101
WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM, EUFAULA LAKE, OKLAHOMA By Ooanne K. Kurklin U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report Prepared in cooperation with the U.S. BUREAU OF RECLAMATION Oklahoma City, Oklahoma 1990

WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM, EUFAULA LAKE, OKLAHOMA

By Ooanne K. Kurklin

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report

Prepared in cooperation with the

U.S. BUREAU OF RECLAMATION

Oklahoma City, Oklahoma

1990

Page 2: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DEPARTMENT OF THE INTERIOR

, Secretary

SURVEY

Director

MANUEL LU3

U.S. GE

Dallas L

AN, OR.

OLOGICA

. Peck,

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 215 Dean A. McGee, Room 621 Oklahoma City, OK 73102

Copies of this report can be purchased from:

U.S. Geological SurveyBooks and Open-File Reports SectionFederal Center,Box 25425Denver, CO 80225

Page 3: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

CONTENTS

Page

Abstract............................................................... 1Introduction........................................................... 1Purpose and scope...................................................... 1Methodology............................................................ 3Water quality as related to suitability for municipal supply........... 3

Physical properties............................................... 7Dissolved oxygen............................................. 7pH........................................................... 8Water temperature............................................ 8Specific conductance......................................... 17

Chemical constituents............................................. 17Major anions................................................. 17Nitrogen..................................................... 25Trace elements............................................... 25

Biota............................................................. 29Phytoplankton................................................ 29Bacteria..................................................... 30

Conclusions and summary................................................ 32References cited....................................................... 33

ILLUSTRATIONS

Figure 1. Map showing location of Gaines Creek, Gaines Creek arm ofEufaula Lake, and associated water-sampling sites......... 2

2. Depth profiles of dissolved oxygen, pH, water temperature,and specific conductance at sampling site A............... 9

3. Depth profiles of dissolved oxygen, pH, water temperature,and specific conductance at sampling site B............... 10

4. Depth profiles of dissolved oxygen, pH, water temperature,and specific conductance at sampling site C............... 13

5. Depth profiles of dissolved oxygen, pH, water temperature,and specific conductance at sampling site D............... 16

6. Maximum and minimum values for selected chemicalconstituents at sampling sites A-E........................ 18

7. Implied indicative associations of phytoplankton............ 31

TABLES

Table 1. Selected national primary drinking-water standards.......... 4-2. Selected national secondary drinking-water standards........ 53. State drinking-water standards.............................. 64. Values of pH and concentrations of selected chemical

constituents in water from sampling sites A-E............. 35

iii

Page 4: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

TABLE 5 Continued

Table 5.

6.7.

8.

9.

Values of physical prope chemical constituents sites A-E............

Physical properties of waterPhytoplankton counts, number

index at sampling siteSignificance of phytoplankton

sites A-E.............Microbiological data for

ties and concentrations of and biota in water from sampling

............................... 40from sampling sites A-D........ 56of genera, and diversity

A-E............................... 65genera at sampling

................................... 89sampling sites A-E................. 96

Many numbers in this report ar converted to metric units by using

Multiply inch-pound unit

foot (ft) mile

Page

CONVERSION FACTORS

i given I in inch-pound units. These may be he conversion factors listed below:

0, 1,

Chemical concentrations and water in metric units. Water temperature can be converted to degrees Fahrenheit

3048609

To obtain metric (SI) unit

meter kilometer

temperatures in this report are given are given in degrees Celsius (°C), which

(°F) by the following equation:

F = 1.8 (°C) + 32.

IV

Page 5: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM,

EUFAULA LAKE, OKLAHOMA

By Ooanne K. Kurklin

ABSTRACT

Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25° Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25° Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth.

With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.

INTRODUCTION

Municipalities generally treat surface-water supplies before distributing the water to customers. Ordinary domestic requirements for drinking, cooking, and bathing can be met if there is no sediment in the drinking glass or bathtub; if the water is sterilized so that it doesn't contain disease causing water-borne organisms; if the water tastes good; and if the water has the proper hardness (American Society for Testing and Materials, 1967). Other requirements for lawns, gardens, swimming pools, and decorative fountains need to be considered. To meet these requirements, a municipality needs to select a natural water that meets national drinking-water regulations or that can be treated to meet those regulations.

PURPOSE AND SCOPE

The cities of Wilburton and McAlester, Oklahoma, have projected the need for an additional water source for municipal and industrial uses. The U.S. Bureau of Reclamation requested that the U.S. Geological Survey provide data for comparing the water quality of Gaines Creek near Higgins, Oklahoma, and of the Gaines Creek arm of Eufaula Lake (fig. 1). The purpose of this report is to characterize the water quality in Gaines Creek near the site of the proposed Higgins reservoir and in the Gaines Creek arm of Eufaula Lake, with emphasis on the suitability of the water for municipal use.

Page 6: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

MclNTOSH CO.

PITTSBURQ CO.

60

0 60 100

100 MILES

' KILOMETERS

96°50'

LATIMER CO.

Wilburton

Figure 1. Map of Eufaula Lake associated wate

KILOMETERS

showing Gains Creek arm and -sampling sites.

Page 7: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

METHODOLOGY

Field determinations and water-quality sampling for this study were performed from May 1978 to May 1980. Four sampling transects between points on opposite lake shores, identified as A-A 1 , B-B 1 , C-C 1 , and D-D 1 in figure 1, were established along the Gaines Creek arm of Eufaula Lake. Sampling sites were located at the midpoint of each transect; these sites are identified as sampling sites A-D. Sampling site E was established on Gaines Creek near Higgins, Oklahoma.

Each lake transect was sampled quarterly for physical properties, major inorganic constituents, major nutrients, trace elements, phytoplankton, and bacteria. Samples were collected 3 ft below the water surface and 1 ft above the lake bottom at the center point of a transect. Only mid-depth samples were collected when lake depths were shallow at a transect. Depth profiles for dissolved oxygen, pH, water temperature, and specific conductance also were made at the center point of a transect and at a minimum of two other verticals along each transect.

Gaines Creek near Higgins (site E) was visited each month and, when flow occurred, samples were collected and a discharge measurement was made. Stream samples were collected for major inorganic constituents, major nutrients, trace elements, phytoplankton, and bacteria. A series of longitudinal profiles, extending from the proposed pumping site on the lake, sampling site D, to the proposed dam site on Gaines Creek, sampling site E, were completed.

All water-quality samples were collected and analyzed by methods outlined by Brown and others (1970); Goerlitz and Brown (1972); and Greeson and others (1977). Biological analyses were made at the U.S. Geological Survey's laboratory in Doraville, Georgia. The remainder of the laboratory analyses were made at the Survey's laboratory in Arvada, Colorado. Microbiological analyses were performed by U.S. Geological Survey personnel in Oklahoma.

WATER QUALITY AS RELATED TO SUITABILITY FOR MUNICIPAL SUPPLY

To determine the suitability of a water source as a municipal or industrial supply, the physical, chemical, and microbiological data are compared to established drinking-water standards. Water-quality standards established by the U.S. Environmental Protection Agency are summarized in tables 1 and 2. Oklahoma State drinking-water standards are summarized in table 3.

Selected constituents from the national primary drinking-water regulations the mandatory limits that apply to the physical, chemical, and microbiological characteristics of water that affect the health of consumers are listed in table 1. They are applicable to virtually all public water systems and are enforceable by the State or Federal governments.

The national secondary drinking-water regulations (table 2) deal with the esthetic qualities of drinking water. They are not federally enforceable and are intended as guidelines for regulation by the State.

Page 8: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 1. Selected national primary drinking-water standards 1

Maximum contaminant level for inorganic chemicals

Level

^-* ~\J9 \ \J UMIt-A- I lUif \S

Arsenic

Barium

Cadmium

Chromium

Lead

Mercury

Nitrate (as N)

Selenium

Silver

Maximum cor

Temperature

Fahrenheit

80 - 91

72 - 79

65 - 71

59 - 64

55 - 58

50 - 54

Annual average c

1 U.S. Environmental Prc

\ *9J-Ji-~*--*f '^M. 4JMIIW B^X^Ai JL. J, \j ̂ s^ f

0.05

1

0.010

0.05

0.05

0.002

10

0.01

taminar

f maxin

tectior

0.05

it level for fluoride

Level

(milligrams per liter)

1.4

1.6

1.8

2.0

2.2

2.4

lum daily air temperature

i Agency (1976b)

4

Page 9: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 2.--Selected national secondary drinking-water standards 1

Level

Contaminant (milligrams per liter

except as indicated)

Chloride 250

Color 15 color units

Copper 1

Corrosivity Non-corrosive

Foaming agents 0.5

Hydrogen sulfide 0.05

Iron 0.3

Manganese 0.05

pH 6.5 - 8.5 units

Sulfate 250

Total dissolved solids 500

Zinc 5

1 U.S. Environmental Protection Agency (1979)

Page 10: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 3.--State drinking-water standards 1

Parameter (dissolved phase)

Numerical limit (milligrams per liter)

Arsenic

Barium

Cadmium

Chromium

Copper

Fluoride (at 90° F)

Lead

Mercury

Nitrate (as N)

Selenium

Silver

Zinc

.05

1.0

.01

.05

1.0

1.6

.05

.002

10.0

.01

.05

5.0

1 Oklahoma Water Resources Boarjd, 1979

Page 11: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Selected water-quality data for Galnes Creek and the Galnes Creek arm of Eufaula Lake are summarized in table 4 (at back of report). Additional data for these sites are provided in table 5 (at back of report). The data from each of the five sites, when compared with the drinking-water standards, indicate that constituent concentrations from May 1978 to May 1980 were within the limits with the exceptions of cadmium, iron, lead, and manganese.

The following sections briefly describe physical properties, chemical constituents, and biota as they pertain to municipal water supplies. Results of sampling and analysis conducted during this study are summarized.

Physical Properties

Dissolved Oxygen

Dissolved oxygen in lake water has an essential biological role; for most organisms, oxygen is a requisite for life. Concentrations of dissolved oxygen are dependent on several factors including water temperature, agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply. Additional oxygen is added by exchanges with the atmosphere at the lake surface. Decreases in oxygen are due mostly to the respiration of plants, animals, and the aerobic bacteria involved in decay of organic matter. On a purely physical basis, the warming of the summer epilimnion could account for an oxygen decrease. The solubility of oxygen decreases as temperature increases. A deep stratum of the lake may be lacking in oxygen if light does not penetrate the lake. As a result, respiration and decomposition prevail in the deep strata and oxygen is depleted faster than it is produced.

Dissolved oxygen in bodies of water used for municipal water supplies is an indicator of satisfactory water quality in terms of minimal residuals of biologically available organic materials. In addition, dissolved oxygen in the water column prevents the chemical reduction and subsequent leaching of iron and manganese, principally from the sediments (U.S. Environmental Protection Agency, 1973). These metals cause taste problems or staining of plumbing fixtures and other surfaces that contact the water in the presence of oxygen (National Academy of Sciences, National Academy of Engineering, 1974).

Dissolved oxygen also is required for the biochemical oxidation of ammonia ultimately to nitrate in natural waters. This oxidation of ammonia decreases the chlorine demands of waters and increases the disinfection efficiency of chlorination (National Academy of Sciences, National Academy of Engineering, 1974).

The disadvantage of large concentrations of dissolved oxygen in water used as a source of municipal water supply is the increased corrosion of metal surfaces in both water-treatment facilities and distribution systems (National Academy of Science, National Academy of Engineering, 1974). Such corrosion, in addition to direct damage, can increase the concentration of iron (and other metals), which may cause taste or staining problems or both (U.S. Environmental Protection Agency, 1976).

Page 12: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Depth profiles of dissolved oxygen are shown in figures 2-5. Generally, greatest near the water surface and 1 fluctuations occurred in early summer dissolved oxygen ranged from 0 to 12.7 mg/L saturation ranged from 0 to 121 (table 6, at

pH

The negative logarithm (base 10) of the (moles per liter) was the original de most purposes pH can be equated to the activity (Weast, 1972). Hydrogen-ion hydrogen-ion concentration in moles per are exponential; therefore, a unit ch.ange in activity.

for each of the four lake transects dissolved-oxygen concentrations were ast near the lake bottom. Maximum and early fall. Concentrations of

(milligrams per liter); percent back of report).

hydrogen-ion concentrationinitioh of pH (Hawley, 1971), but for negative logarithm of the hydrogen-ion

activity is approximately equal to liter. The intervals on the pH scale

in pH represents a 10-fold change

The pH of a natural water supply water-treatment processes and may con structures, distribution lines, and corrosion can add such constituents a to the water. Adjustment of pH within natural waters, 5.0 to 9.0, is relatively anticorrosion procedures currently in more narrow range (National Academy Engineering, 1972). Oklahoma's water Resources Board, 1979) state, "The pHOklahoma's water; unless pH values out conditions."

is significant because it affects tribute to corrosion of water-works

household plumbing fixtures. Thiscadmium, copper, iron, lead, and zinc the normal range of pH for most

sinple, and the variety of use make it unnecessary to recommend aSciences, National Academy of

quality standards (Oklahoma Water values shall be between 6.5 and 9.0 for side thiat range are due to natural

of

The normal range of pH in most During this study, pH of water in Eufaula Lake ranged from 6.0 to 9.2 greater than the normal range probably photosynthesis; that is, dissolved organisms. The smaller pH values values probably were due to an accumulation associated with decomposition activities

lakes is 6.5 to 8.5 (Welch, 1952). Gaines Creek and the Gaines Creek arm of

(figs. 2t-5 and table 6). The pH valueswere pue to the effects of

carbon dioxide was being utilized by were measured in the lower depths. These

of acid-forming substances

Water Temperature

Ecologically, the thermal important factors in determining the environment and in regulating activities of1975). Many physical and chemical processes that occur in a lake are affected by water temperatures.

The recommended guidelines for sources is "No temperature change that water supplies and no temperature change that treatment process..." (National Academy of S Engineering, 1972).

properties or\ water in lakes are the most suitability of water as a natural

aquatic organisms (Wetzel,

temperature in public water supplydetracts from the potability of public

adversely affects the standard ciences, National Academy of

Page 13: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DE

PT

H,

IN

FE

ET

B

EL

OW

L

AK

E

SU

RF

AC

Eto

to

-*

-*

en

o

en

o

en

o^

-

CO

O

Z

CO

10

C

TB -

0^

m

E

r

*

»

i-

2:

A

5 5

°

co1

m

» °

1 g

>

x

-

co o

3:

-<

O

D

O

co

o0>

n

"1

0 ^

2

»

o" -o

_

^"

T *

or:

_

^g.

«

z

co

c «

c

51 o

5

5 *

2 -

o S

(D

CO

P

O *

~

1

S

i£!

S a

S

0

i

Sl«

ss

ss52

S

ags

O

CO

*.

0

-o

>?

: *

f

*. *

o j

1 o

*

O

M *

w

a

Jg

* o

- 0

m

o 0

120

140

160

180

2C

CIPIC

CONDUCTANCE.

IN

SIEMENS

PER

CENTIMETER

AT

2efCELSIUS

temperature, and

ir dates.

O

^^

" ^

--s

o.

1 1

1

1 1

I 1

s ___o

1 1

1

.

B * B

B

B

S-B

1 1

1 1

1 I | |

till

> C o c CO H to CO CO -* CO

1 '

' '

Qn0

ara«

Daa

oayS

eebB

^

l i

i i

*r

i i

i i

DO

DO

cn

o1"1

Tf "

'^T

nn

nn

l 1

1 1

l l

l l

[/ \O

D3B

D

-

1 1

1 1

> o 3D r-

ro 01 _* CO ^ CO

, , , ,

1 1

1 1

|QU

'B

BB

BT

an

rDn

DD

Cn

1 l

1 1

1 1

1 1

/

1 1

1 1

O m

o m 2 03 m 33

-4 _t

CO -4

09

1 1

1 1

B-J

-J

SJ

-! ̂

! , , !

-

~ E

1 1

1 1

1 1

1 1

1 1

1 1

s > -< CO .O

.

CO -* 09

Page 14: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

UJo < u.DCID CO

UJ

UJ COh-LLJ LLJ U.

I h- Q. UJ O

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

35

40

0

5

10

15

20

25

30

MAY 31. 1978!

AUGIWT 30, 1978

FEBRUARY 21, 1079

J_I

02468 10 12

DISSOLVED OXYGEN.

IN MILLIGRAMS

PER LITER

6780 10

pH, IN UNITS

Figure 3. Depth profiles of dissolved specific conductance at

10

0 1C 20 30 40

TEMPERATURE,

IN DEGREES

CELSIUS

80 100 120 140 160 180 200

SPECIFIC CONDUCTANCE, IN

MICROSIEMEN8 PER CENTIMETER

AT 26cfcEL8IUS

oxygen, pH, water temperature, and sampling site B for seven dates.

Page 15: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

APRIL 24, 1979u

5

10

15

20

25

30

35

AKE SURFACE*>

en o o

J 10

0 ,5LLJ CO 20H-

UJ 25 u.

5= 30

h- 35 0_ W 0 40

0

5

10

15

20

25

30

0

. T .- / -- I" } "- /-

-

-i

i

i-

-

i

1 1I

-

-

P1

b

-

-

I 1

1 -

-

-

1-

-

-

i I 1

i

-

-

i

i i i

-

-

-

-

-

-

i i i

AUGUST 30, 1979i \ i ~T~ r

-

-

-

-

-

111(1

e

-

-

-

-

-

J

f '1 :\ .it

1 i i

t

1

«

1

(

i I .

1

1 1 -

J -

i

T

-

(

i

-

.

-

i 1 i

FEBRUARY 26, 19801 ' ' "~ '""B

-

-

-

-

i i i i i2 4 6 8 10 1 2 e

-

7 8 9 1 0 0

_|

-

_

-

-

1 ' 1

.

i-

-

-

-

t i

C i i i

-

-

-

-

1 1 1

10203040 80 100 120 140 160 180 200

DISSOLVED OXYGEN, pH, IN UNITS TEMPERATURE, SPECIFIC

IN MILLIGRAMS

PER LITER

CONDUCTANCE. IN

IN DEQREE8 MICRO8IEMEN8 PER CENTIMETER

CELSIUS AT 26°CEL8IU8

Figure 3. Depth profiles of dissolved oxygen, pH, water temperature, andspecific conductance at sampling site B for seven dates. Continued.

11

Page 16: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

FACE

MAY

D(0

LU

_J

^̂̂

0LUm

LU LULL

zx"

Q.LU 0

u

5

10

15

20

25

30

35

40

i i i ii

i

ii

J

J

' 1

-

_

i i i i i

14, 1980

02468 10 12 DISSOLVED OXYGEN,

IN MILLIGRAMS PER LITER

6 7 8 0 10 pH, IN UNITS

0 10 :JO 30 40

TEMPERATURE,IN DEGREES

CELSIUS

Figure 3. Depth profiles ofspecific conductance

80 100 120 140 160 180 200 SPECIFIC CONDUCTANCE, IN

MICROSIEMENS PER CENTIMETER AT 25° CELSIUS

dissolved oxygen, pH, water temperature, andat sampling site B for seven dates. Continued.

12

Page 17: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DEPTH, I

N FEET BELOW LAKE SURFACE

o

_3!

-

5 °

(Q

Z

«0

10

C

~0 f

O *

m

E

£

*

*

31

r-

< ^

r

m

« *

n

S

o1

Ij

3J

0i

3 >

x -

«

O

n

Z

<

o

DO

to

o

o

a

m

*o

*

z

10Z

-o

o

o0

^

^.

»3

0

?

aS

*

oo

c

»»

~

* Z

«D

2 a

^

O

w

° *

<

01 *

a

-S

o3o

o z

Z °

ox

S

o

-o

o

li

|1S

=-

" §S

"* i-i

to

3D ^

a> ^

m

oo -. ^

52

3 *

5

°

=

*

°

S -

|

S S

oa-

§

«

2

*

o

>

m

2

J

2

H

Z

o

w

S

S

-o

5

o °

=

<fc

CO

0 -

0

2

"

a *

? 3

c °

»

tt

S

0

3

=

O

H

*qt

. £

m

>

«

w

Z

Z

0H

0

5 P

-

m

_

°»

3

Z °

9

10 O

CD

ro

10

-*

o

g\

o

en

o

01

ci

i i ii>

^ w

s

I 1

1 1

1 I

i I

1 I

I i

I 1

1 I

1 1

1 1

l 1

1 1

1 i

i I

1 t

l i

1 l

i i

_-_

. -*

1 1

1 1

1 1

45

C

>

C

O c CO H CO CD

-4

00

t c<>

CD

fo

ro

-t

-t

3O

IO

OIO

CM

OO

IC

-

I 1

1 1

1 1

1

1 '

' 1

0^'

' '

1 1

1 1

1 1

1

1 '

1 1

1 1

1

1 1

1 1

1 1

1

1 1

1 1

1 1

1

1 1

1 1

1 II

*>

C

C.

C Z m ro

o> o> »l

CO

> co

w

ro

ro

-^

-^

> O

l O

O

IO

OIO

O

l O

i »

i «

i i

i

i i

i i

i i

i

i i

i i

i i

i

i i

i i

i i

i

i 1

i i

* i

1

i i

i i

i i

i

i i

i i

i i

i

IB__

« . a ̂_

Q

1 1

1 1

1 1

1

S > < CO CO -J 00

Page 18: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

0

5

10

15

20

g 26

U.

D 0 CO

UJ 5^

-J 10

^O 15_J UJ OQ 201- UJ __ UJ 25 U.

z. 0I1-Q. 5 UJ Q

10

15

20

25

0

5

10

15

20

25c

i i

ii i

-

i i i

i i i

-

-

i i i

i i i

-

-

i i i

19

1

S

-

-

-

i

\ '

I

1

1

-

-

-

I

F 1 t

-

-

-

-

1 1 1

) 2 4 6 8

DISSOLVED

I 8IlI-

-

-

-

1 1 .

' iii

c i

-

i

AUCIf iiii

SEPTEi

;]OCTC

-1

- 11

- 1n

i i

i i

FEBR1

-

h-

r-

-

1

i i

10 12 14 6788

OXYGEN PH. IN UNI1

IN MILLIGRAMS

PER LITER

Figure 4. Depth profiles of dlspecific conductanc

UST 30,

.

MBER 2!

BER 26,

JARY 22

10 0

S TE

II

ssolvede at sar

1978

-n

-

i i i

>, 1978r IB i

1

- 11

1 -

1

1 1 1

1978

i

i

r ii

* ta

I 1 1

,1979i i i

-

-

-

1 1 I

' Y

Tr/ -

-

i i i i i

' ' ' ' /I

T

L̂^

1 1 1 1 1

1 1 1 1 1 1

)/--

a

n 1 1 1 1 11 (

- 1

1

D

1 1 1 1 1

10 20 30 40 80 100 120 140 160 180 2 <

MPERATURE. SPECIFIC CONDUCTANCE. IN

DEGREES MICROSIEMENS PER CENTIMETER

CELSIUS AT 26°CELSIUS

oxygen, pH, water temperature, andupling site C for nine dates. Continued.

14

Page 19: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

APRIL 24. 1979

LU0<LL<rCO

LU

u

5

10

15

20

25

30

35

40

AR

I'll

-

1I C

1

11

1

1

-

*

-

-

1

1

1

1 , \ , I

' I I 1

j( 1 1

i a

i ii

-

, I I I I I

MAY 14, 1980

H LU 5 LU U_

I 15Ha.LU 20 a

25

30

35

40

AK

I I I

-

-

-

-

-

1 1 i

I

-

-

-

-

-

I i

0 2 4 6 8 10 12

DISSOLVED OXYGEN,

IN MILLIGRAMS

PER LITER

-

- i

i i i

i

i I i

-

G

i I

1

-

1 1 1 1 1

1 1 1 1 1

6 7 8'9 10 010203040 80 100 120 140 160 180 200

3H, IN UNITS TEMPERATURE, SPECIFIC CONDUCTANCE, IN

IN DEGREES MICROSIEMENS PER CENTIMETER

CELSIUS AT 2C°CELSIU8

Figure 4. Depth profiles of dissolved oxygen, pH, water temperature, andspecific conductance at sampling site C for nine dates. Continued.

15

Page 20: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DEPTH, IN

FEET BELOW LAKE SURFACE

to

-*

o

01

o n £ c -» a> pi 'i i

co

U

S5

o

-*

10

-*

- O

CM

O

01

O

to

to

-*

-*O

l O

O

l O

O

l O

I__

__

I

O

T3 -»

O

O !! i:

S g

w °

:- . ;SE

PTEI s. CD

I i

i |

' C

O c CO

1 n ! B

_.I

,0

i 1

1 1

2

» 2.

*

<CD

IS 0 a, o

I

CO

0

X

m

H

m c

co

jo

m

o0

W

o 0 fc!

1 1

1

~i

CD CO

1 l

1

u a.

i

o

so~

»

a T

3 so

a> 3 a

ro

z "

co

O

-»~

Z

o»TJ

O

O

o

m

m

c

mCD

Z

S

»

"1

*.

m

z

m

Page 21: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Although water temperature varies both seasonally and areally, the extent of seasonal variation was not determined during this study due to the sampling frequency. Depth profiles of temperature made at sampling sites (figs. 2-5) were compared by site. Depth profiles for May had the greatest temperature variation with respect to depth. Warmer water was present near the surface and cooler water near the bottom. As summer progressed, water temperatures were less variable with depth. Some of the fall depth profiles indicated the beginning of a temperature reversal with bottom temperatures slightly higher than surface temperatures. The water temperature ranged from 4.5 °C in February 1979 to 30.0 °C in May 1978 (table 6).

