54
What’s salt got to do with it? Lessons from Current Coastal Agricultural Adaptation in Hyde County, NC 11/14/2018 1 Ellie Davis University of South Carolina

What’s salt got to do with it?...•Using interviews, document and analyze current soil salinization adaptations and barriers for farming 10. Remote Sensing 11. In-situ Measurements

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • What’s salt got to do

    with it?

    Lessons from Current Coastal Agricultural Adaptation in Hyde County, NC

    11/14/2018 1

    Ellie Davis

    University of South Carolina

  • Outline

    • Background: Agriculture in Hyde County, NC

    • Methods

    • Results

    • Future Work

    • Lessons

    2

  • Hyde County, NC

    3RisingSea.net

  • 4RisingSea.net

    Sea Level Rise & Flooding

  • 440 out of 613 Square Miles

    5

  • 6

  • Two Identified

    Problems

    7

  • The extent of

    the damage is

    unknown.

    8

  • Adaptation to

    salinization is

    undocumented.

    9

  • Methods

    • Using remote sensing, Model and Map soil salinity in Hyde County,

    NC

    • Using interviews, document and analyze current soil salinization

    adaptations and barriers for

    farming

    10

  • Remote Sensing

    11

  • In-situ

    Measurements

    12

    Remote Sensing

    Analysis

  • 13

    11 ds/m

    5.0 ds/m

    2.5 ds/m

    Results: In-situ

  • 14

    Results: Salinity Area Density

    Landsat 8 OLI Sentinel-2

  • 15

    Results: Salinity Area Density

    Landsat 8 OLI Sentinel-2

  • Results: Soil

    Estimate

    1.4-2.5%

    Bare soil

    > 4 dS/m

  • Lessons Learned

    Remote sensing is

    a valuable tool for

    tracking soil

    salinity

    1 2 3

    18

  • Any questions so far?

    18

  • Identify Adaptation Responses,

    Barriers, and Interventions

    19

  • Process

    Moser and Ekstrom (2010) Framework 20

    Understanding

    PlanningManaging

  • Process

    Moser and Ekstrom (2010) Framework 21

    Understanding

    PlanningManaging

  • Process

    Moser and Ekstrom (2010) Framework 22

    Understanding

    PlanningManaging

  • Lessons Learned

    Remote sensing is

    a valuable tool for

    tracking soil

    salinity

    1

    Producers are in

    each part of the

    adaptation cycle

    and need support

    for each step

    2 3

    18

  • Barriers

    24

    Location &

    Environment

    Coordination &

    Communication

    Awareness &

    Research

  • Barriers

    25

    Location &

    Environment

    Coordination &

    Communication

    Awareness &

    Research

  • Barriers

    26

    Location &

    Environment

    Coordination &

    Communication

    Awareness &

    Research

  • Lessons Learned

    Remote sensing is

    a valuable tool for

    tracking soil

    salinity

    1

    Producers are in

    each part of the

    adaptation cycle

    and need support

    for each step

    2

    There are multiple

    barriers to

    adaptation,

    external and

    internal

    3

    18

  • Future Work

    Expand Interviews to Study

    Flooding and Salinity Risk

    Perceptions

    1

    Fly Drone Coverage of

    Salinity Change in Test

    Plots

    2

    18

  • Questions

    29

    Are there any parallels with your work

    in adaptation?

    What ideas (no matter how crazy) have

    you come across that may work to

    overcome barriers?

  • Acknowledgements

    Advisor:

    • Dr. Kirstin Dow, University of South Carolina

    Committee:

    • Dr. Susan Wang, University of South Carolina

    • Dr. Gregory Carbone, University of South Carolina

    Funding:

    • Carolinas Integrated Sciences and Assessments

    • SC Sea Grant and SC Space Grant

    • Department of Geography, University of South Carolina

    30

  • Thank you!

