105

Vorlesung Modellierung und Simulation I

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vorlesung Modellierung und Simulation I
Page 2: Vorlesung Modellierung und Simulation I
Page 3: Vorlesung Modellierung und Simulation I
Page 4: Vorlesung Modellierung und Simulation I

R

RR

Kh

Page 5: Vorlesung Modellierung und Simulation I

∞ ( )L2 (Ω)

Hk (Ω) Hk0 (Ω)

R1

uh

R2

Φi

Φi

L2

Page 6: Vorlesung Modellierung und Simulation I
Page 7: Vorlesung Modellierung und Simulation I

A : Rn −→ Rn n ∈ N+

x $−→ Ax⎛

⎝x1x2x3

⎠ $−→ A ·

⎝x1x2x3

A :=

⎜⎝a11 · · · a1n

an1 · · · ann

⎟⎠

A =

(2 51 9

)

A · x =

(2 51 9

)(x1x2

)=

(2x1 + 5x21x1 + 9x2

).

Ax = b

2x1 + 5x2 = b1

x1 + 9x2 = b2.

Page 8: Vorlesung Modellierung und Simulation I

A

A = L · U

Eij aijA

A =

(2 18 7

).

E21 :=

(1 0−4 1

)a21

(1 0−4 1

)

︸ ︷︷ ︸E21

·(2 18 7

)

︸ ︷︷ ︸A

=

(2 10 3

)

︸ ︷︷ ︸U

A = L · U L = E−121 =

(1 04 1

)

Ax = LUx = E−121 Ux = b

⇒ x = U−1E21b.

E32E31E21A = U

E31 = Id, E32 =

⎝1 0 00 1 00 −5 1

⎠ , E21 =

⎝1 0 0−2 1 00 0 1

∏i,j Ei,j

E−1ij

∏i,j E

−1i,j

⎝1 0 00 1 00 −5 1

⎝1 0 0−2 1 00 0 1

⎠ =

⎝1 0 0−2 1 010 −5 1

L

⎝1 0 02 1 00 0 1

︸ ︷︷ ︸E−1

21

⎝1 0 00 1 00 5 1

︸ ︷︷ ︸E−1

32

=

⎝1 0 02 1 00 5 1

Page 9: Vorlesung Modellierung und Simulation I

L

n× n

n = 100 A1002 992

982 w

w ≈ 1002 + 992 + 982 + . . .+ 12.

w ≈ n2 + (n− 1)2 + (n− 2)2 + . . .+ 12.

w

w ≈n∑

x=0

x2 ≈ˆ n

0x2dx =

1

3x3|n0 =

1

3n3.

O(13n

3)

Au = 0 Au = b

x = 0 A Ax

Ax = λx,

λ x A

Page 10: Vorlesung Modellierung und Simulation I

P : R3 → R3

x E PP E

Px1 = 1 · x1Px2 = 1 · x2

x1 ∦ x2 x3 E

Px3 = 0 · x.

A =

(0 11 0

)

x1 =

(11

),

x2 =

(−11

)

λ1 = 1 λ2 = −1

Ax = λx

λ x

Ax = λx ⇔ (A− λ · Id)x = 0

x = 0 A− λ · Id

(A− λId) = 0.

(A− λId)

λ x

Page 11: Vorlesung Modellierung und Simulation I

A =

(3 11 3

)

(A− λId) =

∣∣∣∣

(3− λ 11 3− λ

)∣∣∣∣ = (3− λ)2 − 1 =

= λ2 − 6λ+ 8

A λ1 = 4 λ2 = 2

⇒ A− 4 · Id =

(−1 11 −1

)

(−1 11 −1

)· x = 0

λ1 = 4 x1 =

(11

)

λ2 = 2 x2 =

(−11

)

x Ax = λx A(αx) = λ(αx)α y = 0 ⟨x⟩ := αxλ

n× n AC A ∈ Cn×n n C

nn C R

A ∈ Rn×n

λ1, . . . ,λn ∈ C A ∈ Cn×n

n∑

i=1

λi = (A)

n∏

i=1

λi = (A).

