9
7/21/2019 Weld Strengths for Various Shapes http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 1/9 Disclaimer: The information on this page has not been checked by an independent person. Use this information at your own risk. ROYMECH Click arrows to page adverts Home Formulae_Index Nomenclature Weld Strength Calculations Introduction ..... RelevantStandards ..... VariablesAssociatedWithWelds ..... GuidancePrinciples ..... TableBasicWeldCalcs. .....  AssessmentofFilletWelds..... ExamplesofFilletWeldsCalcs ..... PropertiesofFilletWeldsaslines ..... Exampleoftorsionweldcalc.usingvectors ..... CapacitiesofFilletWelds ..... DesignStrengthofFilletWelds ..... Introduction Thefollowingnotesaregeneralguidancenotesshowingmethodsofcalculationofthestrengthandsizeofwelds.Weldedjointsareoften cruciallyimportantaffectingthesafetyofthedesignsystems.Itisimportantthatthenotesanddatabelowareonlyusedforpreliminary designevaluations.Finaldetaildesignshouldbecompletedinaformalwayusingappropriatecodesandstandardsandqualityreference documents Relevant Standards BS5950-1:2000..Structuraluseofsteelworkinbuilding.Codeofpracticefordesign.Rolledandweldedsections BSEN10025-1:2004-Hotrolledproductsofstructuralsteels.Generaltechnicaldeliveryconditions Variables related to welded joints Strengthofdepositedweldmaterial 1. Typeofjointandweld..important 2. Sizeofweld..important 3. Locationofweldinrelationtopartsjoined..important 4. Typesofstresstowhichtheweldissubjected 5. Conditionsunderwhichweldiscarriedout 6. Typeofequipmentusedforwelding 7. Skillofwelder 8. Guidance Principles  Agenerousfactorofsafetyshouldbeused(3-5)andiffluctuatingloadsarepresentthenadditionaldesignmarginsshouldbeincludedto allowforfatigue Usetheminimumamountoffillermaterialconsistentwiththejobrequirement Trytodesignjointsuchthatloadpathisnotnotthroughtheweld Thetablebelowprovidesprovidesapproximatestressesin,hopefully,aconvenientway. Forthedirectloadingcasethebuttweldstressesaretensile/compressive σ tforthefilletweldsthestressesareassumedtobeshear τ s appliedtotheweldthroat. Forbuttweldedjointssubjecttobendingthebuttweldstressesresultfromatensile/compressivestress σbandadirectshearstress τ s. Inthesecasesthedesignbasisstressshouldbe σr=Sqrt( σb 2 +4τs 2 ) ForFilletweldedjointssubjecttobendingthestressesinthefilletweldsareallshearstresses.Frombending τ bandfromshear τ s Inthesecasesthedesignbasisstressisgenerally τr=Sqrt( τ b 2 +τs 2 ) Thestressesfromjointssubjecttotorsionloadingincludeshearstressfromtheappliedloadandshearstressesfromthetorque loading.Theresultingstressesshouldbeaddedvectoriallytakingcaretochoosethelocationofthehigheststresses. Welding Tables Heavy duty welding tables with fume capture, extraction and filtration. www.oskarairproducts.com Pipe Plugs, All Types Most Pressure, Chemical, Temps Standard and Custom Configurations www.petersenproducts.com Resistance Welders Specializing in Standard and Custom Built Resistance Welding Machinery www.seedorffacme.com Page 1 of 9 Weld Stress Calculations 3/25/2012 http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Weld Strengths for Various Shapes

Embed Size (px)

Citation preview

Page 1: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 1/9

Disclaimer: The information on this page has not been checked by an independent person. Use this information at your own risk.

ROYMECH

Click arrows to page adverts

HomeFormulae_IndexNomenclature

Weld Strength Calculations 

Introduction.....RelevantStandards .....VariablesAssociatedWithWelds .....GuidancePrinciples .....TableBasicWeldCalcs. ..... AssessmentofFilletWelds.....ExamplesofFilletWeldsCalcs.....PropertiesofFilletWeldsaslines.....Exampleoftorsionweldcalc.usingvectors .....CapacitiesofFilletWelds.....DesignStrengthofFilletWelds.....