Specific Conductance

Specific conductance is a measure of the ability of ions in solution to conduct an electrical current. Specific conductance is related to the type and concentration of ions in solution. Specific conductance generally is proportional to the dissolved-solids concentration and can be used to estimate the dissolved-solids concentration. Specific conductance increases with water temperature; however, all specific-conductance values reported in this study were temperature corrected to 25 °C (table 6). Depth profiles for specific conductance are shown in figures 2-5. Specific-conductance values had little variation with depth. The greatest variation occurred temporally, with smaller values in May increasing to larger values in the fall.

Chemical Constituents

Major anions

Sulfate concentrations ranging from 3 to 30 mg/L may be considered normal in lake water (Hutchinson, 1957). Sulfate is important in the formation of chlorophyll and is necessary for plant growth. A limited supply of sulfate can inhibit the development of phytoplankton populations (Reid and Wood, 1976).

The public water supplies of the 100 largest cities in the United States were determined to contain a median sulfate concentration of 26 mg/L and a maximum concentration of 572 mg/L (Durfor and Becker, 1964). Sulfate ions in drinking water can have cathartic effect on occasional users, but acclimatization is rapid (National Academy of Sciences, National Academy of Engineering, 1972).

The national secondary drinking-water standard for sulfate is 250 mg/L (table 2). Dissolved-sulfate concentrations were less than the drinking-water standard in all samples from the study area. Concentrations ranged from 3.1 to 41 mg/L in water from all sites (table 4 and fig. 6).

Chloride is present in all natural waters, but mostly in small concentration (Hem, 1970). Based on studies done for public water supplies of the 100 largest cities in the United States, the median chloride concentration was 13 mg/L with a range of 0 to 540 mg/L (Durfor and Becker, 1964).

17

Page 22: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

trorH-

tr at Q.CO

tr o

2 z

c?CO> *

at

D CO

tr at

tr ujQ.

CO

tr o

40

35

30

26

Drinking-water standard 250 milligrams per lit

16

10

30

26

20

15

10

UJo

§ _lXo

theA A B

Surface Bottom Surface Bol

mumFigure 6. Maximum and miniconstituents at sampling

18

MAXIMUM

MINIMUM

Drinking-water standard 250 milligrams per liter

Site siteC D D

Surfitce Bottom Surface Bottom

concentrations for selected chemical site A-E.

Page 23: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

QC UJ

GC UJ Q.CO2 < GC O

.7

.6

.5

.4

MAXIMUM

MINIMUMDrinking-water standard 2.4 milligrams per liter

.3

UJ Q£ o

.2

.1

mln mln <.1 <.1

mln <.1

GC HI

GC UJ 0.

CO

GC O

HI h- < GC

1.6

1.4

1.2

1.0

.8

.4

.2

Drinking-water standard 10 milligrams per liter

5? Site w M

Sum

MAXIMUM

MINIMUM

Surface Bottom Surface Bottom Surface Bottom Surface Bottomit*

Figure 6. Maximum and minimum concentrations for selected chemical constituents at sampling site A-E. Continued.

19

Page 24: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DC LU

DC LU Q.

W

DC O O DC OI

(0<

LU W DC

80

70

60

60

40

30

20

10

40

30

DC LU

DC LU Q.

W

DC O O DC OIz

o O ̂ 10

DI

20

MAXIMUM

MINIMUM

Or nking-water standard 50 micrograms per liter

Surface Bottom Surf toe Bottom Surfi

MAXIMUM

MINIMUM

Drinking-water standard I 10 micrograms per liter

Figure 6. Maximum and mininum concentrations constituents at sampling site

20

toe Bottom Surface Bottom

for selected chemical A-E. Continued.

Page 25: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

<rHI

ccUJa.CO2 < cc o o cc o2z

o

occI o

30

MAXIMUM

MINIMUM

Drinking-water standard 50 micrograms per liter

20

10

66

30

cc in

ccUJ 0.

CO2 < ocO

2 z

3O "-' tp ocUJ £L 0. O O

MAXIMUM

MINIMUM

Drinking-water standard 1000 micrograms per liter

20

Slia 8 It a site site We sfte Site Site Site A A B B C ' C D D E Surface Bottom Surface Bottom Surface Bottom Surface Bottom

Figure 6. Maximum and minimum concentrations for selected chemical constituents at sampling site A-E. Continued.

21

Page 26: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

36,000

-1 30.000

OC

0.en 25,000

20.000O OC O

15.000

^ 10,000 0)u.z O OC

5,000

standard liter

400 OC 111

240

200

160

= 120

<-C 80JQ 0.

Q< 111

40

- - Site 'site

MAXIMUM

MINIMUM

Drinking-water standard 50 micrograms per liter

A A B Surface Bottom Surface

Figure 6. Maximum andconstituents at

Site ^TteC D

Bottom Surface Bottom

minimum concentrations for selected chemical site A-E. Continued.

Page 27: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

ocUJ

OC UJ Q.

CO 3.000 5

MAXIMUM

MINIMUM

Drinking-water standard 50 micrograms per liter

OC CD O OC O

2,500

2.000

1,500

S 1.000UJZ

Oz

500

I: :.

I

!: :!!:!;

S

%

M* 2022

OCUJ

OC UJ Q.

CO

OC O O OC O

Iz

O OCUJ

1.1

.6

.5

.4

.3

MAXIMUM

MINIMUM

Drinking-water standard 2 micrograms per liter

o>5 .2

.1

8 JJ Site sTte Site site She 'site ^Tte«j ^ B B C C D D Surface Bottom Surface Bottom Surface Bottom Surface Bottom

Figure 6. Maximum and minimum concentrations for selected chemical constituents at sampling site A-E. Continued.

23

Page 28: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DC UJ

DC UJ O.(0

DC O O DC O

c N

OZN

DC UJ

DC UJ 0.

(0

DC O

w o

O(0

oUJ

o(0 (0

105

90

75

60

45

16

120

105

90

76

60

46

30

15

MAXIMUM

MINIMUM

)rinking-water standard

,000 micrograms per liter

MAXIMUMDrinking-

SiteA A B

Surface Bottom Surface Bot

Figure 6. Maximum and constituents at

water standard 500 milligrams per liter

om Surface

ite iteODD

Bottom Surface Bottom

minimum concentrations for selected chemical sampling site A-E. Continued.

24

Page 29: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Large concentrations of chloride, as part of the dissolved solids in water, can be detected by taste and can lead to consumer rejection of the water supply. The national secondary drinking-water standard for chloride is 250 mg/L (table 2). Dissolved chloride concentrations were less than the drinking-water standard in all samples from the study area. Concentrations ranged from 2.8 to 31 mg/L in water from all sites (table 4 and fig. 6).

Fluoride has potential beneficial effects, but excessive fluoride in drinking-water supplies produces dental fluorosis (an abnormal condition chiefly characterized by mottling of the teeth) that increases with increasing fluoride concentration greater than the recommended limit (National Academy of Sciences, National Academy of Engineering, 1972). Recommended concentrations of fluoride in drinking water are temperature dependent (table 2). Dissolved-fluoride concentrations were less than the drinking-water standard in all samples from the study area. Concentrations ranged from 0.0 to 0.1 mg/L in water from all sites (table 4 and fig. 6).

Nitrogen

Nitrogen is considered one of two major plant nutrients and commonly is identified as a limiting factor for aquatic-plant growth. The primary source of nitrogen is the atmosphere. Nitrogen also occurs in organic, ammonia, nitrite, and nitrate forms. Each form can be utilized by different organisms.

Nutrient enrichment is a natural process in lakes and reservoirs. Man has become a significant contributor of large concentrations of nitrogen to the aquatic systems by activities such as agriculture and urbanization. As more nutrients are made available, plant productivity may increase, and the natural eutrophication or enrichment process accelerates.

The recommended maximum nitrate-nitrogen concentration in public water supplies is 10 mg/L. All the nitrate concentrations determined in water from Gaines Creek and the Gaines Creek arm of Eufaula Lake sampling sites A-E (table 4- and fig. 6), were within drinking-water standards.

Trace Elements

Generally, trace elements occur in most natural waters at concentrations that are not toxic to humans, animals, and plants; they are, in many instances, essential to plant growth as micronutrients. Many trace elements are toxic to humans, animals, and plants when they occur in large concentrations. Large concentrations commonly occur as a result of mining or industrial activities. The presence of trace elements in water supplies has a variety of implications concerning the potability and ultimate other uses of drinking water (Rubin, 1976). Concentrations of selected trace elements in water from Gaines Creek and the Gaines Creek arm of Eufaula Lake (sampling sites A-E) are listed in table 4-. Each trace element will be discussed separately in the following paragraphs. The concentrations generally were much less than the drinking-water standards, with the exception of cadmium, iron, lead, and manganese.

25

Page 30: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

amount

Analyses were made for both dis elements. As defined by the U.S. Geo that material in a representative wat 0.4-5-micrometer membrane filter. Thi used by Federal agencies that collect 'dissolved' constituents are made on recoverable is defined as "...the solution after a representative water digested by a method (usually using a dissolution of only readily soluble s particulate matter is not achieved by determination represents something le less than 95 percent) of the constitu suspended phases of the sample."

3lved and total recoverable trace Logical Survey (1983), "Dissolved isr sample which passes through a

s is a convenient operational definitionwater data. Determinations of subsamples of the filtrate." Total

of a given constituent that is in -suspended sediment sample has beendilute acid solution) that results in ubstances. Complete dissolution of allthe digestion treatment, and thus the

ss than the 'total' amount (that is,nt present in the dissolved and

Arsenic.--Arsenic occurs ubiquitously Most forms of arsenic are toxic species. Although no form of ar has been added in small quantiti (National Academy of Sciences, Water samples collected from 130 had arsenic concentrations ranging fronr liter) with a mean concentration of 64-

in natiure and is insoluble in water, to humans, animals, and aquatic senic is known to be essential, arsenics to animal food as a growth stimulant

ational Academy of Engineering, 1972).sampling points in the United States

The national primary drink:! (table 1). Arsenic concentrations standard in all samples from th 0 to 8 |j,g/L in water from most s

Cadmium. Cadmium is biologically a Concentrations of cadmium gener Cadmium can be added to the wate zinc-galvanized iron in which c of Sciences, National Academy of concentrations of cadmium in dr'

The national primary drinkj (table 1). Concentrations of c drinking-water standards at lea and C (table 4- and fig. 6).

Chromium.--Chromium commonly is assoc a common element in the environn are toxic to humans and animals most biological systems, it has Water samples collected from 13( had chromium concentrations concentration of 9.7 |j,g/L (Kopp

5 to 336 p,g/L (micrograms per (Kopp, 1969).

ng-water standard for arsenic is 50 p,g/Lwere less than the drinking-water

study area. Concentrations ranged from ites (table 4- and fig. 6).

nonesserjtial, nonbeneficial element, lly are very small in natural water, r syste|m from electroplating plants and dmium is a contaminant (National Academy Engineering, 1972). Large nking water are toxic to humans and

130 sampling points in the Unitedanimals. Water samples collected fromStates had detectable cadmium concentrations ranging from 1 to 20 p,g/Lwith a mean concentration of 9.5 H9/L

ng-wate;r standard for cadmium is 10 |j,g/L dmium exceeded the national primary once in water from sampling sites A

Lated nt.

not sampl

been

1969)

Kopp, 1969).

with industrial wastes; it also is Large concentrations of chromium

Although chromium can be detected indetermined to be essential,

ng points in the United States ranging from 1 to 112 |j,g/L with a mean

26

Page 31: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

The national primary drinking-water standard for chromium is 50 p,g/L (table 1). All chromium concentrations were less than the national primary drinking-water standard (table A- and fig. 6).

Copper. Copper, although widely distributed in the environment, occurs only in trace concentrations in natural waters because of solubility controls. Copper is essential in the'nutrition of plants and animals but is toxic to some algae. Mining and industrial activities sometimes contaminate water with copper. Copper is esthetically significant in public water supplies because it can cause taste and discoloration problems (Rubin, 1976). Water samples collected from 130 sampling points in the United States had copper concentrations ranging from 1 to 280 [j,g/L with a mean concentration of 15 \ig/L (Kopp, 1969).

The national secondary drinking-water standard for copper is 1,000 [ig/L (table 2). Copper concentrations were much less than the secondary drinking-water standard. Water from Site B had the greatest copper concentation with a maximum of 67 \ig/L (table 4- and fig. 6).

Iron. Iron is an abundant and important element unsurpassed by any other heavy metal in the Earth's crust (Cole, 1975). It is essential to photosynthesizing plants; it is the metal part of some plant cytochromes that function in the transfer of electrons during photosynthesis. It also is a vital element in the respiratory pigments of many animal species and affects many chemical reactions in water. Excessive concentrations may be toxic. Large concentrations of dissolved iron will not be present in natural waters with near-neutral pH. Large concentrations, if they occur, will be found in the suspended phase. Iron is esthetically significant in public water supplies because it can cause taste and discoloration problems (Rubin, 1976).

The national secondary drinking-water standard for iron is 300 (table 2). This limit of 300 \ig/L for iron was exceeded in numerous samples collected during the study. Large concentrations of total recoverable and dissolved iron were found in samples from all sites (tables A- and fig. 6). The largest concentrations were for samples collected near the reservoir bottom.

Lead.--Lead is found in small concentrations in streams due to its minimal solubility. Large concentrations of lead are toxic to humans. Water samples collected from 130 sampling points in the United States had detectable lead concentrations ranging from 2 to 14-0 \ig/L with a mean concentration of 23 p,g/L (Kopp, 1969).

The national primary drinking-water standard for lead is 50 \ig/L (table 1). The lead concentrations in water from the study area were much greater than the drinking-water standard (table 4- and fig. 6). Total recoverable-lead concentrations ranged from 0 to 4-20 [j,g/L.

27

Page 32: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Manganese. Manganese concentrations comparison to most trace elements necessary nutrient for both plant plankton growth. Excessive con (Rubin, 1976).

in natural water generally are large in other than iron. Manganese is a

s and animals; manganese stimulates centrations may be toxic to humans

The national secondary drinking-water standard of 50 ^g/L for manganese (table 2) was established to laundry and objectionable taste concentrations in water from the secondary drinking-water standard manganese value, 2,400 |j,g/L, was 6).

prevent brownish staining of to certain beverages. Manganese study area commonly exceeded the

The greatest total recoverable- reported at site A (table 4 and fig

Mercury. The natural concentration thought to be less than 0.5 |j,g/L tions of mercury in natural water or other industrial wastes. In sources of man's mercury contributions been reported as a source of mercury 1971). Mercury and mercuric salts

Because of mercury's toxicity, a standard of 2 p,g/L was establi concentrations were less than fig. 6). The largest total recoverable detected in a sample from site

Selenium.--Selenium in the elementaloxidized form, it can occur in Selenium is toxic to humans,

The national primary (table 1). None of the

the established standard. The dissolved or total recoverable

of merqury in most surface waters is (WerShaw, 1970). Larger concentra- can result from mining, metallurgical,

addition to the more commonly knownthe burning of fossil fuels has

pollution (Bertine and Goldberg, are toxic to humans.

the

national primary drinking-waterhed (table 1). All mercury

drinking-water standard (table -mercury concentration was

and

D.

form is almost insoluble, but in an appreciable concentrations in water,

animals, and plants.

drinking-watter standard for selenium is 10 selenium[concentrations determined exceeded

largest! measured concentration for either seleniiim was 2 |j,g/L (tables 4 and 5).

Zinc. Zinc has many industrial use known adverse physiological ef concentrations (McKee and Wolfsampling points in the United States had zinc concentrations ranging from 2 to 1,183 ^g/L and a mean concentration of 64 ^g/L (Kopp, 1969).

taste000

For considerations of regulations set an upper limit concentrations were considerab The largest zinc concentration concentration of 100 p,g/L determined i fig. 6).

and is common in ores. Zinc has noects ort humans except in very large1963), Water samples collected from 130

, nat of 5, y less was a

onal secondary drinking-water /L for zinc (table 2). Zinc

than the drinking-water standard, total recoverable-zinc in water from site D (table 4 and

28

Page 33: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Biota

Phytoplankton

Phytoplankton are primary producers in the aquatic food chain. Planktonic variability in lakes is determined by the physical, chemical, and biological characteristics of the individual lake. Some information about the degree of lake enrichment can be determined by the phytoplankton members present.

In a study done by W.D. Williams (Cole, 1975) some generalities were cited. The phytoplankton of oligotrophic waters (those that contain few nutrients) includes the desmid Staurastrum, the chrysophyte Dinobryon, noted for its tolerance of only small phosphate concentrations, and the diatoms Tabellaria and Cyclotella. The eutrophic lake (enriched in nutrients) has a different group of diatoms and a mixed group of blue-green algae that may eventually replace the diatoms. As the lake becomes eutrophic, the filamentous diatoms Melosira and Stephanodiscus appear first. If there is agricultural runoff or erosion frqm clear cutting, Asterionella may appear. Later, if sewage enters the lake, Fragillaria may appear.

Hern and others (1979) in a study of some Oklahoma lakes found that whereas desmids and many pennate diatoms are found in oligotrophic waters because they generally cannot tolerate large nutrient concentrations, Cyanophyta, Euglenophyta, centric diatoms, and members of the Chlorococcales generally are associated with eutrophic waters.

Generally, during the study, the greatest number of phytoplankton cells were in the surface samples (table 7, at back of report) where the light penetration was the greatest. The diatoms and blue-green algae were the dominate organisms.

Phytoplankton data (table 7) provide useful information towater-treatment operators. Counts of blue-green algae that exceed 50 percent of the total phytoplankton count usually indicate potential taste and odor problems. Phytoplankton data were collected at all sites. In one-third of the phytoplankton analyses from Gaines Creek, blue-green algae constituted more than 50 percent of the total cells per milliliter. Lake phytoplankton also frequently were dominated by blue-green algae, the most prevalent group.

Diversity of phytoplankton has been determined in several ways because of the observed species changes as a lake becomes enriched. Among the best indices of species are those that are largely independent of sample size (Wetzel, 1975). As defined by the U.S. Geological Survey (1983), "...diversity index is the numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

_d = -

s n. , n. _ i log _ i

There n. is the number of individuals per taxon, n is the total number of

individuals, and s is the total number of taxa in the sample of the

29

Page 34: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

community. Diversity index values the sample are the same, to some po organisms in the samples are differ two species results in small divers are populations of several species, diversity to decrease with increasing the slower growth rates attainable number of species with reasonably s temporal variations of regulating enriched waters (Wetzel, 1975).

*ange fjrom zero, when all the organisms in itive number, when some or all of the 3nt" (table 7). Predominance of one or Lty values, large values occur when there There is a general tendency for speciesenrichment of the water. Presumably,

Ln oligotrophic lakes permit a greater milar requirements to coexist within the

parameters than would be found in more

The significance of phytoplank during this investigation are listed Although several of the genera are specific conditions. Generally, th A-E may be classified as: (1) Soft conductivity; (2) calm or very slow organic matter.

on genin

videly B genera and .y moving

Another means of categorizing been suggested by P.E. Greeson (U.S 1978) on the basis of phytoplankton Survey during the 1974 to 1976 wate in Eufaula Lake indicate that the organic and nutrient contents, and solids. Phytoplankton indicative o both mesotrophic- and eutrophic-ind

Lakes on" the basis of phytoplankton hasGeological Survey, written commun.,

data collected by the U.S. Geologicalyears (fig. 7). Phytoplankton present

lake tends to be acidic, has significantlittle conductivity and dissolved

both soft and hard water were present; cating plankton were present (table 7).

All recreational waters and dr free of pathogenic bacteria so as not for detecting these bacteria are com coliform bacteria test is used as an

Fecal coliform bacteria are ba or feces of warm-blooded animals, usually are used as indicators of bacteria are defined as all organi hours when incubated at 44.5 °C +0. bacterial growth).

Other bacteria found in intestines of streptococcal bacteria. Their pres bacterial pollution. These bacteria produce red or pink colonies within M-enterroccus or KF streptococcus medium.

It is recommended (National Academy Engineering, 1972) that the geometr exceed 2,000 colonies per 100 milliliters cited for fecal streptococcal bacte (Oklahoma Water Resources Board, 1979)

taoleera present at sampling sites A-E

8 (at back of report).distributed, many are indicative of indicate that the water at sites c with little mineral content and ; and (3) warm and enriched with

3acteria

nking-water supply sources need to beto pose hazards to health. Procedures

plex and time consuming; therefore, the indirect measure of this hazard.

teria that are present in the intestines or this reason fecal coliform bacteria

the sanitary quality of water. These sms that produce blue colonies within 22

C on M-FC medium (nutrient medium for

warm-blooded animals include fecal water is considered to verify

defined as all organisms that hours at 35 °C +1.0 °C on

nee in are

c meariteia.

of Science, National Academy of of fecal coliform bacteria not

of water. No recommendation is Oklahoma's water-quality standards

recommend that "...the bacteria of the

30

Page 35: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Pinnularia Agmenellum

TabellarlaAmphoraSynedra

Kirchneriella Anklstrodesmus

Acidic 7.0

pH

Ceratlum Aphanlzomenon Gyrosigma Phoicosphenia Fragillaria

Alkaline

Trachelomenas Euglena

Small Moderate

ORGANIC CONTENT

Large

Pinnularia Phoicosphenia

AphanizonenonAnabenaAnacystis

Small moderate Large

SPECIFIC CONDUCTANCE AND DISSOLVED SOLIDS

Small moderate Large

NUTRIENT CONTENT

Ceratium Anacytls Apanizomonon Stephanodiscus

Tabellarla Coelastrum Asterlonella Anabaena Synedra Lynqbya

Eudorlna Eunatia Agmenellum Oocystis

AphanlzomenanPandorinaDinobryonAnabaenaLynabyaAnacystisCeratium

Oligotrophic Mesotropic Eutropic

TROPICAL

Soft Moderately Hard

HARD

Figure 7. Implied indicative associations of phytoplankton (modified from P. E. Greeson, U.S. Geological Survey, written conwiun., 1978).

31

Page 36: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

fecal coliform group shall not exceed at a point of intake for a public or also applies to waters designated fo Concentrations reported during the s within recommended limits, except at coliform counts exceeded the limit.

CONCLUSIONS AND SUMMARY

Water from Gaines Creek and the suitable for a public water source w and secondary drinking water regulat biological qualities of the lake and significant difference was larger co

Through the use of modern water available water-treatment processes, could be used to produce an acceptab

a monthly geometric mean of 200/100 ml_, private water supply." This standardprimary body-contact recreation,

udy (table 9, at back of report) were site E, where, on two occasions, fecal

Gainesj Creek arm of Eufaula Lake is len compared with the national primary ons. The chemical, physical, and creek 'vater are similar. The most iform counts at the creek site.

management techniques and a variety of water from either the lake or creek

jLe public water supply.

32

Page 37: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

REFERENCES CITED

American Society for Testing and Materials, 1967, Water quality criteria: American Society for Testing and Materials, Special Technical Publication 416, 120 p.

Bertine, K.K., and Golberg, E.D., 1971, Fossil fuel combustion and the major sedimentary cycle: Science v. 173, p. 233-235.

Brown, Eugene, Skougstad, M.W., and Fishman, M.3., 1970, Methods forcollection and analysis of water samples for dissolved minerals and gases: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter Al, 160 p.

Cole, G.A., 1975, Textbook of liminology: St. Louis, C.V. Mosby Co., 282 p.

Durfor, C.N., and Becker, Edith, 1964, Selected data on public water supplies of the 100 largest cities in the United States, 1962: U.S. Geological Survey Water-Supply Paper 1812, 364 p.

Goerlitz, D.F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter A3, 40 p.

Greeson, P.E., Ehlke, T.A., Irwin, G.A., Lium, B.W., and Slack, K.V., eds., 1977, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 332 p.

Hawley, G.G., 1971, The condensed chemical dictionary (8th ed.): New York, Van Nostrand Reinhold Co., 674 p.

Hem, 3.D., 1970, Study and interpretation of the chemical characteristics of natural water (2d ed.): U.S. Geological Survey Water-Supply Paper 1473, 363 p.

Hern, S.C., and others, 1979, Distribution of phytoplankton in Oklahoma lakes: U.S. Environmental Protection Agency, Ecological Research Series, available only from the National Technical Information Service, Springfield, Virginia, as report PB 300796, 58 p.

Hutchinson, G.E., 1957, A treatise on limnology, Volume 1, Geography,physics, and chemistry: New York, John Wiley and Sons, Inc., 1015 p.

Kopp, O.F., 1969, The occurrence of trace elements in water, in Hemphill, D.D., ed., Proceedings of the Third Annual Conference on Trace Substances in Environmental Health: University of Missouri, Columbia, Missouri, p. 59-73.

McKee, 3.E., and Wolf, H.W., 1963, Water quality criteria (2d ed.): California Water Quality Control Board Publication 3-A, 548 p.

