43
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PARTIAL COMPILATION AND REVISION OF BASIC DATA IN THE WATEQ PROGRAMS By D. Kirk Nordstrom, Susan D. Valentine, James W. Ball, L. Neil Plummer and Blair F. Jones Water-Resources Investigation Report 84-4186 Menlo Park, California 1984

Water-Resources Investigation Report 84-4186 · PDF fileis the activity coefficient of the i ion, z, ... A and B are the Debye-Huckel solvent ... The dielectric constant is fundamental

Embed Size (px)

Citation preview

UNITED STATESDEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

PARTIAL COMPILATION AND REVISION OF BASIC DATA IN THE WATEQ PROGRAMS

By D. Kirk Nordstrom, Susan D. Valentine, James W. Ball, L. Neil

Plummer and Blair F. Jones

Water-Resources Investigation Report 84-4186

Menlo Park, California 1984

UNITED STATES DEPARTMENT OF THE INTERIOR

WILLIAM P. CLARK, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

Office of the Regional Hydrologist Water Resources Division 345 Middlefield Road Menlo Park, CA 94025

Copies of this report can be purchased from;

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 234-5888)

CONTENTS

PageAbstract--- - - - - 1Introduction 2Evaluation of the Debye-Hiickel solvent parameters 3Compilation of data- - - - 6

Sources of data- - - - - -- -- 6The data base listing- - - - -- 8Refinement of the standard state thermodynamic properties of Fe2 *

and Fe 3 aqueous ions-- - - 10Thermodynamic data for aqueous Fe2 - - - 10Thermodynamic data for aqueous Fe3 - - - 12Internal consistency-- - - 14Reference source codes- 15

Acknowledgments 15References cited- -- - - - - -- - - - 16

ILLUSTRATION

PageFigure 1. Deviation of three evaluations for the temperature depen­

dence of the dielectric constant relative to Malmberg and Maryott's data- - - 5

TABLES

Page Table 1. Debye-Hiickel "A" parameters as a function of temperature 6

2. List of compilations searched- 73. Heat of solution of FeCl 2 (solid) 114. Three sets of internally consistent, standard state (298.15 K)

thermodynamic data for Fe 2 (aq), Fe 3 (aq), Fe(OH) 2 (c), and goethite 13

5. Symbols used for "source" code- - -- 156. Partial compilation of thermodynamic data for the WATEQ

programs - 19

III

PARTIAL COMPILATION AND REVISION OF BASIC DATA

IN THE WATEQ PROGRAMS

By D. Kirk Nordstrom, Susan D. Valentine, James W. Ball, L. Niel Plummer, and Blair F. Jones

ABSTRACT

Several portions of the basic data in the WATEQ series of computer programs (WATEQ, WATEQF, WATEQ2, WATEQ3, and PHREEQE) are compiled. The density and dielectric constant of water and their temperature dependence are evaluated for the purpose of updating the Debye-Hiickel solvent parameters in the activity £o- efficient equations. The standard state thermodynamic properties of the Fe 2 and Fe 3 aqueous ions are refined. The main portion of this report is a com­ prehensive listing of aluminum hydrolysis constants, aluminum fluoride, aluminum sulfate, calcium chloride, magnesium chloride, potassium sulfate and sodium sulfate stability constants, solubility product constants for gibbsite and amorjphous aluminum hydroxide, and the standard electrode potentials for Fe°(s)/ Fe 2 (aq) and Fe2+ (aq)/Fe 3+ (aq).

INTRODUCTION

Several computer programs that calculate multicomponent chemical equilib­ rium for homogeneous or heterogeneous aqueous systems are presently available (Nordstrom, _et_al., 1979). One major difficulty in using these programs is the lack of critically evaluated thermodynamic data, specifically equilibrium constants and reaction enthalpies. Stockmayer (1978) has noted that the effort to evaluate fundamental physical and chemical data lags behind the efforts in other areas of research and technological development. Poor quality data can have dire consequences when applied to such important societal problems as energy supply, environmental quality and industrial productivity (Lide, 1981). The lack of reliable aqueous thermodynamic data makes it difficult to interpret water-quality processes and problems which have become increasingly important with the continued development of energy resources and urban and industrial construction.

Before there can be a meaningful evaluation of data, all the relevant literature must be compiled. The main purpose of this report is to provide an update of the basic data compiled from literature references for selected aqueous reactions relevant to water-mineral equilibria. These data are or­ ganized in a form that is convenient for anyone using chemical equilibrium computer programs.

This compilation was initially begun to provide a more reliable data base for the WATEQ series of computer programs. The first program, WATEQ, was de­ veloped by Truesdell and Jones (1974) and included a complete list of equili­ brium constants and reaction enthalpies with reference sources for the program data base. WATEQF (Plummer, et al., 1976), the FORTRAN version of WATEQ, includes equilibrium constants for manganese species as well as some revisions of the earlier compilation. WATEQ2 (Ball, e_t al., 1979; 1980) was developed from WATEQ and WATEQF but kept the original programing language (PL/1). Sev­ eral trace elements (Pb, Cu, Zn, Cd, Ni, Ag, As, I) were added to WATEQ2 and some further revisions of the two previous data bases were given. PHREEQE (Parkhurst, ^t_ al^., 1980) computes chemical equilibria, pH, and pE (or Eh) for heterogeneous systems including reaction progress calculations and mass transfer between solution phase and solid phases (precipitation-dissolution processes). The PHREEQE data base is similar to that of WATEQF, but revised to be compatible with WATEQ2. Finally, WATEQ3, (Ball, £t al., 1981) has incorporated uranium species along with a few more changes in the coding and the data base. The increasing number of changes in these programs makes it difficult to keep track of the data base and is further motivation for organi­ zing the data into a form that can be easily documented, updated and reviewed by WATEQ users. This report is not intended as a primary reference of thermo­ dynamic data. It is only intended as an aid to WATEQ users so that they can make more informed decisions regarding water-quality interpretations when employing WATEQ computations.

EVALUATION OF THE DEBYE-HUCKEL SOLVENT PARAMETERS

The original WATEQ program utilized activity coefficients for the major ions in natural waters which were calculated from the extended Debye-Huckel equation with a linear term:

log y. - - + bl

in which y. is the activity coefficient of the i ion, z, is the ion charge, I is the ionic strength, A and B are the Debye-Huckel solvent parameters, I is an empirical ion-size parameter, and b is a fitting parameter. This form of the Debye-Hiickel equation was first proposed by Huckel (1925) and is nearly identical to the original Bronsted (1922) equation in which the linear term (bl) accounts for specific short-range interactions between ions of opposite charge. The A and B parameters are functions of the solvent density, the dielectric constant and the temperature:

A =1000 ekTj

where e is the electronic charge, e is the dielectric constant of the solvent, k is the Boltzmann constant, T is the absolute temperature, p 0 is the density of pure water, and N is the Avogadro constant. The following physical con­ stants, evaluated and revised by Cohen and Taylor (1973), were used in the calculations:

N = 6.022045 x 10 e = 4.803242 x 10 k = 1.380662 x 10

Jln 10 = 2.302585.

1016

mol"

esu erg

These constants were substituted into the definition of A and B to obtain:"*1

A 1.824814xl0x p< mole (kgu= and

50.29012xl0 8x

CeT)

cm" 1 mole" 1 (kguH 2U

These formulae are more precise than those used in Truesdell and Jones (1974) although the difference is only in the fifth significant figure.

The density has a much smaller effect on A and B than the dielectric con­ stant and an extensive compilation and evaluation is not necessary. The investigation of Gildseth, et al. (1972) provides an accuracy of 3 ppm and a mean absolute deviation of 0.7xlO" 6 g/mL over the temperature range 0-80°C for the density of water. The function which best fits their data and addi­ tional measurements of comparably high precision is:

po = 1 - (t-3.9863) 2 (t + 288.9414) + 0.011445 exp (-374.3/t) 508929.2 (t + 68.12963)

where t is degrees C. Any inaccuracies in this representation will be far overshadowed by the uncertainties in the dielectric constant of water.

The dielectric constant is fundamental to any electrolyte theory of aque­ ous solutions; however, it is not known with the accuracy required for many types of applications, including Debye-Huckel calculations. Truesdell and Jones (1974) used the data of Malmberg and Maryott (1956) in WATEQ. Since then, there have been several additional measurements and three major evalua­ tions of the data. The earliest evaluation is that of Helgeson and Kirkham (1974) who fit a single equation to measurements for the pressure and tempera­ ture range of 1-5000 bars and 0-600°C. Bradley and Pitzer (1979) developed a single equation for the dielectric constant up to 350°C and 1000 bars. The most comprehensive evaluation in which the measurements were weighted according to precision and according to temperature range during fitting is that of Uematsu and Franck (1980). In Figure 1 the deviations of each of these three fitted equations are compared to the data of Malmberg and Maryott (1956). It is very clear from this comparison that these three evaluations agree very well with each other, but differ markedly from the data of Malmberg and Maryott (1956) for 0-100°C. The Uematsu and Franck (1980) evaluation has been chosed for the temperature dependence of the dielectric constant of water. Since the WATEQ series data base is only considered to be reliable for the temperature range 0-100°C, we have reduced the lengthy equation of Uematsu and Franck (1980) to:

e = 2727.586 + 0.6224107T - 466.9151 InT - 52000.87/T.

This equation fits to within 0.01 of the dielectric constant (about 0.013%) given by Uematsu and Franck's equation at any temperature in the range of 0- 100°C. In Table 1 the Debye-Hiickel A parameter is recalculated at 10° inter­ vals from 0-100°C and compared with the original WATEQ values, the values of Helgeson and Kirkham (1974) and those of Bradley and Pitzer (1979). The differences between our A values and those from the recent literature are negligible. The change in the temperature dependence of the A parameter re­ flects the change in the dielectric constant data. These changes will improve the temperature dependence of the activity coefficients.

7} ZOH-!>H<mC>

.1 l\> © © © ©

© ©

©

©

r\> ©

5 oo^n ®m73

-* ±c © -m

o en m ©

m m

om

o> ©

M ^J c © </>

00©

(O©

© ©

FIGURE 1. Deviation of three evaluations for the temperature dependence of the dielectric constant relative to Malmberg and Maryott's data.

TABLE 1. - Debye-Hiickel "A" parameters as a function of temperature

t, °C WATEQ Helgeson & Kirkham, 1974

Bradley & Pitzer, 1974

COMPILATION OF DATA

Sources of Data

This report

0102030405060708090

100

0.49170.49870.50620.51410.52250.53140.54080.55070.56130.57250.5845

0.49130.49760.50500.51350.52310.53360.54500.55740.57060.58480.5998

0.49120.49770.50550.51460.52380.53420.54590.55760.57070.58500.6006

0.49120.49760.50520.51390.52350.53420.54590.55840.57180.58590.6007

Primary references containing thermodynamic measurements were compiled from the list of references in Table 2. In addition to these references, several journals including "Geochimica et Cosmochimica Acta," "Marine Chemistry," "Journal of Solution Chemistry," and "Journal of Chemical Thermo­ dynamics" were searched for references cited in articles already known to the authors. A computer search in "Chemical Abstracts" for reactions involving aluminum hydrolysis was carried out for the years 1967-1980. The result (Table 6) is a comprehensive listing of equilibrium constants and reaction enthalpies. Data were checked against the original primary reference if possible or against the abstract in "Chemical Abstracts" to see that the ci­ tation and the values were accurately and fully recorded. To narrow the search, only values reported for 25°C (with a few exceptions) were selected. No analytical equations of equilibrium constants as a function of temperature were used in this report.

TABLE 2. - List of compilations searched

Author(s) Bibliographic information

Baes, C. F., Jr. and Mesmer, R. E.

Bond, A. M., and Hefter, G. T.

[periodical]

Christensen, J. J., Eatough, D. J., and Izatt, R. M.

Chariot, G., Collumeau, A., and Marchon, M. J. C.

Naumov, G. B., Ryzhenko, B. N. and Khodakovskii, I. L.

Perrin, D. D.

Robie, R. A., Hemingway, B. S., and Fisher, J. R,

Sadiq, M., and Lindsay, W. L.

1976, The Hydrolysis of Cations, John Wiley and Sons, New York, 489 p.

1980, Critical Survey of Stability Constants and Related Thermodynamic Data of Fluoride Complexes in Aqueous Solution, IUPAC Chem. Data Ser. No. 27, Permagon Press, Oxford, 71 p.

Bulletin of Chemical Thermodynamics, Thermochemistry, Inc., Stillwater, Oklahoma.

1975, Handbook of Metal Ligand Heats and Related Thermodynamic Quanti­ ties, Marcel Dekker, New York, 495 p.

1971, Selected Constants: Oxidation- Reduction Potentials of Inorganic Substances in Aqueous Solution, Butterworths, London, 73 p.

1971, Handbook of Thermodynamic Data, Atomizdat, Moscow, 240 p. (Eng. trans. by G. Soleimani, ed., I. Barnes and V. Speltz, N.T.I.S. PB-226-722).

1969, Dissociation constants of in­ organic acids and bases in aqueous solution, Pure Appl. Chem., 20, 133-326.

1977, Thermodynamic Properties of Minerals and Related Substances at 298.15K and One Atmosphere Pressure and a High Temperatures, U.S. Geol. Survey Bull. 1259, 456 p.

1979, Selection of Standard Free Ener­ gies of Formation for Use in Soil Chemistry, Colo. State Univ. Tech. Bull. 134, 1069 p.

TABLE 2. - List of compilations searched Continued

Authors Bibliographic information

Sillen, L. G., and Martell, 1964, Stability Constants of Metal-Ion A. E. Complexes, Spec. Publ. No. 17, The

Chemical Society, London (Metcalfe and Cooper) 754 p.

Sillen, L. G., and Martell, 1971, Stability Constants of Metal-Ion A. E. Complexes, Spec. Publ. No. 25, The

Chemical Society, London (Alen and Mowbray), 865 p.

