21
마마마 마마마 마마마 마마 Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST) February 18, 2014 Research Activities in KAIST-FPTRC PPPL Visit

Wonho CHOE Fusion Plasma Transport Research Center (FPTRC)

  • Upload
    lacey

  • View
    90

  • Download
    4

Embed Size (px)

DESCRIPTION

PPPL Visit. Research Activities in KAIST-FPTRC. February 18, 2014. Wonho CHOE Fusion Plasma Transport Research Center (FPTRC) Korea Advanced Institute of Science and Technology (KAIST). SXR & VUV imaging diagnostics on KSTAR (as of now). Soft X-ray array (SXRA) - PowerPoint PPT Presentation

Citation preview

Page 1: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

마스터 부제목 스타일 편집Wonho CHOE Fusion Plasma Transport Research Center (FPTRC)

Korea Advanced Institute of Science and Technology (KAIST)

February 18, 2014

Research Activities in KAIST-FPTRC

PPPL Visit

Page 2: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

2SXR & VUV imaging diagnostics on KSTAR (as of now)

Soft X-ray array (SXRA) 2 arrays, 32 ch (64 ch) t = 2 μs, r = 5 cm Ar Ross filters (Cl & Ca K-edge): 2.8 – 4.0 keV Be filters (10, 50 μm: 0.5, 1.0 keV): 2 color

VUV spectroscopy 28 ch for imaging (5 - 20 nm), t = 13 ms 1 ch for survey (15 - 60 nm), t = 13 ms

2-D Tangential X-ray pinhole camera (TXPC) Duplex (2 color), 50x50 ch t = 0.1 ms, r = 2 cm

GEM detector for 2-D X-ray camera 12x12 pixels, 128 ch t = 1 ms, r = 2 - 6 cm 3 – 30 keV

Tomographic reconstruction codes developed Max. Entropy Method Phillips-Tikhonov Min. Fisher Information Cormack

Page 3: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

3

edge

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

HD arrays (33-64)

HU arrays (1-32)

16 ch (32)

16 ch (32)

HU

HD

VD2

VU2

• 4 arrays, 256 ch• 2 cm, 2 μs

1 array, 60 ch

• 2 filters multi energy, neural network

• 1.3 cm, 2 μs

(1) SXR array diagnostic system

4 array, 256 channels

2013 20142 array, 64 ch

• Be filters (10, 50 mm)• Ar Ross filters (Ar trans-

port)• Bolometer (No filter)

S.H. Lee J. Jang

Page 4: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

4

(2) Imaging VUV spectroscopy

2013 (5-20 nm, ~3 ms)2012 (15-60 nm, 13-40 ms)

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

ITER prototype on KSTAR (5 – 60 nm)

Vacuum extension

VUV spectrometer on the optical table

28 ch, imaging

In collaboration with ITER KO-DA (C.R. Seon)

1 ch, survey

He I : 53.70 nmHe II : 25.63, 30.37 nmO V : 15.61, 19.28, 21.50 nmO VI : 17.30, 18.40 nmC III : 38.62 nmC IV : 24.49, 38.41, 41.96 nmC V : 22.72, 24.87 nmFe XV : 28.42 nmFe XVI : 33.54, 36.08 nmW : 5-20 nm

Ar XIV 18.79 nmAr XV 22.11 nmAr XVI 35.39 nm

Page 5: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

5

2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.700

100

200

300

400

500

600 r/a = 0.10 r/a = 0.30

Time (s)

X-r

ay p

hoto

n co

unt (

A.U

.)

(a) (b)

Sawtooth crash in #7640

(3) ‘Tangential’ X-ray pinhole cameraIn collaboration with KAERI (M. Moon)

‘Duplex (2-color) Multi-Wire Proportional Counter (MWPC) detector

7640image-81.1s - 81.2s

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7640image-81.2s - 81.3s

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Channel

Cha

nnel

Channel

Outboard Outboard

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50 -20

-15

-10

-5

0

5

10(b) - (a)

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Page 6: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

6

TXPC, RT-EFIT

Major radius, R

Visible camera

Major radius, R

Vloop

Ip

Stored en-ergy

ECE

Da

Shot 7886

Consistent with RT-EFIT and visible camera Tangential reconstruction on-going

X-ray imaging of VDE

S. Jang et al., CAP 13, 819 (2013)

Page 7: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

7

Pulse Height Analyzer mode

Te by TXPC (PHA mode)

0 1 2 3 4 5 6 7 8 9 100

1

2

3

Te (A

.U.)