33

Page 38: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Arbor, Mich., Ann Arbor Science

U.S. Environmental Protection Agency

National Academy of Sciences, National Academy of Engineering, 1972 [1974],Water quality criteria 1972: Washington, D.C., U.S. Government Printing Office, 594 p.

Oklahoma Water Resources Board, 1979, Oklahoma's Water quality standards: Oklahoma Water Resources Board Publication 101, 94- p.

Reid, G.K., and Wood, R.D., 1976, Ecology o f inland waters and estuaries (2d ed.): New York, D. Van Nostrand Co., 485 p.

Rubin, A.O., ed., 1976, Aqueous-environmental chemistry of metals: Ann

hydrographic modifications: U.S. Environmental Protection Agency Report 430/9-73-017, 256 p.

1976a, Quality criteria for water: U,,S. Environmental Protection Agency, 256 p.

- 1976b, National interim primary Environmental Protection Agency

1979, National secondary drink:.ng water regulations: U.S.Environmental Protection Agency

U.S. Geological Survey, 1983, Water resources data for Oklahoma, water year 1983: U.S. Geological Survey Water-Data Report OK-83-1, 286 p.

Weast, R.C., ed., 1972, Handbook of chemistry and physics (53rd ed): Cleveland, The Chemical Rubber Co., 23!) p.

Welch, P.S., 1952, Limnology: New York, McGraw-Hill Book Co., 538 p.

Wershaw, R.L., 1970, Mercury in the environment: U.S. Geological Survey Professional Paper 713, 67 p.

Wetzel, R.G., 1975, Limnology: Philadelphia, W.B. Saunders Co., 743 p.

Publishers Inc., 390 p.

1973, The control of pollution from

Report

Report

drinking water regulations: U.S.570/9-76-003, 159 p.

570-9-76-000, 37 p.

34

Page 39: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table

4-.

Valu

es of pH

an

d co

ncen

trat

ions

of

selected c

hemi

cal

constituents in w

ater from s

ampling

site

s A-E

OJ

Ul

[Con

cent

rati

ons

in m

illigrams

per

Date

05-3

1-78

08-2

3-78

12-21-78

02-21-79

04-2

5-79

08-29-79

Maximum

Minimum

05-3

1-78

08-23-78

12-21-78

02-2

1-79

04-2

5-79

08-29-79

Maximum

Minimum

PH 6.7

7.4

7.3

7.0 -- 7.4

7.4

6.7

6.9

7.0

7.2

6.7

6.8

7.6

7.6

6.7

Sulfate

dis­

solved

as S0

4

14 9.9

12 18 19--

19 9.9

14 10 12 20 14 -- 20 10

lite

r, except pH

wh

ich

is in standard u

nits

; ND,

not

dete

cted

]

Solids,

Chro-

Chlo

- Fl

uo-

residue

Nitro-

Cadmium

mium,

Copper,

ride

ride

at 180

gen,

total

tota

l total

dis-

dis-

De

g. C

nitrate

Arsenic

recov-

reco

v-

reco

v-

solved

solved

dis-

tota

l to

tal

erab

le

erable

erable

as Cl

as F

solv

ed

as N

as As

as

Cd

as Cr

as Cu

6.9

6.0

6.0

6.6

4.2 -- 6.9

4.2

5.8

7.5

5.8

6.5

3.8 -- 7.5

3.8

0.1

87.1

94

<.1

59.1

64

.1

70--

Extr

emes

(d

isso

lved

0.1

94<.

1 59

0.1

83.1

99<.1

62.1

59.1

61

--

Extremes (dissolved

0.1

99<.

1 59

0.00 .14

.35

1.34 .34

.01

values 1.34 .00

0.22

0.03

0.46

0.88

0.32

0.06

values 0.88 .03

SITE A

, NEAR LAKE

0.002

<0.0

02.0

03

ND.001

<.02

0.0

01

<.00

2.001

.043

.003

ND

not

included except

0.003

0.043

.001

ND

SITE A

, NEAR LAKE

0.003

ND.0

07

ND.001

.040

.001

ND

.001

ND.004

ND

not

included except

0.00

7 0.

040

.001

ND

SURFACE ND

0.ND

.010

<.ND

<.ND

<.02

0

for

fluo

ride

,

0.01

0 0.

ND

BOTT

OM ND

0.ND

<.02

0.0

20

<.<.020

<.02

0

for

fluo

ride

,

0.02

0 0.

ND

008

005

020

020

006 ND

Iron,

tota

l recov­

erab

le

as Fe 1.9

1.6

1.8

1.8

1.6

1.4

chlo

ride

, and

008 ND 008

007

005

020

007 ND

1.9

1.4

4.6

7.7

2.9

2.1

2.4

4.6

chloride,

and

008 ND

7.7

2.1

Lead

, total

recov­

erab

le

as Pb ND ND.072

.036

.016 ND

sulfate)

0.07

2 ND ND ND.420

.004

.014 ND

sulf

ate)

0.420 ND

Manga­

nese

, to

tal

reco

erable

as Mn

0.35

01.

6 .170

.120

.210

1.4

1.6 .120

1.4

2.4 .200

.130

.260

1.6

2.4 .130

Mercury

tota

l recov­

erable

as Hg

0.0002

<.00

01<.

0001

.0003

.0002

.0003

0.00

03<.0001

0.00

03<.0001

<.0001

<.0001

.0002

.0003

0.0003

<.00

01

Sele­

nium,'

total

as Se

<0.001

<.001

<.00

1<.

001

<.001

<.001

<0.001

<.001

<0.001

<.001

<.00

1<.001

<.00

1<.001

<0.001

<.001

Zinc,

total

recov­

erab

le

as Zn

0.02

0.020

.020

.030

.020 ND

0.030 ND

0.020

.030

.020

.020

.030

<.02

0

0.030

<.020

Page 40: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Tabl

e 4. Values

of pH

and

conc

entr

atio

ns of

se

lect

ed c

hemical

constituents in w

ater

from s

ampl

ing

sites

A-E

Cont

inue

d

Date

05-3

1-78

08-2

3-78

02-2

1-79

04-2

4-79

08-3

0-49

02-2

6-80

05-1

4-80

OJ <^

Maximum

Minimum

05-3

1-78

08-2

3-78

02-2

1-79

04-2

4-79

08-3

0-79

02-2

6-80

05-1

4-80

pH 6.9

7.2

6.7

7.4

7.2

6.9

6.4

Sulfate

dis­

solved

as S0

4

16 18 18 17 20 27

Chlo

­ ride

dis­

solv

edas

Cl 7.2

18 7.1

4.9 7.9

5.2

Fluo

- ride

dis­

Soli

ds,

Chro-

residue

Nitro-

Cadmium

mium,

Copper,

Iron,

at 18

0 ge

n,

total

tota

l to

tal

total

Deg.

C

nitrate

Arsenic

recov-

recov-

recov-

recov-

solved

dis-

as F

0.1 .1 .1 .1 .1 .1

txtr

emes

7.4

6.4

6.8

7.5

6.7

7.4

7.1

7.0

6.1

27 16 16 19 19 13 21 14

18 4.9

7.0

11 7.3

4.3 -- 9.6

5.7

0.1 .1

0.1 .1 .1 .1 .1 .1

Extr

emes

Maximum

Minimum

7.5

6.1

21 1311 4.

30.1 .1

solved

105

111 80 75 90 82

{dis

solv

ed

111 75 99 105 67 68 95 77

(dis

solv

ed

105 67

tota

l total

erab

le

erab

le

erab

le

erab

leas N

0.03 .14

1.16 .29

.06

.35

.15

values 1.16 .03

0.42 .21

1.24 .30

.27

.35

.14

valu

es 1.24 .14

as A

s as Cd

as Cr

as

SITE B

, NEAR L

AKE

SURFACE

0.00

1 ND

ND

0.

.003

ND

<0.020

.001

ND

ND.0

01

0.008

<.02

0.002

ND

<.02

0.001

ND

.008

.001

ND

ND

not

Incl

uded

exc

ept

for

fluo

ride

,

0.003

0.00

8 0.

008

0..0

01

ND

ND

SITE B

, NEAR LAKE BO

TTOM

0.002

ND

0.00

5 0.

.001

0.

004

ND.001

<.00

2 ND

.001

ND

<.02

0.0

02

ND

.020

.001

ND

.006

.002

ND

ND

not

included except fo

r fl

uori

de,

0.002

0.004

0.02

0 0.

.001

ND

ND

Cu

as Fe

005

2.3

006

4. 1

067

2.0

017

1.8

ND

2.9

005

2.8

002

3.5

chloride,

and

067

4.1

ND

1.8

007

6.4

011

.26

007

2.5

008

2.8

ND

5.1

006

3.0

002

5.5

chloride,

and

011

6.4

ND

.26

Lead,

total

recov­

erab

leas Pb ND ND

0.01

1.0

77 ND.014

.015

sulf

ate)

0.07

7 ND ND ND0.

020

.009 ND

.014

.020

sulfate)

0.020 ND

Manga­

nese,

tota

l recov­

erab

leas

Mn

0.11

0.370

.140

.160

.140

.250

.220

0.370

.110

0.800

.070

.160

.240

.230

.200

.570

0.80

0.0

70

Mercury

tota

l Se

le-

recov-

nium,

erab

le

total

as Hg

as Se

<0.0

001

<0.001

<.0001

<.001

<.0001

<.00

1.0002

<.001

<.0001

<.001

.0000

.000

.0000

.000

0.0002

<0.001

.0000

.000

<0.0001

0.001

<.0001

<.001

<.00

01

<.001

<.00

01

<.00

1.0002

<.001

.0000

.000

.0001

.000

0.0002

0.00

1.0000

.000

Zinc,

total

recov­

erab

leas

Zn

0.02

0.020

.030

.030 ND

.020

.080

0.08

0 ND

0.02

0.0

30.020

.020

.020

.020

.050

0.05

0.0

20

Page 41: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Tabl

e 4. Values

of p

H an

d concentrations of selected chemical co

nsti

tuen

ts in

wa

ter

from

sampling

sites

A-E-

-Con

tinu

ed

u>

Date

pH

Sulfate

dis­

solved

as 5

04

Solids,

Chlo-

Fluo

- residue

Nitro-

ride

ride

at 180

gen,

di

s-

dis-

Deg. C

nitrate

Arsenic

solved

solved

dis-

tota

l to

tal

as C

l as

F

solv

ed

as N

as

As

Chro

- Cadmium

mi ur

n,

Copper,

tota

l to

tal

total

reco

v-

recov-

recov­

erab

le

erab

le

erab

le

as C

d as C

r as Cu

SITE C

, NEAR LAKE

05-3

1-78

08-2

4-78

09-28-78

10-2

6-78

02-22-79

04-24-79

08-30-79

02-27-80

05-1

4-80

Maximum

Minimum

7.0

7.2

8.4

7.2 6.6

7.1

6.9

8.4

6.9

16 22 35 18 20 12 -- 21 29 35 12

9. 21 29 22 7.

8 0.1 .1 .2 .1

6 .1

4.1

.1-

10 12 29 4.

_.1 .1

Extremes 0.2

1 .1

85 111

122

125 70 68 86 103

(dis

solv

ed

125 68

0.35 .13

.07

.23

.94

.40

.31

.32

.26

valu

es 0.94 .07

0.001

.002

.002

.002

.001

.001

.003

.002

.001

not

included

0.003

.001

NO NO NO NO NO0.

014 NO NO NO

except

0.014 NO

SITE C

, NEAR L

AKE

05-31-78

06-28-78*

08-24-78

09-28-78

10-26-78

02-22-79

04-24-79

08-3

0-79

02-27-80

05-14-80

Maximum

Minimum

6.6

6.8

7.6

7.6

7.7 6.9 6.8

7.7

6.6

20 12 41 21 23 20 13 18 26 41 12

13 13 18 18 31 8. 6. -12 19 31 6.

0.2 .1 .1 .2 .1

6 .1

1 .2

_.2 .1

Extr

emes 0.2

1 .1

91 81 125

116

122 74 70 100

120

(dissolved

125 70

0.52 .26

1.37 .29

.24

.91

.49

.32

.33

.27

valu

es 1.37 .24

0.003

.002

.003

.002

.002

.001

.001

.002

.002

.002

not

Included

0.003

.001

NO NO NO NO NO NO0.

007 NO NO NO

except

0.00

7 NO

SURFACE

0.00

5 0

<.02

0 NO NO<.

020 NO

<<.

020

.001 NO

for

fluoride,

0.01

0 0

NO

BOTT

OM

<0.0

20

0NO

<.02

0 NO NO.0

20<.

020

<<.

020

.006 NO

for

fluoride,

0.02

0 0

NO

.007

.006

.004

.005

.008

.020 NO

.017

.002

Iron,

total

recov­

erab

le

as Fe

3.5

3.6

2.9

3.3

2.0

2.7

3.8

3.2

3.7

chloride

, and

.017 NO

.015

.011

.031

.006

.007

.006

.020 NO

.016

.002

3.8

2.0

9.4

Lead,

total

recov­

erab

le

as Pb NO NO

0.00

3.0

06.007

.017 NO

.024

.044

sulf

ate)

0.04

4 NO NO3.6

<0.2

006.5

4.7

4.7

2.2

5.0

4.4

3.4

5.0

chlori

de,

and

.031 NO

9.4

2.2

NO.006

.005

.003

.064 NO

.016

.230

sulf

ate)

0.23

0 NO

Mang

nese,

total

recov­

erab

le

as Mn

0.070

.160

.120

.190

.140

.090

.110

.100

.130

0.190

.070

0.630

.110

.370

.300

.400

.140

.260

.220

.120

.270

0.63

0.110

Merc

ury

total

Sele-

reco

v-

nium

, er

able

total

as Hg

as Se

<0.0001

<0.001

<.0001

<.001

<.0001

<.001

.0003

<.001

<.0001

<.00

1.0

002

<.00

1<.0001

.002

.0001

.000

.000

0 .0

00

0.00

03

0.002

.000

0 .000

<0.0001

<0.001

.000

6 <.001

<.0001

<.001

.0002

<.001

.0003

<.001

<.0001

<.00

1.0003

<.001

.000

6 <.001

.000

0 .0

00.0000

.000

0.00

06

<0.0

01<.0001

.000

Zinc,

total

reco

erab

le

as Zn

0.020

<.020

<.02

0<.020

.020

.020 NO

.040

.050

0.050 NO

0.030

.020

.030

.020

.020

<-020

.030

<.02

0.020

.080

0.08

0<.

020

* Mid-depth

Page 42: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Tabl

e *. Values

of oH an

d co

ncen

trat

ions

of se

lect

ed c

hemical

cons

titu

ents

in w

ater

fro

m sa

mpli

ng si

tes

A-E-

-Con

tinu

ed

Solids,

Chro-

Chlo

- Fl

uo-

Date

5-25-78

9-28-78

2-27-80

5-1*-80

Maximum

Minimum

OO

5-25-78

7-28-78

2-27-80

5-1*-80

Maximum

Minimum

pH 6.7

7.8 7.0

7.8

6.7

6.7

7.5 6.5

7.5

6.5

Sulfate

dis­

solved

as SO

*

16 21 17 21 21 1<?

19 2* 17 25 25 17

ride

dis­

ride

dis-

residue

Nitro-

Cadmium

mium

,at 18

0De

g. C

solved

solved

dis-

as Cl

as F

10 21 12 10 21 10 13 27 12 13 27 12

0.1 .1 .1 .1

Extr

emes 0.1 ,1

0.1 .1 .1 .1

Extr

emes 0.1 .1

solv

ed 77 118

10*

107

(dissolved

118 77 98 123 96 105

(dis

solv

ed

123 96

gen,

to

tal

tota

lnitrate

Arsenic

reco

v-

recov-

tota

l total

erable

erab

leas N

as A

s as C

d as Cr

SITE

D,

NEAR L

AKE

SURFACE

0.3*

0.00

1 NO

<0.0

02.22

.002

<0.002

NO.33

.002

NO

NO.20

.002

NO

NO

Copp

er,

Iron

,total

tota

lrecov-

recov­

erab

le

erab

leas Cu

as Fe

0.00

6 3.6

.00*

2.8

.005

3.0

.002

3.3

values no

t included except for

fluo

ride

, chloride,

and

0.3*

0.002

<0.002

<0.0

20.20

.000

NO

NO

SITE D

, NEAR L

AKE

BOTT

OM

0.*7

0.

001

<0.002

0.00

5.33

.008

<.

002

.030

.35

.002

NO

NO.22

.001

NO

NO

0.00

6 3.6

r002

2.

8

0.00

7 3.9

.023

3*.0

05

3.0

.002

3.

7

valu

es no

t in

clud

ed except for

fluoride,

chloride,

and

0.*7

0.008

<0.002

0.03

0.22

.001

.000

.000

0.02

3 3*

.002

3.

0

Lead,

total

recov­

erab

leas Pb NO

0.005

.01*

.008

sulfate)

0.01

* NO NO0.

030

.01*

.005

sulfate)

0.03

0 NO

Manga­

nese,

tota

lrecov­

erab

leas

Mn

0.100

.120

.100

.120

0.120

.100

0.120

*.3 .100

.150

*.3 .100

Merc

ury

tota

l Se

le-

recov-

nium,

erab

le

total

as Hg

as Se

0.00

02

<0.001

<.0001

<.001

.000

0 .000

.000

0 .000

0.00

02

<0.0

01.0

000

.000

<0.0001

<0.001

.001

1 <.

001

.000

0 .000

.000

1 .0

00

0.0011

<0.001

.000

0 .000

Zinc,

tota

lrecov­

erab

leas

Zn

0.02

0.020

.020

.0*0

0.020

.020

0.02

0.100

.020

.020

0.100

.020

Page 43: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Tabl

e 4.

Val

ues

of pH

and

conc

entr

atio

ns of

se

lect

ed c

hemical

constituents in

wat

er from s

ampl

ing

site

s A-

E Co

ntin

ued

u>

Date

06-0

1-78

06-3

0-78

07-2

6-78

08-0

2-78

08-2

3-78

02-2

0-79

03-2

8-79

04-2

4-79

07-1

9-79

08-2

9-79

10-30-79

11-19-79

01-09-80

02-2

6-80

04-0

1-80

05-13-80

Dis­

charge

Ft3/

s

__ .00

E1.0 .0

052

E130 7.3

5.4

2.6

33 17

pH 6.8

6.7

7.1

7.2

7.2

6.6

5.7

6.9

7.2

7.6

7.1

6.8

6.7

6.8

7.2

6.2

Sulfate

dis­

solved

as S

04

8.4

3.1

4.7

8.2

5.4

8.5

7.0

10 6.3

17 12 9.4

9.5

11 8.7

Chlo

­ride

dis­

solved

as C

l

3.9

3.3

4.8

5.2

5.5

5.0

2.9

2.8

3.4

13 6.1

5.1

4.8

7.8

3.6

Fluo

-ri

dedis­

solved

as F

0.1 .1 .1 .1 .1 .1 .1 .1 .1 -- .1 .1 .1 .0 .1 .0

Solids,

residue

at 180

Deg.

C

dis­

solv

ed

42 46 84 55 97 35 39 42 71 -- 108 87 48 46 60 56

Nitro­

gen,

nitrate

tota

las

N

0.06 .05

* .0

4*

.02

.03

.80

.41

.22

.01

.07

.04

.11 __ .10

.46

.12

Extr

emes

(Dissolved v

alue

s not

Maximum

Minimum

7.6

5.7

17 3.1

13 2.8

0.1 .0

108 35

0.80

.0

1

Arsenic

total

as A

s

SITE

0.001

.002

* .003

* .0

01.0

02 C.001

.001

.001

.005

.002

.002

.001

*<.001

.003

.001

.001

incl

uded

0.00

5 <.

001

Cadmium

tota

lrecov­

erab

leas C

d

E

ND ND ND ND ND ND ND ND ND ND.001

.001

.005 ND

.001 ND

except fo

r

0.00

5 ND

Chro­

mium

,to

tal

recov­

erab

leas

Cr ND

C.0

20 ND ND ND<.

020

<.02

0 ND.0

20 C

.020

.005

.004

.003 ND

.007

.002

flou

ride

0.020 ND

Copper,

total

recov­

erable

as C

u

0.00

5.0

05 ND*<

.020

.007

.005

.005

.008 ND ND

.002 ND

.005

.003

.004

.001

Iron

,to

tal

recov­

erab

leas F

e

1.2

2.1

* .080

* .130

1.0 .760

4.3

1.2

2.0

6.6 .790

16 1.7

2.3

1.7

, chloride,

and

0.00

8 ND16 .0

80

Lead

,total

recov­

erab

leas P

b ND<.200 ND

*<.0

10 ND.0

25.010

.029 ND ND

.005

.006

.075

.012

.008

.002

sulfate)

0.075 ND

Manga­

nese

,to

tal

reco

v­erable

as M

n

0.21

0.3

40*

.820

* .2

40.900

.040

.330

.080

.780

.290

.900

.290

.110

.120

.180

0.90

0 .0

40

Merc

ury

tota

lrecov­

erab

leas H

g

<0.0001

<.0001

*<.o

ooo

*<.0001

C.0

001

.0002

<.0001

C.0

001

C.0

001

.000

6.0002

.0002

* .0000

.000

1.0

000

.0001

0.00

06

.000

0

Zinc,

Sele-

total

nium,

recov-

total

erab

leas Se

as Z

n

CO.

001

0.02

0<.

001

ND*<.001 *<

.020

*<.001 *<

.003

<.00

1 .0

20 C.001

<.02

0*<.001

.020

C.001

.040

<.001

.030

C.001

.020

.000

.000

.000

.010

* .000

.000

.010

.000

.020

.000

.0

20

<0.001

0.04

0 . 000

ND

*Dis

solv

ed

Page 44: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5.--Values of physical properti ss and concentrations of chemical constituents

[US /CM

SAM­PLING

TIME DEPTHDATE (FEET)

and biota in wat

, microsiemens per centimetNTU, nephelometric turbiditUG/L, micrograms per liter;

COLS/100 ML, colon

OXYGEN,DIS­SOLVED PH

DIS- (PER- (STAND-SOLVED CENT ARDOXYGEN SATUR- UNITS)(MG/L) ATION) (LAB)

sr from sampling sites A-E

>r at 25° Celsius; DEC C, degrees Celsiusi units; MCELLS PER.es per 10

TEMPERATURE(DEC C

G/L, milligrams per liter;ML, cells per milliliter;

3 milliliters]

SPE­CIFICCON- COLORDUCT- (PLAT- TUR-ANCE- INUM- BID-

( US/CM) COBALT ITY) (LAB) UNITS) (NTU)

1

HARD­NESS(MG/LASCAC03)

HARD­NESS,

NONCAR-BONATE(MG/LCAC03)

ALKA­LINITYFIELD(MG/LASCAC03)

SITE AMAY 197831...31...

AUG.23...23...

DEC.21...21...

FEB. 197921...21...

APR.25...25...

AUG.29...29...

DATE

13001340

13051310

12001225

14451500

08310845

09100930

CALCIUMDIS­SOLVED(MG/LAS CA)

21.03.00

3.0019.0

3.0021.0

16.01.00

19.03.00

19.03.00

MAGNE­SIUM,DIS­

SOLVED(MG/LAS MG)

0.27.9

----

____

____

.02.0

SODIUM,DIS­

SOLVED(MG/LAS NA)

2 6.998 6.7

7.47.0

7.36.7

6.86.8

6.86.9

0 7.025 7.0

SOD!AD

SORFTIC

PERCENT RAT1SODIUM

20.0 12025.0 132

----

7.57.0

5.57.0

_-_-

26.527.0

UM POLSIIDI!

N SOL10 (MG

AS 1

137137

9482

102103

8586

145150

\S- SILICA,JM, DIS->- SOLVED/ED (MG/L(L AS) SI02)

6520

4053

8040

130100

9070

15060

658.

4.110

3231

--

5438

6816

DIS­SOLVEDSOLIDS(TONSPER

AC-FT)

442 46

0 4648

2822

2936

2833

5658

NITRO­GEN,

NITRATETOTAL(MG/LAS N)

----

0--

108

1624

1419

NITRO­ GEN,

NITRATEDIS­

SOLVED(MG/LAS N)

----

4754

1814

1312

1414

--

NITfGEh

NITR/TOT/(MG,

AS N(

SII i A--ContjLnued

MAY 197831...31...

AUG.23...23...

DEC.21...21...

FEB. 197921...21...

APR.25...25...

AUG.29...29...

1112

1212

7.05.2

7.09.6

6.68.6

1213

3.94.0

3.94.3

2.52.3

2.72.8

2.72.7

6.36.2

7.79.2

109.9

5.65.6

7.26.6

5.35.4

9.09.6

27 (29

3130

2932

3428

2825

2525

.5

.6

.7

.6

.5

.5

.6

.5

.5

.4

.5

.6

2.2.

2.2.

1.2.

1.1.

2.2.

2.2.