Introduction

Thefollowingnotesaregeneralguidancenotesshowingmethodsofcalculationofthestrengthandsizeofwelds.Weldedjointsareoftencruciallyimportantaffectingthesafetyofthedesignsystems.Itisimportantthatthenotesanddatabelowareonlyusedforpreliminarydesignevaluations.Finaldetaildesignshouldbecompletedinaformalwayusingappropriatecodesandstandardsandqualityreference

documents

Relevant StandardsBS5950-1:2000..Structuraluseofsteelworkinbuilding.Codeofpracticefordesign.RolledandweldedsectionsBSEN10025-1:2004-Hotrolledproductsofstructuralsteels.Generaltechnicaldeliveryconditions

Variables related to welded joints

Strengthofdepositedweldmaterial1.Typeofjointandweld..important2.Sizeofweld..important3.

Locationofweldinrelationtopartsjoined..important4.Typesofstresstowhichtheweldissubjected5.Conditionsunderwhichweldiscarriedout6.Typeofequipmentusedforwelding7.Skillofwelder8.

Guidance Principles

 Agenerousfactorofsafetyshouldbeused(3-5)andiffluctuatingloadsarepresentthenadditionaldesignmarginsshouldbeincludedtoallowforfatigueUsetheminimumamountoffillermaterialconsistentwiththejobrequirementTrytodesignjointsuchthatloadpathisnotnotthroughtheweld

Thetablebelowprovidesprovidesapproximatestressesin,hopefully,aconvenientway.

Forthedirectloadingcasethebuttweldstressesaretensile/compressive σ tforthefilletweldsthestressesareassumedtobeshear τ sappliedtotheweldthroat.

Forbuttweldedjointssubjecttobendingthebuttweldstressesresultfromatensile/compressivestress σbandadirectshearstress τ s.

Inthesecasesthedesignbasisstressshouldbe σr=Sqrt(σb2+4τs2)

ForFilletweldedjointssubjecttobendingthestressesinthefilletweldsareallshearstresses.Frombending τ bandfromshearτ s

Inthesecasesthedesignbasisstressisgenerally τr=Sqrt(τ b2+τs2)Thestressesfromjointssubjecttotorsionloadingincludeshearstressfromtheappliedloadandshearstressesfromthetorqueloading.Theresultingstressesshouldbeaddedvectoriallytakingcaretochoosethelocationofthehigheststresses.

Welding Tables Heavy duty welding tables with fume capture, extraction and filtration. www.oskarairproducts.com

Pipe Plugs, All Types Most Pressure, Chemical, Temps Standard and Custom Configurations www.petersenproducts.com

Resistance Welders Specializing in Standard and Custom Built Resistance Welding Machinery www.seedorffacme.com

Page 1 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 2: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 2/9

Table of bracket weld subject to direct and bending stresses

MethodofLoading Weldment

StressinWeld

σbτs

Weldsize(h)

Weldment

StressinWeld

σbτs

Weldsize(h)

Weldment

StressinWeld

τbτs

Weldsize(h)

 

Assessment of Fillet Weld Groups refnotesandtablePropertiesofFilletWeldsaslines

Importantnote:ThemethodsdescribedbelowisbasedonthesimplemethodofcalculationofweldstressasidentifiedinBS5950-clause6.7.8.2.TheothermethodidentifedinBS5950-1clause6.7.8.3asthedirectionmethodusesthemethodofresolvingtheforcestransmittedbyunitthicknessweldsperunitlengthintotraverseforces(F T)andlongitudinalforces(FL).Ihave,tosomeextent,illustrated

thismethodinmyexamplesbelowThemethodofassessingfilletweldsgroupstreatingweldsaslinesisreasonablysafeandconservativeandisveryconvenienttouse.a)Weldsubjecttobending....SeetablebelowfortypicalunitareasandunitMomentsofInertia Afilletweldsubjecttobendingiseasilyassessedasfollows.1)TheareaofthefilletweldAu..(unitthickness)iscalculatedassumingtheweldisoneunitthick..

2)The(unit)MomentofInertiaI uiscalculatedassumingtheweldisoneunitthick..

3)Themaximumshearstressduetobendingisdetermined... τb=M.y/Iu

Page 2 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 3: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 3/9

4)Themaximumshearstressduetodirectshearisdetermined.. τs=P/A

5)Theresultantstress τr=Sqrt(τb2+τs2)6)Bycomparingthedesignstrengthp wwiththeresultantstressτrthevalueoftheweldthroatthicknessiscalculatedandthentheweldsize.

i.e.iftheτr/pw=5thenthethroatthickesst=5unitsandtheweldlegsizeh=1,414ta)Weldsubjecttotorsion...SeetablebelowfortypicalunitareasandunitPolarmomentsofInertia Afilletweldsubjecttotorsioniseasilyassessedasfollows.1)TheareaofthefilletweldAu(unitthickness)iscalculatedassumingtheweldisoneunitthick