    Ellie Davis

    [email protected]

    31

    mailto:[email protected]

  • Works CitedAdam, E., Mutanga, O., & Rugege, D. (2009). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecol Management. Retrieved from https://www.researchgate.net/profile/Onisimo_Mutanga/publication/225456909_Multispectral_and_hyperspectral_remote_sensing_for_identification_and_mapping_of_wetland_vegetation_A_review/links/09e4150e6b7617a58a000000/Multispectral-and-hyperspectral-remote-s

    Arbuckle, J. G., Morton, L. W., & Hobbs, J. (2013). Understanding farmer perspectives on climate change adaptation and mitigation: the roles of trust in sources of climate information, climate change beliefs, and perceived risk. Environment and Behavior, 1–30. https://doi.org/10.1177/0013916513503832

    Azhoni, A., Holman, I., & Jude, S. (2016). Contextual and interdependent causes of climate change adaptation barriers: Insights from water management institutions in Himachal Pradesh, India. Science of the Total Environment, 576, 817–828. https://doi.org/10.1016/j.scitotenv.2016.10.151

    Bai, L., Wang, C., Zang, S., Zhang, Y., Hao, Q., & Wu, Y. (2016). Remote sensing of soil alkalinity and salinity in the Wuyu’er-Shuangyang river basin, Northeast China. Remote Sensing, 8(2). https://doi.org/10.3390/rs8020163

    Beck, R. (Ed.). (2003). EO-1 User Guide (2.3). University of Cincinnati. Retrieved from https://eo1.usgs.gov/documents/EO1userguidev2pt320030715UC.pdf

    Biesbroek, R., Klostermann, J., Termeer, C., & Kabat, P. (2011). Barriers to climate change adaptation in the Netherlands. Climate Law, 2(2), 181–199. https://doi.org/10.3233/CL-2011-033

    Brady, N. C., & Weil, R. R. (2010). Elements of the Nature and Properites of Soils (Third Edit). Upper Saddle River: Prentice Hall.

    California Institute of Technology. (n.d.). Welcome to HyspIRI Mission Study Website — Hyperspectral Infrared Imager. Retrieved January 22, 2017, from https://hyspiri.jpl.nasa.gov/

    Climate Central. (2016). Sea level rise and coastal flood risk: Summary for Hyde County, NC Sea level rise and flood forecast. Retrieved from http://ssrf.climatecentral.org.s3-website-us-east-1.amazonaws.com/Buffer2/states/NC/downloads/pdf_reports/County/NC_Hyde_County-report.pdf

    Drouin, R. (2016). Ghost Forests: How Rising Seas Are Killing Southern U.S. Woodlands — Earth Law Center. Retrieved January 22, 2017, from http://www.earthlawcenter.org/newsfeed/2016/11/ghost-forests-how-rising-seas-are-killing-southern-us-woodlands

    Eakin, H., York, A., Aggarwal, R., Waters, S., Welch, J., Rubiños, C., … Anderies, J. M. (2016). Cognitive and institutional influences on farmers’ adaptive capacity: insights into barriers and opportunities for transformative change in central Arizona. Regional Environmental Change, 16(3), 801–814. https://doi.org/10.1007/s10113-015-0789-y

    Eisenack, K., Moser, S. C., Hoffmann, E., Klein, R. J. T., Oberlack, C., Pechan, A., … Termeer, C. J. A. M. (2014). Explaining and overcoming barriers to climate change adaptation. Nature Climate Change, 4(October), 867–872. https://doi.org/10.1038/NCLIMATE2350

    Ghosh, G., Kumar, S., & Saha, S. K. (2012). Hyperspectral Satellite Data in Mapping Salt-Affected Soils Using Linear Spectral Unmixing Analysis. Journal of the Indian Society of Remote Sensing, 40(1), 129–136. https://doi.org/10.1007/s12524-011-0143-x

    Haden, V. R., Niles, M. T., Lubell, M., Perlman, J., & Jackson, L. E. (2012). Global and Local Concerns: What Attitudes and Beliefs Motivate Farmers to Mitigate and Adapt to Climate Change? PLoS ONE, 7(12). https://doi.org/10.1371/journal.pone.0052882