Smith, R. M., and Martell, 1976, Critical Stability Constants. A. E. Vol. 4: Inorganic Complexes, Plenum

Press, New York, 257 p.

Yatsimirskii, K. B. and 1960, Instability Constants of Complex Vasil'ev, V. P. Compounds, Van Nostrand, Princeton

(Engl. transl.), 214 p.

The Data Base Listing

In Table 6 we have compiled the reported equilibrium constant and enthalpy measurements for (1) aluminum hydrolysis, (2) aqueous ion associations for alu­ minum fluorides, aluminum sulfates, calcium chloride, magnesium chloride, potassium sulfate and sodium sulfate, (3) the solubility product constants for gibbsite and amorphous aluminum hydroxide, (4) the oxidation-reduction poten­ tials for the Fe°/Fe2+ and Fe2+/Fe3+ couples, (5} the standard state thepnod^- namic values of the following aqueous ions: Al 3 , Ca2 , Mg 2 , Fe , Fe , K , and Na , and (6) the standard state thermodynamic properties of solid gibbsite. These substances are listed in alphabetical order by element, and for any one reaction the listing of measurements is in chronological order. The values which were given in the WATEQ, WATEQF, and WATEQ2 publications are also pro­ vided for comparison. The standard state for aqueous species is the hypothet­ ical ideal solution of unit activity at unit molality, 298.15 K and 1 bar. The standard state for gibbsite is the pure crystalline solid of composition A1(OH) 3 at 298.15 K and 1 bar. The calorie, rather than the joule, was used as the unit of energy because most of the published data are reported in calories, and the integrity of the original data is preserved by avoiding any additional conver­ sions. The most obvious reason for using the calorie is that the WATEQ data base has always been in calories and keeping the same energy unit would be more convenient for WATEQ users. Anyone else who wants to use this data base for other purposes can easily make the conversion to joules. Furthermore, Adamson (1978) presents valid criticisms for not using SI units.

All equilibrium constants involving hydrolysis have been written in terms of H and H2 0 rather than OH". This uniformity required conversion of some of the reported values. The notation for equilibrium constants follows the symbols used by Sillen and Kartell (1964): *K X is the first acid dissociation con­ stant, *K2 is the second dissociation constant, etc. KI represents the addi­ tion of hydroxide ion to a metal cation. A subscript "s" refers to the solubility product for a solid phase. For example *KS <» for gibbsite refers to the reaction:

Al(OH) 3 (solid) + H2 0 = A1(OH)I + H+

and the product KxK2 refers to:

Al3 + 20H~ = A1(OH)I .

There has been considerable discussion in the literature concerning the existence of polynuclear species (e.g. Aveston, 1965; Baes and Mesmer, 1976). We feel that these species occur under non-equilibrium conditions that do not merit evaluation of an equilibrium constant value. However we have included a compilation of the equilibrium constants for the dimer because of the consis­ tency of the values and the direct spectroscopic evidence for its existence (Akitt, e_t al^., 1969). Unfortunately, the dimer was not fitted with the other recommended values for the aluminum hydrolysis constants and the gibbsite solubility product constants (May, et_ al_., 1979). For this reason we do not recommend that the dimer be used in WATEQ computations until such time that its importance can be evaluated. Preliminary testing indicates that it has a negligible effect on the other equilibrium constants (Howard May, oral commun.).

Occasionally a reported value is clearly of higher quality than the others, based on the experimental approach and the reported precision. These values have been identified in the REMARKS column of Table 6 by the word RECOMMENDED. Several reactions have not been "recommended" because they can not be adequately evaluated at this time.

Uncertainties reported by the original authors are given in parentheses following the reported value. These numbers usually represent one standard deviation. The original articles should be consulted for further information regarding errors.

Please note that equilibrium constants which can be calculated from stan­ dard state free energies are not included. Free energies of substances and re­ actions are usually not measured directly. Free energies are commonly derived from measurements of enthalpies, heat capacities and equilibrium constants. An exception is the measurement of the Fe°/Fe2+ electrode potential which is di­ rectly proportional to the free energy of the aqueous ferrous ion if the experiment is carried out under carefully controlled conditions. If an attempt is made to rebuild equilibrium constants from tabulated free energies through the equation, AG° = - RTlnK, then large uncertainties can result unless exactly the same path is used as that from which the free energies were originally calculated. Because free energies are usually taken from different sources, a calculated equilibrium constant can be seriously in error and inconsistent

with other data. The solubility product constant for siderite provides a typical example of this problem. Although it is listed in many standard com­ pilations, there has been no direct measurement of the free energy of siderite, If we use the free energy data listed in N.B.S. Technical Note Series 270-3 and 270-4 for FeC03 (c), Fe2+ (aq) and CO*" (aq), then the log K = -10.94. The source for AG°(FeC03 ) is a solubility product measurement of siderite which is log K = -10.68 (Kelly and Anderson, 1935), noticeably different from the value back-calculated from free energies. The reason for this discrepancy is relatively simple. Different values for AGj (Fe 2 ) and AG^(C0 2 ") were used by Kelly and Anderson (1935) to calculate AG° (FeC0 3 ) than are listed in N.B.S_. Tech. Notes 270-3 and 270-4. The biggest change has been in the AG~(Fe2 ). Although this example is a fairly typical one, there are some equilibrium constants which are inconsistent by an order of magnitude or more because of the cumulative errors in adding free energies from different sources. For this reason, we have only listed equilibrium constant and re­ action enthalpy measurements. No equilibrium constant data are based on free energy calculations. Such calculations can be used to check consistency when enough data are available, but for listing equilibrium constants only primary data are used.

Refinement of the Standard State Thermodynamic Properties

of Fe 2 * and Fe 3 * Aqueous Ions

Free energies of formation from the elements for aqueous Fe 2 and Fe 3 ions are reported anywhere in the range of -18.85 to -22.1 kcal/mole and -1.1 to -4.27 kcal/mole, respectively. Enthalpies and entropies are discrepant by similar amounts. Recent measurements (1968-1980) of heats of solution, heats of oxidation and an electrode potential measurement can be used to narrow the range of uncertainty to a more acceptable set of values.

2Thermodynamic Data For Aqueous Fe

AG^(Fe2+ ) can be obtained by three independent pathways.^ The first pathway is by combining the values for AH°(Fe 2 ) with AS£(Fe 2 ) using the equation:

AGj = AH° - TAS° . it r

where AH* AS°, and AG° are the standard state enthalpies, entropies, and Gibbs free energy of formation from the elements. In the second pathway, AG~ is obtained from the standard electrode potential, E°, for the Fe°(s)/Fe 2 * reaox couple using the equation:

= -nFE° .

10

The third pathway involves calculating AG^(Fe2 ) from measurements of AG the solubility product constant, K, of Fe(OH) 2 (c) from the relationship:

and

AG£ = -RT£nK .

The value for AHj(Fe2 ) can be obtained from heat of solution measure­ ments of FeCl 2 (c) and the enthalpies of formation of FeCl 2 (c) and Cl~(aq),

AH°(Fe2+ , aq) = AH°(FeCl 2 ) - 2AH°(C1~, aq) + AH£(FeCl 2 )

where AH°(FeCl 2 ) is the standard heat of solution of FeCl 2 . The AH°(FeCl 2 ) has been measured by Li and Gregory (1952), Cerutti and Hepler (197?) and Gobble^(1978). All three measurements are in close agreement (Table 3). The AH£(C1~, aq) is known with a high degree of reliability (e.g. CODATA, 1977) and the only known value for AH~(FeCl 2 ) is that from Koehler and Coughlin (1959). Combining these data, the resultant AH°(Fe2+ , aq) = -21.61 kcal/mol. The AS£(Fe2 ) can be calculated from the third-law entropy, S°(Fe2+ ) reported by Larson, et al. (1968) and the entropies of the elements from Robie, et al. (1978). The resultant AG°(Fe2+) = -21.34 kcal/mol. This pathway is shown as set I in Table 4.

Electrode potential measurements for the Fe°(s)/Fe2 couple can be reli­ able if (1) the iron is pure and free from defects, (2) no oxygen is present in the system, (3) the potential is independent of pH and (4) no hydrogen evolution takes place. No investigation has shown beyond doubt that all of these conditions have been met; however, the most reliable attempt is Johnson and Bauman (1978). Using their value of E° = 0.415 V we calculate AG°(Fe2 ) = -19.15 kcal/mol. This pathway is the basis for set II in Table 4. Tne range of measured values is shown in Table 6. The difference between this number and the number derived from enthalpies and entropies is 2.2 kcal/mol, hardly an acceptable inconsistency.

TABLE 3. - Heat of solution of FeCl 2 (solid)

AH° (kcal/mol) Reference

-19.5(^0.2) Li and Gregory (1952)

-19.7(-0.2) Li and Gregory (1952) corrected byCerutti and Hepler (1977)

-19.815 Cobble (1978)

-19.82 Cerutti and Hepler (1977)

11

Careful measurements of the log Ksp (-15.1) for Fe(OH) 2 (c) have been made by Leussing and Kolthoff (1953). Two values have been calculated for AH£ of Fe(OH) 2 (c) based on heat measurements (see JANAF Tables, Stull and Prophet, 1971). The more commonly accepted value of AH° = -135.8 kcal/mol was not con­ sidered by JANAF to be as accurate as AHj = -137.2 kcal/mol. JANAF used the latter value and an estimate of S° = 21.0 cal/deg-mol to obtain AG~ for Fe(OH) 2 (c) = -117.6 kcal/mol. We prefer the former enthalpy value which has additional support from the electrochemical measurements of Dibrov, et al. (1980). If the S° value of 21 cal/deg«mol is considered to be the best avail­ able estimate then th| AG£ = -116.2 kcal/mol. Combining this value with the Ksp we obtain AG°(Fe 2 ) = -20.40 kcal/mol. These values form the basis for set III in Table 4.

Thermodynamic Data for Aqueous Fe3

The thermodynamic properties of Fe 3 are usually obtained indirectly from data on Fe2+ and the Fe /Fe 3 electrode potential. One direct value is available on AH~(Fe3 ) = -10.89 (-.17) kcal/mol from measurements on the heat of oxidation of solid iron to Fe3 by H 20 2 (Vasil'ev, et al_., 1976). Since this value is dependent on the AH° for H202 , we rechecked the calculation by using the peroxide enthalpy given in Wagman, et al. (1968). The difference is only 50 cal/mol, thus we have accepted the original value reported by Vasil'ey, et al. (1976). We now have an independent check on AH°(Fe 2 ) through the Fe 2 / Fea^enthalpy. Unfortunately, the Fe 2 /Fe3 enthalpy is not precisely known (see Table 6). Values range from 9.2 to 10.2 kcal/mol. In addition, two mea­ surements have been reported for the heat of reaction, based on hydrogen peroxide oxidation of Fe2+ . Sousa-Alonso, et_ a^. (1968) reported -69.8(-0.4) kcal/mol and Bemardelli and Tumanova (1971) reported -71.11 ^-0.03) kcal/mol for the heat of this reaction. From these data the Fe 2 /Fe 3 reaction enthalpy is 9.26 and 10.57 kcal/mol, respectively. Thus the reaction enthalpy must lie in the range of 9.2 to 10.6 kcal/mol and from the frequency of reported values and the average, a reasonable estimate would be 10.0 kcal/mol. Using this number and the AH£(Fe3+ ) from Vasil'ev, et ajL (1976) we obtain AH°(Fe2 ) = -20.89 kcal/mol. These enthalpies are used in both sets II and III of Table 4.

The standard electrode potential (-.7702 volts) and thus the AG° (17.76 kc^l/ mol) is known very precisely and very accurately (see Table 6) for trie Fe 2 /Fe3 couple. For this reason, the same recommended value is used in every set of Table 4. Since only one measurement for the enthalpy and entropy of goethite have been reported in the literature (Barany, 1965; King and Weller, 1970), these values are also the same in each set.

12

TABLE 4. - Three sets of internally consistent, standard state

nnodynamic data for Fe2 (<

Fe(QH) 2 (c), and goethite

(298.15 K) thermodynamic data for Fe2+ (aq), Fe3+ (aq),

Species*

AG£(Fe 2+)

AH|(Fe2+ ) S°(Fe2+ )

AG°(Fe3+ )

AH|(Fe3+ ) S°(Fe 3+ )

AG°(Fe2+/Fe3+ )

AH°(Fe2+/Fe3+ )

AS°(Fe2+/Fe 3+ )

AG°(Fe(OH) 2 )

AH|(Fe(OH) 2 )

S°(Fe(OH) 2 )

log Ksp

AG° (goethite)

AH| (goethite)

S° (goethite)

log Ksp

AH°(FeCl 2 , solid)

Set I

-21.34

-21.61

-25.6

-3.78

-11.04

-65.3

17.76

10.57

-24.1

-117.6

-137.2

21.0

-15.3

-116.8

-133.7

14.4

-41.7

-81.69

Set II

-19.15

-20.89

-30.4

-1.39

-10.89

-71.9

17.76

10.0

-26.0

-115.0

-135.0

19.3

-15.1

-116.8

-133.7

14.4

-43.5

-80.97

Set III

-20.40

-20.89

-26.3

-2.64

-10.89

-69.4

17.76

10.0

-26.0

-116.2

-135.8

21.0

-15.1

-116.8

-133.7

14.4

-42.7

-80.97

*Free energies and enthalpies have units of kcal/mol and entropies have units of cal/deg«mol.

13

Internal Consistency

Based on the previous discussion, it is possible to derive three sets of data relating to the thermodynamic properties of aqueous Fe 2 and Fe 3 + as shown in Table 4. Each set is internally consistent but not entirely consistent with each other set. Each set assumes certain selected data to be the most reliable, and the remaining data are calculated from these selected values by the standard thermodynamic relationships.

