10
Wavepackets etc. ψ k ( x)= 1 2 π e ikx , E k = h 2 k 2 2 m Plane wave eigenstates: • scattering states • non-normalizable • continuous spectra x Free particle

Wavepackets etc

Embed Size (px)

DESCRIPTION

Plane wave eigenstates:. Free particle. x. Wavepackets etc. scattering states non-normalizable continuous spectra. Linear superpositions of plane wave solutions. with. Normalization:. Wavepackets. Example 1. Unfortunately, the integrand is badly behaved and difficult to - PowerPoint PPT Presentation

Citation preview

Page 1: Wavepackets etc

Wavepackets etc.

ψk (x) =1

2πe ikx, Ek =

h2k 2

2m

Plane wave eigenstates:

• scattering states• non-normalizable• continuous spectra

x

Free particle

Page 2: Wavepackets etc

Wavepackets

Φ(k) = dx−∞

∫ ψ k*(x)Ψ(x,0)with

1 = dk−∞

∫ Φ(k)2Normalization:

Ψ(x, t) = dk−∞

∫ Φ(k)ψ k (x)e−iωk t , ωk =hk 2

2m

Linear superpositions of plane wave solutions

Page 3: Wavepackets etc

Ψ(x,0) =0, |x|>a

12a

, |x|<a

{

Φ(k) =1

2πdx

1

2ae−ikx =

1

πa−a

a

∫ sin ka

k

Example 1

Ψ(x, t) =1

4πadk

−∞

∫ sinka

ke ikxe−iωk t , ωk =

hk 2

2m

Unfortunately, the integrand isbadly behaved and difficult to evaluate even numerically.

Page 4: Wavepackets etc

Ψ(x, t) = dk−∞

∫ Φ(k)ψ k (x)e−iωk t , Φ(k) = dy−∞

∫ ψ k*(y)Ψ(y,0)

Ψ(x, t) = dy−∞

∫ Ψ(y,0) dk−∞

∫ ψ k*(y)ψ k (x)e−iωk t = dy

−∞

∫ G(x,y;t)Ψ(y,0)

Propagator

G(x,y;t) = dk−∞

∫ ψ k*(y)ψ k (x)e−iωk t

=1

2πdk

−∞

∫ e−ik(x−y )e−τk 2

=1

2τe−(x−y )2 / 4τ

G(x,y;t) is a free particle propagator

τ = ih

2mt “imaginary time”

Page 5: Wavepackets etc

Calculate evolution of the wavefunction using the propagator

Ψ(x, t) = dy−∞

∫ G(x, y;t)Ψ(y,0)

G(x, y;t) =1

2τe−(x−y )2 / 4τ

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 6: Wavepackets etc

Ψ(x,0) =2a

π

⎝ ⎜

⎠ ⎟

1

4e−ax 2

Φ(k) =1

(2πa)1/ 4e−k 2 / 4 a

Example 2: Gaussian wavepacket

QuickTime™ and aGIF decompressor

are needed to see this picture.

Ψ(x, t) =2a

π

⎝ ⎜

⎠ ⎟

1

4 exp[−ax 2 /(1+ 2ihat /m)]

1+ 2ihat /m

Page 7: Wavepackets etc

Example 3: moving Gaussian wavepacket

Ψ(x,0) =2a

π

⎝ ⎜

⎠ ⎟

1

4e−ax 2

e ilxHow do we know this is a moving wavepacket?

Calculate the momentumexpectation value:

ˆ p = dx∫ Ψ*(−ih∂x )Ψ = hl

QuickTime™ and aGIF decompressor

are needed to see this picture.

Ψ(x, t) =2a

π

⎝ ⎜

⎠ ⎟

1

4e−l 2 / 4 a exp[−a(x − il /2a)2 /(1+ 2ihat /m)]

1+ 2ihat /m€

Re[Ψ(x, t)]

Ψ(x, t)

Page 8: Wavepackets etc

Example 4: wavepacket reflected from a hard wall

Ψ(0, t) = 0

Boundary condition:

Eigenstates:

ψk (x) = Aθ(−x)sin kx

G(x, y;t) = dk−∞

∫ ψ k*(y)ψ k (x)e−iωk t

=θ(−x)θ(−y)

2τ[e−(x−y )2 / 4τ − e−(x +y )2 / 4τ ]

Propagator: 0 x0

V = 0

V = ∞

Page 9: Wavepackets etc

Ψ(x, t) = dy−∞

∫ G(x, y;t)Ψ(y,0)

QuickTime™ and aGIF decompressor

are needed to see this picture.

Re[Ψ(x, t)]

Ψ(x, t)

Page 10: Wavepackets etc

Wavepackets reflected from steps & barriers

•For very nice and instructive animations visit http://www.quantum-physics.polytechnique.fr/en/pages/p0103.html