    32

  • Works CitedHarris Geospatial Solutions. (n.d.-a). Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) Users Manual. Retrieved March 12, 2017, from http://www.harrisgeospatial.com/portals/0/pdfs/envi/flaash_module.pdf

    Harris Geospatial Solutions. (n.d.-b). FLAASH Background (Using ENVI) [Harris Geospatial Docs Center]. Retrieved March 12, 2017, from https://www.harrisgeospatial.com/docs/backgroundflaash.html

    Hodgson, M. E., & Kar, B. (2008). Modeling the Potential Swath Coverage of Nadir and Off-Nadir Pointable Remote Sensing Satellite-Sensor Systems. Cartography and Geographic Information Science, 35(3), 147–156. Retrieved from http://people.cas.sc.edu/hodgsonm/Published_Articles_PDF/CAGIS_Hodgson_Kar_Modeling Satellite Opportunities_CAGIS_2008.pdf

    Hossain, M. A. (2010). Global Warming induced Sea Level Rise on Soil, Land and Crop Production Loss in Bangladesh. Soil Resource Development Institute. Retrieved from http://iuss.org/19th WCSS/Symposium/pdf/0419.pdf

    Kruse, F., Boardman, J. W., & Huntington, J. F. (2003). Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6 PART I), 1388–1400. https://doi.org/10.1109/TGRS.2003.812908

    Li, C., Roberts, H., Stone, G., Weeks, E., & Luo, Y. (2011). Wind surge and saltwater intrusion in Atchafalaya bay during onshore winds prior to cold front passage. Hydrobiologia, (658), 27–39.

    Li, J., Pu, L., Zhu, M., Dai, X., Xu, Y., Chen, X., … Zhang, R. (2015). Monitoring soil salt content using HJ-1A hyperspectral data: A case study of coastal areas in Rudong County, Eastern China. Chinese Geographical Science, 25(2), 213–223. https://doi.org/10.1007/s11769-014-0693-2

    Manda, A. K., Giuliano, A. S., & Allen, T. R. (2014). Influence of artificial channels on the source and extent of saline water intrusion in the wind tide dominated wetlands of the southern Albemarle estuarine system (USA). Environmental Earth Sciences, 71(10), 4409–4419. https://doi.org/10.1007/s12665-013-2834-9

    Marshall, N. (2010). Understanding social resilience to climate variability in primary enterprise industries. Global Environmental Change, 20, 36–43. Retrieved from https://www.researchgate.net/profile/Nadine_Marshall/publication/230757177_Understanding_social_resilience_to_climate_variability_in_primary_enterprises_and_industries/links/53daf5500cf2631430cb1696.pdf

    Marshall, N., Dowd, A.-M., Fleming, A., Gambley, C., Howden, M., Jakku, E., … Park, S. (2014). Transformational capacity in Australian peanut farmers for better climate adaptation Transformational capacity in Australian peanut farmers for better climate adaptation. Agron- omy for Sustainable Development. EDP Sciences/INRA, 34(3), 583–591. Retrieved from https://hal.archives-ouvertes.fr/hal-01234807

    Mccarl, B. A., Musumba, M., Smith, J. B., Kirshen, P., Jones, R., & El-ganzori, A. (2015). Climate change vulnerability and adaptation strategies in Egypt ’ s agricultural sector, 1097–1109. https://doi.org/10.1007/s11027-013-9520-9

    McMullan Jr., P. S., Rich Jr., C., Landino, J., & Barnes, S. (2016). North Carolina’s Blacklands Treasure. (P. W. Carroll, Ed.). Nags Head, NC: Pamlico & Albemarle Publishing.

    McNulty, S., Wiener, S., Moore-Myers, J., Farahani, H., Fouladbash, L., Marshall, D., & Steele, R. F. (2015). Southeast Regional Climate Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies. (T. Anderson, Ed.). United States Department of Agriculture.

