34
1 MOS Front-End Front-end-of-line includes substrate, isolation, wells, transistor, silicide n-well p-well STI Transistor Contact Front-end Back-end Field effect transistor MOSFET: Metal-Oxide-Semiconductor Field Effect Transistor Invented: Lilienfeld 1926. First made: Kahng, Attala 1960 Properties of a MOSFET: Small area Low power Simple technology Lower switching speed than bipolar device CMOS: Complementary MOS: NMOS + PMOS

W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

1

MOS Front-End

Front-end-of-line includes substrate, isolation, wells, transistor, silicide

n-wellp-well

STI

Transistor Contact

Front-end

Back-end

Field effect transistor

MOSFET: Metal-Oxide-Semiconductor Field Effect TransistorInvented: Lilienfeld 1926. First made: Kahng, Attala 1960

Properties of a MOSFET:• Small area• Low power• Simple technology• Lower switching speed than bipolar device

CMOS: Complementary MOS: NMOS + PMOS

Page 2: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

2

Free electronFree hole

NMOS

+ + +

PMOS

- - -

Conducts at +VG

NMOS + PMOS = CMOS: why?

Conducts at -VG

NMOS and PMOS transistors

CMOS - inverter layout

Circuit schematic Silicon cross section

NMOSB = pwell

PMOS

B = nwell

Vdd

Vin Vout

p-substrate

n-well

Vss Vdd

Vin

Vout

Page 3: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

3

From NMOS to CMOS

HighLow

LowHigh

GND

Vdd

HighLow

LowHigh

NMOS logic: high power during ‘low’ output.NMOS inverter slowly switches to ‘high’ output.(Same effects in PMOS logic.)

NMOS inverter CMOS inverter

Capacitiveload

Present CMOS

0.18 µm CMOS is now produced by all major manufacturers.

This process features:

• 0.12-0.18 µm gate length, 0.4-0.5 µm pitch• 3-3.5 nm gate oxide (regular SiO2)• 5-6 levels of metal interconnect

• About 107 transistors on a 1 cm2 chip• 1.2 GHz on-chip clock frequency

Page 4: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

4

1960 1965 1970 1975100

101

102

103

104

105

Year

Gordon Moore 1965

Num

ber

of c

ompo

nent

s pe

r ch

ip

(Prediction)

Tra

nsis

tors

per

chi

p

103

104

105

106

107

108 INTEL microprocessorsSource: Intel website

1970197519801985199019952000

Year

Moore’s LawPentium 4

Brews’ Law

Lmin = 0.4 [ xj tox (Ws + Wd)2 ]1/3

• Lmin: minimum gate length without short channel effects

• xj: junction depth (µm)• tox: oxide thickness (Å)

• Ws, Wd: depletion widths of source and drain junctions (µm)

Moore’s law implies gate length scalingBrews’ law implies: many other dimensions scale with it

L

tox

xj

Ws

Page 5: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

5

ITRS “roadblocks” in CMOS front-end

ITRS 2000 topics with “no known solution”:• 90 nm node:

– Shallow junctions with xj 20-30 nm, Rs 250-600 Ω/• 60 nm node:

– Gate dielectric thickness < 1.2 nm– Gate tunnel current < 20 A/cm2

– Gate doping > 4x1020 cm-3

In other words: the MOS transistor requires several research breakthroughs to continue scaling beyond the 100 nm node!

• http://public.itrs.net

Outline

• Introduction to CMOS (why CMOS?)• CMOS process flow• CMOS process modules (step by step)

Page 6: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

6

STI (Shallow Trench Insolation) formation (field isolation)

Sacrificial oxide (warstwa protekcyjna) on top of silicon:To avoid contamination

Retrograde (wsteczne) n-well formation

n-well

Page 7: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

7

Retrograde p-well formation

p-well n-well

Gate oxide growth + poly deposition

poly

Page 8: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

8

After polysilicon deposition

Pho

to: P

hilip

s R

esea

rch

After gate etch - S/D formation

Page 9: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

9

PMOS S/D extension implant(and NMOS extension implant)