Page 12: Vorlesung Modellierung und Simulation I

Qα =

((α) − (α)(α) (α)

)

90o = π2

Qπ2=

(0 −11 0

)

Qπ2

λ1 + λ2 =(Qπ

2

)= 0,

λ1 · λ2 =(Qπ

2

)= 1.

R

(Qπ

2− λId

)=

∣∣∣∣

(−λ −11 −λ

)∣∣∣∣ = λ2 + 1 = 0

⇒ λ1/2 = ±i.

n×n n

A =

(3 10 3

)

Aλ1/2 = 3

(A− λId)x =

(0 10 0

)(x1x2

)=

(00

).

A x1 =

⟨(10

)⟩

n×n A n

A n

Page 13: Vorlesung Modellierung und Simulation I

n× n A n x1, . . . , xnS x1, . . . , xn

S :=

⎜⎜⎜⎝

x11 · · · x1nx21 · · · x2n

xn1 · · · xnn

⎟⎟⎟⎠.

A · S

A · S = A ·

⎜⎜⎜⎝

x11 · · · x1nx21 · · · x2n

xn1 · · · xnn

⎟⎟⎟⎠=

⎜⎜⎜⎝

λ1x11 · · · λnx1nλ1x21 · · · λnx2n

λ1xn1 · · · λnxnn

⎟⎟⎟⎠

=

⎜⎜⎜⎝

x11 · · · x1nx21 · · · x2n

xn1 · · · xnn

⎟⎟⎟⎠

⎜⎜⎜⎝

λ1 0 · · · 00 λ2 0 · · ·

0 · · · 0 λn

⎟⎟⎟⎠

⇒ A · S = S · Λ

Λ :=

⎜⎜⎜⎝

λ1 0 · · · 00 λ2 0 · · ·

0 · · · 0 λn

⎟⎟⎟⎠

Λ S−1

AS = SΛ

⇔ S−1AS = Λ

⇔ A = SΛS−1

S−1

A

A

Ax = λx A2x

A2x = Aλx = λAx = λ2x

⇒ A2

Page 14: Vorlesung Modellierung und Simulation I

A

A = SΛS−1

Ak = (SΛS−1) · · · (SΛS−1) = SΛkS−1.

A A100

A100 = (SΛS−1)(SΛS−1) · · · (SΛS−1) = SΛ100S−1.

Ak → 0 k → ∞,

∥λi∥ < 1 ∀i = 1, . . . , n

nnn

A A =

⎜⎝1

1

⎟⎠

λ1 = λ2 = . . . = λn = 1.

n n

x1 =

⎜⎜⎜⎝

10

0

⎟⎟⎟⎠, x2 =

⎜⎜⎜⎝

01

0

⎟⎟⎟⎠, . . . , xn =

⎜⎜⎜⎝

00

1

⎟⎟⎟⎠.

A =

(2 10 2

)λ1 = λ2 = 2

(A− 2Id)x =

(0 10 0

)x = 0.

A − 2Id x1 =

(10

)

Page 15: Vorlesung Modellierung und Simulation I

n n

A ∈ Rn×n

uk+1 = Auk,

u0 ∈ Rn

u1 = Au0,

u2 = A2u0,

uk = Aku0.

u0x1, x2, . . . , xn A

⇒ u0 = c1x1 + c2x2 + · · ·+ cnxn = Sc.

Au0

Au0 = Ac1x1 +Ac2x2 + · · ·+Acnxn

= c1λ1x1 + c2λ2x2 + · · ·+ cnλnxn

Aku0 = c1λk1x1 + c2λ

k2x2 + · · ·+ cnλ

knxn,

0, 1, 1, 2, 3, 5, 8, 13, . . .