Time (sec)

ECE_2 TXPC_11

40 60 80 100 120 140 160 180 200 220 240 260

0.81.01.21.41.61.82.02.22.42.62.83.0

1 s 2 s 3 s 4 s Linear Fit of 1 Linear Fit of 2 Linear Fit of 3 Linear Fit of 4

# of

pho

tons

(log

_sca

le)

Pulse height (A.U.)

Page 8: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

8

(4) GEM detector for TXPC Front Back

128 ch in 12x12 cm2 Spatial & time resolution:

2-6 cm, 1 ms

In collaboration with ENEA (D. Pacella)

55Fe Source

Gas inGas out

Lan cable

HV cable

FPGA

Zoom in & out

GEM

[4] W. Bonivento et al., Nucl. Instr. and Meth. A, 491, 233 (2002)

X-position mov-able

GEM foils: 50 µm thick kapton foil, copper clad on each side

Triple-GEM geometry: 3/1/2/1 mm Front-end electronics: CARIOCA micro chips by

LNF and CERN [4]

Active area: 10 x 10 cm2

Channels: 12 x 12 pixels (each pixel has 0.8 x 0.8 cm2)

Temporal: 10 µs (up to 255 frames), 1 ms (60k frames)

Mixed gas (flow): 70% Ar, and 30% CO2 at 1 atm Movable system

(zoom in & out and horizontally movable)

Page 9: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

9

Preliminary result of GEM detectorshot 9033

Zoom inshot 9034 shot 9035 shot 9056

Zoom in & out

Page 10: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

10

Time (s)

Freq

uenc

y (k

Hz)

2.632 2.634 2.636 2.638 2.64 2.6420

20

40

60

80

100

Sawtooth crash in H-mode

m = 1 (f = 19 kHz) is shown by spectrogram. Maximum displacement from the initial posi-

tion: 0.13 m Maximum rotation speed: 10.7 km/s

Spectrogramm = 1f = 19 kHz

R (m)

Z (m

)

Time 2.642000 sec

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Trajectory of the hot core

rtEFIT

Page 11: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

11

2.632 2.634 2.636 2.638 2.64 2.642

0.6

0.8

1

SXR

007

(kW

/m2 )

2.632 2.634 2.636 2.638 2.64 2.6420

0.1

0.2

(m

)

2.632 2.634 2.636 2.638 2.64 2.6420

5

10

15

v (k

m/s)

Time (s)

Comparison between L- & H-mode

1.028 1.03 1.032 1.034 1.0360.2

0.3

SXR

007

(kW

/m2 )

1.028 1.03 1.032 1.034 1.0360

0.1

0.2

(m

)

1.028 1.03 1.032 1.034 1.0360

5

10

15

v (k

m/s)

Time (s)

Crash

< 5 km/s

0.1 m

Crash

< 10 km/s

< 0.1 m

L-mode, low vФ H-mode, high vФ

1.028 1.03 1.032 1.034 1.0360.2

0.3

SXR

007

(kW

/m2 )

1.028 1.03 1.032 1.034 1.0360

0.1

0.2

(m)

1.028 1.03 1.032 1.034 1.0360

5

10

15

v (km

/s)

Time (s)

2.632 2.634 2.636 2.638 2.64 2.642

0.6

0.8

1

SXR

007

(kW

/m2 )

2.632 2.634 2.636 2.638 2.64 2.6420

0.1

0.2

(m)

2.632 2.634 2.636 2.638 2.64 2.6420

5

10

15

v (km

/s)

Time (s)

Crash in multi steps

Crash in a single step

Displacement from central position

Displacement from central position

Poloidal velocity Poloidal velocity

Page 12: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

12Correlation between SXR rotation speed & vФ (XICS)

50 100 150 200 2500

5

10

15

20

25

Toroidal Rotation Velocity [km s-1]

Freq

uenc

y (m

= 1

) [kH

z]