2)The(unit)PolarMomentofInertiaJ uiscalculatedassumingtheweldisoneunitthick..ThepolarmomentofinertiaJ=Ixx+Iyy

3)Themaximumshearstressduetotorsionisdetermined... τt=T.r/Ju4)Themaximumshearstressduetodirectshearisdetermined.. τs=P/Au5)Theresultantstress τristhevectorsumof τtandτs.rischosentogivethehighestvalueof τr6)Bycomparingthedesignstrengthp wwiththeresultantstressτrthevalueoftheweldthroatthicknessiscalculatedandthentheweldsize.

i.e.iftheτr/pw=5thenthethroatthickesst=5unitsandtheweldlegsizeh=1,414.t

Examples of Fillet Weld Calculations

Example of Weld in Torsion..

P = Applied load = 10 000N

P w = Design Strength = 220 N/mm2 (Electrode E35 steel S275) Design Strength 

b = 120mm.d = 150 mm

x = b2 / 2(b+d) = 27mm.. (From table below)

y = d2 / 2(b+d) = 42mm..(From table below)

Simple Method as BS 5950 clause 6.8.7.2

..The vector sum of the stresses due to forces and moments should notexceed the design strength Pw 

 A u = Unit Throat Area

= (From table below) b + d = (120 + 150) = 270mm2 To obtain radius of Force from weld centre of gravity

 A = 250-27 =223mm

Moment M = P.r = 10000.223 = 2,23.106 N.mm

J u = [(b+d)4 - 6b

2d

2] /12 (b+d) = 1,04.10

6..(From Table)

It is necessary to locate the point subject to the highest shear stress..Fora weld subject to only torsion this would be simply at the point furthestfrom the COG. However because the weld is subject to torsion anddirect shear the problem is more complicated. A normal method ofdetermining the stresses in these cases is to use vector addition.

It is generally prudent to calculate the total shear stress at bothpositions, using the method below, and select the highest.. For thisexample the method used is to resolve the stresses in the x and ydirections

Direction Method as BS 5950 clause 6.8.7.3

L = Length of weld 1 unit thick =(From table below) b + d = (120 + 150) = 270mmTo obtain radius of Force from weld Centre of Gravity (Cog) .

 A = 250-27 =223mm

Moment M = P.r = 10000.223 = 2,23.106

N.mmJu = Polar Moment o f inertia for weld 1unit(mm) thick.

= [(b+d)4 - 6b2d2] /12 (b+d) = 1,04.106 mm4 /mm..(From Table)

It is necessary to locate the point subject to the highest shear stress..Fora weld subject to only torsion this would be simply at the point furthestfrom the COG. However because the weld is subject to torsion anddirect shear the problem is more complicated. A normal method ofdetermining the stresses in these cases is to use vector addition.

It is generally prudent to calculate the total shear stress at bothpositions, using the method below, and select the highest.. For thisexample the method used is to resolve the stresses in the x and ydirections

Page 3 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 4: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 4/9

First considering point Z

Horizontal distance from centroid rzh = 120-27= 93mmVertical distance from centroid r zv = 42mm

The vertical stress τ v = τ sv + τ tv 

τ sv = P /A u = 10000/270 = 37 N/mm2 

τ tv = M.r zh /J u = 2,23.106.93/1,04.106 = 199 N/mm2 

τ v = 236,45 N/mm2 

The horizontal stressτ h = τ sh + τ th 

τ sh = 0

τ th = M.r zv /J u = 2,23.106.42/1,04.10

6 = 90 N/mm

τ h = 90 N/mm2 

The resultant stress on the weld at z

τ r  = Sqrt (τ h2 + τ v2) = 253 N/mm2 

Now considering point w

Horizontal distance from centroid rwh = 27mmVertical distance from centroid r wv = 150-42= 108mm

The vertical stress τ v = τ sv - τ tv 

τ sv = P /A u = 10000/270 = 37 N/mm2 

τ tv = M.r wh /J u = 2,23.106.27/1,04.106 = 57,9 N/mm2 

τ v = 20,86 N/mm2 

The horizontal stressτ h = τ sh + τ th 

τ sh = 0

τ th = T.r wv /J u = 2,23.106.108/1,04.106 = 231,6 N/mm2 

τ h = 231,6 N/mm2 

The resultant stress on the weld at w

τ r  = Sqrt (τ h2 + τ v

2) = 232,5 N/mm

The maximum stress is similar but greatest at z ....The design strength pw for the weld material is 220 N/mm2 The weld throat thickness should be 253 /220 = 1,15mm .The weld size is therefore 1,414. 1,15 = 1,62mm use 3mm fillet weld

