15
I ' JMttlfc, ^^^^5 ; Wjj :izxzrz..' ^ » c ' _ ^ p^Sl [J^lSS - MATERIALS AND ENERGY Vol. 3 THE WORLD SCIENTIFIC HANDBOOK of ENERGY Editor Gerard M. Crawley University of South Carolina, USA Senior Scientific Advisor Richard Haight IBM T.J. Watson Research Center NEW JERSEY LONDON World Scientific SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI CHENNA

World scientific handbook of energy

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

I ' JMttlfc,

_

^^^^5; Wjj

:izxzrz..''

^» c

.

'

'

_ _ ^

p^Sl [J^lSS-

MATERIALS AND ENERGY - Vol. 3

THE WORLD SCIENTIFIC

HANDBOOK of ENERGY

Editor

Gerard M. CrawleyUniversity ofSouth Carolina, USA

Senior Scientific Advisor

Richard HaightIBM T.J. Watson Research Center

NEW JERSEY • LONDON

World Scientific

SINGAPORE • BEIJING • SHANGHAI • HONG KONG TAIPEI • CHENNA

Contents

Foreword xix

1. Introduction 1

Gerard M. Crawley

2. Energy, Power, Units, and Conversions 5

Gerard M. Crawley

1 Introduction 5

2 Different Forms of Energy 6

2.1 Mechanical Energy 6

2.2 Thermal Energy 7

2.3 Electrical Energy 7

2.4 Atomic and Nuclear Energy 8

2.5 Chemical Energy 8

3 Large Energy Units 9

4 Power 9

References 9

3. Coal 11

Thomas Sarkus, Adrian Radziwon, and William Ellis

1 Introduction 11

2 Coal Rank 12

3 Coal Resources and Geographic Distribution 13

3.1 Coal Resources of the US 13

3.2 Coal Analyses 14

3.3 US Coal Production and Representative Coal Analyses ....14

4 Worldwide Coal Resources, Reserves, and Production Levels....

14

5 Coal Utilization 15

5.1 Pulverized Coal (aka Pulverized Fuel) Combustion 16

5.2 Fluidized Bed Combustion 23

5.3 Gasification 25

5.4 Liquefaction 28

V

vi Contents

6 Other Coal Uses 29

7 Challenges in Coal Production 30

8 Challenges in Coal Usage 31

8.1 Worldwide Coal Usage 31

8.2 Coal Usage Projections for OECD Nations 32

8.3 Coal Usage Projections for Non-OECD Nations 35

9 Carbon Dioxide 37

9.1 Carbon Dioxide Produced per Kg of Coal 37

9.2 Geologic Storage of Carbon Dioxide 38

9.2.1 Saline-bearing formations 38

9.2.2 Natural gas and oil-bearing formations 38

9.2.3 Unmineable coal seams 38

9.2.4 Organic-rich shale basins 39

9.2.5 Basalt 39

9.3 Carbon Dioxide Utilization 39

9.4 Cost of Carbon Storage 39

References 40

4. Petroleum Liquids 41

William L. Fisher

1 Introduction 41

2 Production and Consumption 42

3 Reserves and Resources 44

3.1 Reserves 46

3.2 Resources 47

4 Petroleum Refining 52

4.1 Combustion of Gasoline and Diesel Fuel 53

5 Future Production 54

6 Oil Production Costs 54

References 57

5. Natural Gas 59

John B. Curtis

1 Introduction 59

2 Why is Natural Gas Important? 60

3 How Natural Gas Forms 61

4 Exploration 62

5 Development 63

6 Production 64

6.1 Gas Fields 64

6.2 Stranded Gas 64

Contents vii

6.3 Producing Wells 65

6.3.1 Marketed production 66

6.4 Shale Gas 66

6.5 Natural Gas Hydrates 67

7 Delivering Natural Gas from Producing Region to Market 67

7.1 Processing 67

7.2 Transportation 68

7.3 Delivery 68

7.4 Storage 69

7.5 Commerce 69

7.6 The Integrated Delivery System 70

7.7 Liquefied Natural Gas 71

8 How Natural Gas is Used 72

8.1 Power Generation 72