    33

  • Works CitedMerenlender, A. M., Huntsinger, L., Guthey, G., & Fairfax, S. K. (2004). Land Trusts and Conservation Easements : Who Is Conserving What for Whom ?, 18(1), 65–75.

    Metternicht, G., & Zinck, J. (Eds.). (2009). Remote sensing of soil salinization: Impact on Land Management . Boca Ration, FL: CRC Press.

    Metternicht, G. ., & Zinck, J. . (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85(1), 1–20. https://doi.org/10.1016/S0034-4257(02)00188-8

    Moorhead, K., & Brinson, M. (1995). Response of Wetlands to Rising Sea Level in the Lower Coastal Plain of North Carolina. Ecological Society of America, 5(1), 261–271. Retrieved from http://www.jstor.org.pallas2.tcl.sc.edu/stable/pdf/1942068.pdf

    Moser, S. C., & Ekstrom, J. A. (2010). A framework to diagnose barriers to climate change adaptation. Proceedings of the National Academy of Sciences, 107(51), 22026–22031. https://doi.org/10.1073/pnas.1007887107

    Munns, R., Gilliham, M., Munns, R., & Gilliham, M. (2015). Tansley insight Salinity tolerance of crops – what is the cost ?, (C).

    Niles, M. T., Lubell, M., & Brown, M. (2015). How limiting factors drive agricultural adaptation to climate change. Agriculture, Ecosystems and Environment, 200, 178–185. https://doi.org/10.1016/j.agee.2014.11.010

    Niles, M. T., & Mueller, N. D. (2016). Farmer perceptions of climate change: Associations with observed temperature and precipitation trends, irrigation, and climate beliefs. Global Environmental Change, 39, 133–142. https://doi.org/10.1016/j.gloenvcha.2016.05.002

    Nyman, J., La Peyre, M., Caldwell, A., Piazza, S., Thom, C., & Winslow, C. (2009). Defining restoration targets for water depth and salinity in wind-dominated Spartina patens. J Hydrology, (376), 327–336.

    Oberlack, C. (2017). Diagnosing institutional barriers and opportunities for adaptation to climate change. Mitigation Adaptation Strategy Global Change, 22, 805–838. https://doi.org/10.1007/s11027-015-9699-z

    Pereira, C. S., Lopes, I., Sousa, J. P., & Chelinho, S. (2015). Effects of NaCl and seawater induced salinity on survival and reproduction of three soil invertebrate species. Chemosphere, 135, 116–122. https://doi.org/10.1016/j.chemosphere.2015.03094

    Pons, X., Pesquer, L., Cristóbal, J., & González-Guerrero, O. (2014). Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 33, 243–254. https://doi.org/10.1016/j.jag.2014.06.002

    Poulter, B., Feldman, R. L., Brinson, M. M., Horton, B. P., Orbach, M. K., Pearsall, S. H., … Whitehead, J. C. (2009). Sea-level rise research and dialogue in North Carolina: Creating windows for policy change. Ocean and Coastal Management, 52(3–4), 147–153. https://doi.org/10.1016/j.ocecoaman.2008.09.010

    Rashid, S., Shamsi, F., Zare, S., & Abtahi, S. A. (2013). Soil salinity characteristics using moderate resolution imaging spectroradiometer ( MODIS ) images and statistical analysis. Archives of Agronomy and Soil Science, 59(4), 471–489. https://doi.org/10.1080/03650340.2011.646996

    34

  • Works CitedRietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J., & Dahle, C. (2016). Revisiting the contemporary sea-level budget on global and regional scales. Proceedings of the National Academy of Sciences of the United States of America, 113(6), 1504–1509. https://doi.org/10.1073/pnas.1519132113

    Roberson, R. (2013). North Carolina water management project protecting valuable farmland. Retrieved July 17, 2017, from http://www.southeastfarmpress.com/management/water-management-project-saves-north-carolina-farmland

    Sanchez-Arcilla, A., Garcia-Lein, M., Gracia, V., Devoy, R., Stanica, A., & Gault, J. (2016). Managing coastal environments under climate change: Pathways to adaptation. Science of the Total Environment, 572, 1336–1352. https://doi.org/10.1016/j.scitotenv.2016.01.124

    Stuart, D., & Schewe, R. L. (2012). Responding to Climate Change : Barriers to Reflexive Modernization in U. S. Agriculture. Organization and Environment, 25(3), 308–327. https://doi.org/10.1177/1086026612456536

    Sweet, W. et al. (2017). Global and Regional Sea Level Rise Scenarios for the, (January).

