22
Vortex Structures in Complex Plasmas A.A Samarian School of Physics, University of Sydney

Vortex Structures in Complex Plasmas · Vortex Structures in Complex Plasmas A.A Samarian School of Physics, University of Sydney. Outlines Introduction

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Vortex Structures in Complex Plasmas

    A.A SamarianSchool of Physics, University of Sydney

    http://www.usyd.edu.au/

  • Outlines

    IntroductionThe experimental set-upExperimental observation of vorticesVelocity distributionDescription and implementation of modelSimulated and experimental resultsConclusion

  • IntroductionDust vortices provide an opportunity to study large scale vortex structures on a kinetic level

    Tornado Cyclone GalaxyWater Vortex

  • Experimental Observation of Vortices

    1mm1mm

    DC Discharge IC RF Discharge

  • Experimental Observation of Vortices

    Vortex ExcitationNon-homogenous plasmaAdditional pin electrodeVortex pair observed in horizontal planeRotation toward probe tip

    …..

    CCD Camera

    Powered Electrode

    15MHz Signal Generator

    Pin Electrode

    Dust Tray

    Grounded Electrode

    TOP VIEW

    SIDE VIEW

    Grounded Electrode

    Dust Vortices

    Pin Electrode

    Powered Electrode

  • Analysis of DataApplied Tracking program

    Problems with the “Closest Dust” algorithm Method used

    Frame nFrame n + 1

  • Visualisation of Velocity Map

    Real time rendered version

  • Velocity distribution

    Velocity Distribution Function

    P= 100W

    P= 70W

    P= 30W

    Velocity Distribution Function

    P= 100W

    P= 70W

    P= 30W

  • Velocity Distribution

    Num

    ber

    of p

    artic

    les

    The Effect of Power on Velocity Distribution in Horizontal Plane

    P= 100WP= 70WP= 30W

    velocity (cm/sec)

  • Vertical Cross Section

    P= 120W

    P= 80W

    P= 60W

    P= 30W

    Vertical Cross Section

  • Vertical Component of Particle Velocity

    The Effect of Pow er on z-component of the Velocity of Particle

    P= 120W

    P= 80W

    P= 60W

    P= 30W

    The Effect of Pow er on z-component of the Velocity of Particle

    The Effect of Pow er on z-component of the Velocity of Particle

    P= 120W

    P= 80W

    P= 60W

    P= 30W

    The Effect of Pow er on z-component of the Velocity of Particle

    P= 120W

    P= 80W

    P= 60W

    P= 30W

    The Effect of Pow er on z-component of the Velocity of Particle

    The Effect of Pow er on z-component of the Velocity of Particle

    P= 120W

    P= 80W

    P= 60W

    P= 30W

    Num

    ber

    of

    part

    icle

    s

    velocity (cm/sec)

    P= 100W

    P= 70W

    P= 30W

    The Effect of Power on Velocity Distribution in Horizontal Plane P= 120W

    P= 80W

    P= 60W

    P= 30W

  • Model Description

    Based on standard 2-D MHD equations:Momentum equation:

    Introducing Vorticity:Taking the curl of the momentum equationNeglecting B fields and assuming incompressibility

    ( ) ( ) uBuEuuu fdustmq

    nmp

    tυ−×++∇−=∇•+

    ∂∂

    u×∇=ω

  • Governing Equations

    Vorticity-Streamfunction form:

    Form a closed set assuming q and E are known.

    ( )ψ,0,0×∇=u

    ( ) ωυωω fdustmq

    t−×∇=∇•+

    ∂∂ Eu

    ωψ −=∇ 2

  • Vortex Generation

    Source term in vorticity equation:

    Charge gradient required for vortex excitation!

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∇×∇−

    ∂∂

    −∂∂

    =×∇ φqyqE

    xqE

    mmq

    xy1E

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    −∂∂

    =yqE

    xqE

    m xy1

  • Plasma Model

    E field obtained from Poisson’s equation:

    Due to bulk electro-neutrality, approx:

    Charge value chosen to approximate experimental potential

    ( )( )probedustdustei qnqnne ++−=•∇ E0ε

    *0 probeq=•∇ Eε

  • Dust Charge

    ( )( )yxZZennvTq eiiedust ,),,,( ∆+−=

    Charge function:

  • Simulated Vortices

    vf = 100 (s-1), dQ ~ 2%, V = 20V

    * Blue is clockwise rotation

  • Results

    Angular velocity distribution obtained from a current loop analysis

    2

    21

    ω=

    ×∇=Ω u

  • Results

    ω=ωоexp(-σR)

  • Results

    Samarian, A.A, Vaulina, O., Tsang, W., James, B.W (2002). Formation of Vertical and Horizontal Dust Vortexes in an RF-Discharge Plasma. Physica Scripta T98

    dQ ~ 2%, V = 20V

  • Results

    vf = 100 (s-1)

    dQ = A*Vprobe0

  • Conclusions

    The proposed model is capable of modeling vortex structures in complex plasmas

    Vortex generation requires gradient of dust charge

    Vortex characteristics independent of charge magnitude, determined by charge gradient

    Experimental support for the simulated vortices given for:General angular velocity distributionVariation of angular frequency with frictional frequencyThe dependence of angular frequency on pin electrode potential assuming the dust charge gradient was held constant

    Vortex Structures in Complex PlasmasOutlinesIntroductionExperimental Observation of VorticesExperimental Observation of VorticesAnalysis of DataVisualisation of Velocity MapVelocity distributionVelocity DistributionVertical Cross SectionVertical Component of Particle VelocityGoverning EquationsVortex GenerationPlasma ModelDust ChargeSimulated VorticesResultsResultsResultsResultsConclusions