First considering point Z

Horizontal distance from centroid rzh = 120-27= 93mmVertical distance from centroid r zv = 42mm

The vertical force /mm run F v = F sv + F tv 

F sv = P /L = 10000/270 = 37 N/mm run

F tv = M.r zh /J u = 2,23.106.93/1,04.10

6 = 199 N/mm run

F v = 236,45 N/mm run

The horizontal force /mm run for un it(mm) weld width Fh = F

sh + F

th 

F sh = 0

F th = M.r zv /J u = 2,23.106.42/1,04.10

6 = 90 N/mm run

F h = 90 N/mm run

The resultant force on the weld/mm run at z

F r  = Sqrt (F h2 + F v

2) = 253 N/mm run

Now considering point w

Horizontal distance from centroid rwh = 27mm

Vertical distance from centroid r wv = 150-42= 108mm

The vertical forces per mm run F v = F sv - F tv F sv = P /L = 10000/270 = 37 N/mm run

F tv = M.r wh /J u = 2,23.106.27/1,04.106 = 57,9 N/mm run

F v = 20,86 N/mm run

The horizontal force /mm run = F h = F sh + F th F sh = 0

F th = M.r wv /J u = 2,23.106.108/1,04.106 = 231,6 N/mm runF h = 231,6 N/mm run

The specific force on the weld at w

F r  = Sqrt (F h2 + F v

2) = 232,5 N/mm run

The maximum specific is greatest at z = 253 N/mm run....

Referring to weld capacities for longitudinal stresses PL for fillet welds

Capacities of Fillet Welds the weld capacity for a 3mm weld with andE35 Electrode S275 Steel is 462N /mm run. This weld would be morethan sufficient.

Example of Weld in Bending..

P= 30000 Newtonsd= 100mmb= 75mmy = 50mm

Design Stress p w = 220 N/mm2 (Electrode E35 steel S275) Design Strength 

Moment = M = 30000*60=18.105 Nmm

Simple Method as BS 5950 clause 6.8.7.2 Direction Method as BS 5950 clause 6.8.7.3

Page 4 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 5: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 5/9

Unit Weld Area = A u = 2(d+b) =2(100+75) =350mm2 

Unit Moment of Inertia = I u

= d2(3b+d) / 6 = 100

2 (3.75 +100) / 6 =5,42.10

5mm

τ r  = Sqrt(τ s2 + τ b2)

τ s = P / A u = 30000/350 = 85,71 N/mm2 

τ b = M.y / I u = 18.105 . 50 / 5,42.10

5= 166,05 N/mm

τ r  = Sqrt(85,712 + 166.05

2) =186,86 N/mm

τ r  / p w = 186,86 / 220 = 0,85 = Throat Thickness.....( Throat thickness for τ = 220 N/mm2 )Leg Length = Throat thickness *1,414 = 1,2mm use 3mm weldthickness

Note : If a leg length h= 1,2mm is used in the equations in relevant partof the "Table of bracket weld subject to direct and bending stresses"

above a value ofτ b = 198 N/mm and a value ofτ s = 100 N/mm2 

results with a resultant stress of Sqrt (τ b2 + τ s2) = 222N/mm2..Which

is in general agreement with the above result

Length of Weld of unit thickness = L = 2(d+b) =2(100+75) =350mmMoment of Inertia / mm throat thickness = Iu / mm

= d2(3b+d) / 6 = 100

2 (3.75 +100) / 6 =5,42.10

5mm

4 / mm

F r  = Resultant force per unit length of weld.

F s = Shear force per unit length of weld.F b = Bending force per unit length of weld.

F r  = Sqrt(F s2 + F b

2)F s = P / L = 30000/350 = 85,71 N per mm length of weld

F b = M.y / I u 

= 18.105 . 50 / 5,42.105 = 166,05 N per mm length of weld

F r  = Sqrt(85,712 + 166.05

2) =186,86 N per mm length of weld.

For this case for the welds under greatest loading the type of loading istraverse loading. The bending stress is in line with horizontal elementand the shear stress is in line with vertical member.

The angle of the resulting specific load to the horizontal element

= arctan(85,71/166,5)= 27,5o.