Spacer formation

thin oxide + nitride

Page 10: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

10

NMOS - S/D implant

Simultaneous source, drain and gate doping, and well contact doping

PMOS - S/D implant

Page 11: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

11

After S/D implants

Silicidation

TiSi2 or CoSi2 (sub-0.18 µm technologies)

Page 12: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

12

Spacer

TiSi2

TiSi2

Polygate

TEM cross-section after silicidation

Pho

to: I

ntel

Contact formation

Page 13: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

13

CMOS inverter after first metal

input input

0.25 µm CMOS after Metal 6

Page 14: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

14

Outline

• Introduction to CMOS (why CMOS?)• CMOS process flow• CMOS process modules (step by step)

CMOS process modules

• Field isolation• Wells• Gate dielectric• Gate conductor• Shallow junctions• Pocket implants• Spacers• Source, drain and gate doping• (Silicide)

Page 15: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

15

Field isolation

• Purpose: to electrically isolate adjacent MOSFETs• Traditional in bipolar and MOS: LOCOS isolation

• sub-0.35 µm CMOS: always Shallow Trench Isolation

LOCOS field isolation

Stack deposition

Stack etch

LOCal Oxidation

of Silicon

Stack removal

Si3N4

SiO2

Si

Page 16: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

16

Shallow trench isolation (STI)

Stack deposition

Trench etch

Oxidation Trench fill

(deposition & CMP)

Stack removal

Transistor well formationPurpose of the well:

• opposite-type to S/D:

– to give isolation between S/D and wafer (reverse-biased diodes)

– inversion gives channel conductivityIssues:

• Doping level determines VT and short channel effects

• Diode leakage, capacitance, parasites

• Deep doping (~ 1 µm)• Vertical and lateral grading

– super steep retrograde well

– pockets

Page 17: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

17

Conventional well

Standard Technology in > 0.5 µm CMOS generations+ Low cost - standard equipment- Large temperature budget: long time - high T- Large lateral diffusion- Highest doping concentration at surface

1D depth profiles 2D cross section

P-substrate

As implanted

After 6h 1150ºC in N2

n-well

Con

cent

ratio

n

Depth

Retrograde well

Standard in (sub) 0.25 µm CMOS technologies+ Buried peak doping concentration (channel stop, latch up, ...)+ Low temperature budget- Dedicated high energy ion implanter needed for n-well- Higher junction capacitance

n-well

As implanted

n-well

Con

cent

ratio

n

Depth

P-substrate

Page 18: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

18

Super steep retrograde well

• < 0.25 µm CMOS: high channel doping to control short channel effects• low VT necessarySSR well:

• low surface doping (giving low VT and high mobility)

• high doping at 50-200 nm depth (reduces short channel effects)

Gate

SSR peak

Well

IdealRealistic

SSR

Well

Source Drain

Con

cent

ratio

n

Depth

Gate oxide + gate polysilicon

Page 19: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

19

Gate oxide formation

• Remove the existing SiO2 that screens the silicon

• Clean the wafer• Oxidize the wafer at high temperature• Post-anneal (N2, N2O, NO…)• Immediately deposit polysilicon gate on top

Thin oxide growth

Wet (diluted H2O) - low temperature (600-700ºC)

Furnace

Dry (diluted) O2 ( + nitridation N2O, NO)

Temperature: 800 - 900ºC

+ Standard method, excellent uniformity, batch process

- Run takes several hours. Very difficult for tox < 2.5 nm

Rapid Thermal Oxidation: Dry O2 ( + nitridation N2O, NO)

+ Growth at higher temperature → more nitrogen incorporation

+ Only a few minutes per wafer

- Uniformity, reproducibility

Page 20: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

20

TEM cross section thin oxide

G. T

imp

et a

l., IE

DM

199

9

ITRS roadmap: oxide thickness

0

0.5

1

1.5

2

2.5

0.18 0.13 0.1 0.07 0.05 0.03

CMOS generation (µm)

(Equivalent) Oxide

Thickness (nm)

