      The

      overlap between parts

      of the

    wavefront  is only possible after propaga tion over a certain distan ce. A s in previous

    case,

      this  is a

      differential

      phase

      ima ging technique .

      A

      homogeneous phase gradient

    cannot  be detected because it corresponds to an overall deflection of the beam; de-

    tectable contrast requires

      th e

      second derivative

      of the

      phase

      to be

      non-zero . When

    the direction of the X-ray beam is tangential to the edge of structures in the sample,

    such  a perturbation of the wavefront is expected and contrast

      wi l l

      appear. Po ssib le

    internal  stru ctures are holes and cracks, inclu sio ns , reinforcin g particles or fibers  in a

    composite material. Ex perimentally

      the

      sample

      is set in a

      (partially) coherent beam

    and the trans mitted beam is recorded at a given distance d

      with

     respect  to the sample

    [SNI

      95 , CL O

     96].

      The

      experimental set-up shown

      in

      Figure

      2c is

      thus essentially

    the  same

      as for

      absorption radiography except

      for the

      increased sample

      to

      detector

    distance.  The  crystal system upstream  of the  sample selects  a  narrow spectral range,

    delivering a quasi-monochromatic beam  to the  sample.

    The  image contrast changes tremendously  with  th e  sample detector distance  d .

    The

      latter determines

      the

     defocu sing distance

      D

      through [BOR

      80]

    with

      /

      the  source sample distance.  In the  case  of the  long ESRF beamline  ID 19 (d  < C

    /  =  145m),  th e  defocusing distance  and the  sample-detector distance  are practically

    equal.

      The

      absorption radiograph corresponds

      of

     course

     to an

      image recorded close

      to

    the

     sample

      (D

     «

     0). The

     region

     of the

     object ma inly contributing

     to the

      corresponding

    point of the  image (the first  Fresnel zone) has a radius equal to

    When it is small compared to the typical transverse dimension a of the features in

    th e

      sample,

      a

     separate

      fringe

      pattern shows

     up for

     every border

     in the

     sample,

      and the

    images

     are

     cha racteristic

     of the

      'edge-detection regime'

      (rp

      < § ;

      a).

      Three-dimensional

    reconstruction  of the  boundaries inside  the  volume  is  feasible with  the  algorithm  fo r

    absorption tomography

      ( c f .

      section

      4) . At

      larger distance

      (rp

      w

      a)

      several interfer-

    ence  fringes  show up in the radiographs.  These  deformed images, corresponding to

  • 8/20/2019 X-Ray Tomography in Material Science

    37/209

    36  X-ray tomography  in material  science

    th e

      'holographic regime' ,

     give little direct inform ation on the sample. How ever, com-

    bining

     such images

     recorded

     a t different  distances w ith a su itable num erical algorithm

    gives  access  to the phase modulation  ( c f .  section 5). For the largest dista nces , rarely

    accessible with X-rays,

     one

     reaches

     the

     Fraunhofer l imit

     (rp

     

    a).

     Figure

     3

     shows

     as

    an exam ple four radiographs of a 0.5 mm thick piece of polys tyren e foam at increa sing

    distances D .  The  beam  is monochromatised  to  18 keV. As the distance increases,  the

    contrast  and width of the  Fresnel fringes both increase.  The radiographs are  recorded

    with  a C CD based detector inv olving X-ray / v isible l ight conversion in a transparent

    YAG:Ce screen [KOC 98], with

     an

     effective pixel size

     of

     0.95  //m.

    The most striking advantage of this method is the extreme

      simplicity

      of the set-

    up.

      It is

      essentially

      the

      same

      as for

      absorption radiography.

      The

      transit ion betw een

    abs orption and phase radiog raphy or betw een the

     different

      regimes of phase ima gin g is

    simply o btained by cha ng ing the sam ple detector d istance. The

     stab ility

     requ irements

    on the (few ) elements dow nstream of the monochrom ator, i .e. the samp le and the

    detector, are easily met. The m ono chrom ator can be w ell upstream of the sample and

    the sample detector distance can  often  be chosen quite large. The

      free

      space around

    the

      sample

      can be

      used

      for all

     k inds

     of

      devices

      fo r

      in-situ

     and

     real - t ime ob servat ions .

    However the optical elements of the beamline have to be  carefully  prepared to avoid

    spurious phase  images.

    It

      can be  shown that  for a given defocu sing distance  the  image  is m ost sensit ive

    to a specific freque ncy range.  The optimum distance  to be  sensitive to phase features

    with spatial frequ ency / is such that

    This frequen cy selectivity will intrinsically limit th e access ibil i ty to the low f requency

    range , i.e. the smooth v ariation s in the object's phase. The optimu m distance, increas-

    ing

      as the square of the object size,  wil l  not be reached for these freq uen cies due to

    physical  limitations (size of the experimen tal hu tch ) or the coherence co nd itions . The

    image  is not spoiled  by the passage of the  modulated wave through a crystal as is the

    case  in the interferometric and Schlieren techniques. The resolution in the propaga-

    tion

      technique depends

     on the

     image processing  after  recording.