6.8 6.1

7.7 8.0

7.4 7.3

6.5 6.5

6.5 6.5

7.4 7.7

0.11 .12

.13

.13

.08

.08

.08

.09

.08

.09

.05

.06

1.0 .83

1.0 3.1

1.0 1.0

1.3 2.0

.80

.84

1.1 .96

0.030 .000

.120

.050

.380

.380

.960

.990

.200

.210

.050

.030

40

Page 45: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Values of physical properties and concentrations of chemical constituentsand biota In water from

DATE

NITRO­GEN,

NITRATEDIS­SOLVED(MG/L

AS N03)

NITRO­GEN,

NITRITETOTAL(MG/LAS N)

NITRO­GEN,

NITRITEDIS­SOLVED(MG/LAS N)

NITRO­GEN,

NITRITEDIS­SOLVED(MG/L

AS N02)

sampling

NITRO­GEN,

N02+N03TOTAL(MG/LAS N)

sites A-E Continued

NITRO­GEN,

N02+N03DIS­SOLVED(MG/LAS N)

NITRO­GEN,

AMMONIATOTAL(MG/LAS N)

NITRO­GEN,

AMMONIADIS­SOLVED(MG/LAS N)

NITRO­GEN,

AMMONIADIS­SOLVED(MG/L

AS NH4)

NITRO­GEN, AM­MONIA +ORGANICTOTAL(MG/LAS N)

SITE A Continued

MAY 197831..31..

AUG.23..23..

DEC.21..21..

FEB.21..21..

APR.25..25..

AUG.29..29..

NITRO­ GEN, AM­ MONIA +ORGANICDIS.(MG/L

DATE AS N)

. 0.13.00

.53

.22

. 1.7

. 1.71979. 4.2. 4.4

.89

.93

.22

.13

NITRO­ GEN,

ORGANICTOTAL(MG/LAS N)

0.020.010

.010

.010

.010

.010

.060

.060

.020

.020

.020<.010

NITRO­ GEN,

ORGANICDIS­

SOLVED(MG/LAS N)

0.010.010

.010

.010

<.010<.010

.010

.010

.020

.020

.010

.010

PHOS­PHORUS,TOTAL(MG/LAS P)

0.03.03

.03

.03

.00

.00

.03

.03

.07

.07

.03

.03

PHOS­ PHORUS,

DIS­SOLVED(MG/LAS P)

0.24.01

.15

.04

.36

.47

.941.4

.34

.36

.08

.01

CARBON,ORGANICTOTAL(MG/LAS C)

0.04.01

.13

.06

.38

.38

.971.00

.22

.23

.06

.04

CARBON, ORGANICDIS­

SOLVED(MG/LAS C)

0.040.090

.200

.560

.040

.030

.080

.060

<.010.060

.360

.220

ORGANIC SUS­

PENDEDTOTAL(MG/LAS C)

0.040<.010

.100

.520

.080

.060

.170

.090

.700

.370

.290

.160

ARSENIC SUS­

PENDEDTOTAL(UG/LAS AS)

0.05.00

.13

.67

.10

.08

.22

.12

.90

.48

.37

.21

ARSENICDIS­

SOLVED(UG/LAS AS)

0.76.82

.873.1

.65

.54

.40

.60

.20

.00

.58

.70

CADMIUMDIS­

SOLVED(UG/LAS CD)

SITE A Continued

MAY31.31.

AUG.23.23.

DEC.21.21.

FEB.21.21.

APR.25.25.

AUG.29.29.

19780.85.30

.531.8

.42

.411979

.501.1

. . .26

1.7

.42

.25

0.72.73

.672.5

.61

.51

.32

.54

.46

.42

.64

.73

0.81.30

.431.3

.34

.35

.331.0

.001.3

.13

.09

0.120.070

.080

.340

.100

.090

.080

.080

.080

.080

.090

.060

0.010.010

__--

.030f .030

.030

.030

.030

.030

.020

.020

5.37.0

1013

__--

5.7--

----

--

8.0

__

__--

9.67.5

-_--

__--

<2.0

__

__--

1.91.1

_-

__--

<11

<12

<1<1

<1<1

1<1

22

31

35

11

<1<1

<1<1

21

NOND

NDND

1326

NDND

NDND

NDND

41

Page 46: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5.--Values of physical properties and concentrations of chemical constituents

DATE

MAY 197831...31...

AUG.23...23...

DEC.21...21...

FEB. 197921...21...

APR.25...23...

AUG.29...29...

MERCURYSUS­

PENDEDRECOV­ERABLE(UG/L

DATE AS HG)

MAY 197831... 0.331... .2

AUG.23... .023... .0

DEC.21... .021... .0

FEB. 197921...21... .0

APR.25... .125... .2

AUG.29 .229... .0

and biota in water from s

CHRO­MIUM, CHRO-SUS- MIUM, COPPER, F

PENDED DIS- DIS- FRECOV SOLVED SOLVED E(UG/L (UG/L (UG/LAS CR) AS CR) AS CU)

0 5 ND0 ND ND

0 ND ND0 ND ND

0 ND <200 ND 6

0 <20 <200 ND <20

0 <20 ND0 <20 ND

0 <20 ND0 <20 ND

SELE­NIUM, SELE-

MERCURY SUS- NIUM,DIS- PENDED DIS­

SOLVED TOTAL SOLVED(UG/L (UG/L (UG/LAS HG) AS SE) AS SE)

<0.1 0 <1<.1 0 <1

<.1 0 <1<.1 0 <1

<.1 0 <1<.1 0 <1

<.1 0 <1<.1 0 <1

impling sJLtes A-E Continued

[RON, MANGA-5US-ENDEDECOV-*ABLE(UG/L\S FE)

SIT

LEAD, NESE,IRON, TOTAL LEAD, SUS-DIS- RECOV- DIS- PENDEDSOLVED ERABLE SOLVED RECOV(UG/L (UG/L (UG/L (UG/LAS FE) AS PB) AS PB) AS MN)

1. A Continued

3100 1500 ND ND 01700 180 ND ND 90

1500 100 ND ND 12007500

16002400

19001600

23001400

44001300

ZINC,SUS­

PENDEDRECOV­ERABLE(UG/LAS ZN)

SITE A

2010

20

200 ND ND 300

190 72 ND 20520 420 230 30

150 4 ND 40150 36 ND 20

120 14 ND 80160 16 ND 50

170 ND ND 10080 ND ND 100

ALGAL COLI-PHYTO- GROWTH FORM,

ZINC, PLANK- POTEN- FECAL,DIS- TON, TIAL, 0.7

SOLVED TOTAL BOTTLE UM-MF(UG/L (CELLS TEST (COLS./AS ZN) PER ML) (MG/L) 100 ML)

Continued

5 560 K44<20 14000 K22

ND 12000 0.3 110020 <20 12000 .3 40

0 20 15000 30 500

0 . <20 140 -- K470 * 30 87 K64

<.1 0 1 20<.1 0 1

<.1 0 <1.3 0 <1

10

00

42

<20 1300 K20<20 790 -- 100

<20 100000 -- K405 46000 K18

MANGA­NESE,DIS­SOLVED(UG/LAS MN)

1500260

3902100

150170

90100

180160

15001300

STREP­TOCOCCIFECAL,

KF AGAR(COLS.PER

100 ML)

110180

K31160

----

K42K50

240K160

100360

Page 47: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Values of physical properties and concentrations of chemical constituentsand biota in water from sampling sites A-E Continued

OXYGEN, DIS- SPE-

SOLVED CIFIC SAM- DIS- (PER- PH CON- PLING SOLVED CENT (STAND- TEMPER- DUCT-

TIME DEPTH OXYGEN SATUR- ARD ATURE ANCE DATE (FEET) (MG/L) ATION) UNITS) (DEC C) (US/CM)

MAY 1978 31... 31...

AUG. 23... 23...

FEB.21.,21.

APR.24.,24.,

AUG.30..30.,

FEB.26.,26.,

MAY14. .14.,

1979, ., .

, ., .

, ., .1980

, ., .

, .

DATE

MAY 197831...31...

AUG.23...23...

FEB. 197921...21...

APR.24...24...

AUG.30...30...

FEB. 198026...26...

MAY14...14...

1945 2000

1430 1435

13451400

11151116

16021616

17201740

12451400

ALKA­LINITYFIELD(MG/LASCAC03)

--

3642

1311

2316

_.--

2025

1616

--

20.01.00

26.03.0

37.03.00

_.--

26.03.00

CALCIUMDIS­SOLVED(MG/LAS CA)

1428

1213

6.810

8.76.9

9.09.2

8.48.8

7.46.8

----

_-5.6

----

-_--

4.06.4

MAGNE­SIUM,DIS­SOLVED(MG/LAS MG)

3.53.8

4.55.3

3.12.9

3.02.6

5.14.9

3.43.5

2.82.6

--

--

__62

--

__--

-_

SODIUM,DIS­SOLVED(MG/LAS NA)

SITE

8.18.4

1413

7.36.3

6.65.8

8.27.8

9.09.7

7.46.9

SITE B

6.76.7

7.37.3

7.47.2

-_--

6.16.4

PERCENTSODIUM

6.5 1206.0 110

__19.5 90

27.5 10928.5 108

__._

20.0 9222.5 88

SODIUMAD­

SORP­TION

RATIO

COLOR (PLAT­ INUM- COBALT UNITS)

120 80

60 100

110110

6090

15090

120120

120200

POTAS­SIUM,DIS­SOLVED(MG/LAS K)

TUR­ BID­ ITY

(NTU)

130 40

36100

4.6--

3156

10038

6060

13088

SILICA,DIS­SOLVED(MG/LASSI02)

HARD- HARD- NESS, NESS NONCAR- (MG/L BONATE AS (MG/L

CAC03) CAC03)

49 86

48 54

3037

3428

4343

3536

3028

DIS­SOLVEDSOLIDS(TONSPERAC-FT)

12 12

1726

1112

--

1511

1412

B- -Continued

2517

3733

3326

2829

2827

3435

3432

0.5.4

.9

.8

.6

.5

.5

.5

.6

.5

.7

.7

.6

.6

2.32.3

2.82.9

1.51.6

2.22.1

2.72.6

2.42.5

1.03.7

6.15.3

4.54.3

6.46.4

6.26.5

5.85.4

5.55.3

6.87.0

0.13.14

.15

.14

.09

.11

.10

.09

.04

.04

.12

.13

.10

.11

43

Page 48: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5.--Values of physical properties and concentrations of chemical constituents

DATE

MAY 197831...31...

AUG.23...23...

NITRO­GEN,TOTAL(MG/LAS N)

1.3.4

2.7.9

and

NITRO­GEN,

NITRATEDIS­SOLVED(MG/LAS N)

0.389.040

.260

.270

biota in water from

NITRO­GEN,

NITRATETOTAL(MG/L

AS N03

5.62.0

124.2

NITGE

NITRDISOL(MG

AS N

SITE B-

1..

1.1.

FEB. 197921...21...

APR.24...24...

AUG.30...30...

1.91.7

.7

.7

.95.5

1.51.3

.190

.210

.330

.420

8.47.5

3.23.5

4.124

6.5.

,i.'

1.1.

FEB. 1980

DATE

MAY 197831...31...

AUG.23...23...

FEB. 197921...21...

APR.2*...2*...

AUG.30...30...

FEB. 198026...26...

MAY14...14...

26...26...

MAY14...14...

NITRO­GEN,

AMMONIATOTAL(MG/LAS N)

0.080.090

.040

.040

.070

.120

.080

.040

.120

.060

.100

.040

.080

.080

1.42.6

4.81.9

NITRO­GEN,

AMMONIADIS­SOLVED(MG/LAS N)

0.010<.010

.300

.010

1.6.220

.380

.630

.0302.40

.040

.120

.580

.450

.300

.330

.190

.20

NITRO­GEN,

AMMONIADIS­SOLVED(MG/L

AS NH4)

0.01.00

.39

.01

2.1.28

.49

.81

.043.1

.05

.15

.75

.58

6.111

218.4

NITRO­GEN, AM­MONIA +ORGANICTOTAL(MG/LAS N)

0.81.42

2.5.71

.60

.50

.42

.46

.615.4

1.02.2

4.61.7

1.1.

<.i<.(

NITRO­GEN, AM­MONIA +ORGANICDIS.(MG/LAS N)

SITE

0.33.27

2.5.40

sampling sites A-E--Continued

0- NITRO-, NITRQ- GEN,TE GEI>- NITR.ED TOT/L (MG3) AS 1

^, NITRITE[TE DIS-^L SOLVED/L (MG/L^) AS N)

Continued

0.03(8 .OK

.021

.031

i .061.04(

0.021.010

.010

.010

i .050i .020

14 .020 .010>3 .020 .010

i .040 .020I .020 .020

\ .030 .010i .020 .010

>4 .03<9 .04(

NITROGEN,

ORGANITOTAL(MG/L

) .020) .020

NITRO-- GEN

ORGANIC: DIS­

SOLVED(MG/L

AS N) AS N)

i Continued

0.73 0.32.33 .27

2.5 2.2.67 .39

2.1 .53 .501.3 .38 1.1

2.01.7

.30

.89

.72

.82

2.91.1

.34

.42

.455.3

.9C2.2

4.51.6

1.61.1

.27

.00

.68

.70

2.3.65

NITRO­GEN,

NITRITEDIS­SOLVED(MG/L

AS N02)

0.07.03

.03

.03

.16

.07

.03

.03

.07

.07

.03

.03

.07

.07

NITRO-NITRO- GEN,GEN, N02+N03

N02-t-N03 DIS-TOTAL SOLVED(MG/L (MG/LAS N) AS N)

0.45 0.41.04 .05

.16 .27

.24 .28

1.3 1.51.2 1.3

.31 .20

.32 .22

.31 .35

.08 .44

.38 .31

.37 .34

.17 .21

.19 .22

CARBON,PHOS- CARBON, ORGANIC

PHOS- PHORUS, CARBON, ORGANIC SUS-PHORUS,TOTAL(MG/LAS P)

0.160.070

.100

.150

.080

.010

.070

.080

.100

.060

.110

.100

.140

.120

DIS- ORGANIC DIS- PENDEDSOLVED TOTAL SOLVED TOTAL(MG/L (MG/L (MG/L (MG/LAS P) AS C) AS C) AS C)

0.010 9.2 7.2 1.6.010 7.6 5.6 1.4

6.89.0

.050 6.5 6.2 2.7<.010 6.3

.020

.020

.020

.060

.010 7.9

.020 7.2

.020 11 8.6 2.3

.030 12 12 1.7

44

Page 49: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5.--Values of physical properties and concentrations of chemical constituents

DATE

MAY 197831...31...

AUG.23...23...

FEB. 197921...21...

APR.24...24...

AUG.30...30...

FEB. 198026...26...MAY14...14...

ARSENICSUS­

PENDEDTOTAL(UG/LAS AS)

and biota in water from sampling sites

CHRO­ MIUM,

ARSENIC CADMIUM SUS-ARSENICTOTAL(UG/LAS AS)

DIS­SOLVED(UG/LAS AS)

A-E--Continued

CHRO­MIUM,

DIS- PENDED DIS­SOLVED RECOV(UG/L (UG/L

SOLVED(UG/L

AS CD) AS CR) AS CR)

COPPER,DIS­SOLVED(UG/LAS CU)

IRON, SUS­

PENDEDRECOV­ERABLE(UG/LAS FE)

IRON,DIS­SOLVED(UG/LAS FE)

LEAD,DIS­SOLVED(UG/LAS PB)

SITE B--Continued

21

1<1

<11

11

00

10

1

DATE

MAY 197831...31...

AUG.23...23...

FEB. 197921...21...

APR.24...24...

AUG.30...30...

FEB. 198026...26...

MAY14...14...

21

31

11

11

22

11

21

MANGA­ NESE,SUS­

PENDEDRECOV.(UG/LAS MN)

790100

31030

--

80120

170120

----

--

<1<1

21

<1<1

11

11

11

11

MERCURY MANGA- SUS-NESE, PENDEDDIS- RECOV-

SOLVED ERABLE(UG/L (UG/LAS MN) AS HG)

SITE

<10 0.1<10 . 1

60 040 0

120120

80 .2120 .1

60 .120 0

170 0120 0

360 1100 0

ND 0ND 0

ND 10ND 0

NDND

ND 10ND 0

ND 20ND 0

0 80 5

<1 0<1 0

MERCURYDIS­

SOLVED(UG/LAS HG)

B- -Continued

<0. 1<. 1

<. 1<.1

.3

.2

<. 1<. 1

<.1<. 1

00

00

5ND

NDND

NDND

ND<20

ND<20

01

00

SELE­ NIUM,SUS­

PENDEDTOTAL(UG/LAS SE)

10

00

-_

00

00

00

00

NDND

NDND

ND<20

NDND

NDND

73

32

ZINC, SELE- SUS-NIUM, PENDEDDIS- RECOV-

SOLVED ERABLE(UG/L (UG/LAS SE) AS ZN)

<1 20<1 20

<1 0<1 0

<1<1

1 201 10

<1 10<1 0

0 100 10

0 200 40

63002100

380060

__--

16002600

46002600

23002600

52003100

ZINC,DIS­

SOLVED(UG/LAS ZN)

55

<2020

2020

<20<20

<20<2

1010

3040

100190

290200

130130

160200

480320

530400

300430

NDND

NDND

NDND

NDND

NDND

20

75

45

Page 50: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Valuesand

of physical probiota in water

DATE

PHYTOPLANKTON,

TOTAL(CELL

PER ML

MAY 197831..31..

AUG.23..23..

FEB.21..21..

APR.24..24..

AUG.30..30..

FEB.26..26..

MAY14..14..

210032000

5700.1979..

17001100

9901 30000

198057002900

4101400

erties an<From samp

concentrations of chemical constituentsing sites A-E Continued

ALGAL COLI-GR(P(TJ

B01Tl

(M(

ITE B Coi

IWTH FORM,(TEN- FECAL,:AL, 0.7TLE UM-MF:ST (COLS./;/D 100 ML

itinued

K44

0

K42

2 4202 500

K62K66

K60K260

120i 120

___-

2618

STREP­TOCOCCI

FECAL ,KF AGAR(COLS.PER

100 ML)

K76K19

140K92

160140

K50K110

17038

----

--

46

Page 51: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5.--Values of physical properties and concentrations of chemical constituents

DATE

MAY 197831...31...

3UNE28...30...

AUG.02...02...2*...2*...

SEPT.28...28...

OCT.26...26...

FEB. 197922...22...

APR.2*...2*...

AUG.30...30...

FEB. 198027...27...

MAY1*...1*...

DATE

MAY 197831...31...

DUNE28...30...

AUG.02...02...2*...2*...

SEPT.28...28...

OCT.26...26...

FEB. 197922..22...

APR.2*...2*...

AUG.30...30...

FEB. 198027...27...

MAY1*...1*...

TIME

10301115

11100625

__0001130013*0

12151230

095010*0

12011230

08*008*6

13051325

11*51200

08*51000

CALCIUMDIS­SOLVED(MG/LAS CA)

__15

10__

____

1617

1523

221*

7.99.2

6.86.6

101*

1111

1311

and

SAM­PLINGDEPTH(FEET)

29.03.00

13.022.5

____

31.03.00

*2.03.00

17.03.00

1.0022.0

**.o-- i

30.03.00

__

*0.03.00

MAGNE­ SIUM,DIS­SOLVED(MG/LAS MG)

__3.7

3.8-_

__

*.7*.6

5.25.3

5.65.5

6.53.2

2.52.6

5.1*.9

*.2*.2

*.9*.o

biota in water from sampling sites A-E-Continued

OXYGEN, DIS­ SOLVED

DIS- (PER- PHSOLVED CENTOXYGEN SATUR-(MG/L) ATION)

7.3 907.0 88

6.7 8*3.9

___.

6.3 786.* 79

7.5 888.* 98

6.5 668.0 82

12.5 9812.5 98

5.8 60,.

__-_

_.

6.57.1

SODIUM,DIS­SOLVED(MG/L PERCENTAS NA) SODIUM

SITE

9.7

9.9 33__

_-__

17 3717 36

1* 3315 28

17 3117 38

8.* 278.7 33

5.6 296.1 31

8.5 9

12 3512 35

16 3812 35

(STAND- TEMPER -ARD

UNITS)

SITE

6.67.0

6.86.2

__

7.67.2

7.68.*

7.77.2

6.6__

6.97.1

__--

6.86.9

SODIUMAD­

SORP­TION

RATIO

ATURE(DEC C)

C

21.026.5

*

26.525.0

__

27.029.0

23.526.0

16.015.5

*.5*.5

16.0__

19.021.0

POTAS­ SIUM,DIS­SOLVED(MG/LAS K)

SPE­ CIFIC CON­DUCT­ANCE(US/CM)

1*51*7

166171

.___153193

230226

220212

130130

80

109112

__

17013*

SILICA, DIS­SOLVED(MG/LASSI02)

COLOR (PLAT­INUM-COBALTUNITS)

1*0120

._

__...

320100

10056

12060

1201*0

1*0120

150150

120120

120160

DIS­ SOLVEDSOLIDS(TONSPER

AC- FT)

TUR­BID­ITY(NTU)

80090

__

____1*078

1002*

7860

70

7*78

6070

11095

NITRO­ GEN,

NITRATETOTAL(MG/LAS N)

ALKA- HARD- LINITY NESS FIELD(MG/LASCAC03)

__53

*1

__ 5961

5979

7858

*636

2727

*655

*5*5

53**

NITRO­ GEN,

NITRATEDIS­SOLVED(MG/LAS N)

(MG/LASCAC03)

__

27

____223*

*3*3

*1**

1616

1615

--

3031

3223

C--Continued

._

0.7_-

_-

11

.8

.8

.91

.5

.7

.5

.5

.6

.8

.8

1.8

__2.*

2.5--

--

3.03.0

3.02.9

2.92.9

2.01.8

2.12.3

__2.7

2.62.6

2.72.8

7.05.*

5.5--

--

*.*3.8

*.9*.6

5.65.3

6.56.*

6.16.3

7.16.6

106.0

5.86.9

0.12.12

.11--

-_ .17.15

.16

.17

.17

.17

.09

.10

.09

.09

.19

.26

.12

.1*

.16

.1*

2.8.97

.8*--

----

2.71.8

1.21.2

.87

.7*

1.61.6

.961.1

1.5.97

1.71.1

*. 13.2

0.52.26

.30

-- .98

1.79

.35

.1*

.28

.32

1.09.98

.39

.51

2.28.11

.31

.33.

.29

.26

47

Page 52: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. --Values of physical properties aand biota In water from sam

NITROGEN,

NITRATETOTAL(MG/L

DATE AS N03)

NITRO­GEN,

NITRATEDIS­SOLVED(MG/L

AS N03)

NITRO­GEN,

NITRITETOTAL(MG/LAS N)

NITRO­GEN,

NITRITEDIS­SOLVED(MG/LAS N)

«J concentrations of chemical constituentstllng sites A-E Continued

NITRO­GEN,

NITRITEDIS­SOLVED(MG/L

AS N02)

NITRO­GEN,

N02+N03TOTAL(MG/LAS N)

NITRO­GEN,

N02+N03DIS­SOLVED(MG/LAS N)

NITRO­GEN,

AMMONIATOTAL(MG/LAS N)

NITRO­GEN,

AMMONIADIS­SOLVED(MG/LAS N)

NITRO­GEN,

AMMONIADIS­SOLVED(MG/L

AS NH4)

MAY 197831...31...

OUNE28...30...

AUG.02...02...24...24...

SEPT.28...28...

OCT.26...26...

FEB. 197922...22...

APR.24...24...

AUG.30...30...

FEB. 198027...27...MAY14. . .14...

DATE

134.3

3.7

__

127.7

5.35.2

3.93.3

7.17.0

4.25.0

6.64.3

7.44.8

1814

NITRO­ GEN, AM­MONIA +ORGANICTOTAL(MG/LAS N)

2.1.

1.

4.

1..

1.1.

4.4.

1.2.

10m

1.1.

<1 .<1.

NITRO­ GEN, AM­MONIA +ORGANICDIS.(MG/LAS N)

3 0.020 02 .030

3 .020__

__ 3 .030

.020

5 .010 <62 .010 <

2 .010 <4 .010 <

9 .0603 .080

7 .0403 .040

.06049 .040

4 .0605 .020

3 .0302 .070

NITRO- NITRO- GEN,GEN, ORGANIC

ORGANIC DIS-TOTAL SOLVED(MG/L (MG/LAS N) AS N)

SITE C

.010

.021

.010--

__

.010

.010

.010

.010

.010

.010

.010

.010

.010

.010

.020

.030

.010

.010

.040

.030

PHOS­PHORUSTOTAL(MG/LAS P)

Continued

0.03, .07

.03--

__

0.54.38

.28--

__ .03 1.4.03 .15

.00

.00

.00

.00

.03

.,03

.03

.03

.07

.30

.08

.25

.24

1.0.99

.44

.53

.38.10 .35

.03 .38

.03

.13

.10

PHOS­PHORUS, (

DIS- (SOLVED(MG/LAS P)

.35

.30

.33

ARBON,IRGANICTOTAL(MG/LAS C)

0.53.28

.31--

_.

