27
Wide Bandgap Semiconductor Nanowires for Sensing S.J. Pearton 1 , B.S. Kang 1 , B.P.Gila 1 , D.P. Norton 1 , L.C.Tien 1 , H.T.Wang 2 , F. Ren 2 , Chih-Yang Chang 3 ,G.C. Chi 3 ,Wei- Ming Wang 3 and Li-Chyong Chen 4 1 Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, U.S.A 2 Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, U.S.A. 3 Department of Physics, National Central University, Jhong-Li 320, Taiwan 4 Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

Wide Bandgap Semiconductor Nanowires for Sensing S.J. Pearton 1, B.S. Kang 1, B.P.Gila 1, D.P. Norton 1, L.C.Tien 1, H.T.Wang 2, F. Ren 2, Chih- Yang Chang

Embed Size (px)

Citation preview

Wide Bandgap Semiconductor Nanowires for Sensing

• S.J. Pearton1, B.S. Kang1, B.P.Gila1, D.P. Norton1, L.C.Tien1, H.T.Wang2, F. Ren2, Chih-Yang Chang3,G.C. Chi3,Wei-Ming Wang3 and Li-Chyong Chen4

• 1Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, U.S.A

• 2Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, U.S.A.

• 3Department of Physics, National Central University, Jhong-Li 320, Taiwan

• 4Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan

GaN Applications

Blue/violet/white/UV LED Blue/green/UV lasers

High power microwave transistors

Robust sensors

GaN NWs grown by catalytic chemical vapor deposition

500μm

5μm

Ti/Au PadTi/Au Pad SiNx/Si

FESEM image & CL spectrum of a single GaN NW with two electrodes

Gate voltage-dependent I-Vsd curves of a single GaN NW

The carrier mobility is estimated at 30 cm2/V·s.The carrier concentration is estimated to be 2×1017 cm-3

25 30 35 40 45 50 55 60

(a)

In (

110)

(411

)

(413

)

(332

)

(

440)

InN In

2O

3

(

400)

(

222)

(103

)

(110

)

(102

)

(101

)

(002

)

(100

)

Inte

nsi

ty (

a.u

.)

2 (degree)

5 nm

0.308 nm

5 nm5 nm

0.308 nm

InN NWs grown by catalytic thermal-CVD

HRTEM image XRD spectrum

Temperature-dependent I-V curve of a InN NW

fAppl. Phys. Lett. 64, p1508-1510 (1994)gSolid-state Electronics, 39, p1289-1294 (1996)hJ. Vac. Sci. Technol. B, 14, p3520-3522 (1996)iThis work

Resistivity comparison between thin film and nanowire (n-type GaN and InN)

  thin film nanowire

  resistivity (Ω cm)

contact resistivity (Ω cm2)

resistivity (Ω cm)

contact resistance (Ω)

n-GaN 4.4×10-2 a 3~7×10-6 a,b 56 ~ 1.24×10-4 c,d,e   X

InN2.1~

3.1×10-3

f,g,h

1.8×10-7 f 4×10-4 i 2i

aSolid State Electron 41, p165-168 (1997)bAppl. Phys. Lett. 70, p57-59 (1997)cAppl. Phys. Lett. 85, p1636-1638 (2004)dNano Lett. 2, p101-104 (2002)eNano Lett. 3, p1063-1066 (2003)

10101010

Single Crystal Nanowire

• TEM image of an individual ZnO Nanowire.

• An estimated diameter of the wire is 20 nm.

• A small particle embedded at the tip of the wire is Ag or Ag-Zn alloy.

• HR-TEM image and selected area diffraction (SAD) of the nanowire indicates that it is a single crystal ZnO.

00020002

Heterostructured nanowires

Type I Type II

Core (Zn,Mg)O(Hexa.)

Sheath(Zn,Mg)O(Hexa.)

Zn1-xMgxO(x <0.02)(Hexa.)