1999

20042007

20102014

2001

Leakage current through SiO2 increases exponentially

Page 21: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

21

Tunnel current

‘Thick’ oxide (> 4 nm):triangular tunnel barrier

Fowler-Nordheim tunneling

Thin oxide (< 4 nm):Trapezoidal barrier

Direct tunneling

3.1 eV

p-substrateSiO2

n-gate

qVG

p-substrateSiO2

n-gate

(band diagrams at negative gate voltage)

Tunnel current - very thin oxide

Leakage current exceeds 1A/cm2 (!) at 100 nm CMOS generation

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 0.5 1 1.5

V GS (V)

JG (

A/c

m2 )

MeasurementModel

t ox = 2.2nm

t ox = 1.7nm

t ox = 1.4nm

Van

Lang

evel

de, I

ED

M 2

001

Page 22: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

22

ITRS: gate dielectric will change

SiO2 High k

0

0.5

1

1.5

2

2.5

0.18 0.13 0.1 0.07 0.05 0.03

But: no high-K dielectric yet fulfills all requirements!

CMOS generation (µm)

EO

T (

nm)

Candidate high-K gate dielectrics

10 20 30 40

SiO2

vacuum

Al2O3Si3N4

TiO2HfO2ZrO2

Ta2O5

BST

K:

Page 23: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

23

Gate electrode formation

• Dual-flavor gate technology in CMOS• n+ and p+ doping of polysilicon• Gate depletion• Boron penetration

Dual-flavor polysilicon gates

n+ poly for the NMOS transistor, p+ poly for the PMOS• Symmetric: given same oxide thickness and doping

levels, VTNMOS = -VT

PMOS

• Excellent work functions• Convenient processing: self-aligned source, gate,

drain and well contact implant; all activated together.Issues:• how to achieve high gate doping• connection between n+ poly and p+ poly• (inter-diffusion of impurities between n+ and p+ poly)

Page 24: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

24

Doping of polysilicon

n+ gate doping with S/D implant

• Phosphorus gives the best gate doping: very high solubility, high diffusion, high activationbut: too high diffusion for source/drain implant

• Arsenic more complicated:– lower diffusion constant, lower activation– getters at the Si/SiO2 interface; evaporates– de-activates in 700-800ºC thermal treatments

• Antimony: too low solubility (4x1019 cm-3 at 1000ºC)

Page 25: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

25

p+ gate doping with S/D implant

• Indium:– Too low solubility (< 1019 cm-3)– Diffuses through gate oxide (‘indium penetration’)

• Boron:– The only option (either with B or BF2 implant)

– Risk of boron penetration (since 0.25 µm CMOS)– Clustering above solubility limit: problematic– de-activates in 700-800ºC thermal treatments

Gate depletion

chan

nel

n+ga

te

VG = VFB VG > VFB VG >> VFB VG >>> VFB

Ionized (activated) As atom

Free electron

n+ poly gate for NMOS:

gate depletion is inevitable

Lower capacitance → less current

Page 26: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

26

1021

1019

1018

1017

1020

Gate oxide

polysilicon monosilicon[B

] (cm

-3)

depth

Boron penetration

as-implanted

boron penetrationproper activation

Gate doping > 1020 cm-3

Channel doping << 1019 cm-3

Slight boron penetration → dramatic VT shift

Solutions: reduce thermal steps, replace gate oxide...

PMOS S/D extension implant

Page 27: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

27

Extensions: purpose and requirements

• Suppress short channel effects

• Add series resistance (good for 0.25 - 0.8 µm technology, LDDs)

Brews’ Law: Lmin ∝ [ xj tox (Ws + Wd)2 ]1/3

Criteria for shallow junctions:

• Junction depth

• Sheet resistance

• Good diode operation• Junction profile steepness

• Uniformity, reproducibility

• Low defect density (residual crystal damage)

• CMOS compatible (materials, thermal budget)

Treated in the following slides

ITRS scaling of shallow junctions

0

10

20

30

40

50

60

70

0.18 0.13 0.09 0.06

Junc

tion

dept

h (n

m)

CMOS generation (µm)

0

100

200

300

400

500

600

700

800

0.18 0.13 0.09 0.06

CMOS generation (µm)

She

et r

esis

tanc

e (Ω

/) PMOS

NMOS

Page 28: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

28

Sheet resistance

Depth profile

Rs = 1 / q ∫ C(x) µ(C) dxx=0

x=xj

Sheet resistance Rs depends on theconcentration of free carriers C(x) and on the mobility of these carriers µ(C):

(approximation for not-too-steep profiles)

Aim for high concentration;junction depth is imposed by generation.