.991.8

.35

.14

.28

.32

1.1.99

.40

.52

2.3.14

.32

.34

.33

.29

CARBON,ORGANICDIS­

SOLVED(MG/LAS C)

0.080.090

.060

__

.040

.060

.030

.280

.030

.020

.150

.130

.050* .050

.050

.070

.150

.040

.080

.180

CARBON, ORGANICSUS­

PENDEDTOTAL(MG/LAS C)

<0.010<.010

<.010--

.010

.050

<.010.010

.010

.010

.100

.150

.400

.380

.060--

.100

.030

.500.390

ARSENICDIS­

SOLVED(UG/LAS AS)

0.00.00

.00--

--

.01

.06

.00

.01

.01

.01

.13

.19

.52

.49

.08

.13

.04

.64.50

ARSENICSUS­

PENDEDTOTAL(UG/LAS AS)

SITE C Continued

MAY 197831...31...

JUNE28...30...

AUG.02...02...24...24...

SEPT.28...28...

OCT.26...26...

FEB. 197922...22...

APR.24...24...

AUG.30...30...

FEB. 198027...27...

MAY14...14...

2.3.59

.56

__

1.31.6

.901.1

.62

.50

.60

.60

.52

.59

1.1.62

1.3.73

3.82.9

0.22.34

.35

__

.331.3

1.1.41

.91

.81

.53

.47

1.92.0

.84

1.1.74

.33

.53

2.2.50

.50

-___

1.31.5

.87

.82

.59

.48

.45

.47

.47

.54

1.0.55

1.1.69

3.72.7

0.22.34

.35--

--_-

.321.2

1.1.40

.90

.80

.43

.32

1.51.6

.78-_

1.0.71

.00

.14

0.620.100

.080

----

.110

.100

.060

.070

.100

.090

.100

.090

.080

.120

.090

.080

.110

.090

.120

.100

<0.010 10.010 6.9

--

.010

.010

.040

.020

6.6--

--

7.57.1

--

7.46.4

.040 7.5

.040 7.5

.020

.020

.040--

.020

--

6.2.020 8.7

.020 8.4

.020 7.9

6.7--

5.5

--

--

7.58.6

--

----

3.6

4.55.9

--1.0

3.5

---- --

----

--

1.3

--

1.5.80

48

Page 53: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Values of physical properties and concentrations of chemical constituentsand biota in

DATE

CADMIUM SUS­

PENDEDRECOV­ERABLE(UG/LAS CD)

CADMIUMDIS­SOLVED(UG/LAS CD)

CHRO­ MIUM,SUS­

PENDEDRECOV.(UG/LAS CR)

water from sampling sites A-E Continued

CHRO­MIUM,DIS­SOLVED(UG/LAS CR)

COPPER, SUS­

PENDEDRECOV­ERABLE(UG/LAS CU)

COPPER,DIS­SOLVED(UG/LAS CU)

IRON, SUS­

PENDEDRECOV­ERABLE(UG/LAS FE)

IRON,DIS­SOLVED(UG/LAS FE)

LEAD, SUS­

PENDEDRECOV­ERABLE(UG/LAS PB)

LEAIorson(UGAS I

SITE C Continued

MAY 197831...31...

3UNE28...30...

AUG.02...02...2*...2*...

SEPT.28...28...

OCT.26...26...

FEB. 197922...22...

APR.2*...2*...

AUG.30...30...

FEB. 198027...27...

MAY1*...1*...

DATE

00

0__

__ 00

00

00

00

1*7

00

00

MANGA­NESE,SUS­

PENDEDRECOV.(UG/LAS MN)

NDND

ND--

__ NDND

NDND

ND<2

NDND

NDND

NDND

00

<1<1

MANGA­NESE,DIS­SOLVED(UG/LAS MN)

100

0__

__._010

00

00

100

010

00

06

00

MERCURYSUS­PENDEDRECOV­ERABLE(UG/LAS HG)

ND5

ND__

__._

<20ND

NDND

NDND

ND20

NDND

<20<20

1.00

.00

.00

MERCURYDIS­SOLVED(UG/LAS HG)

157

11__

__ 06

6*

70

86

1010

00

1*11

00

SELE­NIUM,SUS­

PENDEDTOTAL(UG/LAS SE)

NDND

ND_.

___-*0ND

NDND

ND<20

NDND

NDND

NDND

35

23

SELE­NIUM,DIS­SOLVED(UG/LAS SE)

9*003*00

3600__

__

61003500

46002800

46003200

18002000

2600*900

*0003200

2*003300

*8003200

ZINC,SUS­

PENDEDRECOV­ERABLE(UG/LAS ZN)

20110

*0

__._

**0130

7020

7090

160160

6080

360560

8*070

2305*0

ZINC,DIS­SOLVED(UG/LAS ZN)

00

100__

___-00

63

50

73

176*

00

2*16

23039

PHYTO-PLANK-TON,TOTAL(CELLS

PER ML)

I1

I

11

11

1<1

11

(I 1

(1

SITE C Continued

MAY 197831...31...

JUNE28...30...

AUG.02...02...2*...2*...

SEPT.28...28...

OCT.26...26...

FEB. 197922...22...

APR.2-*...2*...

AUG.30...30...

FEB. 198027...27...

MAY1*...1*...

59060

110--

--

280HO

300120

WO150

6060

70100

17080

100120

270130

*0<10

2--

__--9020

<10<10

<10*0

SO80

20160

5030

5030

8030

0.1.0

.6

__ .0.0

.2

.0

.3

.3

.1

.0

.2

.3

.5

.1

.1

.0

.0

.0

<0.1<.1

<.1-_

__--

<.1<.1

<.1<.1

<.1<.1

<.1<.1

<.1<.1

<.1<.1

.0

.0

.0

.0

00

0--

._ 00

00

00

00

00

02

00

00

<1<1

<1__

__ <1<1

<1<1

<11

<1<1

11

<1<1

00

00

2020

20__

__ 100

200

200

00

020

00

*020

6030

<20ND

<3--

__ 20

<20

NDND

ND<3

20<20

20<20

<2020

00

2020

230290

3000--

3600750037007100

6706300

*500*500

260370

360360

*50*100

19001200

78230

49

Page 54: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Values of physical properties and concentrations of chemical constituentsand biota in water f rom sampling sites A-E Continued

DATE

SIT

MAY 197831...31...

OUNE28...30...

AUG.02...02...

SEPT28.28.

OCT.26.26.

FEB.22.22.

APR.24.24.

AUG.30.30.

FEB.27.27.

MAY14.14.

.f i. .

, ,. .1979

u f, ,

. .1 t

. .

. .1980

. ,

. ,

. ,

. .

COLI- FORM,

FECAL,0.7UM-MF(COLS./100 ML)

STREP­ TOCOCCI FECAL,

KF AGAR (COLS.

PER 100 ML)

E C Continued

K60 K34

K200

K8K1200

K3

K4 K3

K5 K3

K39 K20

K94 K32

K10 68

K23 K17

K170 K27

K22

K74160K48K4

K35K28

K4 K8

K35 K20

K12 K20

K11 120

50

Page 55: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Values of physical properties and concentrations of chemical constituentsand biota in water from sampling sites A-E Continued

OXYGEN,DIS­

SOLVEDSAM- DIS- (PER- PHPLING SOLVED CENT (STAND- TEMPER-

DATE

MAY 197825...25...

AUG.02...02...

SEPT.28...28...

FEB. 198027...27...

MAY1*...1*...

DATE

MAY 197825...25...

AUG.02...02...

SEPT.28...28...

FEB. 198027...27...

MAY14...14...

DATE

MAY 197825...25...

AUG.02...02...

SEPT.28...28...

FEB. 198027...27...

MAY14...14...

TIME

11001130

22002205

11001135

12351245

10401050

ALKA­LINITYFIELD(MG/LAS

DEPTH OXYGEN SATUR- ARD(FEET) (MG/L) ATION) UNITS)

SITE D

14.0 6.3 70 6.73.00 6.9 85 6.7

____

20.0 5.0 59 7.53.00 7.6 90 7.8

__

26.2 7.4 6.53.00 7.6 7.0

MAGNE-CALCIUM SIUM, SODIUM,DIS- DIS- DIS­SOLVED SOLVED SOLVED(MG/L (MG/L (MG/L PERCENT

ATURE(DEC C)

19.524.5

__

23.024.0

-___

19.522.0

SODIUMAD­

SORP­TION

RATIOCAC03) AS CA) AS MG) AS NA) SODIUM

--

..

4243

3232

2529

NITRO­GEN,

NITRATETOTAL(MG/L

AS N03)

4.33.8

-.__

6.84.9

4.44.9

9.27.7

SITE

15 4.3 12 3114 3.5 8.9 27

____

20 5.2 16 3214 5.1 16 37

11 4.2 11 3311 4.2 12 35

12 4.1 13 3711 4.1 13 37

NITRO- NITRO- NITRO­GEN, NITRO- GEN, GEN, NITRO-

NITRATE GEN, NITRITE NITRITE GEN,DIS- NITRITE DIS- DIS- N02+N03SOLVED TOTAL SOLVED SOLVED TOTAL(MG/L (MG/L (MG/L (MG/L (MG/L

AS N03) AS N) AS N) AS N02) AS N)

SITE D Continued

2.1 0.030 0.010 0.03 0.501.6 .030 .010 .03 .37

__

1.2 .010 <.010 .00 .341.0 .010 <.010 .00 .23

1.5 .020 .000 .00 .351.5 .040 .000 .00 .39

<1.2 .060 .030 .10 .28<1.2 .050 .030 .10 .25

SPE­CIFICCON­DUCT­ANCE(US/CM)

180190

____

235238

_.__

150142

POTAS­SIUM,DIS­SOLVED(MG/LAS K)

COLOR(PLAT­INUM-COBALTUNITS)

140150

____

8080

120100

20160

SILICADIS­

HARD-HARD- NESS,

TUR- NESS NONCAR-BID- (MG/L BONATEITY AS (MG/L(NTU) CAC03) CAC03)

100 5595 49

____

68 71 2950 56 13

66 45 13120 45 13

80 47 2296 44 15

, DIS- NITRO-SOLVED NITRO- GEN

SOLVED SOLIDS GEN DIS-(MG/LASSI02)

(TONS TOTAL SOLVEDPER (MG/L (MG/LAC-FT) AS N) AS N)

NITRO­ GEN,

NITRATEDIS­SOLVED(MG/LAS N)

D--Continued

0.7.6

__

.9

.1

.7

.8

.9

.9

NITRO­GEN,

N02+N03DIS­SOLVED(MG/LAS N)

0.48.38

----

.28

.23

.35

.35

.29

.30

2.52.3

..

3.03.0

2.52.5

1.22.7

NITRO­GEN,

AMMONIATOTAL(MG/LAS N)

0.110.110

--

.100

.120

.080

.060

.080

.060

5.75.5

__

5.14.6

6.06.7

5.75.7

NITRO­GEN,

AMMONIADIS­SOLVED(MG/LAS N)

<0.010<.010

--

.030

.010

.000

.000

.450

.460

0.13 0.97.10 .85

__

.17 1.5 0.74

.16 1.1 .64

.14 .99 .91

.13 1.1 .88

.14 2.1 1.3

.15 1.7 1.5

NITRO-NITRO- GEN,GEN, AMMONIA

AMMONIA DIS-TOTAL SOLVED(MG/L (MG/LAS NH4) AS NH4)

0.00.00

__

.04

.01

0.10 .00.07 .00

.10 .58

.07 .59

0.47.37

__

.28

.23

.35

.35

.26

.27

51

Page 56: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

MAY 1978

Table 3.--Values of physical properties and concentrations of chemical constituents

DATE

NITRO­GEN, AMMONIA +ORGANICTOTAL(MG/L(AS N)

NITRO­GEN, AMMONIA +ORGANICDIS.(MG/LAS N)

and biota In wate

NITRO­GEN, NH4+ ORG.SUSP.TOTAL(MG/LAS N)

NITRO­GEN,

ORGANICTOTAL(MG/LAS N)

from

NITRO­GEN,

RGANICDIS­

SOLVED(MG/LAS N)

sampling

PHOS­PHORUSTOTAL(MG/LAS P)

sites A-E--Contlnued

PHOS­PHORUS,

, DIS­SOLVED(MG/LAS P)

PHOS­PHORUSTOTAL(MG/L

AS P04)

CARBON,ORGANICTOTAL(MG/LAS C)

CARBON,ORGANICDIS­

SOLVED(MG/LAS C)

CARBON,ORGANICSUS­

PENDEDTOTAL(MG/LAS C)

SITE D--Contlnufed

25...25...

AUG.02...02...

SEPT.28...28...

FEB. 198027...27...

MAY14. . .14...

DATE

0.47.48

____

1.2.88

.64

.71

1.81.5

ARSENICSUS­

PENDEDTOTAL(UG/LAS AS)

0.33.31

__-

.46

.41

.56 0.08

.53 .18

1.0 .801.2 .30

ARSENICDIS­SOLVED(UG/LAS AS)

0.36.37

____

1.1.76

.56

.65

1.71.4

CADMIUMDIS­SOLVED(UG/LAS CD)

0.33.31

____

.43

.40

.56

.53

.55

.74

HRO-IUM,SUS-ENDEDECOVVUG/LS CR)

0.110.100

ChMlD]S((I

____

.060

.040

.090

.120

.100

.090

RO-UM,S-LVEDG/L

AS CR)

0.010.010

____

.010

.010

.010

.010

.020

.030

COPPER,DIS­SOLVED(UG/LAS CU)

7.3__

____

0.28 5.7.37 6.0

.31 6.1

.28 7.4

IRON,SUS­

PENDEDRECOV­ERABLE(UG/LAS FE)

7.15.8

____

._

--

7.05.8

IRON,DIS­SOLVED(UG/LAS FE)

1.21.5

____

__

.90--

LEAD,DIS­SOLVED(UG/LAS PB)

MAN<NESIsu;

PEN!REC((UG/AS 1

SITE D--Continued

MAY 197825...25...

AUG.02...02...

SEPT.28...28...

FEB. 198027...27...

MAY14...14...

DATE

MAY 197825...25...

AUG.02...02...

SEPT.28...28...

FEB. 198027...27...

MAY14...14...

11

81

11

01

MANGA­NESE,DIS­SOLVED(UG/LAS MN)

<105

600<10

2020

2010

<1<1

<11

11

11

MERCURY SUS­PENDEDRECOV­ERABLE(UG/LAS HG)

0.1 ..2

--

1.10

0.1

.10

NONO

5 ND10

!..

NOND

00

<1<1

SE NI

MERCURY SDIS- PESOLVED TO(UG/L (UAS HG) AS

SITE

<0.1<.1

--

<.1<.1

.0

.0

.0

.0

300

00

00

ND

__

NDND

01

00

£- IM, SELE-IS- NIIDED D AL SOl/L (USE) AS

D--Contlnu

00

--

00

JM,[S--VEDG/LSE)

ed

<1<1

--

<1<1

0 00 0

0 00 0

ZINC, SUS­

PENDEDRECOV­ERABLE(UG/LAS ZN)

020

----

10020

2040

--40

NDND

..

NDND

33

44

ZINC,DIS­SOLVED(UG/LAS ZN)

205

--

NDND

00

<35

38003500

_-

340002600

29006600

35003200

PHYTO-PLANK-TON,TOTAL(CELLS

PER ML)

1400860

22002400

7201200

1400

78540

11080

60170

130150

230140

COLI- FORM,FECAL,0.7UM-MF(COLS./100 ML)

110120

--

-_--

----

NDND

NDND

00

25

STREP­ TOCOCCIFECAL,

KF AGAR(COLS.PER

100 ML)

31098

----

K20K55

__--

----

37< 1,

52

Page 57: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Values of physical properties and concentrations of chemical constituentsand biota in water from sampling sites

DATE

3UNE 197801...30...

OULY26...

AUG.02...23...

FEB. 197920...

MAR.28...

APR.2*...

OULY19...

AUG.29...

OCT.30...

NOV.19...

3AN. 198009...

FEB.26...

APR.01...

MAY13...

TIME

14301030

0830

09001130

1530

1200

1820

1345

1405

1445

1500

1430

1000

1300

1215

CALCIUM

DATE

DIS­SOLVED(MG/LAS CA)

DIS­ CHARGE,INST.(CUBICFEETPERSECOND)

0.0

E1.0.0

52

E130

7.3

5.4

2.6

-_

--

33

17

MAGNE­SIUM,DIS­SOLVED(MG/LAS MG)

OXYGEN,DIS­

SOLVED(MG/L)

5.64.8

3.2

4.34.0

8.6

8.4

3.8

4.2

4.2

__

--

5.9

SODIUM,DIS­SOLVED(MG/LAS NA)

OXYGEN, DIS­SOLVED(PER­CENT

SATUR­ATION)

__

__

__51

61

__

46

51

44

__

--

SODIUMPERCENT

PH(STAND­ARD

UNITS)

6.46.4

6.5

6.86.7

6.6

5.7

7.5

7.2

7.6

7.1

6.8

6.7

--

7.2

6.2

SODIUMAD­

SORP­TION

RATIO

TEMPER­ATUREWATER(DEC C)

SITE E

25.528.0

26.5

26.527.5

5.0

17.0

20.5

24.5

24.0

16.5

16.0

2.0

12.5

23.0

POTAS­SIUM,DIS­SOLVED(MG/LAS K)

A-E Continued

SPE­CIFICCON­DUCT­ANCE(US/CM)

6983

140

100160

82

260

42

120

67

160

90

88

50

52

SILICA,DIS­SOLVED(MG/LAS

SI02)

COLOR(PLAT­INUM-COBALTUNITS)

1012

13

68

50

80

50

45

180

10

80

5

50

80

50

NITRO­GEN,

TOTAL(MG/LAS N)

TUR­BID­ITY(NTU)

5.04.7

4.2

5.07.0

18

26

17

120

80

17

.50

27

39

18

NITRO­GEN

DIS­SOLVED(MG/LAS N)

HARD­NESSTOTAL(MG/LAS

CAC03)

2327

60

3264

20

15

14

40

25

92

31

19

16

14

20

NITRO­GEN,TOTAL(MG/L

AS N03)

HARD­ NESSNONCARBWH WATTOT FLD(MG/L ASCAC03)

232

3

00

16

8

7

0

25

22

C

8

9

5

10

NITRO­GEN,

NITRATETOTAL(MG/LAS N)

ALKA­ LINITYWAT WHTOT FETFIELD

(MG/L ASCAC03)

25

57

3264

4

7

7

42

70

34

11

7

10

10

NITRO­ GEN,

NITRATEDIS­

SOLVED(MG/LAS N)

SITE E Continued

OUNE 197801...30...

OULY26...

AUG.02...23...

FEB. 197920...

MAR.28...

APR.24...

3ULY19...

AUG.29...

OCT.30...

NOV.19...

3AN. 198009...

FEB.26...

APR,01...

MAY13...

4.76.3

16

7.818

5.2

3.2

2.9

10

3.5

27

7.4

4.2

3.4

3.0

4.5

2.72.7

4.9

3.14.7

1.7

1.6

1.6

3.6

4.0

6.0

3.0

2.0

1.8

1.7

2.2

4.94.3

5.8

6.07.6

4.3

3.8

3.6

4.3

4.5

4.9

4.7

4.5

4.3

5.6

4.5

3024

17

2720

31

34

34

18

26

10

22

32

35

40

31

0.5.4

.3

.5

.4

.4

.4

.4

.3

.4

.2

.4

.5

.5

.7

.4

1.51.6

2.1

2.52.5

.80

1.1

1.2

2.2

2.0

3.7

3.5

1.6

1.1

2.9

.90

6.29.0

8.5

6.16.4

6.2

8.5

7.8

9.4

5.1

5.1

6.0

3.7

5.1

6.5

7.7

0.37.52

__

__2.2

1.0

.82

.46

.62

.77

.68

.87

.59

1.6

1.5

__

__

1.1

2.9

.59

.54

1.1

.53

__

.71

1.62.3

__9.8

4.5

3.6

2.0

2.7

3.4

3.0

3.9

2.6

7.0

6.8

0.060.050

__.00

.800

.410

.220

.010

.070

.040

.110

.100

.460

.120

0.039.040

.040

.020

.030

.830

.480

.210

.030

.870

.090

__

__

__

__

.110

53

Page 58: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table

NITRO­GEN,

NITRATEDIS­

SOLVEDDATE (MG/L

AS N03)

JUNE 197801... 0.1830... .18

JULY26... .18

AUG.02... .0923... .13

FEB. 197920... 3.7

MAR.28... 2.1

APR.24... .93

JULY19... .13

AUG.29... 3.9

OCT.30... .40

NOV.19...

5. Values of physical propert: es and concentrations of chemical constituents

NITRO­GEN,

NITRITETOTAL(MG/LAS N)

0.010.070

.020

.020

<.010

.040

.020

.060

.040

.020

and biota in water fron sampling sites A-E Continued

NITRO- NITRO- NITR)- NITRO- NITRO- NITRO- NITRO­GEN, GEN, NI1RO- GEN, NITRO- GEN, NITRO- GEN, GEN, AM- GEN.NH4

NITRITE NITRITE GEN, N02+N33 GEN, AMMONIA GEN, AMMONIA MONIA + + ORG.DIS- DIS- N024N03 DIS- AMMONIA DIS- AMMONIA DIS- ORGANIC SUSP.SOLVED SOLVED TOTAL SOLVED TOTAL SOLVED TOTAL SOLVED TOTAL TOTAL(MG/L (MG/L (MC/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/LAS N) AS N02) AS N) AS N) AS N) AS N) AS NH4) AS NH4) AS N) AS N)

SITE E--Contimied

0.021 0.07 0,070 0.060 0.100 <0.010 -- 0.00 0.30.010 .03 ,120 .050 <.010 <.010 .00 .40

<.010 .00 .040 <.010 .00

<.010 .00 .020 .010 .01 ->-<.010 .00 010 .030 .090 .020 .03 2.2

.010 .03 820 .840 .020 .020 .03 .20

.020 .07 410 .500 .050 .420 -- .54 .41

<.010 .00 260 .210 .040 <.010 0.05 .00 .20 0.00

<.010 .00 030 .C30 .170 .120 .21 .15 .59 .08

.010 .03 130 .«80 .090 .010 .11 .01 .64 .41

.010 .03 ,080 .100 .130 .060 .16 .08 .60 .17

,130 -- .120 .15 .74 .00JAN. 1980

09... FEB.

2.60

26.APR.

01.MAY

13.

DATE

JUNE01.30.

JULY26.

AUG.02.23.

FEB.20.

MAR.28.

APR.24.

JULY19.

AUG.29.

OCT.30.

NOV.19.

JAN.09.

FEB.26.

APR.01.

MAY

. .

<.49

NITRO­ GEN, AM­MONIA +ORGANICDIS.(MG/LAS N)

19780.30.42

.32

.36

.301979

.26

2.4

.38

.51

.23

.43

1980

..

.010

.020

.010

NITRO­GEN,

ORGANICTOTAL(MG/LAS N)

0.20.40

2.1

.18

.36

.16

.42

.55

.47

' .62

.40

1.1

--

.010

NITRO­ GEN,

ORGANICDIS­

SOLVED(MG/LAS N)

0.15.42

.32

.35

.28

.24

2.0

.38

.39

.22

.37

--

--

--

--

--

.03

PHPHOS- PHOPHOROUS DTOTAL SO(MG/L (WAS P) AS

SI

0.050 C.030

--

--.050

.190

.030

.030

.010 <

.090

.040

.050

.060

.060

.110 .080

.480

.130

35-WUS PHOS- PHAVED TOT/G/L (MGP) AS P(

E E Cont

.040

20 .270

\- PHOS- £, PHORUSIL TOTAL'L (MG/L>4) AS P04)

Lnued

010--

--

----

040

010

020 0

010

020

010

--

--

--

__

..

._

._

.09 0.09

.03

.28

.12

.15

.18

.18

--

--

.200

PHOS­PHOROUSORGANICTOTAL(MG/LAS P)

0.05.03

--

.05

.19

.03

.03

.01

.09

.04

.05

.06

.06

rt f

.10

.05

.33

PHOS­ PHOROUSORGANIC

DIS­SOLVED(MG/LAS P)

0.01

--

----

.04

.01

.02

--

.02

.01

--

--

--

ft-*

--

--

.26

CARBON,ORGANICTOTAL(MG/LAS C)

3.14.0

--

--7.6

3.7

4.4

--

5.7

8.4

8.2

11

2.4

5.2

.48

1.1

1.4

CARBON,ORGANICDIS­

SOLVED(MG/LAS C)

2.94.3

--

4.3--

2.8

--

--

6.7

7.5

6.6

--

3.0

--

.00

.00

.81

CARBON, ORGANICSUS­

PENDEDTOTAL(MG/LAS C)

--

--

--

1.8

--

--

1.5

.3

.8

--

1.0

--

o13... .59 1.1 020

54

.18 .06 2.3 .8

Page 59: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 5. Values of physical properties and concentrations of chemical constituents

ARSENICSUS­

PENDEDTOTAL

DATE (UG/LAS AS)

ARSENICDIS­

SOLVED(UG/L

AS AS)

and biota

CADMIUMSUS­

PENDEDRECOV­ERABLE(UG/L

AS CD)

In water

CADMIUMDIS­

SOLVED(UG/L

AS CD)

from sampling sites A-E Continued

CHRO­MIUM,SUS­

PENDEDRECOV.(UG/L

AS CR)

CHRO­MIUM,DIS­SOLVED(UG/L

AS CR)

COPPER,SUS­PENDEDRECOV­ERABLE(UG/L

AS CU)

COPPER,DIS­SOLVED(UG/L

AS CU)

IRON,SUS­

PENDEDRECOV­ERABLE(UG/L

AS FE)

IRON,DIS­

SOLVED(UG/L

AS FE)

LEAD,SUS­

PENDEDRECOV­ERABLE(UG/L

AS PB)

LEAD,DIS­

SOLVED(UG/L

AS PB)

SITE E Continued

DUNE 197801... <130... 1

DULY26...