#7640#7642#7644#7645#7646#7647

• The m=1 SXR rotation speed is compared with toroidal rotation speed (XICS).• Toroidal rotation frequency

0 5 10 15 20 250

5

10

15

20

25

Rotation Frequency [kHz]

Freq

uenc

y (m

= 1

) [kH

z]

#7640#7642#7644#7645#7646#7647

Rf

2

Page 13: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

13

ECH effect on Ar transport Argon gas injection through a piezo valve (nAr/ne < 0.1%)

Different transport with varying ECH positions Feasibility of impurity control? Analysis of Ar transport coefficients in L-mode (#7566, #7574) & H-mode (#7745, #7863)

by using UTC-SANCO code with diagnostic results (SXR, VUV, XICS)

0.4

0.2

0 1 2 3 4 Time (sec)

Ip (M

A)

Ar puffing20 ms

#756

6 0.4

0.2

0 1 2 3 4 Time (sec)

Ip (M

A)

Ar puffing20 ms

#757

4

ECH110 GHz350 kW

#786

3

L-mode

w/o ECH

R [m]

Z [m

]

1.2 1.4 1.6 1.8 2 2.2 2.4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Heating positions(r/a = 0, 0.16, 0.30, 0.59)

w/ ECH

40 cm20100

Ar puffing after ECH start

Ar

Page 14: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

14

1.8 1.9 2 2.1 2.2 2.3-10

0

10

20

30

40

50

60

70

80

Time [s]

P SXR [W

m

-2]

No ECHOn-axis ECH = 0.16 = 0.30 = 0.59

Depending on ECH position

Time (s)

400

mm

20

0 m

m

100

mm

O

n-ax

is

No

ECH

Chor

d #

1.5 2 2.5 3 3.5

1

161

161

161

161

16

No ECH

On-axis ECH

ECH @r/a = 0.16

0.30

0.59

Less core accumulation of Ar impurity with ECHMost effective (i.e., least core impurity concentration) with on-axis ECHLess effective with resonance layer position at larger radius

No ECH

On-axis ECH

0.16

0.30

r/a = 0.59

L-mode

Page 15: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

15

2-D Reconstructed Ar emissivity• Core-focused reconstruction (Cormack algorithm)• Emissivity images of mainly Ar16+ & Ar17+ impurities

No ECH On-axis ECH

1.4 1.6 1.8 2 2.20

0.1

0.2

0.3

R (m)

I SXR (k

W/m

3 )

0.04

0.06

0.08

P SXR (k

W/m

3 )

SXR004

0.1

0.15

0.2

P SXR (k

W/m

3 )

SXR007

0.1

0.15

0.2

P SXR (k

W/m

3 )

SXR010

0.01

0.02

0.03

0.04

0.05

P SXR (k

W/m

3 )

SXR019

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0.1

0.15

0.2

0.25

Time (s)

P SXR (k

W/m

3 )

SXR024

Shot #7566, Time: 2.240000 s

1.4 1.6 1.8 2 2.20

0.1

0.2

R (m)

I SXR (

kW/m

3 )

0.04

0.06

0.08

0.1

P SXR (

kW/m

3 )

SXR004

0.1

0.15

0.2

0.25

P SXR (

kW/m

3 )

SXR007

0.1

0.15

0.2

0.25

P SXR (

kW/m

3 )

SXR010

0.02

0.04

0.06

P SXR (

kW/m

3 )

SXR019

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 30.1

0.15

0.2

0.25

Time (s)

P SXR (

kW/m

3 )

SXR024

Shot #7574, Time: 2.194000 s

1.41.6

1.82

2.2

-0.5

0

0.5

0

0.05

0.1

0.15

0.2

0.25

R (m)Z (m)

PSX

R (k

W/m

3 )

1.41.6

1.82

2.2

-0.5

0

0.5

0

0.05

0.1

0.15

0.2

0.25

R (m)Z (m)

PSX

R (kW

/m3 )

Page 16: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

16

• With ECH, central diffusion and convection are increased.• The pinch direction reverses at r/a < 0.3.