Page 16: Vorlesung Modellierung und Simulation I

F100

Fk+2 = Fk+1 + Fk

Fk+2 = Fk+1 + Fk

Fk+1 = Fk+1.

uk :=

(Fk+1

Fk

)

Auk = uk+1

A =

(1 11 0

)

(A− λId) =

∣∣∣∣

(1− λ 11 −λ

)∣∣∣∣ = −λ(1− λ)− 1 = 0

⇔ λ2 − λ− 1 = 0

⇔ λ1/2 =1±

√1 + 4

2⇒ λ1 ≈ 1.618

λ2 ≈ −0.618.

2 × 2

Ak = (SΛS−1)k = S

(1.6k 00 −0.6k

)S−1

⇒ F100 ≈ c1 · 1.6100, Fk ≈ c1 · 1.6k

k → ∞uk

uk = c1x1 + c2x2

x1, x2

(A− λId)x = 0

⇔(1− λ 11 −λ

)(x1

x2

)=

(00

)

Page 17: Vorlesung Modellierung und Simulation I

x1 =

(λ11

)x2 =

(λ21

)c1 c2

u0 =

(F1

F0

)=

(10

)

c1x1 + c2x2 = c1

(λ11

)+ c2

(λ21

)=

(10

).

2×2 c1/2 = ± 1√5≈ ±0.447

F100 ≈ 0.447 · 1.699 ≈ 3.54× 1020.

du1dt

= −u1 + 2u2

du2dt

= u1 − 2u2

u(0) =

(10

)

(du1dtdu2dt

)=

(−1 21 −2

)(u1u2

)= Au.

A λ1 = 0 A λ2 = −3∑λi = (A) =

−3

x1 =

(21

),

x2 =

(1−1

).

u

u(t) = c1 (λ1t)x1 + c2 (λ2t)x2.

c1 c2

c1 (λ1t)x1 + c2 (λ2t)x2 = c1

(21

)+ c2 (−3t)

(1−1

)

u(0) =

(10

)t = 0

c1

(21

)+ c2

(1−1

)=

(10

)⇔ c1 = c2 =

1

3

Page 18: Vorlesung Modellierung und Simulation I

⇒ u(t) =1

3x1 +

1

3(−3t)x2.

t → ∞

⇒ u(∞) =1

3

(21

).

u(t) → 0

u(t) → v

u(t) → ±∞u(t) → 0

eλt → 0 ⇒ λ < 0.

λ ∈ C

λ = −3 + 6i∣∣∣e(−3+6i)t

∣∣∣ =∣∣e−3t

∣∣ ∣∣e6it∣∣

e6it = (6t) + i (6t) =

((6t)(6t)

)(1i

)

∣∣e6it∣∣ =

∣∣∣∣

((6t)(6t)

)∣∣∣∣ =√

2(6t) + 2(6t) = 1.

Re(λ) < 0

λ = 0 Re(λ) < 0Re(λ) >

0

2× 2 A =

(a bc d

)

Reλ1 < 0

Reλ2 < 0.

(A) = a+d = λ1+λ2 < 0 (A) < 0(−2 00 1

)λ2 = 1 > 0

(A) > 0.

Page 19: Vorlesung Modellierung und Simulation I

A ∈ Cn×n

du

dt= Au.

A ui uu := Sv S

dv

dt= S−1ASv = Λv

⇒ v(t) = eΛtv(0)

⇔ S−1u(t) = eΛtS−1u(0)

⇔ u(t) = SeΛtS−1u(0).

eAt = SeΛtS−1,

u(t) = eAtu(0) = SeΛtS−1u(0).

eAt = Id+At+(At)2

2+

(At)3

6+ . . .+

(At)n

n!+ . . .

eAt = SeΛtS−1

eAt = Id+At+(At)2

2+

(At)3

6+ . . .

= Id+ (SΛS−1)t+(SΛS−1)(SΛS−1)t2

2 + . . .=

= Id+ (SΛS−1)t+1

2t2(SΛ2S−1) +

1

6t3(SΛ3S−1) + . . .

