29
Wavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity Angela Kunoth Institut f¨ ur Angewandte Mathematik & Institut f¨ ur Numerische Simulation Universit¨ at Bonn, Germany Central goal: Development of efficient solution algorithms with optimal linear complexity Central issues: Iterative solvers, multilevel preconditioning and adaptivity Problem classes: (I) Optimal control problems constrained by linear elliptic PDEs with distributed or Neumann boundary control single operator equation as constraint (II) ...... with Dirichlet boundary control saddle point problem as constraint (III) Problem (I) with additional inequality constraints on the control Supported by SFB 611 (Deutsche Forschungsgemeinschaft) 1

Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Embed Size (px)

Citation preview

Page 1: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Wavelet Methods for PDE-Constrained Control Problems:

Optimal Preconditioners, Fast Iterative Solvers and Adaptivity

Angela Kunoth

Institut fur Angewandte Mathematik & Institut fur Numerische Simulation

Universitat Bonn, Germany

Central goal: Development of efficient solution algorithms with optimal linear complexity

Central issues: Iterative solvers, multilevel preconditioning and adaptivity

Problem classes:

(I) Optimal control problems constrained by linear elliptic PDEs with distributed or Neumann

boundary control ; single operator equation as constraint

(II) . . . . . . with Dirichlet boundary control ; saddle point problem as constraint

(III) Problem (I) with additional inequality constraints on the control

Supported by SFB 611 (Deutsche Forschungsgemeinschaft) 1

Page 2: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

(I) PDE-Constrained Optimal Control Problem with Distributed Control

given y∗, f

ω > 0

minimize J(y, u) = 12‖y − y∗‖2H1−s(Ω)

+ ω2‖u‖2

(H1−t(Ω))′

subject to −∆y + y = f + u in Ω ⊂ Rd

∂y∂n

= 0 on ∂Ω

0 ≤ s ≤ 1 smoothness parameter for state y

0 ≤ t smoothness parameter for control u

A : H1(Ω)→ (H1(Ω))′ 〈Av,w〉 :=R

Ω(∇v · ∇w + vw)dx

; weak formulation nontrivial solution for y∗ 6≡ A−1f

minimize J(y, u) = 12‖y − y∗‖2H1−s(Ω)

+ ω2‖u‖2

(H1−t(Ω))′

subject to Ay = f + u

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 2

Page 3: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

(II) PDE-Constrained Optimal Control Problem with Dirichlet Boundary Control

given y∗, f

ω > 0

ΩΓyΓ

minimize J(y, u) = 12‖Ty − y∗‖2

Hs− 1

2 (Γy)+ ω

2‖u‖2

Ht(Γ)

subject to −∆y + y = f in Ω ⊂ Rd

y = u on Γ control boundary

∂y∂n

= 0 on ∂Ω \ Γ

s, t ∈ [ 12, 32] smoothness parameters for state and control

〈Av,w〉 :=R

Ω(∇v · ∇w + vw)dx 〈Bv, q〉 :=R

Γ v q dΓ bilinear form on H1(Ω)× (H1/2(Γ))′

; weak formulation (appending essential Dirichlet b.c. by Lagrange multipliers)

minimize J(y, u) = 12‖y − y∗‖2Hs(Γy)

+ ω2‖u‖2

Ht(Γ)

subject to L` y

p

´

:=“

A BT

B 0

” “

yp

=“

fu

. . . allows also combination with fictitious domain method and changing boundary Γ . . .

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 3

Page 4: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

(III) Distributed Control Problem and Control Inequality Constraints

Problem (I) with additional inequality constraints on control

minimize J(y, u) = 12‖y − y∗‖2H1−s(Ω)

+ ω2‖u‖2

(H1−t(Ω))′

subject to Ay = f + u

and u ≤ u ≤ u

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 4

Page 5: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

PDE-constrained optimal control problems ; requires repeated solution of PDE constraint

Ay = f + u or L`yp

´

=`fu

´

; requires fast solver as core ingredient

Numerical Solution of a Single Elliptic PDE

Elliptic PDE Ay = f s.th. ‖Av‖Y ′ ∼ ‖v‖Y ; find y ∈ Y : 〈v,Ay〉 = 〈v, f〉 for all v ∈ Y