This is an angle with the weld throatθ = 45o + 27,5o = 72,5o

Referring to weld capacities table below.Weld Capacities K iscalculated at 1,36 for this resultant direction of forces.

PT = a.K.pwfor a E35 Weld electrode used with S275 steel

pw = 220 N/mm2 and therefore PT = a*300N/mm

2..

 A 3mm weld (a = 2,1mm) therefore will therefore have a designcapacity of 630 N/mm run and will easily be able to support the load of186,86 N per mm run

Properties of weld groups with welds treated as lines

Itisacceptedthatitisreasonablyaccuratetousepropertiesbasedonunitweldthicknessincalculationtodeterminethestrengthofweldsasshownintheexamplesonthispage.TheweldpropertiesI xxIyyandJareassumedtobeproportionaltotheweldthickness.Thetypical

accuracyofthismethodofcalculationisshownbelow...

Thisisillustratedinthetabledvaluesbelow

  d b h Ixx Iyy J= Ixx +Iyy

 Accurate 3 60 50 955080 108000 1063080

Simple 3 60 50 900000 108000 1008000

Page 5 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 6: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 6/9

Error 6% 0 5%

Note:Theerroridentifiedwiththismethodislowerashincreasesrelativetod.Thiserrorissuchthattheresultingdesignsareconservative.

Example illustrating use of stress vectors

Calculation based on real weld sizes 

1)Theareaofthewelds(basedonthroatweldthicknessat0,707.5=3,5mm)

 Area=(57.3,5+2.55.3,5)=584,5mm2

2)Themomentofareaaboutx-x=

MofArea=(57.3,5.3,5/2+2.55.3,5.(27.5+3,5))=12284mm3

3)Thecentroidv=MomentofArea/Area

MofArea/Area=21mm

4)Theradiir A,rB,rC&rDarecalculated..

r A=rB=Sqrt((58,5-21)^2+28,5^2)=47,1

rC=rD=Sqrt((21)^2+28,5^2)=35,40...

5)Theanglesθ A,θB,θC&θDarecalculated..

θ A=θB=tan-1((58,5-21)/28,5)=52,7 o

θC=θD=tan-1((21)/28,5)=36,4 o...

6)Thedirectshearstressonthearea=Force/Area

τ S=5000/584=8,56N/mm2

7)TheMomentontheweldgroup=Force.Distancetocentroid

M=5000.(100+21)=6,05.105Nmm

8)Thepolarmomentofinertiaoftheweldgroup=J=Ixx+Iyy

Iyy=2.[55.3,53/12+3,5.55.(50/2+3,5/2)

2]

+573.3,5/12=3,3.10

5mm

4

Ixx=2.[553.3,5/12+3,5.55.(55/2+3,5-21)

2]

+3,5357/12+3,5.57.(21-3,5/2)

2=2,097.10

5mm

4

J=Ixx+Iyy=5,4.10

5

mm

4

9)Thestressduetotorsion

τ TA=τ TB=M.r A/J..and..τ TC=τ TD=M.rC/J

τ TA=6.055Nmm.47,1mm/5,4.105mm

4=52,8N/mm

2

τ TC=τ TD=6.055Nmm.35,4mm/5,4.105mm

4=39,70N/mm

2

10)Theresultantstresses τ RA,=τ RBandτ RA,=τ RBareobtainedbyaddingthestressvectosgraphicallyasshownbelow

τ RA=τ RB=46,29N/mm2

τ RC=τ RD==45,31N/mm2

Calculations based on unit values This calculation uses equations from table belowfor Area, centroid, and Ju 

1)Areaofweld=0,707.5.(2b+d)

 Area=0,707.5.(2.55+50)=565.6mm2

2)ThereisnoneedtocalculatetheMomentofAreawiththismethod

3)Thecentroidv=b2/(2b+d)

v=552/(2.55+50)=18,9mm

4)Theradiir A,rB,rC&rDarecalculated..

r A=rB=Sqrt((55-18,9)^2+25^2)=43,9

rC=rD=Sqrt(18,9^2+25^2)=31,34

5)Theanglesθ A,θB,θC&θDarecalculated..

θ A=θB=tan-1((55-18,9)/25)=55,29 o

θC=θD=tan-1((18,9)/25)=37o...

