1
Results Experimental Testing Team Members: Jared Frey, Anne Itsuno, Amy Lee, Kerin O’Toole, Beth Sterling Faculty Advisor: Jonathan Stolk Corporate Liaisons: Gillian Ross, Jenny Berens Foam Project The toner adder roll (TAR) is a component in laser printers that scoops and charges toner particles, and applies them to the adjacent developer roll while simultaneously removing old toner. To optimize the functionality of the TAR, Lexmark has identified a set of desired properties for the TAR foam. The material must be electrically conductive and mechanically robust over a wide range of temperature and humidity, while also having high structural uniformity and good mechanical and electrical aging properties. To attain the desired performance, the material must meet specific target ranges for resistance, porosity, and hardness. Problem Statement Improve the performance of the TAR. Research existing foam materials and foaming techniques Produce and characterize foam samples that show improvement over current TAR foams in one or more properties of interest. Screening Experiments with Conductive Polymers Conductive Polymer Coatings Cosynthesis Project Objectives Project Focus As there are many properties that are important to the functionality of the TAR, we prioritized the properties we attempted to attain through lab work. Electrical Conductivity: Electrical conductivity was our highest priority, since foam that is too resistive is unable to attract and charge toner particles. Stiffness: Since the foam must be able to conform to the shape of the developer roller, the mechanical stiffness of the foam was a high priority. Pore Count: Introducing a high number of pores into the foam maximizes its surface area, which is necessary to attract and charge enough toner particles. TimeDependent Properties: Environmental factor, creep resistance, mechanical and electrical fatigue resistance, etc. Conductive Polymer Additives Histology Scanning Electron Microscopy Electrical Resistance Compression We created a formal design of experiments based on the results of our screening experiments, modifying an experimental setup found in the literature. The design of experiments results showed promise in meeting the requirements of a TAR foam. Coating Mass (g) Resistance (Ω) Stiffness (psi) ICP Concentration (M) x, y, and z ICP:Oxidizing Agent Ratio A:B and A:C Design of Experiments Coating thickness was measured using thin cross sections of the foam. Coating integrity was examined using FESEM. Achieved lower resistance than our original target resistance on some samples. If the foam cannot charge, it will not attract toner particles Electrical Conductivity Stiffness Pore Count Conclusions ICP coatings did not have a significant effect on the stiffness of most samples. ICP coatings hold promise in meeting the target properties for the TAR foam. The resistance of some samples is lower than our original goal. Higher ICP concentrations generally yield lower resistance, but the ICP:oxidizing agent molar ratio does not show a clear trend. The effect of the coating on the mechanical properties of the foam appears to be minimal, but further testing is required. This effect may also vary depending on the composition of the base foam. Second Coat Average Resistance (Ω) as f(Applied Voltage) at 30 s 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 0 0.2 0.4 0.6 0.8 1 Voltage (V) Resistanace (Ω) Uncoated white foam Uncoated grey foam x M IPC, A:B ratio x M IPC, A:C ratio y M IPC, A:B ratio y M IPC, A:C ratio z M IPC, A:B ratio z M IPC, A:C ratio ICP ICP ICP ICP ICP ICP Second coat compression data 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 'A:B Ratio' 'A:C Ratio' Load at 25% compression (psi) ICP:Oxidizing Agent Ratio x M ICP y M ICP z M ICP Foam block before and after coating 0 5 10 15 20 0 5 10 15 20 25 %Compressive Strain Stress (KPa) Uncoated Coated

with Conductive Polymers - Olin College · Conductive Polymer Additives Histology Scanning Electron Microscopy Electrical Resistance Compression We created a formal design of experiments

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: with Conductive Polymers - Olin College · Conductive Polymer Additives Histology Scanning Electron Microscopy Electrical Resistance Compression We created a formal design of experiments

Results 

Experimental Testing 

Team Members: Jared Frey, Anne Itsuno, Amy Lee, Kerin O’Toole, Beth Sterling Faculty Advisor: Jonathan Stolk Corporate Liaisons: Gillian Ross, Jenny Berens 