Steep tail at fixed xj → lower resistivity!

xjDepth

Source/drain

Channel

Impu

rity

conc

entr

atio

n

Junction depth

Definition: junction depth (xj) = metallurgical junction: the depth where the n-type concentration equals the p-type concentration.

Determination of junction depth: SIMS (or SRP).

xjDepth

Source/drain

Channel

Impu

rity

conc

entr

atio

n

Steepness is important; but also the proper activation of the peak (should be below the solubility limit at the anneal temperature)

Page 29: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

29

B and As diffusion - example

High T pushes junction - much stronger effect for Boron

B c

once

ntra

tion

(cm

-3)

Depth (nm)

As

conc

entr

atio

n (c

m-3

)

Depth (nm)

Data: Philips Research

Shallow junction annealing

• Furnace anneals:typically 2+-hour runs,slow ramp up and down– too much TED– too much diffusion

• Rapid thermal anneals• Spike RTA anneals• Laser anneals

> 0.25 µm

0.13 - 0.25 µm

< 0.13 µm

Pho

to: S

emat

ech

Page 30: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

30

Rapid thermal anneal cycle

time

tem

pera

ture

Stabilisation500-700°C

First ramp-up

Ramp-up (50ºC/s)

Anneal (0-60 seconds)

Ramp-down (25ºC/s)

Pockets“Large Angle Tilt Punch Through Stopper”

• Punch through stopper implanted under tilt angle after gate formation

• Reduces depletion regions of source and drain• Angle, dose and energy are critical parameters

+ low channel doping, low VT possible (low voltage technology)

- Process control, more expensive implanter

Pocket

well

Also called:HALOlatips

Page 31: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

31

Spacer formation

Spacer process flowsStandard:TEOS or Si3N4 depositionPlasma etch

Two-layer deposition (e.g. SiO2 + Si3N4)Plasma etch of top layerOptional etch of layer 2

Page 32: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

32

PMOS - S/D implant

Source/drain implantPurpose:• S/D implant adds impurities to the shallow junctions:

– lower sheet resistance – deeper junction (convenient for salicidation)

• Gate doping• Doping of the well contactsOptimization:• Low sheet resistance of junctions and poly• Low gate depletion - no boron penetration• Good diodes; suppression of junction spiking• Low salicide contact resistance

Page 33: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

33

Activation anneal

• Last step of the MOS front-end fabrication• Activation of: gate, source and drain implants• High temperature required for good activation• Short time required for suppression of diffusion

Therefore: again, Rapid Thermal Anneal

• Optimization of this step is truly “process integration”• Fabrication after this anneal can influence activation:

– de-activation– further diffusion (dr. R.A.M. Wolters…)

MOS front-endFurther reading

• S. Wolf - The submicron MOSFET

• F. Pierret - Field effect devices

• A. S. Grove: Physics and technology of semiconductor devices, John Wiley & sons

• The Technology roadmap for semiconductors:

http://public.itrs.net

• A dictionary of semiconductors:

http://www.sematech.org/public/publications/dict/index.htm

• Nice 3D view of transistor fabrication and operation:http://www.micro.magnet.fsu.edu/electromag/java/transistor/index.htmlhttp://entcweb.tamu.edu/zoghi/semiprog/INDEX1.HTM

• Many interesting links at www.casetechnology.com/links.html

Page 34: W8 Modern CMOS front-end I - AGH University of Science and …home.agh.edu.pl/~marszale/downloads/W8_Modern CMOS front... · 2008-10-02 · Standard Technology in > 0.5 µm CMOS generations

34

Closing remarks

• MOS technology changed a lot over the years• CMOS front-end-of-line technology gets complex

– many new materials– tight process windows– incredible pace of innovation

• Scaling down to 30 nm feasible• Many challenges for research!