Set I is based on (1) Cerutti and Hepler's (1977) arguments and data for heat of solution measurements of FeCl 2 (c) which provides AH° for Fe 2+ , and an estimated S° for Fe 2 * from Larson, et al. (1968) from which AG° for Fe 2+ is calculated, (2) the recommended value for E° of Fe 2+ /Fe 3+ and Bernardelli and Tumanova's (1971) value for AH° of Fe 2+ /Fe 3+ from which AG° AH° and S° for Fe3 * and the log Ksp for goethite are calculated and (3) the JANAF values for Fe(OH) 2 from which the log Ksp of Fe(OH) 2 is calculated. This set then becomes incon­ sistent with the E° for Fe°(s)/Fe2+ of Johnson and Bauman (1978), the data on Fe(OH) 2 by Dibrov, .et al. (1980) and Leussing and Kolthoff (1953), and the best estimated enthalpy for Fe 2+ /Fe3+ . A further check on inconsistencies can be made by comparing the Ksp for goethite calculated from free energy data with the ion activity product (IAP) measured by Langmuir and Whittemore (1971). The AG° for goethite can be obtained from the AH° of Barany (1965) and the S° data oi King and Weller (1970). Combining these data with the AG° of Fe3+ from set I gives a log Ksp =--41.7 which does not compare favorably with the range of log IAP = -43.3 to -43.5 for laboratory solutions containing crystal­ line goethite and groundwaters from aquifers containing iron minerals.

Set II is based on (1) Johnson and Bauman (1978) for AG° of Fe2+ and the recommended value of AG° for Fe 2+ /Fe3+ from which AG° of Fe 3 is calculated, (2) Vasilev, ejt al. (1976) for AH° of Fe 3 + and the best estimated AH° of Fe 2 + / Fe 3 "*" from which AH° of Fe 2+ is calculated and (3) the log Ksp for Fe(OH) 2 from Leussing and Kolthoff (1953) and S° for Fe(OH) 2 from Dibrov, et al. (1980) from which AG° and AH° of Fe(OH) 2 is calculated. This set, of course, is inconsis­ tent with nearly all of the data in set I including primary data such as AH° and S° for Fe24" and AH° for Fe(OH) 2 .

Set III appears to be the best compromise in that it is most consistent with all the primary data. Set III is based on (1) the JANAF estimate for S° of Fe(OH) 2 and the AH° of Fe(OH) 2 from Dibrov, et al. (1980) from which AG° of Fe(OH) 2 is calculated, (2) the log Ksp of Fe(OH) 2 from Leussing and Kolthoff (1953) and AG° of Fe(OH) 2 from the previous calculation from xrfiich AG° of Fe 2+ is calculated, (3) the best estimated AH° of Fe 2+ /Fe 3+ and the AH° of Fe3+ from Vasil'ev, ejt al. (1976) from which AH° of Fe 2 "1" is calculated. Everything else is calculated from these values. Altnough set III shows greater consistency with more of the data than any other set, there really is no optimal choice because of the inherently large uncertainties in some of the data. More accurate and more precise measurements of AH° for Fe2+ /Fe3+ , AG° for Fe 2+ and Fe34" would help to resolve these inconsistencies. It would also be highly desirable to make additional measurements of AH° and S° for goethite in order to reduce the uncertainty and inconsistencies related to the log Ksp for goethite.

14

Reference Source Codes

The symbols for the source column in Table 5 are abbreviated reference citations coded in a similar manner to those in Sillen and Martell (1964). Each reference abbreviation contains the year of publication followed by the first letter of the first author's last name. When more than one article could have the same designation, they are distinguished by a lower case letter starting with "a", e.g. 77Ha, 77Hb.

Additional information is provided by a slash (/), an equality symbol (=), or a comma (,); the symbols are explained in Table 5.

TABLE 5. - Symbols used for "source" code

Symbols Interpretation

60F=62F=63F Data from 60F, 62F, and 63F are identical

68S/72P Data from 68S has been modified by 72P

43B, 53L Data from 43B and 53L have been combinedor averaged

ACKNOWLEDGMENTS

We are very grateful to Bill Sanders and the staff of the Menlo Park USGS Library for their efficient and courteous assistance in the pursuit of obscure references. Generous assistance was also provided by the library staff at the USGS national headquarters, the University of Virginia and Stanford University. Manuscript reviews by Bruce Hemingway, John Haas, Jr., Howard May, George Parks, Yousif Kharaka, Meeshka Borisov and John Hem were especially helpful.

15

REFERENCES CITED

Adamson, A. W., 1978 SI units? A camel is a camel: Journal of ChemicalEducation, v. 55, p. 634-637.

Akitt, J. W., Greenwood, N. N., and Lester, G. D., 1969, Hydrolysis anddimerisation of aqueous aluminum salt solutions: Chemical Communications,p. 988-989.

Aveston, John, 1965, Hydrolysis of the aluminum ion: Ultracentrifugationand acidity measurements: Journal of the Chemical Society (London),p. 4438-4443.

Baes, C. F. and Mesmer, R. E., 1976, The hydrolysis of cations: New York,Wiley-Inter-science, Chap. 6.2, p. 112-123.

Ball, J. W., Jenne, E. A., and Nordstrom, D. K., 1979, WATEQ2 - A computerizedchemical model for trace and major element speciation and mineralequilibrium of natural waters, iii Jenne, E. A., ed., Chemical modelingin aqueous systems: Washington, D. C., American Chemical SocietySymposium Series 93, p. 815-836.

Ball, J. W., Nordstrom D. K., and Jenne, E. A., 1980, Additional and revisedthermochemical data and computer code for WATEQ2 A computerized chemicalmodel for trace and major element speciation and mineral equilibria ofnatural waters: U.S. Geological Survey Water-Resources Investigations 78-116, 109 p.

Ball, J. W., Jenne, E. A., and Cantrell, M. W., 1981, WATEQ3 A geochemicalmodel with uranium added: U.S. Geological Survey Open-File Report SI- 1183, 81 p.

Barany, Ronald, 1965, Heats of formation of goethite, ferrous vanadate, andmanganese molybdate: U.S. Bureau of Mines Report of Investigations 6618,10 p.

Bernardelli, A. E. and Tumanova, T. A., 1971, Thermochemical study of theoxidation of Fe2 ion with hydrogen peroxide in aqueous solution at 25°C,Trudy Leningradskogo Tekhnologicheskogo Instituta Tsellyulozono-Bumazhnoi Promyshlennosti 25, 112-115.

Bradley, D. J. and Pitzer, K. S., 1979, Thermodynamics of electrolytes. 12.Dielectric properties of water and Debye-Hiickel parameters to 350°C and1 kbar: Journal of Physical Chemistry v. 83, p. 1599-1603.

Bronsted, J. N., 1922, Calculation of the osmotic and activity functions insolutions of uni-univalent salts: Journal of the American ChemicalSociety, v. 44, p. 938-948.

Cerutti, P. J. and Helper, L. G., 1977, The enthalpy of solution of ferrouschloride in water at 298 K: Thermochimica Acta, v. 20, p. 309-314.

Cobble, J. W., 1978, Chemical thermodynamic studies of aqueous tracecomponents in light water reactors at high temperature and pressures:EPRI Report 311-2.

CODATA, 1978, Recommended key values for thermodynamics 1977: CODATABulletin 28, 17 p.

Cohen, E. R. and Taylor, B. N., 1973, Least-squares adjustment of thefundamental constants: Journal of Physical and Chemical ReferenceData 2, p. 663-734.

Criss, C. M. and Cobble, J. W., 1964, The thermodynamic properties of hightemperature aqueous solutions. 4. Entropies of the ions up to 200°and the correspondence principle: Journal of the American ChemicalSociety, v. 86, p. 5385-5393.

16

Dibrov, I. A., Chervyak-Voronich, S. M., Grigor'eva, T. V., and Kozoliva,G. M., 1980, New values of thermodynamic constants of some iron oxides:Soviet Electrochemistry, v. 16, no. 6, p. 675-679.

Diehl, Harvey, 1979, High precision coulometry and the value of the Faraday:Analytical Chemistry, v. 51, p. 318A-329A.

Gildseth, Wayne, Habenschuss, Anton, and Spedding, F. H., 1972, Precisionmeasurements of densities and thermal dilation of water between 5° and80°C: Journal of Chemical and Engineering Data, v. 17, p. 402-409.

Helgeson, H. C. and Kirkham, D. H., 1974, Theoretical prediction of thethermodynamic behavior of aqueous electrolytes at high pressures andtemperatures. 1. Summary of the thermodynamic/electrostatic propertiesof the solvent: American Journal of Science, v. 274, p. 1089-1198.

Huckel E., 1925, The theory of concentrated aqueous solutions of strongelectrolytes: Physik. Z. 26, 93-147.

Johnson, G. K. and Bauman, J. E., Jr., 1978, Equilibrium constants for theaquated iron (II) cation: Inorganic Chemistry, v. 17, p. 2774-2779.

Kelly, K. K. and Anderson, C. T., 1935, Contributions to the data ontheoretical metallurgy. 4. Metal carbonates Correlation and applica­ tions of thermodynamic properties: U.S. Bureau of Mines Bulletin 384,73 p.

King, E. G. and Weller, W. W., 1970, Low-temperature heat capacities andentropies at 298.51°K of goethite and pyrophyllite: U.S. Bureau ofMines Report of Investigations 7369, 6 p.

Koehler, M. F. and Coughlin, J. P., 1959, Heats of formation of ferrouschloride, ferric chloride and manganous chloride: Journal of PhysicalChemistry, v. 63, p. 605-608.

Langmuir, Donald and Whittemore, D. 0., 1971, Variations in the stability ofprecipitated ferric oxyhydroxides, in Hem, J. D., ed., Nonequilibriumsystems in natural water chemistry: Washington, Advances in ChemistrySeries 106, p. 209-234.

Larson, J. W., Cerutti, Paul, Garber, H. K., and Hepler, L. G., 1968,Electrode potentials and thermodynamic data for aqueous ions: Copper,zinc, cadmium, iron, cobalt, and nickel: Journal of Physical Chemistry,v. 72, p. 2902-2907.

Leussing, D. L. and Kolthoff, I. M., 1953, The solubility product of ferroushydroxide and the ionization of the aquo-ferrous ion: Journal of theAmerican Chemical Society, v. 75, p. 2476-2479.

Li, J. C. M. and Gregory, N. W., 1952, Heats of solution and formation ofsome iron halides: Journal of the American Chemical Society, v. 74,p.4670-4672.

Lide, D. R., Jr., 1981, Critical data for critical needs: Science, v. 212,p. 1343-1349.

Malmberg, C. G. and Maryott, A. A., 1956, Dielectric constant of water from0° to 100°C: U. S. National Bureau of Standards Journal of Research,v. 56, p. 1-8.

May, H. M., Helmke, P. A., and Jackson, M. L., 1979, Gibbsite solubility andthermodynamic properties of hydroxy-aluminum ions in an aqueoussolution at 25°C: Geochimica et Cosmochimica Acta, 43, p. 861-868.

17

Nordstrom, D. K., Plummer, L. N., Wigley, T. M. L., Wolery, T. J., Ball, J. W., Jenne, E. A., Bassett, R. L., Crerar, D. A., Florence, T. M., Fritz, B., Hoffman, M., Holdren, G. R., Jr., Lafon, G. M., Mattigod, S. V., McDuff, R. E., Morel, F., Reddy, M. M., Sposito, G., and Thrailkill, J., 1979, A comparison of computerized chemical models for equilibrium calculations in aqueous systems, in Jenne, E. A., ed., Chemical modeling in aqueous systems: Washington, D.C., American Chemical Society Symposium Series 93, p. 857-892.

Parkhurst, D. L., Thorstenson, D. C., and Plummer, L. N., 1980, PHREEQE A computer program for geochemical calculations: U.S. Geological Survey Water-Resources Investigations 80-96, 210 p.

Plummer, L. N., Jones, B. F., and Truesdell, A. H., 1976, WATEQ - A Fortran IV version of WATEQ, A computer program for calculating chemical equilibrium of natural waters: U.S. Geological Survey Water-Resources Investigations 76-13, 61 p.

Robie, R. A., Hemingway, B. S., and Fisher, J. R., 1978, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (103 pascals) pressure and at higher temperatures: Geological Survey Bulletin 1452, 456 p.

Sillen, L. G. and Martell A. E., 1964, Stability constants of metal-ion complexes, Spec. Publ. No. 17, Metcalfe and Cooper, Ltd., 754 p. Supplement No. 1, Special Publication No. 25 (1971), 865 p.

Sousa-Alonsa, A., Chadwick, Isabel, and Irving, R. J., 1968, The heat of oxidation of ferrous ions with hydrogen peroxide: Journal of the Chemical Society (A), p. 2364-2366.

Stull, D. R., and Prophet, Harold, 1971, JANAF thermochemical tables, 2nd ed., National Standard Reference Data Series - National Bureau of Standards 37, 1141 p.

Stockmayer, W. H., 1978, Data evaluation: A critical activity, Science, 201, 577 p.

Truesdell, A. H. and Jones, B. F., 1974, WATEQ, a computer program for calculating chemical equilibria of natural waters: U.S. Geological Survey Journal of Research 2, p. 233-248.

Uematsu, M. and Franck, E. U., 1980, Static dielectric constant of water and steam: Journal of Physical and Chemical Reference Data, v. 9, p. 1291-1306.

Vasil'ev, V. P., Raskova, 0. G., Vasil'eva, V. +N., and Dmitrieva, N. G., 1976, Standard enthalpy of formation of the Fe 3 ion in aqueous solution at 25°C: Zhural Neorganischeskoi Khimii 21, p. 2253-2256.

Wagman, D. D. Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., and Schumann, R. H., 1968: Selected values of thermodynamic properties, National Bureau of Standards, Technical Note 270-3, 270 p.

18

TABLE 6

19

TABL

E 6.

Partial

compil

atio

n of

thermodynamic

data

for

the

WATEQ

programs

hi**

aqueous

ion

1115*

* H20 - A1

0H2*

log

K

-4.85

-4.9

6

-5.10

-4.9

8

-4.96

-4.3

-5.86

-5.03

-4.9

7(.0

2)

-5.0

2

-5.05

-4.9

-4.7

(.3)

-4.49

-5.1

6

-4.6

1

-4.8

9

-4.9

9

Gj--116.97(.33)

kcal/mol H° 126.9(1 )

kc

al/m

ol S° 73.