Conventional discretization on a uniform grid: Yh ⊂ Y dimYh <∞ ; Ah yh = fh

Obstructions:

Large linear systems of equations ; iterative solver

High desired accuracy ; small h ; larger problem ; worse condition cond2(Ah) ∼ h−2

LBB condition for saddle point problems

Resolution of singularities in data and/or geometry ; small h

Ingredients for Efficient Numerical Solution:

(i) Multilevel preconditioner Ch

multigrid methods, BPX preconditioner, wavelet discretization ; cond2(ChAh) ∼ 1

(ii) Nested iteration

(iii) Additionally: Adaptive refinement

a–posteriori error estimation ; local grid refinement ; convergence/convergence rates?

First goal: Realize discretization error accuracy ε with minimal amount of work O(N(ε))

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 5

Page 6: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

A-priori Estimates for Finite Elements

Quality measure: Approximation in norm ‖y − yh‖L2(Ω) ≤ ε

A–priori error estimates: Ω ⊂ Rd dimYh = N ∼ h−d uniform grid

‖y − yh‖L2(Ω) <∼ hr ‖y‖Hr(Ω) yh ∈ Yh 0 ≤ r ≤ rmax

⇐⇒ ‖y − yN‖L2(Ω) <∼ N−r/d ‖y‖Hr(Ω)

‖y − yN‖H1(Ω)

<∼ N−(r−1)/d ‖y‖Hr(Ω)

N degrees of freedom ←→ accuracy O(N−r/d)

Approximation rate determined by

(i) approximation order rmax of Yh

(ii) space dimension d

(iii) amount of smoothness of y in L2

Target: Realize discretization error accuracy ε ∼ h2 ∼ 2−2J for grid with spacing h ∼ 2−J

Problem complexity: For h ∼ 2−J a total of N ∼ 2Jd unknowns

Optimal complexity for iterative solver: Minimal amount of work is O(N)

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 6

Page 7: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Ingredients for Efficient Numerical Solution: (i) Multilevel Preconditioner

Asymptotically optimal preconditioner: Ch such that cond2(ChAh) ∼ 1

and setup and application of Ch in optimal linear complexity O(N)

Schwarz iterative schemes based on subspace corrections ; multilevel schemes:

• multiplicative schemes ; multigrid methods Brandt, Braess, Bramble, Hackbusch . . .

• additive schemes ; BPX preconditioner; wavelet discretizationBramble, Pasciak, Xu, Yserentant, Oswald, Dahmen, Kunoth . . .

Relevant idea from Approximation Theory: Multilevel characterization of function spaces

and norm equivalences

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 7

Page 8: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Multilevel Characterization of Function Spaces

Multiresolution Yj0 ⊂ Yj0+1 ⊂ . . . ⊂ Yj ⊂ Yj+1 ⊂ . . . Y, closY

S∞j=j0

Yj

= Y

Linear (orthogonal) projectors Qj : Y → Yj s.th. QjQℓ = Qj for j ≤ ℓ ; Qj −Qj−1 projector

Theorem: [Dahmen, Kunoth ’92], [Oswald ’92]

(S) Φj uniformly stable basis for Yj : ‖c‖ℓ2 ∼ ‖cT Φj‖L2

(J) Jackson estimate infvj∈Yj

‖v − vj‖L2<∼ 2−sj‖v‖Hs v ∈ Hs 0 < s ≤ d

(B) Bernstein inequality ‖vj‖Hs <∼ 2sj‖vj‖L2

vj ∈ Yj s < t

=⇒ Norm equivalence

‖v‖2Hs ∼

∞X

j=j0

22sj‖(Qj −Qj−1)v‖2L2s ∈ (−σ, σ)

0 < σ := mind, t, 0 < σ := mind, t,

Proof: (J) and discrete Hardy inequality ; upper estimate for ‖ · ‖Hs .