AUG.02...23... <1

FEB. 197920...

MAR.28...

APR.24... 1

DULY19... 2

AUG.29... 1

OCT.30... 1

NOV.19... 1

DAN. 198009...

FEB26... 2

APR.01... 0

MAY13... 0

MANGA­ NESE,SUS­

PENDEDRECOV.

DATE (UG/LAS MN)

DUNE 197801... 10030... 100

DULY26...

AUG.02...23... 140

FEB. 197920...

MAR.28...

APR.24... 30

DULY19... 70

AUG.29... 160

OCT.30. . . 90

NOV.19... 50

DAN. 198009...

FEB.26...

APR.01...

MAY13...

11

3

12

<1

<1

<1

3

1

1

<1

<1

1

1

1

MANGA­NESE,DIS­SOLVED(UG/LAS MN)

110240

820

240760

20

40

50

710

130

810

240

7

70

50

120

__

__

__

0

0

0

0

0

0

1

MERCURY SUS­

PENDEDRECOV­ERABLE(UG/LAS HG)

0.0.1

__.0

.0

.0

.6

.0

.2

.1

.0

.0

NDND

ND

<2<20

ND

5

ND

<2

ND

<1

3

6

ND

ND

<1

MERCURYDIS­SOLVED(UG/LAS HG)

<0. 1<. 1

<. 1

<. 1<. 1

<. 1

<. 1

<. 1

<. 1

<. 1

1.0

<. 1

<. 1

<. 1

<. 1

.1

010

0

__

0

0

0

5

_

1

0

4

2

SELE­ NIUM,SUS­

PENDEDTOTAL(UG/LAS SE)

SITE E--

00

__0

0

0

0

0

0

0

0

0

NDND

ND

NDND

20

ND

ND

30

<20

ND

__

2

ND

3

ND

SELE­NIUM,DIS­

SOLVED(UG/LAS SE)

_

0

0

10

0

1

0

0

ZINC, SUS­

PENDEDRECOV­ERABLE(UG/LAS ZN)

NDND

ND

<20ND

ND

<20

ND

<20

ND

1

ND

7

2

4

4

ZINC,DIS­SOLVED(UG/LAS ZN)

11002000

920

--

760

1300

6500

720

16000

PHYTO-PLANK-TON,

TOTAL(CELLS

PER ML)

120150

80

13080

130

300

440

670

80

70

190

10

100

320

200

ALGAL GROWTHPOTEN­TIAL,

BOTTLETEST(MG/L)

_

0

0

5

6

57

12

8

0

COLI- FORM,FECAL,0.7UM-MF(COLS. /100 ML)

NDND

ND

<10ND

ND

<10

ND

<10

ND

ND

ND

18

ND

ND

4

STREP­ TOCOCCIFECAL,

KF AGAR(COLS.PER

100 ML)

Continued

<1<1

<1

<1<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

<1

100

10

30

30

20

0

0

10

10

10

<209

<20

<3<20

<20

40

<20

4

4

10

7

<3

<3

10

10

140001300

--

7200

290

91

100

1900

--

1000

1700

2200

600

1100

610

0.4

--

--

--

--

K2000890

--

740

78

360

K60

5500

740

--

230

420950

--

120230

76

220

86

9400

2800

2000

55

Page 60: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6.--Physical properties of water from sampling sites A-D

[ft, feet; mg/L, milligrams perper centimeter

liter; °C, degrees Celsius; |iS/cm, microsiemens at 25 degrees Celsius]

Date Depth (ft)

05-31-78 0.511.022.0

12-07-78 1.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.018.019.0

04-25-79 0.51.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.0

Ox> Oxygen, dis dissolved (p (mg/L) sati

7.9.1.2

9.89.69.69.49.28.27.97.57.56.86.27.17.17.27.27.27.27.16.88.46.86.85.85.55.55.45.25.14.84.64.64.64.64.64.44.64.6

gen, solved rcent ration ;

SITE

9812

8281

pH (units)

A

6.76.36.5__-_

8179776966636358526060

____----____--

606262626056947676646161605857535151515151495151

____

6.6_-

6.6__

6.6__

6.6__

6.6-_

6.6__

6.5__

6.8-_

Temperature (°C)

25.021.520.07.07.07.07.07.07.07.07.07.07.57.07.07.07.07.58.08.57.06.5

20.520.020.020.019.519.519.519.019.019.019.019.019.019.019.019.019.019.0

Specific conductance

(|jS/cm)

160165154__

100--100--

100--

100__

100--

100--

100--

105--

113--____100------

100--

100--

100--

100--

100--

90--

56

Page 61: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6. Physical properties of water from sampling sites A-D--Continued

Date Depth (ft)

Oxygen, dissolved (mg/L)

Oxygen , dissolved (percent

saturation)pH

(units)Temperature

Specific conductance

SITE A Continued

04-25-79

08-29-79

05-31-78

08-30-78

18.019.020.01.03.04.09.014.019.022.0

0.5016.533.00.51.02.03.04.05.06.07.08.09.0

10.011.012.013.014.015.016.017.018.019.020.021.022.023.024.025.0

4.74.64.83.22.01.70.70.300

9.14.60.16.36.25.85.55.35.35.35.15.05.15.35.45.55.65.75.86.05.65.65.75.85.75.75.85.85.8

5251534025229400

SITE B

121570

797872696666606462646068697071.7275707070727070727272

7.4------

7.6-_----

7.4--

7.86.86.4__

7.9____

7.9--

7.9__

7.9__

7.9__

7.9__

7.9__

7.9__

7.9--

8.0__

8.0--

8.0--

19.019.019.027.527.027.027.026.526.526.5

30.024.521.0

_ _26.5

___ _

26.0__

26.026.026.026.026.026.026.026.026.026.026.026.026.025.525.525.525.525.526.025.5

102-__ _--

165__----

147--

97132122__

190_ __ _

190_ _

190_ _

190__

190__190_ _

190_ _

180_ _

190_ _

190__

190_ _

189_ _

57

Page 62: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6.--Physical properties of water from sampling sites A-D--Continued

Date

08-30-78

02-21-79

04-24-79

08-30-79

Depth (ft)

26.027.028.01.0

12.020.00.51.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.018.019.020.021.022.023.024.025.026.01.03.05.010.015.020.025.030.037.040.0

Oxy< Oxygen, dis;

dissolved (pei (mg/L) satui

SITE

5.75.75.8___ _--

8.26.86.86.16.06.06.06.05.85.35.25.25.55.55.65.65.86.06.06.46.46.66.86.26.05.85.6_ ___---_------------

en, olved cent ation)

B--Con

707071____--9176

pH (units)

;inued

8.0----

6.76.56.7----

76 7.168666666666458575760606262

----

6.86.86.86.8--

6.7--

64 6.96666 7.27070727568666462--__----------------

--7.1--

7.1--

7.0--

7.37.47.27.47.87.87.87.47.67.46.9

Temperature (°C)

25.525.025.05.55.56.5

20.020.020.019.519.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.019.529.028.528.529.028.528.028.028.027.527.5

Specific conductance

( |j3/cm)

190----

110115120--------------------

110--

110--

110--

100--

100--

100--

100--90--90111108106109103112111109109109

58

Page 63: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6.--Physical properties of water from sampling sites A-D Continued

Oxygen,Oxygen, dissolved

Date Depth dissolved (percent(ft) (mg/L) saturation)

pH (units)

Specific Temperature conductance

SITE a Continued

02-26-80

05-14-80

05-31-78

06-28-78

0.51.01.52.02.53.03.54.04.55.05.56.06.57.02.04.06.08.010.012.014.016.018.020.022.024.026.027.0

11.311.311.311.311.311.211.211.410.611.410.011.611.511.66.46.46.56.56.66.66.95.44.64.44.24.04.04.0

95959594949392938793829594957473747374737759514846434343

7.27.27.27.27.27.37.37.37.47.37.37.37.37.36.46.46.46.56.56.56.46.26.16.16.06.16.06.1

8.08.08.07.57.57.57.07.07.07.07.07.07.07.0

23.022.522.021.521.521.021.020.520.520.020.020.020.020.0

SITE C

0.53.015.029.030.00.51.02.03.04.05.06.0

7.07.07.47.37.37.47.47.47.47.47.47.4

888892909097979797979796

7.17.07.06.66.67.27.27.27.17.27.17.1

26.026.526.521.021.029.029.029.028.528.528.528.5

1221211211191211221261261271271271271271278889899191949596919090939392

147147147145144166166165165165165165

59

Page 64: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table

Date

06-28-78

08-03-78

08-24-78

08-30-78

6. --Physical properties of

OxyOxygen, dis

Depth dissolved (pe (ft) (mg/L) satu

7.08.09.010.011.012.013.014.015.016.017.018.00.51.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.018.03.0

31.00.51.02.03.04.05.06.07.08.0

SITE

7.27.27.17.06.86.86.76.66.66.56.26.16.96.86.76.56.46.26.26.26.26.06.16.16.26.26.26.26.26.36.36.46.36.46.46.46.46.46.46.46.36.4

water from sampling sites A-D--Continued

en,olved cent ation)

C Com

94949189858584828281767691898886848282828279

pH (units)

;inued

7.07.06.96.96.86.86.86.76.76.66.56.47.06.96.96.96.86.86.86.86.86.8

80 6.880 6.881 6.88080808082827978797979797979797879

6.86.86.86.86.86.97.27.6__

7.8--

7.9--

7.9--

7.9--

Temperature (°C)

28.028.027.527.026.526.526.526.026.026.026.026.029.029.029.029.029.028.528.528.528.528.528.528.528.528.028.028.028.028.028.029.027.025.525.526.026.026.026.026.026.026.0

Specific conductance

(pS/cm)

166164166167168167166166166166168168158157157156158158158159161162162162162163163163162163163193153--

210__

215__

214--

215--

60

Page 65: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6.--Physical properties of water from sampling sites A-D Continued

Date Depth(ft)

Oxygen,dissolved(mg/L)

Oxygen,dissolved(percent

saturation)pH

(units)

SpecificTemperature conductance

(°C) (|j,S/cm)

08-30-78

09-28-78

09-29-78

10-26-78

SITE C--Continued

02-22-79

9.010.011.03.0

42.01.02.03.04.05.06.07.08.09.0

10.011.012.013.014.015.016.017.018.019.01.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.01.02.0

6.36.36.38.47.58.48.48.48.48.48.38.38.38.07.97.97.67.37.47.47.37.37.06.88.08.08.08.08.08.08.08.08.08.08.08.08.08.07.97.86.512.512.6

78787888989998989898969696939292888586868585828082828282828282828282828282827980669898

7.9--

7.98.47.68.9--

9.2__

9.0--

9.0--

8.9--

8.8--

8.8--

8.6--

7.9--

7.8----

7.2----__----------------

26.026.026.026.023.523.523.023.023.023.023.023.023.023.023.023.023.023.023.023.023.023.023.523.515.515.515.515.515.515.515.515.515.515.515.515.515.515.5

7.7

15.015.516.04.54.5

212

210226230218

212

212

210

210

198

210

210

210

210240

240

240

235

230

220

220

220

220130130

61

Page 66: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6.--Physical properties of water from sampling sites A-D Continued

Date Depth (ft)

02-22-79 3.04.05.06.07.08.09.010.011.012.013.014.015.016.017.018.019.020.021.022.0

04-24-79 0.51.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.018.019.020.021.022.0

Oxy Oxygen, dis

dissolved (pe (mg/L) satu

SITE

12.612.612.712.512.512.512.512.512.512.512.512.512.512.512.512.512.512.512.412.49.39.39.39.39.39.29.29.29.29.09.09.09.19.29.29.29.29.29.29.49.49.69.6

gen, solved rcent ration]

C Cor

989899989898999999

pH (units)

itinued

_ _-----------_---_

9898989898989898989797

103102102102102101101101101999999991009999999999101101103103

-------------_------

7.5--

7.5--

7.6--

7.6--

7.6__

7.6--

7.6--

7.6--

7.6--

7.5

Temperature (°C)

4.54.54.54.54.54.55.05.05.04.54.54.54.54.54.54.54.54.54.54.5

20.019.019.019.019.019.019.019.019.019.019.019.018.518.518.018.018.018.018.018.018.018.018.0

Specific conductance

(|iS/cm)

130130130130130130130130130130130130130130130130130130130130--------95--

100--95--95--95--

100--

100--

100--

100--

100

62

Page 67: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6. Physical properties of water from sampling sites A-D Continued

Oxygen,Oxygen, dissolved

Date Depth dissolved (percent(ft) (mg/L) saturation)

pH (units)

Specific Temperature conductance

SITE C--Continued

04-24-79

08-30-79

05-14-80

05-25-78

08-30-78

23.024.025.026.027.028.029.030.031.032.033.034.035.036.037.038.039.040.041.042.043.044.03.0

30.03.0

40.0

9.29.19.09.09.08.58.17.67.47.37.27.27.37.17.27.17.27.07.06.85.85.8----

7.16.5

1.07.515.00.5

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

6.9 7.1 6.3 6.8 6.8 6.7 6.7 6.7 6.7 6.7 6.7 6.6 6.5 6.5

99989797979187817978767677757675767474726160 ------

_-7.4__

7.2__

6.8--

6.8__

6.9--

7.2--

7.3------

7.0-_

6.87.26.67.16.96.96.8

18.018.018.018.018.018.018.017.517.517.517.017.017.017.017.017.017.017.017.017.017.016.0

___-

21.019.0

SITE D

8586708686858585858585848181

6.7 6.7 6.7 7.8

7.8

7.8

7.8

7.8

7.8

25.024.019.526.526.026.026.026.026.026.026.026.026.025.5

100

87

85

85

90

90

90

90

809080

112109134120

139151182219

220

230

220

220

218

63

Page 68: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 6. --Physical properties of

Oxyg Oxygen, dis<

Date Depth dissolved (per (ft) (mg/L) satui

09-28-78 1.02.03.04.05.06.07.08.09.010.011.012.013.014.015.016.017.018.019.020.021.0

SITE

8.07.67.67.57.57.27.27.27.27.27.27.17.06.86.86.66.56.25.45.0.8

water 1! rom sampling sites A-D--Continued

en, olved cent ation)

D--Cont

95909088888585

pH (units)

inued

7.9--

7.8--

7.7--

7.68585 7.58585 8.08482 7.58080 7.678767364599

--7.6--

7.3__

7.5

Temperature (°C)

24.524.024.023.523.023.023.023.023.023.023.023.023.023.023.023.023.023.023.023.023.0

Specific conductance

(pS/cm)

230--

238--

232--

236--

232--

232--

238--

238--

232--

235--

235

64

Page 69: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of genera, and diversity index at sampling sites A-E

[CELLS/ML, cells per mllllllter]

DATETIME

TOTAL CELLS/ML

DIVERSITY: DIVISION.CLASS. .ORDER...FAMILY....GENUS

ORGANISM

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....COCCONEIS..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA..EUNOTIALES...EUNOTIACEAE....EUNOTIA..EUPODISCALES...COSCINODISCACEAE....CYCLOTELLA. . . .HELOSIRA..FRAGILARIALES...FRAGILARIACEAE....SYNEDRA..NAVICULALES...COMPHONEMACEAE....GOMPHONEMA...NAVICULACEAE....FRUSTULIA....NAVICULA....STAURONEIS..SURIRELLALES...SURIRELLACEAE....SURIRELLA

MAY 25,781300

560

1.21.21.72 02.2

CELLS PER-/ML CENT

29 5

..1801 32

_.

-._.29 5

-.

Site A

MAY 31,78 AUG ?3,78 AUG 23 7813W 1305 1310

14000 12000 12000

1.8 1.5 0.81.8 1.5 0.81.9 1.8 0.82.* 2.4 0.93.6 3.3 1.0

CF.LLS PER- CELLS PER- CELLS PER-/ML CENT /ML CENT /ML CENT

-- ... ...

970 7 1400 11 280 2

-- -- ...

580 4 430 4 » 0-- - 580 5 180 1

» 0 ... ...

-- ... ...

-- ... ...-- -- .--- ... ...

-- ... ...

DEC 21.781200

1500

1.91.92.72.83.1

CELLS PER-/ML CENT

..

54 4

..

31 215 1

8 1

8 1

..62 4..

15 1

15 3

470 4

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM....TETRAEDRON. . .DICTYOSPHAERIACEAE ....DICTYOSPHAERIUM...HYDRODICTYACEAE ....PEDIASTRUM...MICRACTINIACEAE ....MICRACTINIUM...OOCYSTACEAE ....ANKISTRODESMUS....CHLORELLA....CHODATELLA....CLOSTERIOPSIS....KIRCHNERIELLA....OOCYSTIS....TREUBARIA...SCENEDESMACEAE ....ACTINASTRUM....COELASTRUM....CRUCIGENIA....CLOEOACTINIUM....SCENEDESMUS....TETRASTRUM..TETRASPORALES...TETRASPORACEAE....TETRASPORA ... igo 1..VOLVOCALES...CHLAMYDOMONADACEAE ... .......CHLAMYDOMONAS ... ... ....VOLVOCACEAE....CONIUM . .....ZYGNEMATALES...DESMIDIACEAE....COSMARIUM ... » o .......EUASTRUM -- ... * o....STAURASTRUM ... ... ...

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent» - OBSERVED ORGANISM, HAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

--

--__--15

--

29--

2301

-

-

.-3

-

.-5-

42-

480

390

9797

1200

--

1200

780_.

440390

3

3

118

-

8-5.33

--

78

__..

1000

*

_.

7001600

__29001

--

-

1

_.9

0

.613.

25-

--

70"

__70

--

..

..280280670..

-

1

I.1

-

.

.226.

--

46"

_.--

--

..39__

3401..

-

3

_-

-

.3_

23.

62

65

Page 70: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DATE MAY 25,78 TIME 1300

Table 7. Phytoplankton counts, number of genera, and diversity index at sampling sites A-E Continued

Site A

MAY 31,78 13*0

ORGANISM

CHRYSOPHYTA.XANTHOPHYCEAE..MISCHOCOCCALES...SCIADACEAE....CENTRITRACTUS....OPHIOCYTIUM

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONADACEAE....CRYPTOMONAS

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM....ANACYSTIS....COCCOCHLORIS..OSCILLATORIALES...OSCILLATORIACEAE....LYNGBYA....OSCILLATORIA

EUGLENOPHYTA (EUCLENOIDS).EUaENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUGLENA....PHACUS 29....TRACHELOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...PERIDINIACEAE....PERIDINIUM

NOTE: » - DOMINANT ORGANISM; EQUAL TO OR GRE

CELLS PER- CELLS PER- /ML CENT /ML CENT

* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED;

190190

290290190

TEH THAN 1! percent

AUG 23,78 1305

AUG 23,78 1310

CELLS PER- CELLS PER- /ML CENT /ML CENT

DEC 21,78 1200

CELLS PER- /ML CENT

1*00 12 930 8

100001 8*

120 1* 0

78 1

210 H 8 1

310» 21

23 2250» 17

8 1

LESS THAN 1/2 percent

66

Page 71: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of genera, and diversity Index at sampling sites A-E Continued

Site A

DATE DEC 21,78 FEB21.79 FEB21.79 FEB21,79 TIME 1225 0000 1445 1500

TOTAL CELLS/ML 500 120 HO 87

DIVERSITY: DIVISION 1.9 1.* 1.0 0.9.CLASS 1.9 1.* 1.0 0.9..ORDER 2.4 2.2 2.2 1.9...FAMILY 2.9 2.8 2.2 1.9....GENUS 3.1 2.8 0.0 0.0

CELLS PER- CELLS PER- CELLS PER- CELLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....COCCONEIS -- -- ... .....BACILLARIALES...NITZSCHIACEAE....NITZSCHIA 47 9 H 13 43* 30..EUNOTIALES...EUNOTIACEAE....EUNOTIA -- - 14 13 14 10..EUPOOISCALES...COSCINOOISCACEAE....CYCLOTELLA 31 6 -- - ... HI 17....MELOSIRA ... _- ... ..FRAGILARIALES...FRAGILARIACEAE....SYNEORA 82 -- ... 29* 33..NAVICULALES...GOMPHONEMACEAE....GOMPHONEMA 82 14 13 14 10 ......NAVICULACEAE....FRUSTULIA ... ... ... i<tf 17....NAVICULA 54 11 14 13 .......STAURONEIS ... ... ... .....SURIRELLALES...SURIRELLACEAE....SURIRELLA -- ... ...

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM -- ... ... .. .....TETRAEDRON ... ... ... ......DICTYOSPHAERIACEAE....DICTYOSPHAERIUM ... ... ... ......HYDROOICTYACEAE....PEDIASTRUM ... ... ... ......MICRACTINIACEAE....MICRACTINIUM -- - 29* 25 ... ......OOCYSTACEAE....ANKISTRODESMUS 85* 17 - 43* 30 -- -....CHLORELLA ... ... ... .......CHODATELLA ... ... ._....CLOSTERIOPSIS - ... ... .......KIRCHNERIELLA 16 3 14 13 ... .......OOCYSTIS ... ... ... .......TREUBARIA -- ... ... ......SCENEDESMACEAE....ACTINASTRUM -- - .-- - ... .......COELASTRUM ... ... ... .......CRUCIGENIA ... ... .......GLOEOACTINIUM ... ... ... .......SCENEDESMUS 93* 18 ... ... .......TETRASTRUM ... ... ... .....TETRASPORALES...TETRASPORACEAE....TETRASPORA ... ... ... .....VOLVOCALES...CHLAMYDOMONADACEAE ... ... 29* 20 29* 33....CHLAMYDOMONAS ... ... ... ......VOLVOCACEAE....GONIUM ... ... ... .....ZYGNEMATALES...DESMIDIACEAE....COSMARIUM ... ... ... .......EUASTRUM ... ... ... .......STAURASTRUM ... ... ... ...