6(3.

6) ca

l/de

g.mo

l Re

fere

nce:

77

H

* H*

Source

Source

REMA

RKS

07B

42H

531

54S

55Ka-55Kb

55T

561

56K

56K-76B

60F-62F-63P

63R

65H

67H

68H

68S

10"5

M

alum

inum

perchlorate, values at

10~* an

d 10~* al

so gi

ven

69G

11.0

69G

T -

30°C

69N

0.1

M sodium pe

rchl

orat

e

71V

-5.0

1(.

04)

72P

-5.5

5(.

09)

74H

I

- 0.1

5

-5.0

0

74T

15

.64

74T

W

ATEQ

-4.9

7

76P

14.7

75

76P

WAT

EQP

-5.3

5

78H

1

-0

.4

-4.9

87(.

08)

79M"

60B

11.9

(0.5

) 76

B-60

B WATEQ2;

RECOMMENDED;

H° an

d S° (-17.2(1.7)

cal/deg.mol) values fr

om76B

are

consistent wi

th 7

9M

References:

07B

BJerrum, H.(1907) Z.

Phys.

Chem

. 59

, 33

6-38

3.42

H Ha

rtfo

rd,

W.H.(1942) In

d. En

g. Ch

em.

34,

920-924.

531

Ito,

T.

and

Yui,

N.

(l95

3) Sci. Re

port

s Tohoku Un

iv.,

I,

37,

185-190.

54S

Schofield.R.K. an

d Taylor,A.¥.(l954)

J. Ch

em.

Soc.

(L

ondo

n),

4445-4448.

55Ka Ke

ntta

maa,J.(l955) Suom.

Kemi

stil

. 28

B 172-174.

55Kb Ke

nt tamaa,J.( 195

5) Ann. Ac

ad.

Sci.

Fe

nnic

ae,

All, No

. 67,

39 p

p.55

T Th

omps

on,L

.C.(

1955

) Ph

.D.

Thes

is,

Vayne

State

Univ., Detroit, 69 pp.

561

Ivanov,A.N.

and

Aleshin,S.N.(l956) Do

kl.

Mosk

. Sel'kh.

Akad

. Nauchn.

Konf.

22,

286-

292.

56K

Kubo

ta,H

.(l9

56)

Ph.D.

Thesis,

Univ.

Wisc

onsi

n, Ma

diso

n, 13

7 pp.

60F

Frin

k,C.

R.(l

960)

Ph.D.

Thesis,

Cornell

Univ., Ithaca,

161

pp.

62F

Frink.C.R.

an

d Peech,M.(l962) So

il Sci. Soc. Amer.

Proc.

26,

346-

347.

63F

Frink.C.R.

an

d Peech,M.(l963) In

org.

Ch

em.

2, 47

3-47

8.63

R Raupach,M.(l963) A

ust. J. So

il Res. J

_, 35-45.

65N

Nish

ide,

T. an

d Tsuchiya,R.(l 965) Bull.

Chem.

Soc. Jpn. 3§,

1398-1400.

67H

Hem.J.D. an

d Ho

bers

on,C

.E.(

l962

) U.S.

Ge

ol.

Survey W

ater

-Sup

ply

Pape

r 1827-A,

55 pp.

68H

Holm

es,L

.P.,

Cole

,D.L

., an

d Ey

ring

,E.M

.(l9

68)

J. Ph

ys.

Chem

. 72

, 30

1-30

4.68

S Su

lliv

an,J

.H.

and

Singley,J.E.(l968) J.

Am

. Wa

ter

Works

Asso

c. 60

, 12

80-1

287.

69G

Grunwald,E.

and

Fong,D.W.(l969)

J. Phya.

Chem

. 73,

650-

653.

69N

Nazarenko.V.A. an

d Ne

vska

ya,E

.M.(

l969

) Ru

ss.

J. Inorg. Ch

em.

\A_, 16

96-1

699.

71V

Volo

khov

.Y.A.,Pavlov,L.N.,Eremin,N.I.,

an

d Mironov,V.E.(l971) Zh

. Prikl. Khim.

44,

246-

249.

72P

Park

s,G.

A.(1

972)

Am.

Mine

ral.

57,

1163

-118

9.74

H Ha

yden

,P.L

. an

d Ru

bin.

A.J.

(197

4~T

in Aqueous-Environmental

Chemistry

of M

etals, Ru

bin,

A.J.

, ed

., An

n Ar

bor,

31

7-38

1.74

T Truesdell.A.H. an

d Jo

nes,

B.F.

(197

4) J.

Re

s. U.S. Ge

ol.

Survey £,

233-248.

76B

Baes

,C.F.,Jr.

and

Mesmer,R.M.(l976)

The

Hydrolysis of Cations, Wiley-Interacience,

Chap

. 6.2, 112-123.

76P

Plummer,L.N.,Jones,B.F., an

d Truesdell,

A.H.

(197

6) U.S. Geol.

Survey W

.R.I

. 76-13, 61

pp.

77H

Hemi

ngwa

y.B.S. an

d Ro

bie,

R.A.

(l97

7) Ge

ochi

m. Co

smoc

him.

Ac

ta 4J

_, 14

02-1

404.

78H

De He

k,H.

,Sto

l,R.

J.,

and

De Br

uyn.

P.L.

(l97

8) J.

Co

lloi

d Interface

Sci.

6£,

72-89.

79M

May,H.M.,Helmke,P.A.,

and

Jack

son,

M.L.

(197

9) Geochim. Co

smoc

him.

Ac

ta 4

3_,

861-

868.

806

Ball,J.W.,Nordstrom,D.K.,

and

Jenne,E.A.(l980) U

.S.

Geol

. Survey W

.R.I

. 78-116,

109pp.

Al3*

+ 2H

20 - Al(OH)*

+ 2H

*

log

K So

urce

Sour

ce

REMA

RKS

-8.5

6 55

T

-8.6

3(0.1)

58G

TABL

E 6.

P

art

ial

com

pil

atio

n of

ther

mod

ynam

ic

dat

a fo

r th

e VA

TBQ

pro

gra

ma(

conti

nued

):

-9.7

65

H

-10

.60

68

3

-10

.28

(.5

) 68S

/72P

-9.9

69

H

-9.3

69

N/7

6B

-8.6

9(0

.1)

72P-

78H

-9.7

61

74

T

-10

.5

76B

-9.3

0

76P

-10.1

3(.

08)

79M

-60B

0.0

0.0

22.0

76B

10"^

M

alum

inum

p

erc

hlo

rate

, v

alu

e at

10""

-* M

un

reli

ab

le

mea

n fo

r re

sult

s at

10"'

an

d 10

"* perc

hlo

rate

0.1

M

sodi

um perc

hlo

rate

corr

ecte

d

to

I

0

calc

ula

ted

fr

om K

^ u

sing

log K

W -

-13

.99

7

(76B

)

VA

TBQ

estimate ba

sed

on a

linear in

crea

se in

hydrolysia constants

VATBQF

VATB

Q2 fo

r log

K; RE

COMM

ENDE

D;

H° wa

s ob

tain

ed by a

co

rrel

atio

n.

Referencea:

55T

Thompson

, L.C.(1955) Ph

.D.

Thesis,

Vayn

e St

ate

Univ., Detroit, 69 pp

.58G

Gaye

r,K.

H.,T

homp

son,

L.C.

, an

d Zajicek.O.T.(l958) Ca

n. J.

Chem.

36,

1268

-127

1.63

H Raupach,M.(l963) Aust.

J. Soil Hes. J_,

35-45.

68S

Sullivan,J.H.

and

Sing

ley,

J.E.

(1 %8) J.

Am.

Vater

Work

s As

soc.

60,

1280

-128

7.69

N Na

zare

nko.V.A. and

Nevskaya,E.M.(l969)

Russ.

J. Inorg. Ch

em.

_14_,

1696

-169

9.72

P Pa

rka,

G.A.

(197

2) Am.

Mineral. 57,

1163

-118

7.74T

True

sdel

l.A.H. and

Jones,B.P.(1974) J. Res. U.S. Ce

ol.

Survey 2,

23

3-24

8.76B

Baea

.C.F

.,Jr

. an

d Me

aner

,R.H

.Q97

6) Th

e Hydrolysis of

Cations,

Viley-Interscience,

Chap

. 6.

2, 112-123.

76P

Plum

mer.

L.N.

,Jon

es,B

.P.,

an

d Truesdell.

A.H.

(197

6) U.

S. Ge

ol.

Surv

ey V

.H.I.

76-13, 61

pp.

78H

Hemingway,B.S..Robie.H.A., an

d Ki

ttri

ck,J

.A.(

1978

) Ge

ochi

m. Co

smoc

him.

Acta 43

, 15

33-1

543.

79M

May,

H.M.

,Hel

mke,

P.A.

, an

d Jackson,M.L.(l 979)

Geoc

him.

Cosmochim. Ac

ta 4JJ, 86

1-86

8.808

Ball,J.V.,Nordstrom,D.K.,

and

Jenn

e.E.

A.(l

980)

U.S.

Ge

ol.

Surv

ey V

.R.I.

78-116,

109

pp.

0 - A1

(OH)

°

log

K

-15.

03

-15.2

Sour

ce

59A

68S

Source

REMA

RKS

10-4

-5M

alum

inum

pe

rchl

orat

e, va

lue

at 10

unreliable

-15.

6

-15.0

-15.

1

-16.

5

69N

69N/

76B

72P

76B

0.1

M so

dium

perchlorate

corr

ecte

d to I

* 0

esti

mate

based on

li

near

inc

reas

e in

hyd

roly

sis

constsnts

RECO

MMEN

DED;

H

obta

ined

by a

ssum

ing

a li

near

increase

-16.76(.09)

79M

33.0

References:

59A

Aksel'rud.N.V. an

d Sp

ivak

ovsk

ii,V

.B.(

l959

) Uk

rain

. Kh

im.

Zhur

. 25 14

-17.

68S

Sullivan,J.H

. an

d Singley,J.E.(1968) J.

Am.

Wate

r Wo

rks

Assoc.,

60,

1280-1287.

69N

Naearenko.V.A. an

d Ne

vaka

ya,E

.M.(

1 %9) Russ.

J. Inorg. Ch

em.

J4.,

1696-1699.

72P

Parks,G.A.

(1972) A

m. Mineral. 57,

1163-1187.

76B

Baea

.C.F

.,Jr

. an

d Meamer.R.M.Q976) The

Hydrolysis of C

atio

ns,

Wile

y-In

tera

cien

ce,

Chap

. 6.2, 11

2-12

3.

79M

May,H.M.,Hel

mke,

P.A.

, and

Jackson,M.L.(1979) Ge

ochi

m. Co

smoc

him.

Acta 4

3, 86

1-86

8.

A15+ + 4H

.O - Al(OH)"

+ 4H

* '

4

log K

-22.

47

-21.

81

-23.

25

-27.

98

-22.

21

-23.

26

-24.

24

-23.

57

-27.

69

-21.

94

-24.19

-23.3(.05)

-23.

3(.1

)

-22.05

-23.29

Sour

ce

08W/11S

20H

20H

34M

380

55R/72P-78H

55T

58G

60A

60G

64P

66K-

72P

66K-78H

67H

6&S

Sour

ceRE

MARK

S

Footnote (1 )

Foot

note

(1)

Foot

note

(2)

calculated from reported lo

g»K.

- -1

1.22

and log'K^K- - -1

6.76

derived

from reported log*K

. - -1

1.92

and

repo

rted

log

K Q

- -31.7

Foot

note

(1)

derived

from reported log

K .

-0.68

and

repo

rted

log

K Q

- -3

2.43

derived

from reported log

K .

* -0

.53

and

reported log

K Q

- -3

2.96

Foot

note

(3)

-4

-5

10

M al

umin

um pe

rchl

orat

e, va

lue

at 10

un

reli

able

TABL

E 6.

P

art

ial

com

pil

atio

n

of

then

nody

naro

ic

dat

a fo

r th

e W

ATEO

pro

gra

me(

con

tin

ued

):

-23

.37

70

B

-22

.07

73

H

-22.

71

74H

-22.054

74T-

60B

44.0

6 74T-80B

WATEQ

-23.0(.3)

76B-80B

WATEQ2

-22.99

2 76

P 42

.22

76P

WATEQF

-22.

16(.

03)

79M

References:

08W

W

ood,J

.K.(

1908)

J.

Che

ra.

Soc

. 93

, 4

11

-42

3.

118

Sla

de,R

.E.(

l91l)

Z.

E

lektr

och

em.

JJ7,

26

1-26

5.20

H

Hey

rov

aky

,J.(

192

0) J.

C

hem

. S

oc.

117.

10

13-1

025.

34M

M

affe

i,A

.(l9

34)

Gaz

z.

Chi

ra.

Ital.

64,

149-

160.

380

Ok

a,Y

.(l9

38

) J.

C

hem

. S

oc.

Jpn.

59,

971-

1013

.55

R

RuB

Bel

l,A

.S.,E

dw

ards,

J.D

.,

and

Tay

lor,

C.S

.(l9

55)

Tra

ns.

A

m.

Inst

. M

in.

Met

all.

E

ng.

203.

11

23-1

128.

55T

T

hom

pson

,L.C

.(19

55)

Ph.

D.

Th

esis

, V

ayne

S

tate

U

niv

.,

Detr

oit

, 69

pp.

58G

G

ayer

,K.H

.,T

hom

pso

n,L

.C.,

and

Zaj

icek

,O.T

.(l

958)

Can

J.

C

hem

. 36,

1268

-127

1.60

A

Ak

sel'ru

d,N

.V.(

l960)

Dok

l.

Aka

d.

Nau

k.

SSSR

13

2,

1067

-107

0.60

G

Go

to,K

.(l9

60)

Nip

pon

Kag

aku

Zas

shi

81,

349-

350.