     F or

     untreated images

    recorded

      in the

      edge-detection regime

      the

      resolution

     is

      limited

     by the

      fringe  spacing

    to about 2rp.  When the

      fringes

      are disentangled in a holographic recons truction, the

    spatial resolution is limited essen tially by the detector. The strin gen t req uire m ents on

    th e

      beam incident

      on the

      sample explain

      w hy

      this

      techniq ue emerged only recently

    [HAR

      94,

     SN I

     95, CLO 96, NU G 96]

     wi th

     the

     appearance

      of

     partially co herent X-ray

    beams  delivered b y third generation sy nchrotron rad iation sources. The geom etrical

    resolution  in the Fresnel  diffraction  pattern  is equa l  to Ds

    a

      with

     s

    a

      —  f  the angu-

    la r

     source

      size  and  s  the  source size.  The  condition  for observation of the  spatial

    frequency / is

  • 8/20/2019 X-Ray Tomography in Material Science

    38/209

    Phase contrast tomography

      37

    Figure 2.3.

      Phase sensitive radiographs

      of  a 0.5 mm

      thick piece  of  polystyrene foam, with

      the

    de tector at various distances dfrom the sample. X-ray energy 1 8 keV . (a) d= 0.03 m, (b) d =

    0.2 m, (c) d = 0.5 m and

      (d )

      d = 0.9 m. The

      contrast

      and the

      width of

      the

      interference  fringes

    increase trough  the  series

    The blurring due to source size and detector resolution explains why no interference

    fringes  are observed  with classical  laboratory

      sources

      although  the propagation  dis-

    tances a re also n on-z ero in projection radiography . A lternatively , the interference pat-

    tern

      involves

     the

     coherent superposition

     of

     laterally separated portions

      of the

      incident

    beam. The interfering wav es mu st originate from  points that are mutually coherent,

    and

     thu s latera lly separated

      by a

     distance sma ller than

     the

     transverse coherence length

    /t

      that can be defined as l[ =  A/(2s

    a

    ).  The incid ent beam mu st be coherent over the

    first Fresnel zone fo r o ptimum conditions.

    The conditions on the monochromaticity are less stringent. The beam is   usually

    monochromatised using  a  monochromator  based  on  perfect silicon crystals.  The en-

  • 8/20/2019 X-Ray Tomography in Material Science

    39/209

    38 X-ray tomogra phy in material science

    ergy spread AA/A   «  10 ~

    4

      is  thus very small.  The  th ickness  of the  samples that

    can

      be

      investigated

      is  not

      limited

      to the

      longi tudinal  coherence length

      (=

      A

    2

    / A A )

    [CLO 96].  A n  increase  in  energy spread  by one or even  tw o  orders  of magn i tude can

    still

      correspond  to  quasi-monochromatic conditions. This allows to  increase consid-

    erably

     the flux

     us ing

     a

     m ult i - layer monochromator w ith

     a

     very high substrate

     quali ty.

    Using  the same propagation principle but w orking w ith the polych rom atic rad iation

    delivered  by a  laboratory X-ray microsource  to  retain  some  flux, deflection sensitive

    images were obtained [WIL

      96 , POG

      97]. This

     seems

     promis ing

     for

     work

     in the

      edge

    detection regime as the main contrast, a white and black   fringe,  is unchang ed over a

    large spectral range.

    2.4. Direct imaging

    Most of the tomographic work performed   until  now using the propagation tech-

    nique

      is based on the usual algorithm for absorption tomography . This is a workab le

    solution  especially when the defocusing distance

      D

      is sma ll and the sample is made

    up of different

      (metallographic) phases with

     different

      densities [CLO 97]. This

     qual i -

    tative approach allows to visua lise, in 3D , density dis continuities , such a s

      reinforcing

    SiC

     particles

      in an

      alum inium ma trix composite [BUF 99]. D ensity jum ps appear

      as

    dark / light fringes. A nother adv antage is the poss ibi l i ty to detect  and localise features

    that are actually sm aller than the pixel size a s the interference fring es produced can be

    larger than the  feature itself (regime with rp > a).  This  makes  it possible  to detect

    cracks w ith sub -micron opening. A n exa mp le of a tomogra phic slice of an a luminium-

    silicon

      alloy obtained using this direct approach based

      on a

      single distance

     is

     s hown

    on Figure

     6b in the

     next section. However, with this approach

      the

     spatial resolution

     is

    limited by the Fresnel fring e dis tribution and artefacts occur in some cases due to the

    ill-suited algorithm. Binarisation of the edge-regime images is extremely tedious and

    w as done essentially ma nua lly. I t mu st also be noted that the qua ntitativ e informa tion

    on density

     and

     compos ition

      is

     lost.

      For

      these reasons there

      is a

     need

      fo r

     more adapted

    algorithms preserving resolution and qu antita tive inform ation , at the expense of an

    increased data volume  and computational  effort.

    2.5. Quantitative imaging

    A  new approach,  holotomography,  has now been im plemented  to