    Takahashi, B., Burnham, M., Terracina-Hartman, C., Sopchak, A. R., & Selfa, T. (2016). Climate Change Perceptions of NY State Farmers: The Role of Risk Perceptions and Adaptive Capacity. Environmental Management, 58(6), 946–957. https://doi.org/10.1007/s00267-016-0742-y

    Tester, M. (2012). Breeding Technologies to Increase, 818(2010). https://doi.org/10.1126/science.1183700

    The Albemarle Peninsula - North Carolina State University. (n.d.). Retrieved April 25, 2017, from http://ncsu-salt.weebly.com/the-albemarle-peninsula.html

    USDA NASS. (2012). Hyde County North Carolina. Retrieved from https://www.agcensus.usda.gov/Publications/2012/Online_Resources/County_Profiles/North_Carolina/cp37095.pdf

    USDA NRCS. (1998). Soil Quality Resource Concerns: Salinization USDA Natural Resources Conservation Service. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053151.pdf

    USGS. (2016). Landsat 8 | Landsat Missions. Retrieved March 11, 2017, from https://landsat.usgs.gov/landsat-8

    USGS. (2017). USGS EO-1. Retrieved March 11, 2017, from https://eo1.usgs.gov/sensors/hyperion

    Whitehead, J. (2017). Personal Communication: Jessica Whitehead.

    35

  • Data

    36

  • 37RisingSea.net

  • In-situ

    Measurements

    • JAZ Spectrometer191 nm – 889 nm (.37 nm interval)

    • TDR 150• EC (dS/m)

    • Soil Moisture (% VWC)

    38

  • 39

    Multispectral Sensors

    Landsat 8 OLI

    30 meter resolution

    4 bands used

    16 day return time

    Sentinel-2

    10 meter resolution

    6 bands used

    2-3 day return time

  • Pre-processing and collection

    40

    90 meter transects

    Surface spectra

    SM and EC at 10

    cm

    Masks

    NDVI – Water & Veg

    Clouds

    Atmospheric corrections

    (ENVI/Sen2Cor)

    Radiometric corrections

    (ENVI/SNAP)

    Field sampling Satellite imagery

  • Methods

    41

    1• JAZ data resampled into Landsat OLI and Sentinel-2 bands

    2• Wavelength-dependent correlation coefficient calculation between reflectance and

    samples

    3• OLS regression modeling with satellite bands as independent variables (67/100 samples)

    4• Statistical model selection

    5• Band math on satellite images

    6• Compare Sentinel-2 and Landsat OLI

  • 42

    FIELD CROPS100% 90% 75% 50%

    EC (ds/m) EC (ds/m) EC (ds/m) EC (ds/m)

    Cotton 7.7 9.6 13.0 17.0

    Sorghum 6.8 7.4 8.4 9.9

    Wheat 6.0 7.4 9.5 13.0

    Soybean 5.0 5.5 6.3 7.5

    Corn 1.7 2.5 3.8 5.9

    Maas and Hoffman (1977)

    Crop Sensitivity to EC

  • Pearson’s r

    correlation

    with satellite-

    like bands &

    field EC

    Table 1. Pearson 𝑟 correlation coefficients among the OLI-like bands and EC.