64P

Plu

mb,

R.C

. an

d S

vain

e,J

.W.,Jr

.(l

964l~

J.

Phy

s.

Che

ra.

68,

2057

-206

4.66

K

Kit

tric

k,J

.A.(

l966)

Soil

S

ci.

S

oc.

Am

. P

roc.

30

, 59

5-59

8.67

H

Her

a,J.

D.

and

Rober

son.C

.E.(

1967)

U.S

. G

eol.

S

urve

y W

ater

-Su

pp

ly

Pap

er

1827

-A,

55

pp

.68

S S

ull

ivan

,J.H

. an

d S

ingle

y,J

.E.(

l 96

8) J.

A

m.

Wat

er W

orks

A

ssoc

. 60

, 12

80-1

287.

70B

B

erec

z.E

. an

d S

zit

a,L

.(l9

70)

Ele

ctro

chim

. A

cta

^5

, 14

07-1

419.

72P

Par

ka,

G.A

.(1972)

Am

. M

iner

al.

57,

1163

-118

9.73

H

Her

a,J.

D.,

Rober

son,C

.E.,L

ind,C

.J.,

and

Pole

er.W

.L.(

1973)

U.S

. G

eol.

Surv

ey W

ater

-Su

pp

ly P

aper

18

27-E

, 57

p

p.

74H

H

ayde

n,P

.L.

and

Rubin

.A.J

.(l

974)

in

A

queo

us-E

nvir

onm

enta

l C

hem

istr

y of

Met

als,

R

ubin

.A.J

.,

ed.,

Ann

A

rbor,

31

7-38

174

T

Tru

esd

ell.

A.H

. an

d Jo

nes

,B.P

.(l9

74)

J.

Hes

. U

.S.

Geo

l.

Sur

vey

£,

233-

248.

76B

B

aee.C

.P.,

Jr.

and

Mes

raer

,R.H

.(l9

76

) T

he

Hydro

lysi

s o

f C

atio

ns,

W

iley

-Inte

raci

ence

, C

hap.

6

.2,

112-

123.

76P

Plu

mm

er.L

.N.,Jo

nes

,B.F

.,

and

Tru

esdel

l,A

.H.(

1 9

76}

U.S

. G

eol.

S

urve

y W

.H.I

. 7

6-1

3,

61

pp.

78H

H

emin

gw

ay,B

.S.,

Ro

bie

,R.A

.,

and

Kit

tric

k,J

.A.(

l978)

Geo

chir

a.

Cos

moc

him

. A

cta

43,

1533

-154

3.79

M

May

,H.M

.,Hel

rake

,P.A

., an

d Ja

ckso

n,M

.L.(

1979)

Geo

chir

a.

Coa

moc

hira

. A

cta

43,

861-

868.

80B

B

all,

J.W

.,N

ord

stro

m,D

.K.,

an

d Je

nne,

E.A

.(l9

80)

U.S

. G

eol.

S

urve

y W

.R.I

. 7

8-1

16

, 109pp.

2A13*

+

2H90 -

[A19(OH)J4*

'2'

log

K So

urce

Source

REMA

RKS

-8.0

6 48

F-54

F 0.

12 M

barium nitrate

-8.2

4 48

F-54

F 0.6

N barium nitrate

-7.55

55Ka

-55K

b 1-0.03-0.048

-6.2

7

56K

0.

0001

-

0.0

3 s

odiu

m per

chlo

rate

-7.0

7(.

06

) 65

A-7

2P

2 N

sodi

um per

chlo

rate

-7.7

71

M-7

6B

1 N

pota

ssiu

m ch

lori

de

-6.9

5(.

05

) 75

T

-7.1

78

H

1-0

.4

References:

48P

Fau

cher

re,J

.(l9

48

) C

ompt

. R

end.

22

7,

1367

-136

9.54

F F

auch

erre

,J.(

l954)

Bull

. C

him

. S

oc.

Fr.

, 25

7-26

7.55

Ka

Ken

ttam

aa,J

.(1

95

5)

Suom

. K

emis

til.

28

B,

172-

174.

55K

b K

entt

amaa

,J.(

l955)

Ann

. A

cad.

S

ci.

Fen

n.

All

, 67

, 1-

39.

56K

K

ubo

ta,H

.(l9

56)

Ph.

D.

Th

esis

, U

niv.

W

isco

nsin

, M

adis

on,

137

pp.

65A

A

ves

ton,J

.(1965)

J.

Che

m.

Soc

.(L

ondo

n),

4438

-444

3.71

M

Mes

mer

,R.M

. an

d B

aes,

C.F

.,Jr

.(1971 )

In

org

. C

hem

. _U

>,

2290

-229

6.72

P P

arks

,G.A

.(19

72)

Am

. M

iner

al.

57,

1163

-118

7.75

T T

urn

er,R

.C.(

1975)

Can

. J.

C

hem

. 53

. 28

11-2

817.

76B

B

aes,

C.F

.,Jr

. an

d M

eam

er,R

.M.(

l976

) T

he

Hyd

roly

sis

of

Cat

ion

s,

Wil

ey-I

nte

rsci

ence

, C

hap.

6.2

, 11

2-12

3.78

H

De H

ek,H

.,S

tol,

R.J

.,

and

De

Bru

yn,P

.L.(

1978

) J.

C

oll

oid

In

terf

ace

Sci

. 64

, 72

-89.

Al5

* +

F"

- A

1F2*

log

K So

urce

So

urce

RE

MARK

S

6.13

42B-

43B

0.53

M potassium

nitrate

-57C

7.00

42B/55P

corrected

to I

- 0

6.16

43B/59K

0.53

M

pota

ssiu

m nitrate

1.15

53L

I - 0.06 - 0.

2

1.17

53L/59S

,

6.61

59

K I

- 0.

06 - 0.02

7.01

59K/68H

corr

ecte

d to

I

= 0

TABL

E 6.

P

art

ial

com

pil

atio

n

of

ther

mod

ynam

ic

dat

a fo

r th

e V

ATE

Q p

rogra

ms(

conti

nued

):

6.0

6

64B

6.9

6(.

06)

69B

6.6

9(.

02

) 71

A

6.1

14(.

C6)

71V

1.0

643B.53L/

59K-69B

7.01

74T>

*76P

-8

0B

0,74

71

V

0.64

(.05

) 75

V

0.0

aaau

med

T

- 25

°C,

I -

vari

able

RECO

MM

ENDE

D;

enth

alpy v

alue

is

for

1-0

.07

1 M

sodi

um perc

hlo

rate

VA

TEQ

-

VA

TEQ

F -

VA

TEQ

2-SOB

Ref

eren

ces:

42B

B

rosa

et,C

.(l9

42

) P

h.D

. T

hes

is,

Uni

v.

Lun

d,

Lun

d,

123

pp

.43

B

Bro

sset

.C.

and

Orr

ing,J

.(l9

43)

Sven

. K

ern.

T

idsk

r.

55,

101-

106.

53L

L

atim

er.V

.M.

and

Joll

y,V

.L.(

l95

3)

J.

Am

. C

hem

. S

oc.

75,

1548

-155

0.55

P P

aul,

A.D

.(1

95

5)

Uni

v.

Cali

f.

Rad

. L

ab.

Rep

t.

No.

U

CRL

2926

.57

C

Connic

k.R

.E.

and

Pouls

on,R

.E.(

l957)

J.

Am

. C

hem

. S

oc.

79,

5153

-515

6.59

K

Kin

g.E

.L.

and

Gal

lag

her

,P.K

.(l9

59

) J.

P

hya.

C

hem

. 63

, 10

73-1

076.

59S

Sco

tt,P

.C.(

1959)

Ph.

D.

Th

esis

, U

niv.

M

inn

eso

ta,

Min

nea

poli

s,

101

pp.

64B

B

randel

,V.

and

Sw

inar

ski,

A.(

l964)

The

ory

and

Str

uctu

re of

Com

plex

C

ompo

unds

, P

erga

mon

, 49

7 p

p.

68H

H

em, J

.D.(

196

8)

U.S

. G

eol.

S

urve

y V

ater

-Supply

P

aper

18

27-B

, 33

pp.

69B

B

aum

an,E

.V.(

l969)

J.

Inorg

. N

ucl

. C

hem

. 31

_,

3155

-316

2.71

A

Agar

wal

.R.P

. an

d M

ore

no,E

.C.(

l 97

1 )

Tal

anta

_18

, 8

73

-88

0.

71V

V

alker

.J.B

.,T

win

e,C

.R.,

and

Choppin

g.H

.(1971 )

J.

In

org

. N

ucl

. C

hem

. 33

, 18

13-1

817.

74T

T

rues

del

l.A

.H.

and

Jones

,B.P

.(1974)

J.

Res

. U

.S.

Geo

l.

Sur

vey

£,

233-

248.

75V

V

asi

l'ev.V

.P.

and

Ko

zlo

vak

ii.E

.V.(

l 97

5)

Zh.

N

eorg

. K

him

. 20

, 11

96-1

199.

76P

Plu

mm

er,L

.N.,

Jones

,B.P

.,

and

Tru

esdel

l,A

.H.(

l 97

6)

U.S

. G

eol.

S

urve

y V

.R.I

. 76-1

3,

61

pp.

SOB

Bal

l,J.

V.,N

ord

stro

m,D

.K.,

and

Jenne,

E.A

.(l

980)

U

.S.

Geo

l.

Sur

vey

V.R

.I.

78

-11

6,

109pp.

A13+

2P-

A1P

,

log K

11

.15

11.2

1

Sou

rce

-57C

43B

/59K

Sou

rce

1.93

53L

REM

ARKS

0.53 M

po

tass

ium

nitrste

I - 0.06 - 0.2

1.97

53L

/59S

9.06

11

.97

12

.75

57T

59K

59K

/68H

11.1

0 64

B

12.6

0(.10)

69B

1.98

12.0

4

12

.75

71A

74T

*76P

6

0B20.0

43B.53L/

59K-69B

75V

74T

*76P

-S

OB

I *

var

iable

I -

0.07

corr

ecte

d

to

I *

0

assu

med

T

* 25

°C,

I *

var

iable

RECO

MM

ENDE

D;

enth

alpy v

alu

e is

fo

r I

- 0.0

7

WAT

EQ -

WAT

EQF

- W

ATEQ

2

Ref

eren

ces:

42B

B

ross

et,C

.(l9

42

) P

h.D

. T

hes

is.

Uni

v.

Lun

d,

Lun

d,

123

pp.

43B

B

ross

et.C

. an

d O

rrin

g, J

. (1

943)

Sve

n.

Ker

n.

Tid

skr.

55

, 10

1-10

6.53

L L

atim

er.W

.M.

and

Joll

y,W

.L.(

l95

3)

J.

Am.

Che

m.

Soc

. 75

, 15

48-1

550.

57C

Con

nick

.B.E

. an

d P

ouls

on.R

.E.(

1957

) J.

Am

. C

hem

. S

oc.

79,

5153

-515

6.57

T T

anan

aev.

I.V

. sn

d V

inog

rado

va,

A.D

.(l9

57

) Z

h.

Neo

rg.

Khi

m.

2_,

2455

-246

7.59

K

Kin

g.E

.L.

and

Gal

lag

her

,P.K

.(l9

59

) J.

P

hys.

C

hem

. 63

, 10

73-1

076.

59S

Sco

tt,P

.C.(

1959)

Ph.

D.

Thes

is,

Uni

v.

Min

neso

ta,

Min

neap

olis

, 10

1 pp

.64

B

Bra

ndel

,¥.

and

Sw

inar

ski,

A.(

l96

4)

The

ory

and

Str

uct

ure

of

Com

plex

C

ompo

unds

, Pe

rgam

on,

War

saw

, 49

7 pp

.68

H

Hem

,J.D

.(19

68)

U.S

. G

eol.

S

urve

y W

ater

-Sup

ply

Pap

er

1827

-B,

33

pp.

69B

B

aum

an,E

.W.(

l969

) J.

In

org

. N

ucl.

Che

m.

31,

3155

-316

2.71

A

Aga

rwal

.R.P

. an

d M

oren

o,E

.C.(

l971

) T

alan

ta J

8,

873-

880.

74T

Tru

eade

ll,A

.M.

and

Jones

,B.F

.(1974)

J.

Res

. U

.S.

Geo

l.

Sur

vey

£,

233-

248.

75V

V

asil

'ev.V

.P.

and

Kozl

ovsk

ii,E

.V.(

l975)

Zh.

N

eorg

. K

him

. 20

, 11

96-1

199.

76P

Plu

mm

er.L

.N.,

Jones

,B.F

.,

and

Tru

esd

ell,

A.H

.(l9

76)

U.S

. G

eol.

S

urve

y W

.R.I

. 76

-13,

61

pp

.SO

B B

all,

J.W

.,N

ord

stro

m,D

.K.,

and

Jen

ne.

E.A

.(l

980)

U.S

. G

eol.

S

urve

y W

.R.I

. 78

-116

, 1

09

pp

.

Al3

* +

3F~

- A

1F°

log

K

15

.00

15.1

2

Sou

rce

42B

-43B

-5

7C

43B

/59K

2.1

2

2.1

8

Sou

rce

53L

53L

/59S

REM

ARKS

0.53

M

pota

ssiu

m nit

rate

0.53

M p

otas

sium

nit

rate

I -

0.06

-

0.2

16.0

359

KI

- 0.

07

TABL

E 6.

P

art

ial

com

pil

atio

n

of

ther

mod

ynam

ic

dat

a fo

r th

e W

ATEQ

pro

gra

ms(

conti

nued

):

17.0

2 59

K/6

8H

16.6

5(.

15)

69B

15.7

2

17

.02

71A

74T

-76P

-8

0B

2.1

6

2.5

0

3.0

7(.

