22
Where is Transportation Going? Conventional Engines Biofuels Electricity Hydrogen George Crabtree Materials Science Division Argonne National Laboratory

Where is Transportation Going? - Northwestern …ceet.mccormick.northwestern.edu/events/domain_dinner07/crabtree...Where is Transportation Going? Conventional Engines ... bio- and

  • Upload
    dohuong

  • View
    218

  • Download
    5

Embed Size (px)

Citation preview

Where is Transportation Going?

Conventional Engines

Biofuels

Electricity

Hydrogen

George Crabtree

Materials Science Division

Argonne National Laboratory

Big Picture: Major Energy Challenges

EIA Intl Energy Outlook 2004http://www.eia.doe.gov/oiaf/ieo/index.html

0

10

20

30

40

50

%

World Fuel Mix 2001oil

gas coal

nucl renew

85% fossil

2100: 40-50 TW 2050: 25-30 TW

0.00

5.00

10.00

15.00

20.00

25.00

1970 1990 2010 2030

TW

World Energy Demandtotal

industrial

developing

US

ee/fsu

Hoffert et al Nature 395, 883,1998

Energy DemandFuel Security / Sustainability

2

Big Picture: Greenhouse Gases

Relaxation timetransport of CO2 or heat to deep

ocean: 400 - 1000 years

J. R. Petit et al, Nature 399, 429, 1999 Intergovernmental Panel on Climate Change, 2001

http://www.ipcc.chN. Oreskes, Science 306, 1686, 2004

D. A. Stainforth et al, Nature 433, 403, 2005

Climate Change 2001: T he Scientific Basis, Fig 2.22

12001000 1400 1600 1800 2000

240

260

280

300

320

340

360

380

Year AD

Atm

osph

eric

CO

2(p

pmv) Tem

perature (°C)

- 1.5

- 1.0

- 0.5

0

0.5

1.0

1.5

-- CO2-- Global Mean Temp

300

400

500

600

700

800

- 8

- 4

0

+ 4

400 300 200 100Thousands of years before present

(Ky BP)

0

∆T

relative

to

pres

ent

(°C)

CH4(ppmv)

-- CO2

-- CH4

-- ∆T

325

300

275

250

225

200

175

CO2(ppmv)

CO2 in 2004: 380 ppmv

3

Consumer Picture: Buying Priorities

Fuel Economy: 16th on the list

CO2: not on the list

Survey of 55,000 Buyers of 2007 New Carsfrom Strategic Vision's 2007 New VehicleExperience Study (bought Oct 06 - Mar '07,surveyed after 3 months of ownership)

Courtesy John GermanAmerican Honda Motor Co

4

Consumer Picture: Gasoline Price

Courtesy John GermanAmerican Honda Motor Co

5

Consumer Picture: Cost of Driving

Courtesy John GermanAmerican Honda Motor Co

6

Options for Transportation

Conventional Engines

Alternative Liquid Fuels

Electricity

Hydrogen

7

Conventional Gasoline Engines: Efficiency

Combustion and transmission of power: 20% - 35%

Most of the energy: “waste heat”

Thermoelectrics: use waste heat

8

Thermoelectric Conversion

thermal gradient ⇔ electricity

figure of merit: ZT ~ (σ/κ) TZT ~ 3: efficiency ~ heat engines

no moving parts

TAGS

0 200 400 600 800 1000 1200 1400RT

2.5

1.5

0.5

ZT

CsBi4Te6

Bi2Te3

LaFe3CoSb12

Zn4Sb3

Si Ge

�PbTe

Temperature (K)

Bi2Te3/Sb2Te3superlattice

PbTe/PbSesuperlattice

LAST-18AgPbAgPb1818SbTeSbTe2020

Scientific Challengesincrease electrical conductivitydecrease thermal conductivity

nanowire superlattice

nanoscale architecturesinterfaces block heat transport

confinement tunes density of statesdoping adjusts Fermi level

Mercouri Kanatzidis

9

Biomass to Fuel

Courtesy Seth Snyder, Argonne

10

Biomass Fuel Research

• Renewable Diesel– Oils are hydrotreated with the introduction of hydrogenand are co-fed with diesel in the presence of a catalyst– End products are propane and renewable diesel.– Typical renewable diesel is paraffinic (C13-C18).- No oxygen, no double bonds, in the heart of diesel fuel (C10-

C22), high cetane, feedstock independent

• Cellulosic biomass to liquid fuels– Pyrolysis- Can create a thick black tarry fluid with viscosity as heavy oil- Hydrotreat to create renewable diesel