(B), ‖Qj‖L2<∼ 1 and Whitney estimate ; lower estimate

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 8

Page 9: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Norm Equivalence for Optimal Preconditioning

Theorem: [Jaffard ’92], [Dahmen, Kunoth ’92], [Oswald ’92]

Y = Hs C−1J := Aj0Qj0 +

JX

j=j0

22sj(Qj −Qj−1)

is optimal preconditioner for AJ : YJ → YJ : cond2(C1/2J AJC

1/2J ) ∼ 1 as J →∞

Proof: Isomorphism ‖Av‖Y ′ ∼ ‖v‖Y on YJ combined with norm equivalence for Y = Hs

Realization of C−1J :

• Any s ∈ (−σ, σ): Explicit representation of (Qj −Qj−1)v ; wavelet basis together with

diagonal Ds := (2sj)j=j0...J ; Fast Wavelet Preconditioner (FWT) realizes preconditioning in

optimal linear complexity [Jaffard ’92], [Dahmen, Kunoth ’92]

• s > 0 : Replace CJ = Aj0Qj0 +J

X

j=j0

2−2sj(Qj −Qj−1) by spectrally equivalent preconditioner

C−1J := Aj0Qj0 +

JX

j=j0

2−2sjQj

; BPX preconditioner is also optimal preconditioner

developed by [Bramble, Pasciak, Xu ’90], optimality proved by [Dahmen, Kunoth ’92], [Oswald ’92]

Hierarchical basis preconditioner by [Yserentant ’89] not optimal

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 9

Page 10: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Building Blocks: (Biorthogonal Spline–) Wavelets

H Hilbert space with ‖ · ‖H H′ dual space for H with 〈·, ·〉

Ψ := ψλ : λ ∈ II ⊂ H Wavelets II (infinite) index set

(NE) Ψ Riesz basis for H

v ∈ H: v = vT Ψ :=X

λ∈II

vλ ψλ such that ‖v‖H ∼ ‖v‖ℓ2(II)

(L) Locality diam (suppψλ) ∼ 2−|λ| |λ| resolution

ψλ centered around 2−|λ|k

(CP) Vanishing moments

0 1

ψ2,2

ψ2,1

[Dahmen, Kunoth, Urban ’99] [Dahmen, Schneider ’99; Kunoth, Sahner ’05] [Harbrecht, Schneider ’00]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 10

Page 11: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Numerical Results with Fast Wavelet Transform: Spectral Condition Numbers

Elliptic partial differential operator on Ω = (0, 1)d with FWT preconditioning

−∆ + 1 (−∆ + 1)CK

j 0 1 0 1

3 229 22.3 256 27.1

4 244 23.9 263 27.9

5 255 25.0 289 30.6

6 262 25.7 301 31.9

8 271 26.6 319 33.9

10 276 27.1 330 35.0

12 278 27.3 337 35.8

space dimension d = 1

−∆ + 1 (−∆ + 1)CK

j 0 1 4 5 0 1 3 4

3 519 78.2 76.0 49.5 256 27.8 17.3 9.64

4 627 129 128 124 308 33.4 20.9 11.8

5 646 149 149 147 372 40.4 25.3 14.3

6 664 165 165 165 416 45.1 28.2 16.0

8 681 179 179 179 480 52.1 32.6 18.4

space dimension d = 2

−∆ + 1 (−∆ + 1)CK

j 0 9 0 1 4

3 1103 269 256 28.5 18.3

4 1917 1913 520 57.8 37.1

5 2228 2222 557 62.0 39.8

6 2459 2443 572 63.6 40.9

space dimension d = 3

Uniformly bounded and absolutely small spectral condition numbers cond2(AJ ) [Burstedde ’05]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 11

Page 12: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Ingredients for Efficient Numerical Solution: (ii) Nested Iteration

Recall goal: realize discretization error accuracy εJ ∼ h2 ∼ 2−2J for grid with spacing h ∼ 2−J

with minimal amount of work O(N) N ∼ 2Jd unknowns

Naive strategy:

• Iterate only on highest level J and iterate until discretization error accuracy

needs O(J) = O(− log εJ ) iterations to achieve prescribed discretization error accuracy

εJ ∼ 2−2J

• Each application of optimally conditioned AJ requires O(NJ ) arithmetic operations

; a total of O(J NJ ) arithmetic operations iterating on finest level only

Theorem:

Starting with coarsest level j0, solve Ajyj = fj on each level j up to discretization error

accuracy εj and prolongate result from level j to next level j + 1 as initial guess

; Optimal preconditioner + nested iteration yields method of optimal complexity O(NJ )

to reach discretization error accuracy on finest level J

Proof: For mupliplicative Schwarz schemes: known and known as full multigrid

For additive preconditioners: optimal condition of Aj ; fixed amount of iterations on each level to reach discretization error accuracy on that level;

spaces nested and Nj ∼ 2dj and geometric series argument [Dahmen, Kunoth, Schneider ’99]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 12

Page 13: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Application to (I) PDE-Constrained Optimal Control Problem with Distributed Control

Control problem in wavelet coordinates

minimize J(y, u) = 12‖D−s (y − y∗)‖2 + ω

2‖Dt u‖2 0 ≤ s ≤ 1, 0 ≤ t

subject to Ay = f + u A : ℓ2 → ℓ2 automorphism ‖ · ‖ := ‖ · ‖ℓ2

Necessary and Sufficient Conditions

Lagr(y,u,p) := J(y,u) +˙

p, Ay − (f + D−t u)¸

δLagr = 0 ;

Ay = f + D−t u

AT p = −D−2s (y − y∗)

ωu = D−t p

⇐⇒ Qu = g

Q : ℓ2 → ℓ2 automorphism

whereQ := D−tA−T D−2sA−1D−t + ωI symmetric positive definite

g := D−tA−T D−2s(y∗ −A−1f)

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 13

Page 14: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Nested-Iteration-Inexact-Conjugate-Gradient Algorithm NIICG

Essential idea: Conjugate gradient (cg) iteration on Qu = g (outer loop) and cg iteration for primal

and dual systems (inner iterations); combined with nested iteration [Burstedde, Kunoth ’05]

Numerical Examples for Distributed Control Problem

d = 2: y∗ =q

|x− ( 13, 13)T | ω = 1 f ≡ 1 s = t = 0 runtime 177 sec

j ‖rj‖ #O #E #A #R ǫR(y) ǫP (y) ǫR(u) ǫP (u)

3 1.60e-04 3.73e-04 1.29e-05 3.51e-05

4 7.87e-06 6 4 1 18 1.41e-04 2.17e-04 5.11e-06 5.90e-06

5 3.89e-06 5 4 1 19 1.67e-05 8.34e-05 1.77e-06 1.79e-06

6 2.02e-06 4 4 2 17 1.43e-05 4.30e-05 7.68e-07 7.69e-07

7 1.13e-06 2 7 3 16 1.30e-05 2.39e-05 7.19e-07 7.19e-07

8 4.76e-07 5 3 1 15 1.42e-06 9.90e-06 1.85e-07 1.85e-07

9 2.25e-07 3 5 2 16 1.12e-06 4.51e-06 1.33e-07 1.33e-07

10 1.32e-07 3 5 2 16 9.48e-07 9.48e-07 1.10e-07 1.10e-07

d = 3: y∗ =q

|x− ( 13, 13, 13)T | ω = 1 f ≡ 1 s = t = 0 runtime 3502 sec

j ‖rj‖ #O #E #A #R ǫR(y) ǫP (y) ǫR(u) ǫP (u)

3 1.41e-04 2.92e-04 1.13e-05 2.36e-05

4 6.09e-06 10 9 1 49 1.27e-04 1.78e-04 3.46e-06 3.79e-06

5 3.25e-06 10 7 1 58 1.11e-05 6.14e-05 9.47e-07 9.53e-07

6 1.71e-06 7 6 1 57 1.00e-05 2.86e-05 5.03e-07 5.03e-07

7 8.80e-07 6 6 1 53 9.19e-06 9.19e-06 3.72e-07 3.72e-07

3.2GHz Pentium IV computer (family 15, model 4, stepping 1, with 1MB L2 Cache) [Burstedde ’05]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 14

Page 15: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Application to (II) PDE-Constrained Optimal Control Problem with Dirichlet Boundary Control

Optimality conditions ; system of saddle point problems ; additional inner iterations

[Kunoth ’01]