3)

43B

.53L

/ 59

K-6

9B

74T

-76P

-S

OB

75V

corr

ecte

d

to

I *

0

RECO

MM

ENDE

D;

enth

alp

y v

alue

is

for

1-0

.07

WAT

EQ -

WAT

EQP

- W

ATE

Q2

Ref

eren

ces:

42B

B

roas

et,C

.(l9

42

) P

h.D

. T

hes

is,

Uni

v.

Lun

d,

Lun

d,

123

pp

.43

B

Bro

aset

.C.

and

Orr

ing,J

.(1 9

43)

Sven

. K

ern.

T

idsk

r.

55,

101-

106.

53L

L

atim

er.W

.M.

and

Joll

y,W

.L.(

l 95

3) J.

A

m.

Che

m.

Soc

. 75

, 15

48-1

550.

57C

C

onnic

k.R

.E.

and

Pouls

on.R

.E.O

957

) J.

A

m.

Che

m.

Soc

. 79,

5153

-515

6.59

K

Kin

g.E

.L.

and

Gal

lag

her

,P.K

.(l9

59

) J.

P

hys.

C

hem

. 63

, 10

73-1

076.

59S

Sco

tt,P

.C.(

19

59

) P

h.D

. T

hes

is,

Uni

v.

Min

nes

ota

, M

innea

poli

a,

101

pp.

68H

H

em,J

.D.(

l968)

U.S

. G

eol.

S

urve

y W

ater

-Su

pp

ly

Pap

er

1827

-B,

33

pp.

69B

B

aunan

,E.W

.(l9

69

) J.

In

org

. N

ucl

. C

hem

. 31

_,

3155

-316

2.71

A

Agar

wal

.R.P

. an

d M

ore

no

,E.G

.(1

97

1)

Tal

anta

JJ3

, 87

3-88

0.74

T

Tru

esd

ell.

A.H

. an

d Jo

nes,

B.P

.(l

974)

J.

R

es.

U.S

. G

eol.

S

urve

y 2

, 23

3-24

8.75

V

Vasi

l'ev.V

.P.

and

Kozi

lovB

kii

,E.V

.(l

975)

Z

h.

Neo

rg.

Khi

m.

20,

1196

-119

9.76

P P

lum

mer

.L.N

.,Jo

nes

,B.P

.,

and

Tru

esdel

l,A

.M.(

1976)

U.S

. G

eol.

S

urve

yW.R

.I.

76-1

3,

61

pp.

SOB

Bal

l.J.

W..

Ho

rdst

rom

,O.K

.,

and

Jenne.

E.A

.(l9

80)

U.S

. G

eol.

S

urve

y W

.R.I

. 7

8-1

16

, 109pp.

Al-

log

K

17.7

4

17.8

3

18

.71

19

.72

Sou

rce

42B

-43B

-5

7C

43B

/59K

59K

59K

/68H

2.4

0

2.1

4

Sou

rce

53L

53L

/59S

REM

ARKS

0.5

3 M

pota

ssiu

m n

itra

te

0.5

3

M p

ota

ssiu

m n

itra

te

I -

0.0

6 -

0.2

1-0

.07

corr

ecte

d

to

I -

0

19

.03

(.1

5)

69B

18

.47

71

A

19

.72

2.2

0

0.0

43B

.53L

/ 59

K-6

9BRE

COM

MEN

DED;

en

thal

py

val

ue

is fo

r I

- 0.0

7

WATE

Q - WA

TEQF

- WA

TEQ2

-SOB

-BOB

References:

42B

B

ross

etfC

.(l9

42)

Ph.

D.

Th

esis

. U

niv.

L

und,

L

und,

12

3 pp

.43

B

Bro

sset

.C.

and

Orr

ing,J

.(1943)

Sve

n.

Ker

n.

Tid

skr.

55

., 10

1-10

6.53

L L

atim

er.W

.M.

and

Joll

y,W

.L.(

l95

3)

J.

Am.

Che

m.

Soc

. 75

, 15

48-1

550.

57C

C

onni

ck.R

.E.

and

Pouls

on,R

.E.(

l957)

J.

Am.

Che

m.

Soc

. 79

, 51

53-5

156.

59K

K

ing.

E.L

. an

d G

alla

gh

er,P

.K.(

l95

9)

J.

Phy

s.

Che

m.

63,

1073

-107

6.59

S S

cott

,P.O

.(1959)

Ph.

D.

Th

esis

, U

niv.

M

inne

aota

, M

inn

eap

oli

s,

101

pp.

68H

H

em,J

.D.(

1968

) U

.S.

Geo

l.

Sur

vey

Wat

er-S

uppl

y P

aper

18

27-B

, 33

pp

.69

B

Bau

man

,E.W

.(l9

69)

J.

Inorg

. N

ucl.

C

hem

. 31

_, 31

55-3

162.

71A

A

garw

al.R

.P.

and

Mor

eno,

B.C

.(19

71)

Tal

anta

J8,

873-

880.

74T

Tru

esdel

l.A

.H.

and

Jones

,B.P

.(1974)

J.

Res

. U

.S.

Geo

l.

Sur

vey

2,

233-

248.

76P

Plu

mm

er,L

.N.,

Jones

,B.F

.,

and

Tru

esdel

l.A

.H.(

1976)

U.S

. G

eol.

S

urve

y W

.R.I

. 76

-13,

61

pp

.BO

B B

all,

J.W

.,N

ord

atro

m,D

.K.,

an

d Je

nne,

E.A

.(l9

80)

U.S

. G

eol.

S

urve

y W

.R.I

. 78

-116

, 10

9 pp

.

Al-

5F~

-

log

K

19.3

7

19.2

9

20

.04

20.9

1

Sou

rce

42B

-43B

43B

/59K

59K

59K

/68H

1.6

5

2.2

7

1.8

4

Sou

rce

53L

53L

/59S

43B

,53L

/ 59

K

REM

ARKS

0.53

M

pota

ssiu

m nit

rate

0.53

M

pota

ssiu

m nit

rate

I -

0.06

-

0.2

I -

0.07

RECO

MM

ENDE

D;

enth

alp

y v

alue

is fo

r I

- 0.0

7

Ref

eren

ces:

42B

B

ross

et,C

.(l9

42)

Ph.D

. T

hes

is,

Uni

v.

Lun

d,

Lun

d,

123

pp.

43B

B

ross

et.C

. an

d O

rrin

g,J

.(1

94

3)

Sve

n.

Ker

n.

Tid

skr.

55

, 10

1-10

6.53

L L

atim

er.W

.M.

and

Joll

y,W

.L.(

1953)

J.

Am.

Che

m.

Soc

. 75

, 15

48-1

550.

59K

K

ing,

E.L

. an

d G

alla

gh

er,P

.K.(

l95

9)

J.

Phy

s.

Che

m.'6

3,

1073

-107

6.59

S S

cott

,P.C

.(1959)

Ph.D

. T

hes

is,

Uni

v.

Min

neso

ta,

Min

nea

po

lis,

10

1 pp

.68

H

Hem

,J.D

.(19

68)

U.S

. G

eol.

Sur

vey

Wat

er-S

uppl

y P

aper

18

27-B

, 33

pp

.

TABLE

6.

Partial

comp

ilat

ion

of th

ermo

dyna

mic

data for

the

VATE

Q programs(continued):

Al3

* +

6P-

- A

1P|-

log

K

Sou

rce

Sou

rce

REM

ARKS

19.6

4 42

B-4

3B

0.5

3 H

pota

ssiu

m nit

rate

-1.2

4

53L

/59S

20.6

6

59K

/68H

0.1

0

53L

RE

COM

MEN

DED;

en

thal

py v

alue

is fo

r I

- 0.0

6 -

0.2

Ref

eren

ces:

42B

B

roas

et,C

.(l9

42

) P

h.D

. T

hes

is,

Uni

v.

Lun

d,

Lun

d,

123

pp..

43B

B

ross

et,C

. an

d O

rrin

g,J

.(l9

43)

Sven

. K

ern.

T

idsk

r.

55,

101-

106.

53L

L

atim

er,W

.M.

and

Joll

y,W

.L.(

l 95

3) J.

A

m.

Che

m.

Soc

. 75,

1548

-155

0.59

K

Kin

g,E

.L.

and

Gal

lagher

,P.K

.(l

959)

J.

P

hys.

C

hem

. 65

, 10

73-1

076.

59S

Sco

tt,P

.C.(

1959)

Ph.

D.

Th

esis

, U

niv.

M

innes

ota

, M

innea

poli

s,

101

pp.

68H

H

em,J

.D.(

19

68

) U

.S.

Geo

l.

Su

rvey

Wat

er-S

up

ply

Pap

er 1

827-

B,

33

pp.

Al3*

+ SO

?" - A1SO*

4 4

log

K Source

Source

REMA

RKS

3.20

62B-74T

2.29(.08)

69I-

74T

WATE

Q - WA

TEQP

-7

6P

-76P

3.73

65

H

3.01

(.08

) 69I-77N

WATEQ2

"60B

3.57

69S

3.2

70R

2.1

5

77N

-60B

ba

sed

on

Fuo

ss eq

uati

on

(Sie

bert

an

d C

hri

st,

unpubli

shed

dat

a)

Ref

eren

ces:

62B

B

ehr.

B.

and

Ven

dt,

H.(

196

2)

Z.

Ele

ktr

och

em.

66_,

22

3-22

8.65

N

Nis

hid

e,T

. an

d T

such

iya,

R.(

l 96

5)

Bu

ll.

Che

m.

Soc

. Jp

n.

38,

1398

-140

0.69

1 Iz

att,

R.M

.,E

ato

ug

h,D

., C

hri

stense

n,J

.J.,

and

Bar

tholo

mew

,C.H

.(l

969)

J.

C

hem

. S

oc.

A,

47-5

3.

69S

Str

yker,

L.J

. sn

d M

ati

jev

ic,E

.(l9

69

) J.

P

hys.

C

hem

. 73,

1484

-148

7.70

R

Ric

hburg

,J.S

. an

d A

dam

s,P

.(l9

70)

Soil

S

ci.

Soc

. A

m.

Pro

c.

3i,

72

8-73

4.

74T

T

rues

del

l.A

.H.

and

Jones

,B.F

.(1974)

J.

Res

. U

.S.

Geo

l.

Sur

vey

2_,

233-

248.

76P

Plu

mm

er.L

.N..

Jones

,B.F

.,

and

Tru

esd

ell,

A.H

.(l9

76)

U.S

. G

eol.

S

urve

y W

.R.I

. 7

6-1

3,

61

pp.

77N

N

ord

stro

m,D

.K.(

19

77

) P

h.D

. T

hes

is,

Sta

nfo

rd

Un

ivers

ity

, S

tanfo

rd,

210

pp.

80B

B

all,

J.W

.,N

ord

stro

m,D

.K.,

and

Jenne,

E.A

.(l

980)

U

.S.

Geo

l.

Sur

vey

W.R

.I.

78

-11

6,

109

pp.

A13

+ +

2SO

J- ,

A1(

S04

)~

log K

S

ou

rce

5.1

0

4.9

0(.

1)

62B

-74T

69I-

77N

-6

0B

H 3.0

7(.

2)

2.8

4

Sou

rce

69I*

74T

-7

6P

77N

-80B

REM

ARKS

WAT

EQ -

WAT

EQF

WA

TEQ

2;

enth

alp

y b

ased

on

F

uoas

eq

uati

on

(Sie

bert

an

d C

hri

st,

un

pu

bli

shed

d

ata)

Ref

eren

ces

:62

B

Beh

r.B

. an

d W

end t,

H. (

1 96

2 )

Z.

Ele

ktr

och

em.

66,

223-

228.

691

Izatt

,R.M

.,E

ato

ugh,D

.,C

hri

stense

n,J

.J.,

and

Bar

thol

omew

, C.H

.(l

969)

J.

C

hem

. S

oc.

A,

47

-53

.74

T

Tru

esdel

l.A

.H.

and

Jones

, B.F

. (1

97

4)

J.

Res

. U

.S.

Geo

l.

Sur

vey

2,

233-

248.

76P

Plu

mm

er.L

.N. .J

on

es, B

.F.

, an

d T

rues

del

l,A

.H.(

l 97

6)

U.S

. G

eol.

S

urve

y W

.R.I

. 76-1

3,

61

pp.

77N

N

orde

trom

, D.K

. (1

97

7)

Ph.

D.

Th

esis

, S

tanfo

rd

Univ

ersi

ty,

Sta

nfo

rd,

210

pp.

BOB

Ball

, J.W

., N

ords

trom

, D.K

. ,

and

Jenne,

E.A

.(l

980)

U

.S.

Geo

l.

Sur

vey

W.R

.I.

78

-11

6,

109

pp

.

Al(

OH

)5

soli

d:G

ibb

site

G

°.--

276.0

3(.

30)

kca

l/m

ol

H°,

--309.0

6(.

30)

kca

l/m

ol

S°-

16.3

6(.

03)

cal/

deg

.mol

Cp-

21.9

2 ca

l/d

eg.m

ol

Ref

eren

ces:

77

Ha,

77H

b

A1(

OH

)5

+ 3H

* -

Al3

* +

log

K

9.02

10.3 9.57

8.55

9.04

Source

20H

380

55T

57M

58G

-28

.0

Sou

rce

20H

REM

ARKS

aged

fo

r se

ver

sl

wee

ks

TABL

E 6.

P

art

ial

com

pil

atio

n

of

ther

mod

ynam

ic

dat

a fo

r th

e W

ATEQ

pro

gra

ms(

conti

nued

):

8.4

9(.

1)

60F-

62F

-76

B

10.8

63

F

7.9

7(.

05)

66K

9.3

5(.

3)

67H

11.4

0 71

D

8.22

72

3

10.4

74

H

10.0

5 74

H

8.04

(.0

3)

743

9.23

74

T-7

6P

9.30

78

Hb

8.1

1(.

02)

79M

8.75

(.0

5)

79M

=-60

B

-21.0

4(.

2)

74S-

76S

-25.