NOTE: * - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent* - OBSERVED 0RGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

67

Page 72: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of j inera, and diversity index at sampling sites A-E--Continued

DATE TIME

ORGANISM

CHRYSOPHYTA.XANTHOPHYCEAE..MISCHOCOCCALES...SCIAOACEAE....CENTRITRACTUS....OPHIOCYTIUM

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONADACEAE....CRYPTOMONAS

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM....ANACYSTIS....COCCOCHLORIS..OSCILLATORIALES...OSCILLATORIACEAE....LYNGBYA....OSCILLATORIA

EUGLENOPHYTA (EUGLEMOIDS).EUGLENOPHYCEAE..EUCLENALES...EUGLENACEAE....EUCLENA....PHACUS....TRACHELOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...PERIDINIACEAE....PERIDINIUM

NOTE: I - DOMINANT ORGANISM; EQUAL

Site A

DEC 21,78 1225

FEB 21,79 0000

FEU 21,79 FEB 21,79 1500

CELLS PER- CELLS PER- /ML CENT /ML CFNT

CELLS PER- CELLS PER- /ML CENT /ML CENT

* - OBSERVED ORGANISM, MAY NOT HAVE BEEN

781 15

62 1223 5

H 13

TO OR GREATER THAN 15 percentCOUNTED; LESS THAN 1/2 percent

68

Page 73: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of genera, and diversity Index at sampling sites A-E--Continued

DATE TIME

TOTAL CELLS/ML

DIVERSITY:

ORGANISM

DIVISION .CLASS ..ORDER ...FAMILY ....GENUS

Site A

APR 25,79 0830

1300

2.1

2.7

CELLS PER- /ML CENT

APR 25,79 0831

790

0.9 0.9 0.91.1 1.1

CELLS PER- /ML CENT

AUG 29,79 0910

100000

0.8 0.8 0.8 1.0 1.8

CELLS PER- /ML CENT

AUG 29,79 0930

46000

1.3 1.3

2.23.1

CELLS PER- /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHA1ES...ACHNANTHACEAE....COCCONEIS..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA..EUNOTIALES...EUNOTIACEAE....EUNOTIA..EUPODISCALES...COSCINODISCACEAE....CYCLOTELLA....MELOSIRA..FRAGILARIALES...FRAGILARIACEAE....SYNEDRA..NAVICULALES...QOMPHONEMACEAE....GOMPHONEMA...NAVICULACEAE....FRUSTULIA....NAVICULA....STAURONEIS..SURIRELLALES...SURIRELLACEAE....SURIRELLA

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM....TETRAEDRON...DICTYOSPHAERIACEAE....DICTYOSPHAERIUM...HYORODICTYACEAE....PEDIASTRUM...MICRACTINIACEAE....MICRACTINIUM...OOCYSTACEAE....ANKISTRODESMUS....CHLORELLA....CHOOATELLA....CLOSTERIOPSIS....KIRCHNERIELLA....OOCYSTIS....TREUBARIA...SCENEDESMACEAE....ACTINASTRUM....COELASTRUM....CRUCIGENIA....GLOEOACTINIUM....SCENEDESMUS....TETRASTRUM..TETRASPORALES...TETRASPORACEAE....TETRASPORA..VOLVOCALES...CHLAMYDOMONADACEAE....CHLAMYDOMONAS...VOLVOCACEAE....GONIUM..ZYCNEMATALES...DESMIDIACEAE....COSMARIUM....EUASTRUM....STAURASTRUM

52

78 6

13 1

13 2

26 3

* 0

1300 1 0

0

1800890

52

26 3

13 2

52

4101 3152 4

39 3

2101 15

52

**

580

580

1400*

3700*

5801700

8500*

00

11

100

40

12

80

300300

1000

1200

2400**

2800

-

4100

1500011200

11

2

3

500

6-

-

9

323

300 1

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED} LESS THAN 1/2 percent

69

Page 74: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number <f genera, and diversity Index at sampling sites A-E--Contlnued

DATE TIME

Site A

/PR 25,79 0830

CEILS PER- CELLS PER- CENT /ML CENT

APR 25,79 0831

AUG 29,79 0910

CELLS PER- /ML CENTORGANISM

CHRYSOPHYTA.XANTHOPHYCEAE..MISCHOCOCCALES...SCIADACEAE....CENTRITRACTUS....OPHIOCYTIUM

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONADACEAE....CRYPTOMONAS

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM -- - , - 15000 15....ANACYSTIS | I " - 67000*66....COCCOCHLORIS..OSCILLATORIALES...OSCILLATORIACEAE....LYNGBYA....OSCILLATORIA »60* 27 6*0* 82

EUGLENOPHYTA (EUGLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUGLENA - 13 2....PHACUS....TRACHELOMONAS 26 2 ... « 0

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...PERIDINIACEAE....PERIDINIUM

NOTE: I - DOMINANT ORGANISM; EQUAL 10 OR CREATE!! THAN 15 percent

AUG 29,79 0930

CELLS PER- /ML CENT

300 1

*700 10 8900* 19

» - OBSERVED ORGANISM, MAY NO)

7*0

HAVE BEEN COUNTED; LESS THAN 1/2 percent

70

Page 75: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of genera, and diversity index at sampling sites A-E--Continued

DATETIME

TOTAL CELLS/ML

DIVERSITY: DIVISION.CLASS. .ORDER...FAMILY....GENUS

Site B

APR 24,791115

1700

2.02.02.42.83.4

APR 24,791116

1100

1.21.21.92.02.0

AUG 30,791602

990

0.60.60.91.11.5

AUG 30,791616

130000

0.40.40.50.51.5

CELLS PER- CELLS PER- CELLS PER- CELLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....COCCONEIS ... 61 .....BACILLARIALES...NITZSCHIACEAE....NITZSCHIA 77 5 51 5 18 2 * 0..EUPOOISCALES...COSCINOOISCACEAE....CYCLOTELLA 39 2 -- - 72 7 910 1....MELOSIRA 51 3 90 8 7501 76 * 0....STEPHANOOISCUS 90 5 -- -- .....FRAGILARIALES...FRAGILARIACEAE....SYNEDRA - -- - 61 .....NAVICULALES...NAVICULACEAE....NAVICULA ... ... g.i ...

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM -- - ... 61 * 0....SCHROEDERIA ... ... .......TETRAEDRON ... ... 61 * 0...DICTYOSPHAERIACEAE....DICTYOSPHAERIUM 26 2 - ... ......MICRACTINIACEAE....GOLENKINIA 13 1 ... .......MICRACTINIUM ... ... ... ......OOCYSTACEAE....ANKISTROOESMUS 3301 20 51 5 36 4 * 0....CHLORELLA ... ... ... * Q....CHODATELLA 13 1 ... ... .......CLOSTERIOPSIS ... ... ... .......KIRCHNERIELLA ... ... ... 6900 5....OOCYSTIS 51 3 . 24 2 -....SELENASTRUM 13 1 ... ... .......TREUBARIA ... ... ......PALMELLACEAE....SPHAEROCYSTIS ... ... ... ......SCENEOESMACEAE....COELASTRUM ... ... ... .......CRUCIGENIA ... ... ... * o....SCENEDESMUS 100 6 100 9 ... 810 1....TETRASTRUM 51 3 ... 48 5 .....VOLVOCALES...CHLAMYOOMONADACEAE....CHLAMYOOMONAS 64 4 ... ... * Q....CHLOROCONIUM 13 1 ... ... ...

CHRYSOPHYTA.CHRYSOPHYCEAE..CHROMULINALES...CHRYSOCOCCACEAE....CHRYSOCOCCUS ... ... ... ....XANTHOPHYCEAE..MISCHOCOCCALES...SCIADACEAE....OPHIOCYTIUM 13 1 ... ... ...

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOMONAOACEAE....CRYPTOMONAS HO 9 -- - ... ...

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

71

Page 76: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

-Phytoplankton counts, number of ge

DATETIME

CEORGANISM /

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE

nera, and diversity Index

Site B

^PR 21,79 APR 21,791115 1116

_LS PER- CELLS PER-HL CENT /ML CENT

. .CHROOCOCCALES

...CHROOCOCCACEAE

. . . .ACMENELLUM

....ANACYSTIS

. .NOSTOCALES

...NOSTOCACEAE

....ANABAENA

..OSCILLATORIALES

...OSCILLATORIACEAE

....OSCILLATORIA

EUaENOPHYTA (EUCLENOIDS).EUGLENOPHYCEAE..EUCLENALES...EUaENACEAE....EUGLENA....EUTREPTIA....PHACUS....TRACHELOMONAS

DATETIME

TOTAL CELLS/ML

DIVERSITY: DIVISION.CLASS..ORDER...FAMILY. . . .GENUS

CORGANISM

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....COCCONEIS..BACILLARIALES. . .NITZSCHIACEAE....NITZSCHIA..EUPOOISCALES. . .COSCINOOISCACEAE....CYCLOTELLA....MELOSIRA....STEPHANODISCUS..FRAGILARIALES...FRAGILARIACEAE....SYNEDRA..NAVICULALES...NAVICULACEAE. . . .NAVICULA

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM....SCHROEDERIA....TETRAEDRON...DICTYOSPHAERIACEAE....DICTYOSPHAERIUM...MICRACTINIACEAE....GOLENKINIA....MICRACTINIUM...OOCYSTACEAE. ...ANK I STRODE SMUS....CHLORELLA....CHODATELLA....CLOSTERIOPSIS....KIRCHNERtELLA. . . .OOCYSTIS....SELENASTRUM....TREUBARIA...PALMELLACEAE....SPHAEROCYSTIS

.-180* 29 150 11

..

610* 57

26 2 13 1.-

.- -_6* * 13 1

FEB 26,80 FEB 26,801720 17*0

5700 2900

1.1. 1.11.1 1.11.8 1.72.0 2.32.1 3.0

[LLS PER- CELLS PER-fML CENT /ML CENT

-. .,

150 3 120 1

170 3 190 6170 3 8501 29.. ..

* 0 * 0

- --

-_ ---- ---- --

55 1 230 8

......

620 11 550* 19...

-- * 0

300 5 100 11_. --69 1 -- -... ...

-- --

at sampling sites A-E Con

AUG 30,79 AUG 30,791602 1616

CELLS PER- CELLS PER-/ML CENT /ML CENT

-- - 55000* 1169000* 51

-. ...

-- - -

-- » 061 ...61 * 0

-- - --

MAY 11,80 MAY 11,801215 1100

110 1100

0.1 1.10.1 1.10.6 1.82.1 2.32.1 3.2

CELLS PER- CELLS PER-/ML CENT /ML CENT

... -. .

-- - 78 5

-- - 13 1130 9

... -.

... _.

13 3 13 1

-. -.13 3 26 2-. -.

.- -.

-. ._52 13

52 13 78 5-- - 26 2"- "- ~13 "1

_. --... .- --- - 26 2-- - 13 1

130* 31 -- -

NOTE: I - DOMINANT ORGANISM; EQUAL » - OBSERVED ORGANISM, MAY h

TO OR GREAfER THAN 15 percentT HAVE BEEN COUNTED; LESS THAN 1/2 percent

72

Page 77: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of genera, and diversity index at sampling sites A-E continued

Site B

DATE FEB 26,80 FEB 26,80 MAY 14,80 MAY 14,80 TIME 1720 1740 1245 1400

CELLS PER- CELLS PER- CELLS PER- CF.LLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT

...SCENEOESMACEAE

....COELASTRUM -- -- ... 130 9

....CRUCIGENIA 170 3 58 2 ... ...

....SCENEOESMUS 210 4 170 6 130# 31 470* 33

....TETRASTRUM 58 2 ... 100 7

..VOLVOCALES

...CHLAMYDOMONAOACEAE

....CHLAMYDOMONAS *0 »0 133 26 2

....CHLOROGONIUM -- -- ... ...

CHRYSOPHYTA.CHRYSOPHYCEAE..CHROMULINALES...CHRYSOCOCCACEAE....CHRYSOCOCCUS -- 29 1 ... ....XANTHOPHYCEAE..MISCHOCOCCALES...SCIADACEAE....OPHIOCYTIUM --. ... ... ...

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOMONADACEAE....CRYPTOMONAS 110 2 ... ... ...

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM -- ... ... .......ANACYSTIS 33001 58 200 7 ... 39 3..NOSTOCALES...NOSTOCACEAE....ANABAENA -- ... ... 2301 16..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA 280 5 -- - ... ...

EUGLENOPHYTA (EUGLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUaENACEAE....EUGLENA ... ... 13 3 -- -....EUTREPTIA ... ... ... .......PHACUS ... ... .......TRACHELOMONAS 41 1 * 0 ... 13 1

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

73

Page 78: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

DATE TIME

TOTAL CELLS/ML

DIVERSITY: DIVISION .CLASS ..ORDER ...FAMILY ....GENUS

ORGANISM

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA..EUPODISCALES...COSCINODISCACEAE....CYCLOTELLA....MELOSIRA....STEPHANODISCUS..FRAGILARIALES...FRAGILARIACEAE....SYNEDRA..NAVICULALES...NAVICULACEAE....NAVICULA

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM....SCHROEDERIA....TETRAEDRON...DICTYOSPHAERIACEAE....DICTYOSPHAERIUM...HYDRODICTYACEAE....PEDIASTRUM...MICRACTINIACEAE....GOLENKINIA...OOCYSTACEAE....ANKISTROOESMUS....CHLORELLA....CHODATELLA....KIRCHNERIELLA....OOCYSTIS....SELENASTRUM....TREUBARIA...PALMELLACEAE....SPHAEROCYSTIS...SCENEDESMACEAE....ACTINASTRUM....COELASTRUM....CRUCIGENIA....SCENEDESMUS....TETRASTRUM..VOLVOCALES...CHLAMYDOMONADACEAE....CARTERIA....CHLAMYDOMONAS...VOLVOCACEAE....EUOORINA....PANDORINA..ZYGNEMATALES...DESMIDIACEAE....CLOSTERIUM....COSMARIUN

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONADACEAE....CRYPTOMONAS

MAY 31,78 1030

230

Table 7.--Phytoplankton counts, number of genera, and diversity index at sampling sites A-E continued

Site C

MAY 31,78 1115

290

3UN 28,78 1110

3000

AUG 2,78 0000

3600

0.30.30.70.70.7

CELLS PER- </ML CENT

0.7 1.40.7 1.40.7 1.80.7 2.01.1

ELLS PER-/ML CENT

2.4

CELLS PER-/ML CENT

0.60.60.70.70.8

CELLS PER-/ML CENT

AUG 2,78 0001

3600

0.6 0.6 0.7 0.7 0.8

AUG 24,78 1330

3700

0.4 0.4 0.4 0.4 0.7

CELLS PER- CELLS PER- /ML CENT /ML CENT

210* 88

15

15 5230* 80 1600* 54

70 2

41 1 3200* 87

41 1 130 3 32001 87 3300* 90

15

NOTE: I - DOMINANT ORGANISM; EQUAL

15

» - OBSERVED ORGANISM, MAY NDf HAVE BEE^ COUNTED; LESS THAN 1/2 percent

* 0

86 3

* 0

32 1

16 159 265 2210 722 1

320 1181 3

* 0

-- - 100 3 0 * 0 26 1

28 1 28 1

TO OR GREATER THAN 15 percent

74

Page 79: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of genera, and diversity index at sampling sites A-E continued

Site C

DATE TIME

ORGANISM

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM....ANACYSTIS....OACTYLOCOCCOPSIS..NOSTOCALES...NOSTOCACEAE....ANABAENA..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA

EUGLENOPHYTA (EUGLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUGLENA....PHACUS....TRACHELOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...GLENODINIACEAE....GLENODINIUM...PERIDINIACEAE....PERIDINIUM

MAY 31,78 1030

CELLS/ML

PER­ CENT

MAY 31,78 1115

CELLS /ML

PER­ CENT

3UN 28,78 1110

CELLS /ML

PER­ CENT

AUG 2,78 0000

CELLS /ML

PER­ CENT

AUG 2,78 0001

CELLS /ML

PER­ CENT

AUG 24,78 1330

CELLS/ML

PER­ CENT

310 10

1515

220

120

220

120

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

75

Page 80: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of gerera, and diversity Index at sampling sites A-E--continued

Site C

DATE TIME

TOTAL CELLS/ML

DIVERSITY: DIVISION .CLASS ..ORDER ...FAMILY ....GENUS

ORGANISM

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA..EUPOOISCALES...COSCINODISCACEAE....CYCLOTELLA....MELOSIRA....STEPHANODISCUS..FRAGILARIALES...FRAGILARIACEAE....SYNEDRA..NAVICULALES...NAVICULACEAE....NAVICULA

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM....SCHROEDERIA....TETRAEDRON...OICTYOSPHAERIACEAE....DICTYOSPHAERIUM...HYDRODICTYACEAE....PEOIASTRUM...MICRACTINIACEAE....COLENKINIA...OOCYSTACEAE....ANKISTRODESMUS....CHLORELLA....CHODATELLA....KIRCHNERIF.LLA....OOCYSTIS....SELENASTRUM....TREUBARIA...PALMELLACEAE....SPHAEROCYSTIS...SCENEDESMACEAE....ACTINASTRUM....COELASTRUM....CRUCIGENIA....SCENEDESMUS....TETRASTRUM..VOLVOCALES...CHLAMYDOMONADACEAE....CARTERIA....CHLAMYDOMONAS...VOLVOCACEAE....EUDORINA....PANDORINA..ZYGNEMATALES...OESMIOIACEAE....CLOSTERIUM....COSMARIUM

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONADACEAE....CRYPTOMONAS

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN * - OBSERVED ORGANISM, MAY NOT HAVE

AUG 24 1341

710

1. 1. 1. 1. 2.

CELLS P /ML O

120 13001 1

*

130

87

,78 SEP 28,78 C 1215

[i «70

Ci 0

i

I

;R- CELLS ;NT /ML

,

! 25 1 2901

)

?

1

12

1.01.0 1.01.4 1.9

PER­ CENT

-

4 43

-

-

-

2

SEP 28,78 1230

6300

1.7 1.7 2.1 2.4 2.5

CELLS PER- /ML CENT

32 1

32 164 1

.. .

--

-- -

OCT 26,78 0950

4500

0.8 0.8 1.3 1.4 1.4

CELLS PER- /ML CENT

89 2

89 244 1

.. .

..

-- -

OCT 26,78 1040

4500

0.3 0.3 1.3 1.3 1.5

CELLS PER- /ML CENT

110 2

97 2

- .

.. .

-- -

58

50 7

250II 37

50

« 0

360 8

64130

1100* 18

44 1

640 10

990* 16

15 percentBEEN COUNTED; LF.SS THAN 1/2 percent

76

Page 81: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of genera, and diversity index at sampling sites A-E--contimied

Site C

DATE AUG 2*,78 SEP 28,78 SEP 28,78 OCT 26,78 OCT 26,78 TIME 13*0 1215 1230 0950 1040

CELLS PER- CELLS PER- CELLS PER- CELLS PER- CELLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT /ML CENT

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM 37001 52 ... ... 440 10 11001 25....ANACYSTIS 450 6 - 380 6 44 1 240 5....DACTYLOCOCCOPSIS - ... ... ... .....NOSTOCALES...NOSTOCACEAE....ANABAENA 1200117 -- - 2600142 3300*74 2900# 64..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA - ... ... , .. - 69 2

EUGLENOPHYTA (EUCLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUGLENA - ... 130 2 ... .......PHACUS ... ... ....... TRACHELOMONAS * 0 32 1 * 0 ...

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...CLENODINIACEAE....CLENODINIUM ... ... ... ... .. -.. .PERIDINIACEAE... .PERIDINIUM -- - ... ... ... ...

CELLS PER- CELLS PER- CELLS PER- CELLS PER- CELLS PER- /ML CENT /ML CENT /ML CENT /ML CENT /ML CENT

5 2

DATE FEB 22,79 FEB 22,79 APR 24,79 APR 24,79 AUG 30,79 TIME 1201 1230 0845 0846 1305

TOTAL CELLS/ML 260 370 360 360 450

DIVERSITY: DIVISION 1.0 1.3 1.6 1.2 0.8.CLASS 1.0 1.3 1.6 1.2 0.8..ORDER 1.2 1.4 1.6 1.2 0.8...FAMILY 1.7 1.8 2.1 1.4 0.9....GENUS 1.9 1.8 2.4 1.4 1.3

CELLS PER- CELLS PER- CELLS ORGANISM

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA..EUPOOISCALES...COSCINODISCACEAE....CYCLOTELLA ... ... 26 7 26 7 35 8....MELOSIRA 10 3 1301 36 -- - 340# 76....STEPHANODISCUS - ... ... ... .....FRAGILARIALES...FRAGILARIACEAE....SYNEDRA ... 51 ... ... .....NAVICUULES...NAVICULACEAE....NAVICULA - 10 3 ... ... ...

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM ... ... ... ... 51....SCHROEDERIA ... 51 13 4 .......TETRAEDRON ... ... ... .. . ......DICTYOSPHAERIACEAE....DICTYOSPHAERIUM - ... ... ... ......HYDRODICTYACEAE....PEDIASTRUM ... ... ... ... ......MICRACTINIACEAE....GOLENKINIA ... ... ... ... ......OOCYSTACEAE *....ANKISTRODESMUS 25 10 25 7 52 14 39 11 51....CHLORELLA ... ... ... ... .......CHODATELLA ... ... ... ... .......KIRCHNERIELLA ... ... ... .......OOCYSTIS ... ... ... ... ...

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent» - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

77

Page 82: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of genera

FEB 22,79 1201

CELLS PER- /ML CENT

15 6

140* 55

5 2

DATE TIME

ORGANISM

....SELENASTRUM

....TREUBARIA

...PALMELLACEAE

....SPHAEROCYSTIS

...SCENEDESMACEAE

....ACTINASTRUM

....COELASTRUM

....CRUCIGENIA

....SCENEDESMUS

....TETRASTRUM

..VOLVOCALES

...CHLAMYDOMONADACEAE

....CARTERIA

....CHLAMYDOMONAS

...VOLVOCACEAE

....EUDORINA

....PANDORINA

..ZYGNEMATALES

...DESMIDIACEAE

....CLOSTERIUM

....COSMARIUM

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONADACEAE....CRYPTOMONAS

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM....ANACYSTIS....DACTYLOCOCCOPSIS..NOSTOCALES...NOSTOCACEAE....ANABAENA..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA

EUGLENOPHYTA (EUGLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUGLENA....PHACUS....TRACHELOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...GLENODINIACEAE....GLENOOINIUM...PERIDINIACEAE....PERIDINIUM

NOTE: * - DOMINANT ORGANISM; EQUAL TO OR GREA * - OBSERVED ORGANISM, MAY NOT HAVE BEE

>lte C

FEB 22,79 1230

CFLLS PER- /ML CENT

and diversity index at sampling sites A-E continued

APR 24,79 0845

APR 24,79 0846

CELLS PER- CFLLS PER- /ML CENT /ML CF.NT

AUG 30,79 1305

CELLS PER- /ML CENT

10 2

61* 24

52 14

110* 30 250* 68

45 10

13

ER THAN 15 percentCOUNTED; LESS THAN 1/2 percent

78

Page 83: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of genera, and diversity index at sampling sites A-E--continued

Site C

DATE AUG 30,79 FEB 27,80 FEB 27,80 MAY 14,80 MAY 14,80 TIME 1325 1145 1200 0845 1000

TOTAL CELLS/ML 4100 1900 1200 78 230

DIVERSITY: DIVISION 1.3 1.7 1.2 0.0 1.1.CLASS 1.3 1.7 1.2 0.0 1.1..ORDER 1.9 2.2 1.* 0.0 1.5...FAMILY 2.0 2.6 1.5 0.0 1.5....GENUS 2.5 3.2 1.8 0.0 1.8

CELLS PER- CELLS PER- CELLS PER- CFLLS PER- CELLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA 81 2 280 15 78 6 ... .....EUPODISCALES...COSCINODISCACEAE....CYCLOTELLA 200 5 220 11 65 5 ... 13 6....MELOSIRA 1700141 300/15 140 12 78/100 130/56....STEPHANODISCUS ... ... ... ... .....FRAGILARIALES...FRAGILARIACEAE....SYNEDRA ... ... ... .. .....NAVICULALES...NAVICULACEAE....NAVICULA * 0 -- - --- ... 26 11

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM 27 1 ... ... ... ......SCHROEDERIA ... ... ... ... .......TETRAEDRON ... ... ... ... ......DICTYOSPHAERIACEAE....DICTYOSPHAERIUM 81 2 -- 52 4 ... ......HYDRODICTYACEAE....PEDIASTRUM ... ... ... ......MICRACTINIACEAE....GOLENKINIA ... -- ... ... ......OOCYSTACEAE....ANKISTRODESMUS 68 2 170 9 13 1 ... 13 6....CHLORELLA 27 1 ... ... ... .......CHODATELLA ... ... 13 1 ... .......KIRCHNERIELLA « 0 -- -- ... .......OOCYSTIS 27 1 52 3 -- ... .......SELENASTRUM -- - 170 9 13 1 .......TREUBARIA ... ... 13 1 ... ......PALMELLACEAE....SPHAEROCYSTIS -- - 100 5 ... ... _....SCENEDESMACEAE....ACTINASTRUM -- - ... ... ... .......CDELASTRUM -- ... ... ... .......CRUCIGENIA 52 3 ... ... .......SCENEDESMUS 27 1 -- ... ... .......TETRASTRUM - 52 3 ... ... .....VOLVOCALES...CHLAMYDOMONADACEAE....CARTERIA ... ... ... .......CHLAMYDOMONAS ... 39 2 -- - ... ......VOLVOCACEAE....EUDORINA ... ... ... ... _. .....PANDORINA -- ... ... .....ZYGNEMATALES...DESMIDIACEAE....CLOSTERIUM ... ... ... ... .......COSMARIUM -- - ... ... ... ...

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS ... ... 13 1 ......CRYPTOMONADACEAE....CRYPTOMONAS 13 1 -- ... ...

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent« - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

79

Page 84: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of gen

AUG 30, 1325

CELLS PER /ML CEN

DATE TIME

ORGANISM

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....ACMENELLUM....ANACYSTIS....DACTYLOCOCCOPSIS..NOSTOCALES...NOSTOCACEAE....ANABAENA..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA

EUGLENOPHYTA (EUCLENOIDS).EUGLENOPHYCEAE..EUCLENALES...EUGLENACEAE....EUCLENA....PHACUS....TRACHELOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...GLENODINIACEAE....GLENOOINIUM...PERIDINIACEAE....PERIOINIUM

NOTE: * - DOMINANT ORGANISM; EQUAL TO OR GRE * - OBSERVED ORGANISM, MAY NOT HAVE BE

430 430

9901

*

10 10

24

0

4401 2

-

13

a, and diversity index at sampling sites A-E--contlnued

Site C

FEB 27,80 FEB 27,80 MAY 14,80 1145 1200 0845

CELLS PER- CELLS PER- CFLLS PER- /ML CENT /ML CENT /ML CENT

8201 67

MAY 14,80 1000

CFLLS PER- /ML CENT

52* 22

26 1

TER THAN 15 N COUNTED;

percent LESS THAN 1/2 percent

80

Page 85: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of genera, and diversity index at sampling sites A-E continued

Site D

DATE MAY 25,78 MAY 25,78 AUG 2,78 AUC 2,78 SEP 28,78 TIME 1100 1130 2200 2205 1100

TOTAL CELLS/ML 1WX) 860 2200 2*00 720

DIVERSITY: DIVISION 1.2 1.* 0.5 0.8 1.1.CLASS 1.2 1.* 0.5 0.8 1.1..ORDER 1.5 1.5 0.5 0.8 1.7...FAMILY 1.5 1.6 0.5 0.9 1.7....GENUS 1.7 1.6 0.6 1.0 2.2

CELLS PER- CELLS PER- CELLS PER- CELLS PER- CELLS PEU- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....ACHNANTHES 23 2 ... ... ... .......RHOICOSPHENIA ... ... » o .....BACILLARIALES...NITZSCHIACEAE....NITZSCHIA 16 3 ... ... o ..EUPODISCALES...COSCINODISCACEAE....CYCLOTELLA ... ... » o * 0 27 *....MELOSIRA 2801 20 *70I 5* 19001 88 20001 SI 1801 25....STEPHANODISCUS - ... 17 1 ... .....FRAGILARIALES...FRAGILARIACEAE....SYNEDRA ... 15 2 ... ... .....NAVICULALES...NAVICULACEAE....NAVICULA 23 2 ... ... ... ...