L“y

p

=“f

u

ωRHt(Γ)u = µ

LT“z

µ

=“−TT R

Hs− 1

2 (Γy)(Ty − yΓy )

0

⇐⇒ NU = F :⇐⇒

0

@

L E

E LT

1

A

0

B

B

B

B

B

@

y

p

z

u

1

C

C

C

C

C

A

:=

0

B

B

B

B

B

@

A BT 0 0

B 0 0 −ω−1R−1Ht(Γ)

TT RH

s− 12 (Γ)

T 0 AT BT

0 0 B 0

1

C

C

C

C

C

A

0

B

B

B

B

B

@

y

p

z

u

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

f

0

−TT yΓy

0

1

C

C

C

C

C

A

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 15

Page 16: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Control Problem with Dirichlet Boundary Control: Solution Graphics

[Pabel ’05]

00.25

0.50.75

1

0

0.250.5

0.751

0

0.25

0.5

0.75

1

00.25

0.50.75

0

0.250.5

0.75

Ω = 100

Ω = 10

Ω = 5

Ω = 2

Ω = 1

Ω = 0.5

Ω = 0.4

Ω = 0.3

Ω = 0.2

Ω = 0.1

Ω = 0.01

00.25

0.50.75

1

0

0.250.5

0.751

0

0.25

0.5

0.75

1

00.25

0.50.75

0

0.250.5

0.75

s = 0.0

s = 0.1

s = 0.2

s = 0.3

s = 0.4

s = 0.5

s = 0.7

s = 0.9

s = 1.0

s = 1.5

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 16

Page 17: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Numerical Results for Control Problem with Dirichlet Boundary Control

All–In–One Solver: cg method & nested iteration on NT NU = NT F

Best results for inexact gradient iteration on u and Uzawa with conjugate directions for each of saddle

point problems & nested iteration

d = 2: yΓy ≡ 1 f ≡ 1 ω = 1 s = 12

L2(Γy) t = 12

H1/2(Γ) [Pabel ’05]

P with D−11 P O with D−1

a

J ‖r(kJ )J

‖ ‖y−y(kJ )J

‖ kJ#Int-It

kJ

#Int-ItkJ

‖r(kJ )J

‖ ‖y−y(kJ )J

‖ kJ#Int-It

kJ

#Int-ItkJ

4 1.6105e-02 7.7490e-00 0 – – 3.9807e-02 8.5283e-02 4 1.5 2.5

5 1.6105e-02 7.7506e-00 0 – – 1.3970e-02 2.5233e-02 2 1 1.5

6 6.3219e-03 1.7544e-02 2 1 1 1.4421e-02 1.2301e-02 1 1 1

7 5.8100e-03 3.3873e-02 0 – – 6.1354e-03 4.6339e-03 2 1 1.5

8 1.6378e-03 3.4958e-03 2 1 1 2.2413e-03 1.7083e-03 2 1.5 1.5

9 1.8247e-03 7.4741e-03 0 – – 9.2961e-04 8.8526e-04 2 1.5 1

10 4.3880e-04 9.2663e-04 2 1 1.5 9.2954e-04 8.7262e-03 0 – –

11 4.6181e-04 1.8486e-03 0 – – 4.4790e-04 3.8321e-04 2 1.5 1.5

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 17

Page 18: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Distributed Control Problem with Inequality Constraints

Treatment of control inequality constraints:

projected gradient method — interior point (IP) method — primal-dual active set (PDAS) method

u(x) ≡ −0.5 y∗(x) = x1(1− x1) · x2(1− x2)− 32[x1(1− x1) + x2(1− x2)]

f(x) :=

8

<

:

0.5 + 2[x1(1− x1) + x2(1− x2)] for x ∈ K•,

16x1(1− x1)x2(1− x2) + 2[x1(1− x1) + x2(1− x2)] otherwise

; exact solution y(x) = x1(1− x1) · x2(1− x2)

j J(y(k), u(k)) ε(u(k)j

) ε(y(k)j

) k ∅ (#CG) run time

4 6.963009e + 01 1.099181e − 02 1.125383e − 02 2 9 31.1186

5 6.577754e + 01 1.910503e − 03 5.154380e − 03 3 45 40.7679

6 6.391144e + 01 7.092608e − 04 2.361333e − 03 3 92 181.723

7 6.305831e + 01 2.237459e − 04 1.115190e − 03 3 148 1484.53

8 6.274058e + 01 8.386212e − 05 5.381711e − 04 3 186 11545.4

9 6.268009e + 01 2.803506e − 05 2.625252e − 04 3 230 100938

<∼ 2−3/2 j <

∼ 2−j ∼ const

PDAS [Hoffmann & K ’07]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 18

Page 19: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

So far: uniform grids . . . . . . further reduction of complexity by adaptive refinement