57

74T

-76P

-22.8

(1)

78H

a-80

B

cam

e to

eq

uil

ibri

um

in

1-

3 m

onth

s fr

om au

per

aatu

rati

on,

2-6

mic

ro­

met

er part

icle

aiz

e

amor

phou

s

well

-cry

stal

lize

d gi

bbsi

te,

agin

g ti

me a

bout 4 yrs.,

no d

ifference

in pa

rtic

les

.05-

50 m

icro

mete

rs in

size

micr

ocry

stal

line

gib

bsit

e, aged 2-20 wka

aged 24

hrs at

20°C

aged fo

r about

2 yrs.

amor

phou

s, ag

ed fo

r 24 h

rs.

microcrystalline,

aged 3

mont

hs

aged 1.5-2.5 yrs.

WA

TEQ

-

WA

TEQ

P

WAT

EQ2;

h

eat

of

solu

tion m

easu

red

on

sam

e m

ater

ial

from

66K

synth

etic

cry

stall

ine gib

bsi

te,

2-5

mic

rom

eter

s in

si

ze,

equ

ilib

riu

m w

as

rever

sed

and

reac

hed

in

a m

onth

or

less

WAT

EQ2;

nat

ura

l gib

bsi

te

from

M

inas

G

erai

s,

sam

e ex

per

imen

tal

deta

ils

as 7

9M a

bove

RECO

MM

ENDA

TION

: 1.

F

or cry

stall

ine g

ibbsi

te

the

log

K re

sult

s of

66K

.72S

.76S

an

d 79

Mar

e all

in

ex

cell

ent

agre

emen

t.

The

valu

e re

port

ed

by 7

9M is

re

com

men

ded.

2.

The

uppe

r so

lubil

ity li

mit

is

no

t w

ell-

def

ined

, bu

t it

pr

obab

ly l

ies

in th

e ra

nge

of

log

K =

9.35

-1 0

.8 f

or

a m

icro

cryst

alli

ne

to

an a

mor

phou

s p

recip

itate

, re

spec

tivel

y.

Ref

eren

ces:

20H

H

eyro

vsk

y,J

.(l9

20)

J.

Che

ra.

Soc

. 11

7.

11-2

6.38

0 O

ka, Y

.( 1

938)

J.

C

hem

. S

oc.

Jpn.

59

, 97

1-10

13.

55T

Tho

mps

on, L

.C.(

195

5)

Ph.

D.

Th

esis

, W

ayne

S

tate

U

niv

.,

Det

roit

, 69

pp.

57M

M

iron

ov.N

.N.

and

Odnose

vts

ev,A

,I.(

l 95

7)

Zh.

N

eorg

. K

him

. £,

2202

-220

7.58

G

Gay

er,K

.H.,T

hom

pson

,L.C

., an

d Z

ajic

ek,O

.T.(

l 95

8) C

an.

J.

Che

m.

36,

1268

-127

1.60

F F

rink,C

.R.(

l960)

Ph.

D.

Thes

is,

Corn

ell

Uni

v.,

Ithac

a,

161

pp.

62F

Fri

nk,C

.R.

and

Pee

ch,M

.(l9

62)

Soil

S

ci.

Soc

. P

roc.

26

, 34

6-34

7.63

F F

eitk

nech

t,W

. an

d S

chin

dle

r,P

.(l

963)

Pur

e A

ppl.

Che

m.

*>,

130-

199.

66K

K

ittr

ick,J

.A.(

l966)

Soil

S

ci.

Soc

. A

n.

Pro

c.

30,

595-

598.

67H

H

em.J

.D.

and

Rob

erso

n,C

.E.(

l 96

7) U

.S.

Geo

l. S

urve

y V

ater

-Sup

ply

Pap

er

1827

-A,

55

pp.

71D

D

ezel

ic,H

.,B

ilin

ski,

H.,

and

Wol

f,R

.H.H

.(19

71)

J.

Inorg

. N

ucl.

C

hem

. 33

, 79

1-79

8.72

S S

mit

h,R

.W.

and

Hem

,J.D

.(19

72)

U.S

. G

eol.

S

urve

y W

ater

-Sup

ply

Pap

er

1827

-D,

51

pp.

74H

H

ayde

n.P

.L.

and

Rubin

,A.J

.(1974)

in

Aqu

eous

-Env

iron

men

tal

Che

mis

try

of

Met

als,

R

ubin

,A.J

.,ed

.74S

Singh,S.S.(l974) Soil Sc

i. So

c. Am

. Proc.

3§,

415-417.

74T

Truesdell.A.H. an

d Jones,B.F.(1974) J. Re

s. U.S. Ge

ol.

Survey £,

233-248.

76B

Baes

,C.F

.,Jr

. and

Mesmer,R.M.(l976)

The

Hydr

olys

is of

Cations, Wiley-Interscience,

Chap.

6.2,

76P

Plum

mer.

L.N.

,Jon

es,B

.F.,

an

d Truesdell,A.H.(1 976)

U.S. Ge

ol.

Survey W.R.I. 76-13, 10

9 pp.

763

Sin

gh

,S.S

.(l9

76

) S

oil

S

ci.

121,

33

2-33

6.77

Ha

Hem

ingw

ay,B

.S.

and

Rob

ie.R

.777

1977

) U

.S.

Geo

l. S

urve

y J.

R

es.

£,4

13-4

29.

77H

b H

emin

gw

ay,B

.S..R

obie

.R.A

.,F

isher

,J.R

. an

d W

ilso

n,W

.H.(

l977

) U

.S.

Geo

l.

Sur

vey

5,

797-

806.

78H

a H

emin

gway

,B.S

.,Rob

ie,R

.A.,

and

Kit

tric

k,J

.A.(

l978)

Geo

chim

. C

osm

ochi

m.

Act

a 4£

, 15

33-1

543.

78H

b De

H

ek,H

., S

tol,

R.J

.,

and

De

Bru

yn,P

.L.(

1978

) J.

C

ollo

id

Inte

rfac

e S

ci.

64,

72-8

9.79

M

May

,H.M

.,Hel

mke

,P.A

., an

d Ja

ckso

n,M

.L.(

1 97

9)

Geo

chim

. C

osm

ochi

m.

Act

a 43

^,

861-

868.

80B

B

all,

J.W

.,N

ord

stro

m,D

.K.,

and

Jenne,

E.A

.(l

980)

U

.S.

Geo

l.

Sur

vey

W.R

.I.

78-1

16,

10

9p

p.

Ann

A

rbor

, 31

7-38

1

11

2-1

23

.

.CA

LCIU

M.

2 +

Ca

aque

ous

ion

Gj--132.125(.20) kc

al/m

ol

H°,-

-129

.80(

.20)

kc

al/m

ol

Refe

renc

e: 77

COca

l/de

g.mo

l

Source

REMA

RKS

T -

18°C

.075

-

1.00 M

sodium ch

lori

de

I - 0.7

theo

reti

cal

calc

ula

tion

1 M

NaN

O_,

by

io

n-s

elec

tiv

e el

ectr

ode

TABL

E 6.

Partial

comp

ilat

ion

of th

ermo

dyna

mic

data

for

the

WATEQ

prog

rama

(con

tinu

ed):

-0.1

2 75

S 1 M

NaNO_, by sil

ver

chlo

ride

electrode

0.35

78

J 1-0.6

-0.3

0 79E

1-0.7

Ref

eren

ces:

30R

H

igh

ella

to.E

.C.

and

Dav

ies,

C.W

.(l9

30

) T

rans.

F

arad

ay

Soc

. 26

, 59

2-60

0.43

H

Har

ned

,H.S

. an

d O

wen

,B.B

.(19

43)

The

P

hy

sica

l C

hem

istr

y o

f E

lectr

oly

tic

Solu

tions,

R

einhold

, p.

422.

62C

C

ors

aro,G

.(l9

62)

J.

Che

m.

Edu

c.

39t

622-

626.

71H

Nakayama,F.S.(l97l)

Soil Sci. So

c. Am.

Proc.

35,

881-883.

75E

Elgquist.B.

and

Wedborg,M.(l975) Ma

r. Ch

em.

2t 21

5-22

5.75

K Ke

ster

.D.R

. an

d Py

tkow

icz,

H.M.

(l97

5) Mar. Chem.

_3t

365-

374.

753

Such

a.L.

.Cad

ek.J

., an

d Ve

sely

,J.(

1975

) Co

llec

t. Cz

ech.

Ch

em.

Commun.

40,

2020-2024.

77CO CO

DATA

Bu

ll.

28,

17 p

p.78

J Johnson,K.

S. an

d Pytkowicz.H.M.d978)

Am.

J. Sci. 278, 14

28-1

447.

79E

Elgquist.B.

and

Wedborg,M.(l 979)

Mar. Chem.

7.,

273-

280.

....

....

....

....

....

....

....

....

....

....

....

....

....

....

IRON

.

2 +

Fe

aqueous

ion

G£ 19.15(.08)

kcal

/mol

e H°

--20

.82(

.7)

kcal

/mol

e S°

»-30

.3(2

.5)

cal/

deg.

mole

Cp

--0.

5(7.

2) ca

l/de

g.mo

l Re

fere

nces

: 78

J,79

B and

calc

ulat

ions

in this re

port

Fe5* aq

ueou

s io

n G°

--1.

39(.

08)

kcal

/mol

H^»-

10.8

4(.2

) kc

al/m

ol

S°--

72.0

(.7)

ca

l/de

g.mo

l Re

fere

nces

: se

e calculations in this re

port

Fe » Fe

2* *

2e"

E°(volts

) G°

(kca

l/mo

l)

Source

REMARKS

0.4413

-20.

35

26H

0.4402

-20.

30

32R

0.4090 (.00075)

0.44

2

0.46

7

0.41

53 (.001 3)

-18.85

-20. 39

-21.54

-19.15

53P

58H

60H

78J

V -

20°C

RECO

MM

END

ED

References:

26H

H

amp

ton

,W.H

.(l9

26)

J.

Ph

ya.

C

hem

. 30,

98

0-9

91

.32

R

Ran

dal

l.M

. an

d F

ran

dae

n,M

.(l

932)

J.

Am

. C

hem

. S

oc.

54

_,

47-5

4.

53P

P

atri

ck,W

.A.

and

Thom

pso

n,W

.E.(

1953)

J.

Am

. C

hem

. S

oc.

7

5,

1184-1

187.

58H

H

oar

,T.P

. an

d H

url

en

,T.(

19

58

) P

roc.

Inte

rn.

Com

ra.

Ele

ctro

chem

. T

herm

odyn

am.

Kin

et.

, 8

th

Mtg

.,

445-4

47.

60H

H

url

en

,T.(

l96

0)

Act

a C

hem

. S

can

d.

^4

, 1533-1

554.

78

J Jo

hnso

n,O

.K.

and

Baum

an.J

.E.,

Jr.(

l978)

Ino

rg.

Che

m.

JJ7,

2

77

4-2

77

9.

79B

B

ern

ard

ucci.

E.E

. ,M

ors

s,L

.R.,

an

d M

iksz

tal,

A.R

.(l

979)

J.

Solu

tion

Che

m.

8,

71

7-7

27

.

E°(v

olts

)G°

(kca

l/mo

l)

Source

H°(k

cal/

mol)

Source

-0.7

47

7 (

.00

05

)

-0.7

72

(.0

01

)

-0.7

70

1 (

.00

02

)

-0.7

39

4

-0.7

37

5 (

.00

1)

-0.7

49

-0.7

46

-0.7

67

-0.

674

-0.7

32

-0.7

38

-0.7

71

(.0

04

)

-0.7

37

5 (

.00

01

)

-0.7

70

(.002)

17

.24

17

.80

17

.76

17.0

5

17

.00

17

.27

17

.20

17

.69

15

.54

16.8

8

17

.02

17.7

8

17.0

1

17

.76

29P

29P

/34B

37S

51C

53M

58S

58S

58S

58S

58S

58L

58L

/60M

62Z

72W

-9.

53 (

.04)

50F

-9.9

5(.

05)

51C

-9.7

(.2)

53M

-10.2

(.4)

72W

REM

ARK

S

uncorrected

for

complexing

corrected

for

comp

lexi

ng

0.5

M perchloric acid

0.5

M perchloric acid

I "

1, so

dium

pe

rchl

orat

e and

perchloric acid

0.25 M

nitric acid

1 M

nitric acid

1 M

perc

hlor

ic ac

id

0.5

M su

lfur

ic acid

1 M

hydrochloric acid

uncorrected

for

complexing

corrected

for

comp

lexi

ng

1-2, sodium pe

rchl

orat

e and

perc

hlor

ic acid

TAB

U!

6.

Part

ial

com

pil

atio

n

of

ther

mod

ynam

ic d

ata

for

the

WAT

EQ p

rog

ram

s(co

nti

nu

ed):

-0.7

695

(.0

00

8)

17

.75

72

W/7

9M

-9.1

8

72W

/79M

dat

a re

fit

to li

near

equat

ion

-0.7

702

(.0

00

1)

17.7

6

34B

.37S

-1

0.0

(.5)

RECO

MM

ENDE

D;

wei

gh

ted

av

erag

e fr

om

fou

r d

iffe

ren

t60

M,7

2W

inv

est

igati

on

s;

for

enth

alp

y val

ue

see

tex

t

Ref

eren

ces:

29P

Popoff

.S.

and

Ku

nz,

A.H

.(l

929)

J.

A

m.

Che

m.

Soc

. 51

., 382-3

94.

34B

B

ray.

W.C

. an

d H

ersh

ey,A

.V.(

l93

4)

J.

Am

. C

hem

. S

oc.

56,

1889

-189

3.37

S S

chum

b.W

.C.,S

her

rill

,H.S

. an

d S

wee

tser

,S.B

.(l

937)

J.

A

m.

Che

m.

So

c.5

9,

2360

-236

5.50

P P

on

tan

a(B

.J.(

1950)

The

C

hem

istr

y a

nd

Met

allu

rgy

of

Mis

cell

aneo

us

Mate

rials

, V

ol.

19B

, p.

321.

51C

C

onni

ck.H

.E.

and

McV

ey,W

.H.(

1951

) J.