    Bands in nm b1 b2 b3 b4 EC

    b1 (434-451) 1 b2 (452-512) 0.90* 1 b3 (533-590) 0.73* 0.94* 1 b4 (636-673) 0.68* 0.92* 0.98* 1 EC 0.42 0.35* 0.25* 0.21* 1

    *Significant at the 0.05 probability level

    Table 2. Pearson 𝑟 correlation coefficients for sample spectra averaged into Sentinel-2

    bands

    Bands in nm b1 b2 b3 b4 b5 b6 EC

    b1 (433-453) 1 b2 (457.5-522.5) 0.98* 1 b3 (542.5-577.5) 0.89* 0.95* 1 b4 (650-680) 0.85* 0.93* 0.98* 1 b5 (697.5-712.5) 0.82* 0.90* 0.98* 0.98* 1 b6 (732.5-747.5) 0.78* 0.87* 0.95* 0.96* 0.99* 1 EC 0.39* 0.35* 0.25* 0.21* 0.18* 0.14 1

    *Significant at the 0.05 probability level

    Results: Correlations

  • 44

    Day Sensor R2 R2Adj RMSE VIF AIC

    Sep

    tem

    ber

    Landsat OLI 0.54 0.51 0.90 2.17 172.5

    Sentinel-2 0.69 0.669 0.73 3.23 165.4

    Dec

    emb

    er Landsat OLI 0.04 -0.02 1.90 1.04 229.6

    Sentinel-2 0.04 -0.02 2.83 1.04 228.2

    Bo

    th D

    ay

    s Landsat OLI 0.31 0.24 1.15 1.45 333.80

    Sentinel-2 0.32 0.27 1.13 1.47 331.90

    Results: Model Selection & Evaluation

    𝐸𝐶𝑂𝐿𝐼 = 2.0080 + (0.0698 ∗ 𝒃𝟐) − (0.0156 ∗ 𝒃𝟒)

    𝐸𝐶𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙−2 = 2.1111 + (0.0559 ∗ 𝒃𝟐) − (0.0074 ∗ 𝒃𝟔)

  • 45

    Results: Mapping of Salinity

    Landsat 8 OLI Sentinel-2

  • 46

    Results: Mapping of Salinity

  • 47

    a b

    d c

    Healthy

    Soybeans

    Mixed

    grass &

    unhealthy

    soybeans

    Halophyte

    Grass

  • 48US Census

  • Instruments

    • JAZ DPU-GPIO (Spectrometer)https://oceanoptics.com/wp-content/uploads/Jaz-

    OEM-Data-Sheet.pdf

    • Salinity and Soil Moisture MeterFieldScout TDR 150

    49

  • Equations

    50

    𝑉𝐼𝐹 =1

    1 − 𝑅2

    𝐴𝐼𝐶 = 𝑛 ln(𝑅𝑆𝑆

    𝑛) + 2𝑘

    𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 = 𝑋𝑌 −

    )𝑋)( 𝑌𝑛

    𝑋2 − )𝑋 2

    𝑛 )( 𝑌2 −

    )𝑌 2

    𝑛

    𝑟𝑒𝑓𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =𝑠−𝑑

    𝑘−𝑑∗ 100 𝑅2 = 1 −

    𝑖=1𝑛 (𝛾 − 𝛾 ,)2

    𝑖=1𝑛 (𝛾 , − 𝛾)2

    𝑅𝐴𝑑𝑗2 = 1 −

    𝑛 − 1

    𝑛 − 𝑘 − 11 − 𝑅2

    𝑅𝑀𝑆𝐸 = 𝑖=1𝑛 (𝛾−𝛾′)2

    𝑛

  • Resample

    spectrometer

    measurements

    into satellite-

    like bands

    Example from Barsi et al. (2011)

    Methods: Resampling

  • Iterative

    Ordinary Least

    Squares

    Regression

    (67% of

    samples)

    Results: Lab tests

  • 53

    Results: Hyperspectral Analysis

  • Interview Methods

    54

    NCSU Extension Agents

    recommend interviewees

    Recruit farmers and build rapport

    ‣Conduct interviews with

    adapted questions from Moser and Ekstrom (2010)

    ‣Present salinity maps

    Transcribe and code audio recordings

    1 2 3 4