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE'....SCHROEDERIA ... ... ... ... ......,TETRAEDRON ... ... ... ......OOCYSTACEAE....ANKISTRODESMUS 15 2 » 0 *0 2 .......CLOSTERIOPSIS ... ... ... .......KIRCHNERIELLA ... ... ... ... .......SELENASTRUM ... ... ... ... ......SCENEDESMACEAE....ACTINASTRUM ... ... ... 65 3 .......SCENEDESMUS - 29 3 ... 32 1 18 2....TETRASTRUM 93 7 ... ... ... .....VOLVOCALES...CHLAMYDOMONADACEAE....CHLAMYDOMONAS -- - ... ... ... 9 !

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOMONADACEAE....CRYPTOMONAS ... ... ... » Q ...

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM 8301 61 ... ... ... 2801 *0....ANACYSTIS 69 5 ... ... ... 62 9... .COCCOCHLORIS ... » o ... .....NOSTOCALES...NOSTOCACEAE....ANABAENA ... ... 210 10 210 9 U0# 20..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA - 2901 3* -- - ... ...

EUGLENOPHYTA (EUCLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUCLENA - ... ... ... .......PHACUS ... 15 2 ... ... .......TRACHELOMONAS ... 29 3 ... ... ...

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...GLENOOINIACEAE....CLENODINIUM -- - ... ... ... ...

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

81

Page 86: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of gener i, and dive

DATE TIME

TOTAL CELLS/ML

DIVERSITY: DIVISION '.CLASS ..ORDER ...FAMILY ....GENUS

ORGANISM

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....ACHNANTHES....RHOICOSPHENIA..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA..EUPODISCALES...COSCINODISCACEAE....CYCLOTELLA....MELOSIRA....STEPHANOOISCUS..FRAGILARIALES...FRAGILARIACEAE....SYNEDRA..NAVICULALES...NAVICULACEAE....NAVICULA

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....SCHROEDERIA....TETRAEDRON...OOCYSTACEAE....ANKISTRODESMUS....CLOSTERIOPSIS....KIRCHNERIELLA....SELENASTRUM...SCENEDESMACEAE....ACTINASTRUM....SCENEDESMUS....TETRASTRUM..VOLVOCALES...CHLAMYOOMONADACEAE....CHLAMYDOMONAS

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOMONADACEAE....CRYPTOMONAS

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM....ANACYSTIS....COCCOCHLORIS..NOSTOCALES...NOSTOCACEAE....ANABAENA..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA

EUGLENOPHYTA (EUGLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUGLENA....PHACUS....TRACHELOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...GLENOOINIACEAE....GLENODINIUM

SE

CELL /MlJ

erisity index at sampling sites A-E continued

Site D

1 28,781135

1200

2.12.2 2.5

FEB 27,80 1235

1400

1.4

1.9 2.7

MAY 14,80 1840

78

0.7 0.7 1.3 1.3 1.8

MAY 14,80 1850

540

1.3 1.3 2.0 2.2 2.2

PER- CELLS PER- CFLLS PER- CF.LLS PER­ CENT /ML CENT /ML CENT /ML CENT

-I-

8 3 1!0 13

8 1

7 1

01 20

58 4

170 123201 22

131 17

131 17391 50

13 2

1201 21

131 17

2901 20

2601 18

120 8

13 2

13 2

13 2

26 5

4701 4134 3

1801 15

13

13

200 14 1901 36

1601 29

NOTE: I - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent- OBSERVED ORGANISM, HAY NOT HAVE BEtN COUNTED; LESS THAN 1/2 percent

82

Page 87: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of genera, and diversity index at sampling sites A-E continued

Site E

DATE 3UN 1,78 3UN 30,78 AUG 23,78 FEB 20,79 MAR 28,79 TIME 1430 1030 1130 1530 1200

TOTAL CELLS/ML 14000 1300 7200 290 91

DIVERSITY: DIVISION 1.0 1.5 1.7 1.5 0.9.CLASS 1.0 1.5 1.7 1.5 0.9..ORDER 1.1 1.5 2.0 2.1 2.2...FAMILY 1.2 1.9 2.6 2.1 2.5....GENUS 1.6 3.1 3.0 2.3 2.5

CELLS PER- CELLS PER- CELLS PER- CELLS PER- CELLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....ACHNANTHES ... ... ... .......COCCONEIS ... ... ... ... .....BACILLARIALES...NITZSCHIACEAE....NITZSCHIA « 0 58 1 52 .....EUNOTIALES...EUNOTIACEAE....EUNOTIA ... ... ... ... 13 n..EUPODISCALES...COSCINODISCACEAE....CYCLOTELLA 320 2 ... 120 2 20 7 13 14....MELOSIRA ... 11 1 770 11 -- - -....SKELETONEMA ... ... ... ... .....FRAGILARIALES...FRACILARIACEAE....FRACILARIA ... ... ... 20 7 ....SYNEDRA * 0 ... 20 7 13 14..NAVICULALES...CYMBELLACEAE....CYMBELLA ... ... ... ... 13 ^...GOMPHONEMACEAE....GOMPHONEMA ... ... ... 30 11 ......NAVICULACEAE....NAVICULA * 0 ... ... ... 13 14..SURIRELLALES...SURIRELLACEAE....SURIRELLA ... ... ... 52 ...

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM ... ... ... ... .......SCHROEDERIA ... ... 120 2 -- .......TETRAEDRON * 0 11 1 38 1 ... ......MICRACTINIACEAE....GOLENKINIA ... ... * Q ... ......OOCYSTACEAE....ANKISTRODESMUS 240 2 27 2 58 1 ... .......CHLORELLA ... ... ... ... .......CLOSTERIOPSIS * 0 ... ... ... .......KIRCHNERIELLA 180 1 54 4 38 1 ... .......OOCYSTIS ... ... ... ... .......SELENASTRUM - ... 270 4 ... .......TREUBARIA ... ... * 0 ... ......PALMELLACEAE....SPHAEROCYSTIS ... 21 2 380 5 -- ......SCENEDESMACEAE....COELASTRUM 470 3 ... ... ... .......CRUCIGENIA 120 1 130 10 380 5 ... .......SCENEDESMUS 710 5 440# 35 1300* 18 ... .......TETRASTRUM 240 2 86 7 ... ... .....TETRASPORALES...TETRASPORACEAE....TETRASPORA ... ... 150 2 ... .....VOLVOCALES...CHLAMYDOMONADACEAE....CHLAMYDOMONAS ... ... 58 1 52 26t 29...PHACOTACEAE....CEPHALOMONAS ... ... .. ....VOLVOCACEAE....GONIUM -- ... ... ....ZYGNEMATALES...DESMIDIACEAE....CLOSTERIUM ... ... 38 1 .......EUASTRUM ... ... * 0....STAURASTRUM ... ... 38 1 --

NOTE: t - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent» - OBSERVED ORGANISM, MAY NOT HAVE RON COUNTED; LESS THAN 1/2 percent

83

Page 88: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of generi, and diversity Index at sampling sites A-E continued

DATE TIME

DUN 1,78 1430

CELLS PER- /ML CENT

Site E

JUN 30,^8 1030 !

CELLS PER- /ML CENT

AUG 23,78 1130

FEB 20,79 1530

CELLS PER- CELLS PER- /ML CENT /ML CENTORGANISM

CHRYSOPHYTA.CHRYSOPHYCEAE..OCHROMONADALES...SYNURACEAE....SYNURA

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONAOACEAE....CRYPTOMONAS

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM 290 2 - 2800# 39....ANACYSTIS....COCCOCHLORIS....DACTYLOCOCCOPSIS..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA 180 1 -- I- - 150*53....SCHIZOTHRIX

EUGLENOPHYTA (EUGLENOIDS).EUGLENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUGLENA 88 1 64 $ 360 5....EUTREPTIA....LEPOCINCLIS....PHACUS....TRACHELOMONAS 380 3 64 5 150 2 30 11...PERANEMACEAE....CALYCOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..OINOKONTAE...CLENOOINIACEAE....CLENOOINIUM...CYMNODINIACEAE....GYMNODINIUM...PERIDINIACEAE....PER1DINIUM

NOTE: * - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

MAR 28,79 1200

CFLLS PER- /ML CENT

290 211000* 76 --

180 1

88 1

* 0380 3

- -

.-

220* 12786

- \

64 h

1164 5

* C

* <

84

Page 89: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of genera, and diversity index at sampling sites A-E--contlnued

Site E

DATE APR 24,79 3UL 19,79 AUG 29,79 OCT 30,79 NOV 19,79 TIME 1820 1345 1400 1445 1500

TOTAL CELLS/ML 100 1900 710 1000 1700

DIVERSITY! DIVISION 1.3 0.9 1.5 1.5 1.6.CLASS 1.3 0.9 1.5 1.5 1.6..ORDER 1.5 1.0 2.0 2.3 1.9...FAMILY 1.5 1.5 2.3 2.7 2.3....GENUS 1.5 2.7 3.2 3.0 2.8

CELLS PER- CELLS PER- CELLS PER- CELLS PER- CELLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....ACHNANTHES ... ... ... 19 2 .......COCCONEIS ... ... 61 ... 13 1..BACILLARIALES...NITZSCHIACEAE....NITZSCHIA 13 13 -- - 99 14 240# 24 160 10..EUNOTIALES...EUNOTIACEAE,....EUNOTIA ... ... --.'_._ .....EUPOOISCALES...COSCINOOISCACEAE....CYCLOTELLA - 39 2 46 7 65 6 13 1....MELOSIRA - ... 29 4 91 - -....SKELETONEMA ... ... 19 2 .....FRACILARIALES...FRAGILARIACEAE....FRAGILARIA ... ... ... ... .......SYNEDRA ... . si 37 4 67 4..NAVICULALES...CYMBELLACEAE....CYMBELLA ... ... ... ... ......COMPHONEMACEAE....GOMPHONEMA ... g i ... ......NAVICULACEAE....NAVICULA - - -- - 23 3 56 5 - -..SURIRELLALES...SURIRELLACEAE....SURIRELLA ... ... ... ... 13 1

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM ... ... 12 2 ... 170 10....SCHROEDERIA ... ... ... ... .......TETRAEDRON -- 13 1 ... 91 ......MICRACTINIACEAE....COLENKINIA ... ... ... ... ......OOCYSTACEAE....ANKISTRODESMUS 13 13 26 1 17 2 37 4 790# 47....CHLORELLA - - -- - ... 260# 25 67 4....CLOSTERIOPSIS -- ... ... ... .......KIRCHNERIELLA - ... 23 3 19 2 13 1....OOCYSTIS . ... ... ... .......SELENASTRUM -- - 170 9 ... .......TREUBARIA ... ... ... ... ......PALMELLACEAE....SPHAEROCYSTIS ... ... ... ... ......SCENEDESMACEAE....COELASTRUM -- - 6001 31 ... ... .......CRUCIGENIA -- - 260 14 23 3 -- - .......SCENEDESMUS - - 520*27 81 11 37 4 - -....TETRASTRUM ... ... ... .....TETRASPORALES...TETRASPORACEAE....TETRASPORA ... ... ... .....VOLVOCALES...CHLAMYDOMONADACEAE....CHLAMYDOMONAS 13 13 13 1 ... ......PHACOTACEAE....CEPHALOMONAS ... ... ... ... 13 1...VOLVOCACEAE....GONIUM ... ... ... .....ZYCNEMATALES...DESMIDIACEAE....CLOSTERIUM ... ... .......EUASTRUM ... ... ... .......STAURASTRUM ... ... ... ...

NOTE: * - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent* - OBSERVED ORGANISM, MAY NOT HAVE BtTN COUNTED; LESS THAN 1/2 percent

85

Page 90: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of generj

DATE APR 24,79 TIME 1820

, and divertity Index at sampling sites A-E con11nued

Site E

3UL 19, 79 1345

AUG 29,79 1400

OCT 30,79 1445

ORGANISM

CHRYSOPHYTA.CHRYSOPHYCEAE..OCHROHONADALES...SYNURACEAE....SYNURA -- -

CRYPTOPHYTA (CRYPTOMONAOS).CRYPTOPHYCEAE..CRYPTOMONAOALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONAOACEAE....CRYPTOMONAS 641 63

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM....ANACYSTIS....COCCOCHLORIS....OACTYLOCOCCOPSIS..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA....SCHIZOTHRIX

EUGLENOPHYTA (EUGLENOIOS).EUaENOPHYCEAE..EUGLENALES...EUCLENACEAE... .EUGLENA....EUTREPTIA....LEPOCINCLIS....PHACUS....TRACHELOMONAS...PERANEMACEAE....CALYCOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..OINOKONTAE...aENOOINIACEAE....GLENODINIUM...GYMNODINIACEAE....GYMNODINIUM...PERIOINIACEAE....PERIOINIUM

NOTE: f - DOMINANT ORGANISM; EQUAL TO OR GRE * - OBSERVED ORGANISM, MAY NOT HAVE BE

CELLS PER- CELLS PER- CELLS PER- CFLLS PER- /ML CENT /ML CENT /ML CENT /ML CENT

NOV 19,79 1500

CELLS PER- /ML CENT

13 1

16052

130 8

1339

13

93 1312 2

17 22101 30 180* 17

37 4

80

271367

27

TEH THAN 15 percentN COUNTED; (.ESS THAN 1/2 percent

86

Page 91: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7.--Phytoplankton counts, number of genera, and diversity Index at sampling sites A-E--continued

Site E

DATE 3AN 9,80 FEB 26,80 APR 1,80 MAY 13,80 TIME 1430 1000 1300 1215

TOTAL CELLS/ML 2200 600 1100 610

DIVERSITY: DIVISION 0.4 1.7 1.8 1.8.CLASS 0.4 1.7 1.8 1.8..ORDER 0.5 2.1 2.3 2.5...FAMILY 0.6 2.1 2.6 3.0....GENUS 0.6 2.1 2.7 3.3

CELLS PER- CELLS PER- CELLS PER- CELLS PER- ORGANISM /ML CENT /ML CENT /ML CENT /ML CENT

BACILLARIOPHYTA (DIATOMS).BACILLARIOPHYCEAE..ACHNANTHALES...ACHNANTHACEAE....ACHNANTHES ... ... ... .......COCCONEIS - ... ... .....BACILLARIALES...NITZSCHIACEAE....NITZSCHIA 160 7 52 9 100 9 13 2..EUNOTIALES...EUNOTIACEAE....EUNOTIA ... ... .... .....EUPODISCALES...COSCINOOISCACEAE....CYCLOTELLA 40 2 - - 26 2 26 4....MELOSIRA - - ... 26 2 26 4....SKELETONEMA ... ... ... .....FRAGILARIALES...FRAGILARIACEAE....FRAGILARIA ... ... ... .......SYNEORA - 78 13 120 11 -..NAVICULALES...CYMBELLACEAE....CYMBELLA ... 13 2 ... ......GOMPHONEMACEAE....GOMPHONEMA ... ... ... ......NAVICULACEAE....NAVICULA - - 13 2 13 1 26 4..SURIRELLALES...SURIRELLACEAE....SURIRELLA ... ... ... ...

CHLOROPHYTA (GREEN ALGAE).CHLOROPHYCEAE..CHLOROCOCCALES...CHLOROCOCCACEAE....CHLOROCOCCUM ... ... ... .......SCHROEDERIA ... ... ... 13 2....TETRAEDRON 20 1 ... ... 13 2...MICRACTINIACEAE....GOLENKINIA ... ... ......OOCYSTACEAE....ANKISTRODESMUS 1900* 90 -- - 120 11 39 6....CHLORELLA ... ... .......CLOSTERIOPSIS ... ... .......KIRCHNERIELLA ... ... .......OOCYSTIS . ... 13 2....SELENASTRUM ... ... .. 39 6....TREUBARIA ... ... ......PALMELLACEAE....SPHAEROCYSTIS ... ... .....SCENEDESMACEAE....COELASTRUM ... .......CRUCIGENIA ... .......SCENEDESMUS ... ... 180# 16 ?8 13....TETRASTRUM ... .....TETRASPORALES...TETRASPORACEAE....TETRASPORA ... .....VOLVOCALES...CHLAMYDOMONADACEAE....CHLAMYDOMONAS ... ... 13 1 no* ?1...PHACOTACEAE....CEPHALOMONAS ... ......VOLVOCACEAE....GONIUM ... 52 9..ZYGNEMATALES...DESMIOIACEAE....CLOSTERIUM ... .......EUASTRUM ... ... 13 1....STAURASTRUM ... ... ... II I

NOTE: # - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent* - OBSERVED ORGANISM, MAY NOT HAVE BKLN COUNTED; LESS THAN 1/2 percent

87

Page 92: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 7. Phytoplankton counts, number of geneia, and diversity index at sampling sites A-E--continued

Site E

3 At I 9,80 1«>30

26,801000

CELLS PER- CELLS PER- /ML CENT /ML CENT

26

13 2

DATE TIME

ORGANISM

CHRYSOPHYTA.CHRYSOPHYCEAE..OCHROMONADALES...SYNURACEAE....SYNURA

CRYPTOPHYTA (CRYPTOMONADS).CRYPTOPHYCEAE..CRYPTOMONADALES...CRYPTOCHRYSIDACEAE....CHROOMONAS...CRYPTOMONADACEAE....CRYPTOMONAS

CYANOPHYTA (BLUE-GREEN ALGAE).CYANOPHYCEAE..CHROOCOCCALES...CHROOCOCCACEAE....AGMENELLUM....ANACYSTIS....COCCOCHLORIS....DACTYLOCOCCOPSIS..OSCILLATORIALES...OSCILLATORIACEAE....OSCILLATORIA....SCHIZOTHRIX

EUCLENOPHYTA (EUCLENOIDS).EUaENOPHYCEAE..EUGLENALES...EUGLENACEAE....EUCLENA....EUTREPTIA....LEPOCINCLIS....PHACUS....TRACHELOMONAS...PERANEMACEAE....CALYCOMONAS

PYRRHOPHYTA (FIRE ALGAE).DINOPHYCEAE..DINOKONTAE...CLENOOINIACEAE....GLENOOINIUM...GYMNOOINIACEAE....GYMNODINIUM...PERIDINIACEAE....PERIDINIUM

NOTE: * - DOMINANT ORGANISM; EQUAL TO OR GREATER THAN 15 percent

APR 1,80 1300

CELLS PER- /ML CKNT

MAY 13,80 1215

CELLS PER- /ML CENT

39 6

HHOt HO 130* 21

57

13 2 26 2 26

26 2

* - OBSERVED ORGANISM, MAY NOT HAVE BEEN COUNTED; LESS THAN 1/2 percent

88

Page 93: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 8.--Significance of phytoplankton genera present at sampling sites A-E

Genus Group Significance

Actinastrum Green Widely distributed

Ankistrodesmus Green Widely distributed; commonly occurring

A. falcatus generally found in acid

waters of high temperature where

there is a dense conglomeration

of other algae

Chlamydomonas Green Widely distributed; generally found

in calm or very slowly moving waters

Coelastrum Green Widely distributed in slowly moving

waters; an insignificant component

indicating eutrophic conditions

Crucigenia Green Widely distributed

Dictyosphaerium Green Widely distributed; generally

indicative of soft to moderately

hard water

89

Page 94: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 8.--Significance ofsites A-E Continued

phytop ankton genera present at sampling

Genus Group Significance

Eudorina

Kirchneriella

Green

Green

Qocystis Green

Pandorina Green

Pediastrum Green

90

Generally indicative of soft water

Somewhat uncommon in occurrence;

generally indicative of acidic

conditions

Generally indicative of soft water or

oligotrophic waters; some species

can be indicative of the presence

of organic acids.

Rarely found in abundance; generally

indicative of hard water

Widely distributed; found in all type?

of water; some species indicative o1

particular environmental conditions

Page 95: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 8.--Significance of phytoplankton genera present at sampling sites A-E Continued

Genus Group Significance

Scenedesmus Green Widely distributed; found in all types

of water; commonly occurring

S. quadricauda is one of the most

nearly ubiquitous algal species

Tetraedon Green Widely distributed

Tetrastrum Green Somewhat uncommon in occurrence

Cyclotella Centric

diatom

Widely distributed

Melosira Centric

diatom

Widely distributed; most commonly

found centric diatom; one of the

most ubiquitous of the algal

genera; some species indicative of

particular environmental conditions

Stephanodiscus Centric

diatom

Widely distributed; an insignificant

component of algae indicating

eutrophic conditions

91

Page 96: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

sites A-E ContinuedTable 8. Significance of phytopl&nkton genera present at sampling

Genus Group Significance

Achnanthes

Cymbella

Gomphonema

Navicula

Nitzchia

Pennate

diatom

Pennate

diatom

Pennate

diatom

Pennate

diatom

Pennate

diatom

Widely distributed; freshwater species

generally are epiphytic

Widely distributed; a distinctly

freshwater genus

Widely distributed; freshwater species

generally are epiphytic

Widely distributed; found in all

types of water; some species

indicative of particular environ­

mental conditions

Widely distributed; found in all

types of water; some species

indicative of particular environ­

mental conditions

92

Page 97: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 8.--Significance of phytoplankton genera present at sampling sites A-E Continued

Genus Group Significance

Pinnularia Pennate

diatom

Widely distributed; generally

indicative of calm or slowly moving,

slightly acidic water having little

mineral content

Rhoicosphenia Pennate

diatom

Widely distributed; the single

species, R. curvata, commonly found

in flowing alkaline waters with

little conductivity; generally

intolerant of saline conditions

Synedra Pennate

diatom

Widely distributed; found in all types

of water; common species generally

prefer circumneutral water of

moderate to large conductivity

including brackish water; generally

indicative of mesotrophic to

eutrophic conditions

Dinobryon Golden-brown Widely distributed; generally

indicative of hard water

93

Page 98: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 8.--Significance of phytoplankton genera present at sampling sites A-E Continued

Genus

Agmenellum

Group

Blue-gree

Significance

i Widely distributed; generally

indicative of soft water and acidic

Anacystis

(Microcystis)

Blue-green

Oscillatoria Blue-green

94

conditions

Very common in hard water or eutrophi

waters during high temperature

conditions; a common component of

algae blooms; notorious as a spoile

of water for domestic uses, swimmir

and recreation; usually causes deal

of fish when present in large

masses; indicative of hard water

with large nutrient content when

occurring in large numbers with

Anabaena or Aphanizomenon

Widely distributed; found in all typ

of water; one of the most ubiquito

of the algae genera

Page 99: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 8. Significance of phytoplankton genera present at sampling sites A-E Continued

Genus Group Significance

Euglena Euglenoid Very indicative of waters enriched in

organic matter (for example down­

stream from domestic sewage out­

falls); can occur in such abundance

as to color the water a deep green

Trachelomonas Euglenoid Very indicative of warm waters having

a large content of organic matter;

can occur in such abundance as to

color the water brown

95

Page 100: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

05-31-78 08-23-78 02-21-79 04-25-79 08-29-79

05-31-78 08-23-78 02-21-79 04-24-79 08-30-79 02-26-80 05-14-80

Table 9.--Microbio .ogical data for sampling sites A-E

DateFecal colifo

(colonies/100 iSurface

rm bacteria tiilliliters)

Bottpm

Fecal streptococcal bacteria (colonies/100 milliliters)

Surface Bottom

221,100

64

18

42066601202918

SITE A

4440472040

SITE B

44500622601301226

1803150

360

191401405038

44

11016042240100

7692

160110170

30

05-31-7806-30-78 08-02-7808-24-7809-28-7810-26-78 02-22-79 04-24-79 08-30-79

05-25-7809-28-7810-05-78

mid-depth

34

8333

399468

116

52

S

6i'OO 1

ITE C

0

01,200

45

2031

s

11

96

2o t

ITE D

4

4.0

27

1604

288

3512

120

98556.0

22170

7448354

202011

3062021

Page 101: WATER QUALITY IN GAINES CREEK AND GAINES CREEK ARM ... · agitation, and the degree of photosynthesis. In most lakes, the phytoplankton contribute the majority of the oxygen supply

Table 9. Microbiological data for sampling sites A-E Continued

Fecal coliform bacteria Fecal streptococcal bacteria Date (colonies/100 milliliters) (colonies/100 milliliters)

SITE E

06-01-78 2,000 42006-30-78 , 890 95008-02-78 12008-23-78 740 23002-20-79 78 7604-04-79 230 43004-24-79 360 22007-19-79 60 8608-29-79 5,500 9,40010-30-79 750 2,80001-09-80 190 13002-26-80 180 6004-01-80 910 84005-13-80 230 2,000

ng Office: 1990-768-273 97