A

m.

Che

mT

Soc

. 73,

1798

-180

4.53

H

Mag

nuss

on.L

.B.

and

Huiz

enda,

J.R

.(1953

) J.

A

m.

Che

m.

So

c.

75_,

22

42-2

246.

58L

L

apte

va,

O.H

.(l9

58)

Zh.

P

rikl.

K

him

. 31

., 12

10-1

215.

58S

Str

om

att,

R.V

.,P

eekem

a,R

.M.,

and

Sco

tt,P

.A.

(1 9

58)

HV

-582

12

(Han

ford

W

orks

).60

M

Mat

too,B

.».(

I960)

Zh.

P

rikl.

K

him

. 33

, 20

15-2

020.

62Z

Z

iele

n.A

.J.

and

Sull

ivan,J

.C.(

l962)

J.

Phy

s.

Che

m.

66,

1065

-106

9.72

W

Whi

ttem

ore.

D.O

. an

d L

angm

uir

,D.(

l972)

J.

Che

m.

Eng

. D

ata

V^,

28

8-29

0.79

N

No

rdst

rom

,D.K

.(1

97

9)

unpubli

shed

calc

ula

tions

......................................................M

AG

NE

SIU

M..........................................

Mg2* aq

ueou

s io

n G°

--10

9 kcal/mol

H°--112

kcal/mol S° 33 ca

l/de

g.mo

l Re

fere

nces

: 71

W,77

CO,7

9C

Mg2*

* Cl"

- MgCl*

log

K Source

Source

REMARKS

none

30R

T -

18°C,

cited

by 753

smal

l 43

H cited

by 753

none

45

S ci

ted

by 753

-0.9801

73H

-0.3

2

-0.0

8

-0.11

-0.1

8

-0.47

0.28

75E

75S

75S

77F

78E

78J

1-0

.7

1 N

NaN

O,,

by i

on-s

ele

cti

ve ele

ctr

od

e

1 N

NaN

O-,

by s

ilver

ch

lori

de e

lectr

ode

I -

0.7

I -

0.6

Refe

renc

es:

30R

R

igh

ella

to,E

.C.

and

Dav

ies,

C.W

.(l9

30)

Tra

ns.

F

arad

ay

Soc

. 26

_,

592-

600.

43H

H

arn

ed.H

.S.

and

Ow

en,B

.B.(

l 94

3)

The

P

hy

sica

l C

hem

istr

y o

f E

lectr

oly

tic S

olu

tio

ns,

R

einhold

, N

.Y.,

422

pp.

45S

Sto

kes

,R.H

.(1945)

Tra

ns.

F

arad

ay S

oc.

41_,

64

2-64

5.71

W

Yag

man

,D.D

.,E

van

s,¥.H

.,P

arker

,V.B

.,H

alow

,I.,B

aile

y,S

.M..S

chum

m,R

.H.,

and

Ch

urn

ey,K

.L.(

l97

1)

U.S

. N

at.

Bu

r.

Sta

nd

. T

ech.

N

ote

270-5

, 37

pp

73H

H

avel

,J.

and

Ho

gfe

ldt,

E.(

l97

3)

Act

a C

hem

. S

cand

. 27

, 33

23-3

334.

75E

E

lgquis

t,B

. an

d ¥ed

borg

,M.(

l 97

5)

Mar

. C

hem

. 2.

21

5-2

25

.75

S S

uch

a,L

.,C

adek

,J.,

an

d V

esel

y,J

.(1

97

5)

Coll

ect.

C

zech

. C

hem

. C

omm

un.

40,

2020

-202

4.77

CO

CO

DATA

B

ull

. 28,

17

pp.

77F

Fis

her

,F.H

. an

d F

ox,A

.P.(

1977)

J.

Solu

tion C

hem

. £,

64

1-6

50

.78

E

Elg

quis

t.B

and

W

edbo

rg.M

.(19

78)

Mar

. C

hem

. £,

24

3-2

52

.78

J Jo

hn

son

,K.S

. an

d P

ytk

ow

icB

,R.M

.(l9

78)

Am

. J.

S

ci.

27

8.

1428

-144

7.79

C

Coff

y.G

. an

d O

lofs

son,G

.(1979)

J.

Che

m.

The

rmod

yn.

11,

141-

144.

.PO

TASS

IUM

.

K*

aque

ous

ion

G°-

-67.5

2(.

03)

kca

l/m

ol

H°-

-60.2

7(.

03)

kca

l/m

ol

S°=

-24

.14

(.0

6)

cal/

deg

.mo

l C

p-5

.3 ca

l/deg

.mol

Ref

eren

ces:

77

G,7

7CO

,81W

K* +

SO2."

- KSOT

4 4

log

K

0.82

0.96

0.84

7

0.75

0.83

Source

Source

REMARKS

30H

50J

68T-

74T-

76P

3.08

2 68T-74T-76P

WATE

Q - WA

TEQF

691

1.01

691

72T

TABU

S 6.

P

art

ial

com

pil

atio

n of

ther

mod

ynam

ic d

ata

for

the

WAT

BQ p

rogra

ma(

conti

nued

):

0.8

5(.

05)

77N

-80B

2

.25

(1.0

) 77

N-8

0B

WAT

EQ2

1.02

77

P

Ref

eren

ces:

30R

R

igh

ella

to.E

.C.

and

Dav

ies.

C.W

.O 9

50)

Tra

ns.

F

arad

ay

Soc

. 26

, 59

2-60

0.50

J Je

nkin

s.I.

L.

and

Mon

k,C

.B.O

950

) J.

A

m.

Che

m.

Soc

. 72,

2695

-269

8.68

T

Tru

esdel

l.A

.H.

and

Hoate

tler,

P.B

.(l

968)

G

eoch

im.

Cos

moc

him

. A

cta

52,

1010

-102

2.69

1 Iz

att,

R.M

.,E

atough,D

.fC

hri

stense

n,J

.J.,

and

Bar

thol

omew

,C.H

.(1

969T

~J.

C

hem

. S

oc.

(A),

47-5

5.

72T

T

rues

del

l,A

.H.

and

Jon

es,B

.P.(

19

72

) u

np

ub

lish

ed

dat

a74

T

Tru

esdel

l,A

.H.

and

Jones,

B.P

.(l9

74)

J.

Res

. U

.S.

Geo

l.

Sur

vey

£,

255-

248.

76P

Plu

mm

er.L

.H.,

Jones

,B.P

.,

and

Tru

esdel

l,A

.H.(

l 97

6) U

.S.

Geo

l.

Sur

vey

W.R

.I.

76-1

5,

61

pp.

77C

O C

ODAT

A B

ull

. 28

, 17

pp.

77F

Pis

her

.P.H

. an

d P

ox

,A.P

.(l9

77

) J.

S

olu

tio

n

Che

m.

£,

64

1-6

50

.77

G

Gio

rdan

o,G

.M.,

Longhi,

P.,

Muaa

ini,

T.,

an

d R

ondin

i,S

.(l9

77)

J.

Che

m.

The

rmod

yn.

J9_,

997-

1004

.77

N

Nord

stro

m,D

.K.(

197

7)

Ph.

D.

Th

esis

, S

tan

ford

U

niv

ers

ity

, S

tanfo

rd,

210

pp

. ~~

SOB

Bal

l,J.

W.,

No

rdst

rom

,D.K

.,

and

Jenne.

E.A

.(1960)

U.S

. G

eol.

S

urve

y W

.R.I

. 7

8-1

16

, 109pp.

81W

W

agm

an,D

.D.,E

vans

,W.H

.,Par

ker,

V.B

.,Sch

umm

,R.H

., an

d N

utt

all

.R.L

.(l

981

) N

at.

Bu

r.

Sta

nd

. T

ech.

N

ote

270-8

, 15

4 pp

.

.SO

DIU

M.

Na*

aq

ueou

s io

n

G°-

-62.6

0(.

02)

kca

l/m

ol

H°-

-57.4

3(.

016)

kca

l/m

ol

S°=

M3.

96

cal/

deg

.mo

l.1

ca

l/d

eg.m

ol

Ref

eren

ces:

77

CO

,81W

Na*

* SO?" - NaSOT

4 4

log

K Source

Source

REMARKS

0.70

30

R

0.72

50J-76P

1.10

76P

WATEQP

0.90

66

M

0.65

691

-0.4

9 69

1

0.3

05 (

.00

7)

0.2

26

0.6

86

1.14

1.1

7

1.11

1.1

0

0.8

2(.

05)

0.7

3

1.03

0.7

0(.

05)

1.0

0

0.7

3(.

01)

0.6

0 (.0

2)

0.5

7 (.0

3)

69P

7U*7

4T

741!

53K

/75F

a

69P

/75F

a

50J/

75F

b

75Fb

75H

75S

77F

77N

-80B

78F

79E

79E

79E

2.22

97U-74T

1.12

(.80

) 62A-77N-80B

0 80J

I - 0.

687

WATB

Q

T - 20°C

reca

lcul

ated

sound

absorption m

easurements

corr

ecte

d to I

0

refitted conductance

meas

urem

ents

to new

equa

tion

VATEQ2

I - 0.75

I » 0.

12

I - 0.17

I - 0.

21

Ref

eren

ces:

30R

R

igh

ella

to.E

.C.

and

Dav

ies,

C.W

.(l9

30

) T

rans.

F

arad

ay

Soc

. 26

, 59

2.50

J Je

nkin

s.I.

L.

and

Mon

k,C

.B.(

1 95

0) J.

A

m.

Che

ra.

Soc

. 72,

2695

-269

8.53

K

Kurt

ze.G

. an

d T

amm

.K.O

953

) A

cuat

ica

2.

33-4

8.

62A

A

ust

in, J

.M.,

and

Mai

r.A

.D.O

962

) J.

P

hys.

C

hem

. 66

, 51

9-52

1.66

M

Mas

tert

on

.W.L

. an

d B

erka.

L.H

.(1966)

J.

Phy

s.

Che

m.

70,

1024

-102

9.69

1 Iz

att

,R.M

.,E

ato

ug

h,D

.,C

hri

sten

sen

,J.J

, an

d B

arth

olom

ew,C

.H. (

1 %

9)

J.

Che

m.

Soc

. (A

),

47-5

3.69

P P

ytko

wic

z.R

.M.

and

Kes

ter,

D.R

.(l9

69

) A

m.

J.

Sci.

26

7.

217-

220.

71L

L

afon

.G.M

. an

d T

rues

del

l.A

.H.

(197

1 )

Am

. G

eoph

ya.

Uni

on T

ran

s.(a

bst

ract)

5j

?,

362.

74M

M

arty

no

va,

O.I

.,V

asin

a,L

.G.,

an

d P

ozd

nyak

ova.

S.A

.(1974)

Dok

l.

Aka

d.

Nau

k SS

SR

217,

10

80-1

082.

74T

T

rues

del

l.A

.H.

and

Jon

es,B

.F.(

19

74

) J.

R

es.

U.S

. G

eol.

S

urve

y j?

, 23

3-24

8.75

Fa

Fis

her

,F.H

.( 1

975)

J.

S

olu

tio

n

Che

m.

4_,

237-

240.

75Fb

F

ish

er,F

.H.

and

Fox

,A.P

. (1

97

5)

J.

So

luti

on

C

hem

. 4_

, 22

5-23

6.75

R Reardon,E.J.(l975) J. Phys.

Chem

. 79,

422-425.

75S

Sant

os,M

.M.,

de Ca

rval

ho, J.R.F.G.,

and

de Carvalho.R.A.G.O 975

) J.

Solution Ch

em.

4.,

25-29.

76P

Plum

mer.

L.N.

.Jon

es,B

.F.,

an

d Truesdell,A.H.(l976) U.S. Geol.

Survey W

.R.I

. 76

-13,

61

pp

.77CO CODATA Bu

ll.

28,

17 pp

.77

F Fi

sher

,F.H

. an

d Fox,A.P.(l977) J. So

luti

on Chem.

£, 64

1-65

0.77

N Kordstrom,O.K.(1977) Ph.D.

Thesis,

Stanford Un

iver

sity

, St

anfo

rd,

210

pp.

78F

Fish

er,F

.H.

and

Fox,

A.P.

(197

8) J. So

luti

on Chem.

7, 56

1-57

0.79E

Emara,M.M.,Farid,N.A., an

d Li

n,C.

T.(l

979)

J. Ch

em.

Ed.

56,

620-621.

80B

B

all,

J.W

.,N

ord

stro

m,D

.K.,

and

Jenne.

E.A

.(1980)

U.S

. G

eol.

S

urve

y W

.R.I

. 7

8-1

16

, 109pp.

80J

Joh

an

sso

n.O

..P

ers

son

.I.,

an

d W

edbo

rg.M

.(19

80)

Mar

. C

hem

. 8,

191-

198.

y\

TABL

E 6.

P

art

ial

com

pil

atio

n o

f th

erm

odyn

amic

dat

a fo

r th

e W

ATEQ

pro

gra

ma(

con

tin

ued

):

81V

W

agm

an,D

.D.,E

vana

,W.H

.,Par

ker,

V.B

. ,S

chun

m,8

.H.,

and

Nutt

all,

R.L

.(1981)

Nat

. B

ur.

Sta

nd.

Tec

h.

Not

e 27

0-8,

13

4 pp

.

Foot

note

s:(1

) log KS

() «

-34.0 (66K.79M)

for well-crystallized

gibb

aite

and

log KW

.

-13.

997

(76B)

were

used

to calculate

*K1K

2K5K

4 fr

om K

a4 or *

Kfl4

.

(2)

log K

Q m -31.2

from 6

3F (i

n gi

bbsi

te se

ctio

n) for amorphous

log

K 0

» -31.2

from 6

3F (i

n gi

bbsi

te se

Al(01f)3

waa ua

ed to calculate *K

1K2K

3K4

.

(3)

log K

0 - -3

2.65

fr

om 6

7H fo

r microcryatalline g

ibbs

ite

was

used to

calculate 'K.KK.