(Mg,Zn)O(cubic)

Radial heterostructure Axial heterostructure

ZnO(Zn1-XMgX)O

ZnO(Zn1-XMgX)O

Growth condition

-. Zn : 3 × 10-6 mbar

-. Mg : 4 × 10-7 mbar

-. O3/O2 : 5 × 10-4 mbar,

-. Tg= 400C

Growth condition

-. Zn : 3 × 10-6 mbar

-. Mg : 2 × 10-7 mbar

-. O3/O2 : 5 × 10-4 mbar,

-. Tg= 400C

Type I - Radial heterostructured nanowire

Core (Zn,Mg)O(Hexa.)

Sheath(Zn,Mg)O(Hexa.)

-. Nanowire is crystalline with the wurtzite crystal

structure maintained throughout the cross-

section.

-. The higher contrast for the center core region

clearly indicates a higher cation atomic mass.

-. Core : zinc-rich Zn1-xMgxO

-. Sheath : Mg-rich Zn1-yMgyO

10 nm

a b

0002

1120

b

Type II - Radial heterostructured (Zn,Mg)O/(Mg,Zn)O nanowire

Zn1-xMgxO(x <0.02)(Hexa.)

(Mg,Zn)O(cubic)

[0001]

(1ī1

)(200)

(11ī)

0 10 20 30 40 50 600

20

40

60

80

100

120

140

No

rma

lize

d C

ou

nts

Position across Nanowire (nm)

Mg Zn

Compositional line scan across the nanowire (STEM)

-. Core : Zn1-xMgxO Hexagonal Wurtzite structure -. Sheath (Shell): Mg1-xZnxO Cubic Rock salt structure

ZnMg

(Mg,Zn)O nanowire (cubic rock salt structure)

200

020

B=[001]

2.04 Å

Position across nanowire(nm)

Inte

nsit

y(ar

b.)

Growth condition

-. Zn : 3 × 10-6 mbar

-. O3/O2 : 5 × 10-4 mbar,

-. Mg : 8 × 10-7 mbar

-. Tg = 400C

ZnO

hexagonal

wurtzite st.

(Mg,Zn)O

cubic

rock salt st.(Zn1-xMgx)O/(Zn1-xMgx)O hexa. / hexa.wurtzite / wurtzite

Radial heterostructured (Zn,Mg)O

Zn = 3 × 10-6

O3/O2 = 5 × 10-4

Mg = none

Zn = 3 × 10-6

O3/O2 = 5 × 10-4

Mg = 8 × 10-7

Zn = 3 × 10-6

O3/O2 = 5 × 10-4

Mg = 2 × 10-7

Zn = 3 × 10-6

O3/O2 = 5 × 10-4

Mg = 4 × 10-7

[unit: mbar]Tg= 400C

core / sheath(Zn1-xMgx)O / (Mg,Zn)O

hexa. / cubicwurtzite / rock salt st.

core / sheath

Nanowires vs Zn, Mg pressures

I II

Fabrication of ZnO nanowire device

Insulator

Electrode (Al/Pt/Au) Al/Pt/Au

ZnO Nanowire

-. Fundamental understanding of transport

-. Nanoelectronics

-. Nano sensors (UV, chemical, bio.)

Motivation

-. Electrode : Al/Pt/Au by sputtering

-. Diameter of ZnO nanowire : 130 nm

-. Channel Length : 3.7 m

Structure of Nanodevice

Prototype device fabrication sequence

Design andDeposit AlignmentMarks

Deposit SiO2

Evaporation & Nanowires Deposition

Find NanowiresRelative To AlignmentMarks

     Spin PMMA       Resist

E-beam WriteAligned PatternAnd Develop

Deposit MetalAnd Lift Off

Ethanol and NanowireSuspension

UV Response of single ZnO nanowire

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-40

-20

0

20

40

Cur

rent

(nA

)

Voltage (V)

Dark UV366nm

Dark

UV 366nm

on

off

UV 366nm at VD 0.25V

-0.4 -0.2 0.0 0.2 0.4

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9 Dark UV366nm

Cur

rent

(nA

)

Bias (V)

0.00 0.05 0.10 0.15 0.201x10-4

1x10-3

1x10-2

1x10-1

1x100

1x101

Cur

rent

(nA

)

Bias (V)