Modification of D & V by ECH

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

Diff

usio

n (m

2 /s)

r/a0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

Con

vect

ion

(m/s

)

r/a

0 0.2 0.4 0.6 0.8 10.1

0.2

0.3

0.4

0.5

Diff

usio

n (m

2 /s)

r/a0 0.2 0.4 0.6 0.8 1

-15

-10

-5

0

5

Con

vect

ion

(m/s

)

r/a

Non ECH (#7566)

On-axis ECH (#7574)

Outward Inward

Inward

Page 17: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

17

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

16

#/m

3

r/a

No ECH

Total ArAr+17

Ar+16

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

12

14

16x 10

15

#/m

3

r/a

On-axis ECH

Total ArAr+17

Ar+16

◈ Radial profile of total Ar density at peak time (2.3 s)

◈ Total Ar density

r/a

Tim

e (s

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.82.05

2.1

2.15

2.2

2.25

2.3

1

2

3

4x 1016

r/a

Tim

e (s

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.82.05

2.1

2.15

2.2

2.25

2.3

0

2

4

6

8

10

12

14

16x 10

15No ECH (#7566) On-axis ECH (#7574)

Total Ar Total Ar

Hollow Ar density profile by ECH

Page 18: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

18

Neoclassical contribution of Ar transport

No ECH (#7566)

On-axis ECH (#7574)

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

Diff

usio

n (m

2 /s)

r/a

0 0.1 0.2 0.3 0.4 0.5-15

-10

-5

0

5

Con

vect

ion

(m/s

)

r/a

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

Diff

usio

n (m

2 /s)

r/a

0 0.1 0.2 0.3 0.4 0.5-10

-5

0

5

Con

vect

ion

(m/s

)r/a

0 0.1 0.2 0.3 0.4 0.5

7

8

9

10x 10

-3

Diff

usio

n (m

2 /s)

r/a

0 0.1 0.2 0.3 0.4 0.5-0.1

-0.05

0

0.05

0.1

0.15

Con

vect

ion

(m/s

)

r/a

Neoclassical calculation of D and V by NCLASS - The same input (Te, ne) of SANCO calculation - Ar16+ (dominant charge state) distribution at the peak time is used.

D, V calculated by NLCASS is smaller by an order of magnitude than the experimental D, V.

The impurity transport is anomalous, rather than neoclassical.

NCLASS

Exp

Page 19: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

19Impurity pinch 3 impurity pinch terms[1] in Weiland multi-fluid model

Pinch type Description Pinch directionby turbulence type

Curvature pinch Compressibility of ExB drift v Inward

Thermodiffusion pinch Compression of the diamagnetic drift v ITG OutwardTEM Inward

Parallel impurity compression

Parallel compression of parallel v fluctuations produced along the field line by fluctuating

electrostatic potential

ITG InwardTEM Outward

GYRO and XGC simulations are on-going to find the dominant turbulence mode of No ECH and on-axis ECH cases.

It is expected that TEM is the dominant mode because of ECH effect on Te profile. It may be due to parallel impurity compression driven by increased R/LTe

[2]

[1] H. Nordman et al., 2011 Plasma Phys. Control. Fusion 53 105005 [2] C. Angioni et al.,2006 Phys. Rev. Lett. 96 095003

Curvature pinch

Thermodiffusion pinch

Parallel compression

pinch

Page 20: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

20Diagnostics & analysis tools ready for W injection experiment

5 - 20 nm wavelength range is mainly used for measurement of W emission spectra. ASDEX-U: VUV (~5 nm) JET: VUV (~5 nm) & SXR JT-60U: VUV (6.23 nm) LHD: EUV (6.09, 6.23 & 12.7 nm) KSTAR

- VUV (5 – 60 nm): ITER prototype- SXR

Simulation & Atomic data: SANCO-ADAS

W test particle injector under preparation/consideration Particle gun (under preparation on KSTAR) Laser blow-off system (C-Mod) Particle dropper (NSTX) Pellet injection (LHD)

Page 21: Wonho  CHOE  Fusion Plasma Transport Research Center (FPTRC)

21

Presentations and discussionsDesign and tomography test of Soft X-ray Array diagnostics

on KSTAR (Seung Hun LEE)

Design and tomography test of Edge Multi energy Soft X-ray Array diagnostics on KSTAR (Juhyeok JANG)

Impurity transport analysis and preparation of W injection experiments (Joohwan HONG)

Development of a tungsten injection injector for high Z impurity study (Joohwan HONG)