8.2 Combined Heat and Power Generation 73

8.2.1 Combined-cycle generation 73

8.2.2 Cogeneration 73

8.3 Transportation 74

9 The Role of Reserves and Potential Resources 75

References 79

6. Nuclear Power 83

Bertrand Barre

1 Introduction 83

2 Radioactivity, Fission, and Fusion 85

3 How Does a Nuclear Reactor Operate? 90

4 Reactor Types 91

4.1 "Generations" of Nuclear Reactors 93

4.2 Pressurized Water Reactors 93

4.3 Boiling Water Reactors 93

4.4 Gas-Cooled Reactors (Magnox, AGR, HTR) 93

4.5 Heavy Water Reactors (PHWR or Candu) 94

4.6 Light Water Graphite Reactors 94

4.7 Fast Breeder Reactors 94

5 Safety and Accident Prevention 95

5.1 Barriers and Defense-in-Depth 95

5.2 The INES International Nuclear Events Scale 96

5.3 What Happened in Fukushima? 97

6 The Nuclear Fuel Cycle 98

6.1 Uranium Resources 98

6.2 Exploration, Mining, and Concentration 99

6.3 Conversion and Isotopic Enrichment 100

viii Contents

6.4 Fuel Manufacture (PWR) 101

6.5 Open Cycle or Closed Cycle? 102

6.6 Reprocessing and Vitrification 103

7 Radioactive Waste Management and Dismantling 104

7.1 Waste Categories 104

7.2 Radioactive Waste Disposal 104

7.3 Dismantling 105

8 Economics 106

9 Non-Proliferation 107

9.1 Brief History 107

9.2 Proliferation and Civilian Nuclear Technologies 108

10 Prospects 109

References 110

Further Suggested Readings 110

7. Magnetic Fusion Energy 111

R.J. Goldston and M.C. Zarnstorff

1 Overview Ill

2 MFE Physics and Technology 115

2.1 Breakeven, Gain, and Ignition 115

2.2 Magnetic Confinement 117

2.2.1 Transport and turbulence 117

2.2.2 Stability 118

2.2.3 Sustainment 119

2.2.4 Plasma-material interaction 120

2.2.5 Neutron-material interaction (includingtritium breeding) 120

2.2.6 Magnets 121

2.2.7 Magnetic field configurations 121

3 Progress Toward Fusion Energy 123

3.1 National and International Research Facilities 123

3.2 ITER: Role and Characteristics 125

3.3 Theory and Modeling 126

4 Development Plans and Design Studies 126

5 Summary 128

References 129

8. Progress Toward Inertial Fusion Energy 131

Erik Storm

1 Introduction 131

2 Review of Basic ICF Physics 132

2.1 DT Burn Physics 134

Contents ix

2.2 Compression and Central Ignition 135

2.3 Fluid instabilities, Mix, and Low-Entropy Implosions 136

2.4 Indirect- and Direct-Drive Approaches to ICF 137

2.5 Alternative Ignition Concepts 140

3 Progress Toward Ignition and High-Gain ICF 142

4 IFE Systems 146

4.1 Review of IFE Basics 146

4.2 Review of IFE Subsystems — Targets, Driver, Chamber,Balance of Plant 150

4.3 Self-Consistent IFE Systems 153

5 Progress Toward Laser IFE Technologies 155

6 Conclusion 161

Further Suggested Readings 161

9. Energy from Photovoltaics 165

Ignacio Rey-Stolle

1 Introduction 165

2 Solar Radiation 166

2.1 Fundamentals 166

2.2 Basic PV Terminology and Notation

for Solar Radiation 167

2.3 Components of Solar Radiation 167

2.4 World Distribution of Solar Radiation 168

2.5 Solar Radiation Collected by PV Systems 168

3 Solar Cells 169

3.1 Definition 169

3.2 Basic Solar Cell Equations and Equivalent Circuits 169

3.2.1 Simple equivalent circuit for a solar cell

and I-V characteristic 169