= S(S−1 + ΛS−1t+1

2t2Λ2S−1 + . . .) =

= S(Id+ Λt+ Λ2 t2

2+

Λ3t3

6+ . . .)S−1 =

= SeΛtS−1

⇒ eAt = eSΛS−1t = SeΛtS−1.

Page 20: Vorlesung Modellierung und Simulation I

eΛt =

⎜⎝eλ1t 0 · · ·

· · · 0 eλnt

⎟⎠ .

eAt = SeΛtS−1 → 0,

eΛt → 0 Re(λ) < 0

y′′ + by′ + cy = 0

u =

(y′

y

)

y′′ + by′ + cy = 0

y′ = y′

u′ =

(y′′

y′

)=

(−b −c1 0

)(y′

y

)=

(−b −c1 0

)u.

Page 21: Vorlesung Modellierung und Simulation I

u′ = f(u, t)

u(t = 0) = u0

u′i = fi(u, t), i = 1, . . . , n

ui(t = 0) = ui,0.

u′ = au, a ≈ ∂f

∂u

u′ = Au, Aij ≈∂fi∂uj

.

un+1 un, un−1, . . . tn, tn−1, . . .un+1 tn+1

n+ 1

u′(t) ≈ Duf (u(t), t) u

Page 22: Vorlesung Modellierung und Simulation I

u(t) = e−t + e−99t.

u(t)

e−t u(t)e−99t ∆t

A =

(−50 4949 −50

)u = Au

u(t) = e−t + e−99t.

λ1 = −1 λ2 = −99

A

cond(A) :=|λ|max

|λ|min.

cond(A) = 99

a > 0

Page 23: Vorlesung Modellierung und Simulation I

u′ = f(u, t) = au.

u′ ≈ un+1 − un∆t

.

un+1 − un∆t

= aun

⇔ un+1 = un +∆taun = (1 + a∆t)un

⇒ un = (1 + a∆t)nu0.

1+a∆t > 1 una < 0

|1 + a∆t| ≤ 1.

a ∆ta < 0

0 < ∆t < −2

a.

un+1 un

un+1 − un∆t

= f(un+1, tn+1) = aun+1

⇔ un+1 =1

1− a∆tun

⇒ un =

(1

1− a∆t

)n

u0.

a < 0 ∣∣∣∣1

1− a∆t

∣∣∣∣ < 1 ⇒ ∆t.

Page 24: Vorlesung Modellierung und Simulation I

a < 0 a > 0

∆t → 0

uk+1 = uk +∆tΦ(uk+1, uk, tk).

Φ

tk = t0 + k ·∆t,

u(tk) : tk,uk : tk.

tk+1

dk+1 := u (tk+1)− u (tk)−∆tΦ (u (tk+1) , u (tk) , . . . , tk) .

u′ = au

un+1 = un +∆taun

u(tn+1) = u(tn) +∆tau(tn) + dn+t

⇒ dn+1 = u(tn−1)− u(tn)−∆tau(tn)

Page 25: Vorlesung Modellierung und Simulation I

tn

en := u(tn)− un?

en+1 = u(tn+1)− un+1 = u(tn) + a∆tu (tn) + dn+1 − (un + a∆tun)

⇒ en+1 = en + a∆ten + dn+1 = (1 + a∆t)nd1 + . . .+ (1 + a∆t)n+1−kdk + . . .+ dn+1.

|1 + a∆t| ≤ 1 dk+1 =12 (∆t)2 u′′ (tk + θ∆t) , 0 < θ < 1

en+1 ≤ (n+ 1) · 12(∆t)2

∥∥u′′∥∥∞ =

1

2T ·∆t

∥∥u′′∥∥∞

T := (n + 1) · ∆t∆t

gk tk

gk := u(tk)− uk.

gkdk

Φ : B → RL ∈ R 0 < L < ∞

|Φ(x, y1, z,∆t)− Φ(x, y2, z,∆t)| ≤ L |y1 − y2| ,|Φ(x, y, z1,∆t)− Φ(x, y, z2,∆t)| ≤ L |z1 − z2|

(x, y1, z,∆t) , (x, y2, z,∆t) (x, y, z1,∆t) (x, y, z2,∆t) ∈ B

u (tk+1) = u (tk) +∆t · Φ (u (tk+1) , u (tk) , tk) + dk+1.