Recall: A-priori Estimates for Finite Elements

Quality measure: Approximation in norm ‖y − yh‖L2(Ω) ≤ ε

A–priori error estimates: Ω ⊂ Rd dimYh = N ∼ h−d uniform grid

‖y − yh‖L2(Ω) <∼ hr ‖y‖Hr(Ω) yh ∈ Yh 0 ≤ r ≤ rmax

⇐⇒ ‖y − yN‖L2(Ω) <∼ N−r/d ‖y‖Hr(Ω)

‖y − yN‖H1(Ω)

<∼ N−(r−1)/d ‖y‖Hr(Ω)

N degrees of freedom ←→ accuracy O(N−r/d)

Approximation rate determined by

(i) approximation order rmax of Yh

(ii) space dimension d

(iii) amount of smoothness of y in L2

‘Wish list’ for adaptive method

• uses no a–priori knowledge

• realizes rate under less smoothness assumptions

• universally usable: automatic realization of order

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 19

Page 20: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Paradigm for One Stationary PDE [Cohen, Dahmen, DeVore ’99–’01]

(i) Well–posed variational problem: given f ∈ y′, find y ∈ Y : 〈v,Ay〉 = 〈v, f〉 ∀v ∈ Y Ay = f

(MP) ‖Av‖Y ′ ∼ ‖v‖Y for all v ∈ Y

(ii) Wavelet basis for Y : Ψ = ψλ : λ ∈ II ⊂ Y

(NE) c ‖v‖ℓ2 ≤ ‖P

λ∈II vλψλ‖Y ≤ C ‖v‖ℓ2 for all v = (vλ) ∈ ℓ2

Ay := (〈ψλ, Ay〉)λ∈II f = (〈ψλ, f〉)λ∈II

;

Theorem Ay = f ⇐⇒ Ay = f A : ℓ2 → ℓ2 and Ay = f well-posed in ℓ2

(MP) + (NE) =⇒ (c2 cA)−1 ‖w‖ℓ2 ≤ ‖Av‖ℓ2 ≤ C2CA ‖w‖ℓ2 w ∈ ℓ2

(iii) (Idealized) iteration

yn+1 = yn + Cn(f −Ayn) n = 0, 1, 2, . . . ‖yn+1 − y‖ℓ2 ≤ ρ ‖yn − y‖ℓ2 ρ < 1

(iv) Approximate realization through adaptive evaluation of Ayn (CP)

Solve [ε,C,A, f ]→ y(ε)

(i) Initialize ‖y − v‖ℓ2 ≤ δ η = δ

(ii) perturbed update v + rη := v + Res [η,C,A, f ,v]→ v η/2→ η

until ‖rη‖ℓ2 “small enough”

(iii) Coarse [cδ,v]→ v δ → δ/2 η = δ go to (ii) until δ ≤ ε

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 20

Page 21: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Complexity Analysis

Based on benchmark:

decay rate s for (wavelet-)best N term approximation As := v ∈ ℓ2 : ‖v − vN‖ℓ2 <∼ N−s

Work/accuracy balance of best N term approximation:

Target accuracy ε (∼ N−s) ←→ Work ε−1/s (∼ N)

Convergence and Complexity

(Idealized) iteration yn+1 = yn + Cn(f −Ayn) update via Res [η,C,A, f ,v]→ rη

Theorem [CDD] Output rη of Res [η,C,F, f ,v] satisfies ‖rη‖As <∼ ‖v‖As + ‖u‖As

and # supp rη , #flops <∼ η−1/s (‖v‖

1/sAs + ‖u‖

1/sAs + 1)