3.2.2 General equivalent circuit for a solar cell

and I-V characteristic 170

3.3 The I-V Curve of a Solar Cell 170

3.3.1 General look and key parameters 170

3.3.2 Effect of variations in series and parallel resistance

on the I-V curve 171

3.3.3 Effect of variations in irradiance on the I-V curve. . .

172

3.3.4 Effect of variations in temperature 172

3.3.5 Standard test conditions for solar cells 173

3.4 Overview of Solar Cell Technologies 173

4 PV Modules 174

4.1 Fundamental Principles 174

4.1.1 Concept and mission 174

4.1.2 Construction 174

x Contents

4.2 Characteristic Equation and I-V Curve 176

4.2.1 I-V characteristic of a PV module 176

4.3 Electrical Performance 177

4.3.1 Standard test conditions 177

4.3.2 Factors affecting the electrical power of solar

panels under real operation 177

4.3.3 Modeling the equilibrium cell temperature

in a PV module 178

4.3.4 Electrical power of solar panels at any irradiance

and temperature 179

4.3.5 Electrical energy from a PV module 179

5 PV Arrays and Systems 179

5.1 Basic Definitions 179

5.2 Balance of System Components of PV Systems 180

5.2.1 Power conditioning 180

5.2.2 Storage 180

5.2.3 Electric components 180

5.2.4 Mounting structures 180

5.3 Types of PV Systems 181

5.4 Designing a PV System 182

5.4.1 Location 182

5.4.2 Orientation and tilt 182

5.4.3 Sizing 183

5.5 PV System Performance 183

5.5.1 Output power of PV systems 183

5.5.2 Energy rating of PV systems 184

5.5.3 Alternative (simpler) energy rating of PV systems . . .184

6 Uses and World Market of PV Solar Energy 185

6.1 Overview on the Uses of PV Energy 185

6.2 World PV Market 186

6.2.1 Size and historic evolution of the world

PV market 186

6.2.2 PV cell production by technology 187

6.2.3 Evolution of PV module costs and PV electricity . . . 187

7 Material Usage and Environmental Impact of PV

Solar Energy 188

7.1 The Value Chain of PV Technology 188

7.2 Material Usage of PV Technology 189

7.3 Energy Payback Time of PV Systems 189

7.4 Greenhouse Gas Emissions of PV Systems 190

7.5 Operational Hazards of PV Systems 190

7.6 PV Module Decommissioning and Recycling 191

References 192

Contents xi

10. Concentrating Solar Thermal Power 195

Wes Stein

1 Introduction 195

2 Solar Radiation and Concentration 196

3 Receiving and Absorbing Solar Radiation 197

3.1 Energy Balance 197

3.2 Selective Surface Theory 198

4 Types of Solar Collectors for Power and Fuels 199

4.1 Solar Pond 200

4.2 Solar Chimney 200

4.3 Parabolic Trough 202

4.3.1 Heat transfer fluid 203

4.4 Linear Fresnel 205

4.5 Central Receiver (Power Tower) 207

4.5.1 Heliostats and field layout 207

4.5.2 Receivers 208

4.6 Dish Concentrators 208

5 Thermal Storage 211

5.1 Two-Tank Molten Salt 211

5.2 Single Tank Molten Salt 212

5.3 Alternative Thermal Storage Options 212

5.4 Thermochemical Storage 213

5.5 Cost Reduction of Thermal Storage Through Higher

Temperatures 215

6 Concentrating Solar Power Systems 215

6.1 Rankine Cycle 216

6.2 Brayton Cycle 216

6.3 Stirling Cycle 218

7 CSP and Solar Fuels 218

8 CSP in the Market 220

9 Conclusions 222

References 222

11. Biomass 225

Mark Downing and Anthony F. Turhollow Jr.