6)Thedirectshearstressonthearea=Force/Area

τ S=5000/565,5=8,84N/mm2

7)TheMomentontheweldgroup=Force.distancetocentroid

M=5000.(100+18,9)=5.94.105Nmm

8)TheUnitPolarmomentofinertiaoftheweldgroup=

Ju=0.707.5.(8.b3+6bd

2+d

3)/12+b

4/(2b+d)

Ju=0,707.5.(8.553+6.55.50

2+50

3)/12-55

3/(2.55+50)=4,69.1

9)Thestressduetotorsion

τ TA=τ TB=M.r A/J..and..τ TC=τ TD=M.rC/J

τ TA=5,94.105Nmm.43,9mm/4,69.10 5mm4=55,6N/mm2

τ TC=τ TD=5,945Nmm.31,34mm/4,69.105mm

4=39,69N/mm

10)Theresultantstresses τ RA,=τ RBandτ RA,=τ RBareobtainedbyaddingthestressvectosgraphicallyasshownbelow

τ RA=τ RB=48,59N/mm2

τ RC=τ RD=45,56N/mm2

 

Page 6 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 7: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 7/9

Note:Theexampleabovesimplyillustratesthevectormethodaddingdirectandtorsionalshearstressesandcomparesthedifferenceinusingtheunitweldwidthmethodandusingrealweldsizes.Theexamplecalculatesthestresslevelsinanexistingweldgroupitisclearthattheweldisoversizedfortheloadingscenario.Thedifferenceintheresultingvaluesareinlessthan4%.Iftheweldsweresmalleri.e3mmthenthedifferenceswouldbeevensmaller.

Table properties of a range of fillet weld groups with welds treated as lines

WeldThroatArea

UnitArea

LocationofCOGxy

Ixx-(unit) J-(Unit)

-

Page 7 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 8: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 8/9

-

Table Of Weld Capacities

Thefilletweldcapacitytablesrelatedtothetypeofloadingontheweld.Twotypesofloadingareidentifiedtraverseloadingandlongitudinalloadingasshowbelow

Theweldloadingshouldbesuchthat

{(FL/PL)2+(FT/PT)

2}≤1

ThefollowingtableisinaccordwithdatainBS5950part1.Basedondesignstrengthsasshownintablebelow... DesignStrength

PL=a.pw

PT=a.K.pw

a=weldthroatsize.

K=1,25√(1,5/(1+Cos2θ)

PTbasedonelementstransmittingforcesat90 oi.eθ=45oandK=1,25

WeldCapacityE35ElectrodeS275Steel WeldCapacityE42ElectrodeS355Steel

LegLengthThroat

Thickness

LongitudinalCapacity

TransverseCapacity LegLength

ThroatThickness

LongitudinalCapacity

TransverseCapacity

PL(kN/mm) PT(kN/mm) PL PT

mm mm kN/mm kN/mm mm mm kN/mm kN/mm

3 2,1 0,462 0,577 3 2,1 0,525 0,656

4 2,8 0,616 0,720 4 2,8 0,700 0,875

5 3,5 0,770 0,963 5 3,5 0,875 1,094

6 4,2 0,924 1,155 6 4,2 1,050 1,312

8 5,6 1,232 1,540 8 5,6 1,400 1,750

10 7,0 1,540 1,925 10 7,0 1,750 2,188

12 8,4 1,848 2,310 12 8,4 2,100 2,625

15 10,5 2,310 2,888 15 10,5 2,625 3,281

18 12,6 2,772 3,465 18 12,6 3,150 3,938

20 14,0 3,08 3,850 20 14,0 3,500 4,375

22 15,4 3,388 4,235 22 15,4 3,850 4,813

25 17,5 3,850 4,813 25 17,5 4,375 5,469

Design Strength p

w

 of fillet welds

Page 8 of 9Weld Stress Calculations

3/25/2012http://www.roymech.co.uk/Useful_Tables/Form/Weld_strength.html

Page 9: Weld Strengths for Various Shapes

7/21/2019 Weld Strengths for Various Shapes

http://slidepdf.com/reader/full/weld-strengths-for-various-shapes 9/9

Electrodeclassification

SteelGrade35 43 50

N/mm2

N/mm2

N/mm2

S275 220 220 220

S355 220 250 250

S460 220 250 280

 

Useful Related Links 

Gowelding..ARealFind..thissitehaslotsofInformationoncalculatingthestrengthofWelds1.WeldDesignNotes..Asetofexcellentdesignnotes2.

This Page is being developed

HomeFormulae_IndexNomenclature

PleaseSendCommentsto RoyBeardmore

LastUpdated21/02/2010

 Ads by Google

Welding Steel 

Strength 

Welding 

Page 9 of 9Weld Stress Calculations