=⇒ for every variational problem satisfying (MP) perturbed scheme Solve has properties:

(I) For every target accuracy ε > 0 Solve produces after finitely many steps

approximate solution uε such that ‖u− uε‖ℓ2 ≤ ε

(II) Exact solution u ∈ As =⇒ suppuε, # flops ∼ ε−1/s ∼ N

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 21

Page 22: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

; construct Res [η,C,F, f ,v] such that output rη satisfies ‖rη‖As <∼ ‖v‖As + ‖u‖As

and #supp rη , #flops <∼ η−1/s (‖v‖

1/sAs + ‖u‖

1/sAs + 1)

F(u) = Au ; Properties of Res derived from s– compressibility of A

Core Ingredient of Solve : Compressible Operators

A s∗–compressible: for every 0 < s < s∗ there exists Aj

with ≤ αj2j nonzero entries per row and column such that

‖A−Aj‖ ≤ αj2−sj j ∈ N0

X

j∈N0

αj <∞

supp v <∞ ; v[j] := v2j best 2j approximations wj := Ajv[0] + Aj−1v[1] + · · ·+ A0v[j]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 22

Page 23: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Generalization to (I) PDE-Constrained Optimal Control Problem with Distributed Control

Control problem in wavelet coordinates

minimize J(y, u) = 12‖D−s (y − y∗)‖2 + ω

2‖Dt u‖2 0 ≤ s ≤ 1, 0 ≤ t

subject to Ay = f + u A : ℓ2 → ℓ2 automorphism ‖ · ‖ := ‖ · ‖ℓ2

Necessary and Sufficient Conditions

Lagr(y,u,p) := J(y,u) +˙

p, Ay − (f + D−t u)¸

δLagr = 0 ;

Ay = f + D−t u

AT p = −D−2s (y − y∗)

ωu = D−t p

⇐⇒ Qu = g

Q : ℓ2 → ℓ2 automorphism

whereQ := D−tA−T D−2sA−1D−t + ωI symmetric positive definite

g := D−tA−T D−2s(y∗ −A−1f)

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 23

Page 24: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Convergence and Complexity Analysis

Essential idea: Res for Solve [. . . ,Q, . . .] reduced to Res for Solve [. . . ,A, . . .]

and system of Euler equations ←→ condensed system

Theorem [Dahmen, Kunoth ’05]

For any target accuracy ε > 0 Solve [ε,Q,g]→ uε converges in finitely many steps

‖u− uε‖ ≤ ε ‖y − yε‖ <∼ ε ‖p− pε‖ <

∼ ε uε,yε,pε finitely supported

u,y,p ∈ As =⇒

(# suppuε) + (# suppyε) + (# supppε) <∼ ε−1/s

‖u‖1/sAs + ‖y‖

1/sAs + ‖p‖

1/sAs

‖uε‖As + ‖yε‖As + ‖pε‖As <∼ ‖u‖As + ‖y‖As + ‖p‖As

#flops ∼ ε−1/s

Extension to PDE-constrained control problems with Dirichlet boundary control

; System of saddle point problems ; additional inner iterations [Kunoth ’05]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 24

Page 25: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Numerical Example for Distributed Control Problem (1D)

min J(y, u) J(y, u) = 12‖y − y∗‖2H1(Ω)

+ 12‖u‖2

L2(Ω)(s = 0 t = 1)

under constraints

8

<

:

−y′′ + y = f + u in Ω := (0, 1)dydn

= 0 at 0, 1

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

right hand side f

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

target state y*

right hand side f target state y∗

Wavelet coefficients: State y adjoint state p control u [Burstedde, Kunoth ’05]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 25

Page 26: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Numerical Example for Distributed Control Problem (2D)

min J(y, u) J(y, u) = 12‖y − y∗‖2

H1/2(Ω)+ 1

2‖u‖2

L2(Ω)y∗ = h2 ⊗ h2 (s = 1/2 t = 0)

under constraints

8

<

:

−∆y + y = D3/2(h1 ⊗ h1) + u in Ω := (0, 1)2

dydn

= 0 on ∂Ω

Optimal rate in energy norm (r = 2 d = 2) is r−1d

= 12

j ‖rj‖ #O #E #A #R S Nad ǫP (y) ǫP (u)