Foam Project 

The toner adder roll (TAR)  is a component  in  laser printers that scoops and charges  toner  particles,  and  applies  them  to  the  adjacent  developer  roll while  simultaneously  removing  old  toner.  To  optimize  the  functionality  of the TAR, Lexmark has identified a set of desired properties for the TAR foam. The material must be electrically conductive and mechanically robust over a wide  range of  temperature and humidity, while also having high structural uniformity  and  good mechanical  and  electrical  aging  properties.  To  attain the desired performance, the material must meet specific target ranges for resistance, porosity, and hardness.  

Problem Statement 

Improve the performance of the TAR.  • Research existing foam materials and foaming techniques • Produce  and  characterize  foam  samples  that  show  improvement  over current TAR foams in one or more properties of interest.  

Screening Experiments with Conductive Polymers Conductive Polymer Coatings Co‐synthesis 

Project Objectives 

Project Focus As  there  are many properties  that are  important  to  the  functionality of  the  TAR,  we  prioritized  the properties we  attempted  to  attain through lab work. 

Electrical  Conductivity:  Electrical conductivity was  our  highest  priority,  since  foam  that  is  too  resistive  is  unable  to attract and charge toner particles.  

Stiffness: Since the foam must be able to conform to the shape of the developer roller, the mechanical stiffness of the foam was a high priority.  

Pore Count:  Introducing a high number of pores  into the foam maximizes  its surface area, which is necessary to attract and charge enough toner particles.  

Time‐Dependent Properties:  Environmental  factor, creep  resistance, mechanical and      electrical fatigue resistance, etc. 

Conductive Polymer Additives 

 

   

   

 

    

        

Histology 

Scanning Electron Microscopy 

Electrical Resistance 

Compression 

We created a formal design of experiments based on the results of our screening experiments, modifying an experimental setup found  in  the  literature.  The  design  of  experiments  results showed promise in meeting the requirements of a TAR foam.  

   Coating Mass (g)  Resistance (Ω)  Stiffness (psi) 

ICP Concentration (M) x, y, and z 

        

ICP:Oxidizing Agent Ratio  A:B and A:C 

        

Design of Experiments 

Coating  thickness  was  measured  using  thin cross sections of the foam. 

Coating integrity was examined using FESEM. 

Achieved  lower  resistance  than our original target resistance on some samples. 

 

 

 

If the foam cannot  charge, it will not attract toner particles 

Electrical Conductivity 

Stiffness

 Pore Count 

Conclusions 

ICP coatings did not have a significant effect on the stiffness of most samples. 

ICP coatings hold promise in meeting the target properties for the TAR foam.  The resistance of some samples is  lower than our original goal.   Higher ICP concentrations generally yield lower resistance, but the ICP:oxidizing agent molar ratio does not show a clear trend.  The effect of the coating on the mechanical properties of the foam appears to be minimal, but further testing  is required.   This effect may also vary depending on the composition of the base foam.   

Second Coat Average Resistance (Ω) as f(Applied Voltage) at 30 s

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 0.2 0.4 0.6 0.8 1

Voltage (V)

Resistan

ace (Ω) 

Uncoated white foam

Uncoated grey foam

x M IPC, A:B ratio

x M IPC, A:C ratio

y M IPC, A:B ratio

y M IPC, A:C ratio

z M IPC, A:B ratio

z M IPC, A:C ratio

ICP 

ICP 

ICP 

ICP 

ICP 

ICP 

Second coat compression data

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

'A:B Ratio' 'A:C Ratio'

IPC:Oxidizing Agent Ratio

Load at 25%

 com

pression

 (psi)

x M IPC

y M IPC

z M IPC

ICP:Oxidizing Agent Ratio 

x M ICP 

y M ICP 

z M ICP 

Foam block before and after coating

0

5

10

15

20

0 5 10 15 20 25

%Compressive Strain

Stre

ss (

KPa

)

Uncoated

Coated