I=Io(eqV/nkT-1)Ideality factor = 1.1

Forward Bias

Al/Pt/Au Al/Pt/Au

Pt/Au (schottky contact)

-10 -8 -6 -4 -2 0-0.20

-0.15

-0.10

-0.05

0.00

Cur

rent

(nA

)

Bias (V)

Reverse Bias

Pt/ZnO nanowire Schottky Diode

0 2 4 6 8 10

0

2x10-8

4x10-8

6x10-8

8x10-8

I DS(A

)

VDS

(V)

VG=0 V

VG=-0.5 V

VG=-1 V

VG=-1.5 V

VG=-2 V

VG=-2.5 V

Depletion-mode ZnO nanowire field-effect transistor

Source Drain

GateOxide

Nanowire

Si

Insulator (SiO2)

Source(Al/Pt/Au)

Drain(Al/Pt/Au)

Gate(Al/Pt/Au)

Nanowire

Gate oxide((Ce,Tb)MgAl11O19)

-3 -2 -1 0

0

2x10-8

4x10-8

6x10-8

VG(V)

I DS(A

)

0.0

0.1

0.2

0.3 IDS

gm

gm (m

S/mm

)

0 100 200 300 400 500 6000.0

4.0x10-8

8.0x10-8

1.2x10-7

1.6x10-7

1211109876

543

2

I DS(A

)

Time(sec)

non UV UV(365nm)

2 3 4 5 6 7 8 9 10 11 12

0

50

100

150

200

250

300

Co

ndu

ctan

ce(n

S)

pH

non UV UV(365nm)

electrode(Al/Pt/Au) Nanowire

Si

Insulator (SiO2)

Microchannel

pH Sensing with Single ZnO Nanowire

Hydrogen Detection

• Hydrogen has been used as fuels in many NASA’s space exploration missions.

• President Bush’s Hydrogen Fuel Initiative in 2003.

• Why hydrogen sensing?

– Safety!

– Production, Storage, Transport

• Hydrogen concentration in air reaches a dangerous level at 4%. ppm-level detection is needed.

Simple Fabrication Process

• Direct deposition of metal contacts on the silicon substrate with nanorods.

• No need to go through sonication and E-beam lithography to fabricate the sensors.

• The sensor has better sensitivity (more nanorods combined).

Al/Pt/Au

Al/Pt/Au

Hydrogen-Selective Sensing at Room Temperature with ZnO Nanorods

Hydrogen-selective gas sensing at 25C with Pd/ZnO nanorods

0 30 60 90 120 150640

650

660

670

950

960

AirAirAirAir 500ppm H

2

250ppm H

2

100ppm H

2

10ppm H

2

O2

N2

ZnO nanorod with Pd

ZnO nanorod without Pd

Resistance(ohm)

Time(min)

Wireless Hydrogen Sensor System Prototype – powered by

battery

916MHz

TX RXMicro-

controllerLow-noiseOp Amp

Micro-controller

16x1 LCD

Remote Sensor Central Station

Self-Powered Wireless Sensor

• Use energy from ambient– Solar, vibration, ambient RF radiation

• Use energy supplied locally– Hydrogen flow, micro fuel cell, acoustic,

thermal gradient

• Use energy supplied remotely– Wireless power supply (wireless power

transmission)

High quality,single-crystal growth of wide bandgap semiconductor nanowires

Bimodal growth of cored ZnO/(Zn,Mg)O heterostructured nanowires.

Type I -. Core : Zn1-xMgxO (x < 0.02) , Hexagonal wurtzite structure

-. Sheath : Zn1-xMgxO (x >> 0.02), Hexagonal wurtzite structure

Type II -. Core : Zn1-xMgxO (x < 0.02), Hexagonal wurtzite structure

-. Sheath : (Mg,Zn)O, Cubic rock salt structure

(Mg,Zn)O nanowires having cubic rock salt structure

Conclusions

Functional Nano-devices

Pt/ZnO nanowire Schottky Diode

Depletion-mode GaN and ZnO nanowire field-effect transistor

UV, pH, & gas sensors from GaN,InN and ZnO nanowires