– Gasification, followed by Fischer-Tropsch process

11

Projected Cost of Alternatives

Gasolinepredictions

2004 2007

BrazilSugar cane

Corn ethanolUS EU

CellulosicEthanol

Fischer-Tropsch

Production cost in 2012$/

gal g

asol

ine

equi

vale

nt

A. Farrell and D. Sperling, May 2007

12

Electricity as an Energy Carrier

communication

digital electronics

lightingheating

refrigeration

13

coalgas

heat mechanicalmotion electricity

hydrowind

fuel cells

solar

power grid

transportation

industrynuclearfission

35% of primary energy34% of CO2 emissions

63% of energy lost

Transportation29% of primary energy31% of CO2 emissions73% of energy lost

Electricity for Transportation Alternatives

Hybrid 3-4 mile range on pure electricityReduced gasoline useReduced CO2Higher cost

Plug-in Hybrid10-40 mile range on pure electricityTrades gasoline for electricityHigher cost

All Electric

Challenge: Batteries, Batteries, Batteries

14

The Importance of Batteries

Conventional, Hybrid, Plug-In Hybrid

vs conventional vehiclevs hybrid

Courtesy John GermanAmerican Honda Motor Co

15

Alternative Fuels

Energy Density of Fuels

30

Volu

met

ric

Ener

gy D

ensi

ty

MJ

/ L

syst

em 20

10

00 10 20 30 40

Gravimetric Energy DensityMJ/kg system

gasoline

liquid H2

chemical hydrides

complex hydride

s

compressed gas H2

batteries

16

Battery Options

SystemNegativeelectrode

Positiveelectrode

OCV(V)

Th. Cap(Ah/kg)

Th En.(Wh/kg)

Lead – acid Pb PbO2 2.1 83 171

Ni-Cd Cd NiOOH 1.35 162 219

Ni-MH MH alloy NiOOH 1.35 ~178 ~240

Na-S (350°C) Na S 2.1-1.78 (2.0) 377 754

Na-MCl2(300°C)

Na NiCl2 2.58 305 787

Li-Ion LixC6 Li1-xCoO2 4.2-3.0 (4.0) 79for x=0.5

316 for x=0.5

(632 for x=1)

Li-polymer Li VOx ~3.0-2.0 (2.6) ~340 ~884

Courtesy Michael Thackeray, ANL

17

Hydrogen Transportation

H2Oautomotivefuel cells

solarwindhydro

gas orhydridestorage

stationaryelectricity/heat

generation

consumerelectronics

nuclear/solar thermochemical

cyclesH2 H2

fossil fuelreforming

+carbon capture

bio- and bio-inspired

production storage use in fuel cells

9M tons/yr

150 M tons/yr(light trucks and cars in 2040) 9.72 MJ/L

(2015 FreedomCAR Target)

4.4 MJ/L (Gas, 10,000 psi)8.4 MJ/L (LH2)

$3000/kW

$30/kW(Internal Combustion Engine)

$200/kWmass production

18

Hydrogen Storage Today: Gas and Liquid

gaseous storage5000 psi = 350 bar10000 psi = 700 bar

fiber reinforced composite containers

liquid storagestandard in stationary applications

portable cryogenics for auto30-40% energy lost to liquifaction

19

within technological reach

Hydrogen Storage Challenges: Hydride MaterialsHydrogen Storage Challenges: Hydride Materials

Based on Schlapbach and Zuttel, Nature 414, 353 (2001)

LiAlH4

NH3BH3⇒ NHBH + 2H2

Mg(NH3)6Cl2

20

Fuel Cell Challenges: CatalysisPure Pt-skin

Pt48Ni52Pt87Ni13

Pt3Ni crystalPt75Ni25

21

V. Stamenkovic et al, Science 315, 493 (2007)V. Stamenkovic et al, Nature Materials 6, 241 (2007)

Pure Pt crystal

Oxygen Reduction

1/2 O2 + 2 H + + 2 e- ⇒ H2O

+

+

+

+

++

+

+

e-H2

O2

H2O

Pt

(111) (100) (110)

Specific Activityin 0.1 M HClO4at 0.9 V vs RHE

Pt3Ni

Pt

Crystal Surface

I kki

neti

c cu

rren

t de

nsit

y

Requires catalysis

Pt is most effective

Expensive and limited supplyCourtesy Nenad Markovic, Argonne

Research ChallengesMaterials, Materials, Materials

• Advanced batteries for hybrids

• Energy capture from waste heat in exhaust and coolant

• New materials, including

– Methods to automate production of carbon fiber

– High-gloss plastic

- Lightweight metals

• Cellulosic feedstock to fuels compatible with existing vehicles

• Breakthrough energy storage for plug-in hybrid and electric vehicles

- e.g., supercapcitors

• Breakthrough hydrogen storage materials for fuel cells

• Catalysts for fuel cells

22