3 1.31e-02 2.19e-04

4 3.09e-04 1 6 1 11 54.0% 156 1.02e-02 2.19e-04

5 3.55e-04 1 6 2 11 49.0% 534 5.08e-03 2.19e-04

6 1.80e-04 4 4 1 20 51.6% 2182 2.55e-03 2.19e-04

7 1.22e-04 6 6 1 21 43.1% 7169 1.31e-03 2.19e-04

8 5.61e-05 8 8 1 23 36.0% 23745 6.73e-04 2.19e-04

9 2.22e-05 10 9 1 23 30.6% 80525 3.33e-04 1.55e-04

10 1.15e-05 12 9 2 24 27.6% 289790 1.25e-04 1.07e-04

σ ≈ 0.55 [Burstedde ’05]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 26

Page 27: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Numerical Example for Distributed Control Problem (2D) Target y∗

0 0.2 0.4 0.6 0.8 x1 00.20.40.60.8x2

0.40.60.8

1

[Burstedde ’05]

type e = (1, 0) type e = (0, 1)

4

5

6

7

1.69e-03

0.00e+00 4

5

6

7

1.69e-03

0.00e+00

4

5

6

7

2.08e-01

0.00e+00 4

5

6

7

2.08e-01

0.00e+00

4

5

6

7

4.34e-03

0.00e+00 4

5

6

7

4.34e-03

0.00e+00

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 27

Page 28: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Summary

• Fast iterative solution based on multiscale ideas of first order optimality conditions for

PDE-constrained control problems

• Uniformly bounded condition numbers of system matrices + nested iteration

=⇒ solver produces discretization error accuracy in optimal linear complexity O(NJ )

• Application to control problems constrained by linear elliptic PDEs with distributed or Dirichlet

boundary control

– Modelling of objective functional [Burstedde, Kunoth ’05]

– Uniformly bounded condition numbers of system matrices

– A–posteriori error estimators for coupled system of operator equations

– automated adaptive refinement for each of state y, control u and adjoint state p

– convergence proof and algorithmic efficiency: first optimal complexity estimates

method has optimal work/accuracy rate

Extensions, Generalizations and Outlook

• Goal-oriented error estimation [Dahmen, Kunoth, Vorloeper ’05]

• Attractive for control problems with linear parabolic PDE constraints

; PDEs coupled globally in time – space-time approach in weak form

• Control problem with nonlinear elliptic PDE as constraints: SQP methods . . .Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 28

Page 29: Wavelet Methods for PDE-Constrained Control Problems ...naconf/07/kunoth_dundee07.pdfWavelet Methods for PDE-Constrained Control Problems: Optimal Preconditioners, Fast Iterative Solvers

Numerical Results: BPX Preconditioner and Nested Iteration

Laplacian on sphere ∆S y = f f(x) = 2x exact solution y(x) = x

stopping criterion ‖rj‖ℓ2 ≤ 2−2j (∼ h2) piecewise linear finite elements

its: iterations on each level to reach stopping criterion [Maes, Kunoth, Bultheel ’05]

j cond ‖rj‖ℓ2its

1 3.1 2.4897e-05 12

2 3.7 1.6766e-05 9

3 4.6 4.7350e-06 11

4 5.5 4.5474e-06 11

5 6.2 1.6705e-06 12

6 6.7 1.0193e-06 12

7 7.0 6.2720e-07 12

8 7.4 1.6451e-07 13

Biharmonic equation on sphere ∆2S y = f C1 cubic conforming finite elements

j cond ‖rj‖ℓ2its

1 52.0 2.2290e-03 0

2 66.7 5.1424e-04 2

3 78.4 4.2928e-04 1

4 87.7 3.1846e-04 3

5 95.2 1.6570e-04 3

6 100.6 7.9261e-05 5

7 105.5 4.0583e-05 4

Optimality of BPX preconditioner [Kunoth ’94; Oswald ’94]

Numerical results [Maes, Kunoth, Bultheel ’05]

Angela Kunoth — Wavelet Methods for PDE Control: Optimal Preconditioners, Fast Iterative Solvers and Adaptivity 29