1 Introduction 225

2 Ethanol 226

3 Ethanol Production from Sugarcane in Brazil 226

4 Biodiesel 228

5 Thermal Processes 228

5.1 Pyrolysis 229

5.2 Gasification 229

5.3 Combustion 230

xii Contents

6 Biological Processes 230

6.1 Anaerobic Digestion 230

6.2 Fermentation 231

6.3 Algae 233

7 Dedicated Energy Crops 233

7.1 Switchgrass 233

7.2 Sorghum 234

7.3 Miscanthus 235

7.4 Sugarcane and Energy Cane 236

7.5 Hybrid Poplar 236

7.6 Willow 237

7.7 Eucalyptus 238

7.8 Oilseeds 238

8 Future Use of Biofuels 239

References 239

Appendix 243

12. Geothermal Energy 245

Gordon Bloomquist, John Lund, and Magnus Gehringer

1 Introduction to Geothermal Energy and Its Utilization 245

2 World Overview of Utilization 247

2.1 Direct Use of Geothermal Resources 247

2.2 Geothermal Direct Utilization Technologies 249

2.2.1 District cooling 250

2.3 Economics of Direct-Use Systems 250

2.4 Future Utilization Scenario for Power Generation

and Direct Use 251

3 Geothermal Geology 252

4 Development of Geothermal Power Generation Projects 253

4.1 Exploration 255

4.2 Drilling and Well Testing 256

4.2.1 Well testing 257

5 Geothermal Power Generation Technologies 258

5.1 Flash Plants, Condensing Units 258

5.2 Binary Cycles 260

5.3 Additional Technologies 261

5.4 Power Plant Condensers 262

5.5 Power Plant Cooling 262

5.6 Constructing Power Plants According to the Stepwise

Approach 263

5.7 Determination of Power Plant Size by Demand Analysis . . . 263

Contents xiii

6 Economics of Power Generation 264

6.1 Risk/Cost Profiles and Financing Options 266

6.2 Incremental Costs 267

7 Other Geothermal Resource Types and Applications 268

7.1 Geopressured Resources 268

7.2 Co-Produced Resources 268

7.3 Enhanced Geothermal Systems 268

7.4 Mineral Extraction 269

7.5 Geothermal Heat Pumps 270

8 Environmental Impacts, Mitigation Measures, and Benefits 270

References 272

13. Hydropower and Pumped Storage 275

Torbj0rn K. Nielsen

1 Introduction 275

2 Global Hydropower Resources 276

3 Worldwide Use of Hydropower 277

4 Hydropower and Turbines 278

4.1 Basic Equations 278

4.2 Hydraulic Loss 280

4.3 Turbine Types 282

4.4 Turbine Theory 285

4.5 Efficiency 287

4.6 Classification of Turbines 289

4.7 Cavitation 290

4.8 Technical Advances in Turbine Design 292

5 Hydropower Plant Performance 293

5.1 Steady State Performance 294

5.2 Governing Power 294

5.3 Transient Behavior 295

6 Small-Scale Hydropower 295

6.1 Cross-Flow Turbines 296

6.2 Turgo Turbine 297

6.3 Centrifugal Pumps Run as Turbines 297

7 Issues with Hydropower as a Future Componentof Renewable Energy 297

8 Pump Storage Plants 298

8.1 Introduction 298

8.2 Separate Pump and Turbine 299

8.3 Reversible Pump Turbine 302

8.4 Control and Electrical Interface 304

References 304

Appendix 305

xiv Contents

14. Wind Energy 307

Jos Beurskens and Arno Brand

1 Introduction 307

2 Wind Resource 308

2.1 The Origin of the Wind and its Variations 308

2.2 Power of the Wind 308

2.3 Variability of the Wind 310

2.4 World and Regional Wind Potential 313

3 Wind Turbines 315

3.1 Drag Machines and Lift Machines 315

3.2 Rotor Characteristics 316

3.3 Energy Conversion and Control 318

3.4 Power Curves and Energy Output 320

3.5 Concepts and Structural Aspects 323

4 Wakes and Clusters 325

4.1 Clusters of Wind Turbines: Wind Farms 325

4.2 Single Wind Turbine Wakes 326

4.3 Internal Wakes Inside a Wind Farm 327

4.4 Wind Farm Wakes 327

4.5 Wind Farm Clusters 328

5 Grid Integration 329

5.1 Introduction 329

5.2 Grid Requirements 330

5.2.1 System balance 330

5.2.2 Program imbalance 330

5.3 The Natural Variability and the Limited Predictability

of Wind Energy 331

5.3.1 Variability 331

5.3.2 Predictability 333

6 Market Developments 334

References 339

15. Ocean Energy 343

Ian Bryden

1 Introduction 343

2 Wave Energy 344

2.1 The Technology 344

2.2 Resource 346

2.3 The Status 347

3 Tidal Current Energy 349

3.1 The Technology 349

Contents xv

3.2 The Resource 350

3.3 The Status 352

4 Tidal Entrainment 353

4.1 The Technology 353

4.1.1 Single basin tidal barrage schemes 354

4.1.2 Double basin systems 356

4.2 The Resource 356

4.3 The Status 357

References 358

16. Ocean Thermal Energy Conversion 359

Gerard C. Nihous

1 Basic Concept of Ocean Thermal Energy Conversion 359

2 Available OTEC Resources 365

3 Advantages and Disadvantages of OTEC 366

4 Status of OTEC Development 370

References 371

17. Capacitive Electric Storage 373

Lu Wei and Gleb Yushin

1 Introduction 373

2 Dielectric Capacitors 375

3 Electrolytic Capacitors 376

4 Electrochemical Capacitors 378

4.1 EDLCs 378

4.2 Pseudocapacitors 383

4.2.1 Pseudocapacitors with surface compounds 383

4.2.2 Pseudocapacitors with metal oxides 384

4.2.3 Pseudocapacitors with conducting polymers 386

4.3 Hybrid Capacitors 387

5 Promising Applications of Electrochemical Capacitors 390

6 Conclusions and Outlook 393

References 393

18. Batteries 405

Habiballah Rahimi-Eichi and Mo-Yuen Chow

1 Electrochemical Structure of a Battery 405

2 Battery Technologies and Applications 407

2.1 Primary Batteries 407

2.2 Secondary Batteries 407

3 Batteries Compared with Other Energy-Storage Technologies . . .415

xvi Contents

4 Directions and Challenges of Battery Technology 417

4.1 Battery Technology Goals for PHEV/PEVs 417

4.2 Peak Power 419

4.3 Energy Capacity 420

4.4 Lifetime 421

4.5 Safety 422

4.6 Cost 422

4.7 Battery Technologies for the Smart Grid 423

4.8 Battery Management System 423

5 Summary 424

References 424

19. Fuel Cells and the Hydrogen Economy 427

John T.S. Irvine, Gael P.G. Corre, and Xiaoxiang Xu

1 Introduction 427

2 Fuel Cell Types 429

3 Fuels 430

3.1 Hydrogen 430

3.2 Fuel Processing 432

4 Fuel Cell Applications 435

5 Proton-Conducting Electrolyte Fuel Cells 436

5.1 Proton Exchange Membrane Fuel Cells 436

5.2 Solid Acid Fuel Cells 437

5.3 Phosphoric Acid Fuel Cells 437

6 Solid Oxide Fuel Cells 439

6.1 Basic Definitions 439

6.2 History of SOFC 440

6.3 Characteristics 441

6.4 Design 442

6.5 Materials 443

7 Molten Carbonate Fuel Cell 445

8 Efficiency 445

8.1 Thermodynamics of Fuel Cells 445

8.2 Fuel Cell Efficiency 447

8.2.1 Heating efficiency 447

8.2.2 Thermodynamic efficiency 447

8.2.3 Current efficiency 448

8.2.4 Voltage efficiency 449

8.2.5 Internal resistance 450

8.2.6 Charge transfer or activation polarization 450

8.2.7 Diffusion or concentration polarization 451

Contents xvii

9 Summary 452

References 452

20. Electrical Grids 455

Roisin Duignan and Mark O'Malley

1 Introduction 455

2 Power Grids 455

2.1 Electric Power Infrastructure 456

2.2 Operation, Planning, and Service Restoration 456

3 Electric Power Grid Analysis Tools and Fundamentals 461

3.1 Phasors Fundamentals 461

3.2 Alternating Current and Direct Current 462

3.3 Power Fundamentals 462

3.4 Phase Circuit Fundamentals 463

3.5 Electric Power Fundamentals 465

4 Transformers 465

4.1 Transformers: Introduction 466

4.2 Ideal Transformer 466

4.3 Real Transformer 466

4.4 Transformer Core Losses 467

4.5 Determination of Real Transformer Circuit Parameters....

468

4.6 Transformer Cooling and Winding Connections 468

5 Synchronous Machines 469

5.1 Synchronous Machines: Introduction 469

5.2 Synchronous Motor Operation 469

5.3 Synchronous Machines Example — Pumped Storage Schemes 471

6 Transmission of Electricity 471

6.1 Electricity Transmission Fundamentals 471

6.2 Transmission Line Fundamentals 472

6.3 Power Flows on Transmission Lines 473

6.4 Transmission Line Efficiencies 474

6.5 Transmission Interconnection 474

6.6 Direct Current Transmission 475

7 Power Systems Operations 477

7.1 Unit Commitment 477

7.2 Economic Dispatch 477

7.3 Electricity Market Environment 477

8 Renewables and the Electrical Power Grid 477

8.1 Renewables and the Electrical Power Grid: Introduction. . .

477

8.2 Renewable Example — Wind Turbines 478

References 480

xviii Contents

21. Energy Use and Energy Conservation 481

V. Ismet Ugursal

1 Energy Use: Trends and Implications 481

2 Energy Management and Conservation 496

2.1 Energy Audit 498

2.2 Energy Conservation Opportunities — Examples 506

References 509

Further Suggested Readings 510

22. The Earth's Energy Balance 511

Gerard M. Crawley

1 Introduction 511

2 Black Body Radiation 512

3 Albedo 514

4 Calculation of the Earth's Temperature at the Upper Atmosphere .515

5 Effect of the Atmosphere on the Earth's Surface Temperature . . .516

5.1 Composition of the Earth's Atmosphere 516

5.2 Radiation Balance for Short- and Long-Wavelength Radiation 517

5.3 Abundances of Greenhouse Gases 519

6 Measurements of Earth's Temperature 522

7 Sea Ice Extent 524

8 Sea Level Rise 525

9 Climate Predictions 527

9.1 Global Temperature Projections 529

9.2 Sea-Level Projections 530

9.3 Glacier and Ice Sheet Projections 532

References 533

Index 537

About the Contributors 547