Page 26: Vorlesung Modellierung und Simulation I

gk+1 = gk +∆t (Φ (u (tk+1) , u (tk) , tk)− Φ (u (tk+1) , uk, tk)

+Φ (u (tk+1) , uk, tk)− Φ (uk+1, uk, tk)) + dk+1.

∆t · L < 1

|gk+1| ≤ |gk|+∆t (L |u (tk)− uk|+ L |u (tk+1)− uk+1|) + |dk+1|

⇒ |gk+1| ≤1 +∆tL

1−∆tL|gk|+

|dk+1|1−∆tL

.

Φ uk+1

|gk+1| ≤ (1 +∆tL) |gk|+ |dk+1| .

∆tL < 1 K > 0 1+∆tL1−∆tL ≤ 1 +∆tK

|gk+1| ≤ (1 + a) |gk|+ b

a =

∆tK ( )

∆tL ( )b =

K2L |dk+1| ( )

|dk+1| ( )

(gk)k∈N

|gk+1| ≤ (1 + a) |gk|+ b ∀k ∈ N+,

|gk| ≤ (1 + a)k |g0|+(1 + a)k − 1

ab ≤ eka |g0|+

b

a

(eka − 1

)∀k ∈ N.

|gk| ≤ (1 + a) |gk−1|+ b ≤ (1 + a)2 |gk−2|+ ((1 + a) + 1) b

≤ (1 + a)k |g0|+((1 + a)k−1 + . . .+ (1 + a) + 1

)b

= (1 + a)k |g0|+(1 + a)k − 1

a· b.

(1 + t) ≤ et ∀t (1 + a)k ≤ eka

Page 27: Vorlesung Modellierung und Simulation I

g0 = u(t0)− u0 = 0

D := k |dk| gn tn = t0 + n∆t

|gn| ≤D

∆tL

(en∆tL − 1

)≤ D

∆tL· en∆tL.

|gn| ≤D

2∆tL

(en∆tK − 1

)≤ D

2∆tL· en∆tK .

DL h

dk+1 = u (tk+1)− u (tk)−∆tf (u (tk) , tk) .

u (tk+1) = u (tk) +∆tu′ (tk) +1

2(∆t)2 u′′ (tk + θ∆t)

0 < θ < 1 f (u (tk) , tk) = u′ (tk)

dk+1 = u (tk)+∆tu′ (tk)+1

2(∆t)2 u′′ (tk + θ∆t)−u (tk)−∆tu′ (tk) =

1

2(∆t)2 u′′ (tk + θ∆t) .

M := t0≤ξ≤tn |u′′(ξ)| |dk+1| ≤ 12 (∆t)2M

|gn| ≤∆tM

2Len∆tL.

gn ∆t

pC dk

|dk| ≤ D = C (∆t)p+1 = O((∆t)p+1

).

gn

|gn| ≤C

Len∆tL (∆t)p = O ((∆t)p) .

Page 28: Vorlesung Modellierung und Simulation I

p

u (tk+1) = u (tk)+∆t

1!u′ (tk)+

(∆t)2

2!u′′ (tk)+

(∆t)3

3!u(3) (tk)+ . . .+

(∆t)p

p!u(p) (tk)+Rp+1

p

dk+1 = Rp+1 =(∆t)p+1

(p+ 1)!u(p+1) (tk + θ∆t) , 0 < θ < 1.

u′ = −2tu2

u(0) = 1 u t

u (tk+1) = u (tk) + c1∆t+ c2 (∆t)2 + c3 (∆t)3 + c4 (∆t)4 + . . .

ci u′ = −2tu2 t = tk +∆t

c1 + 2c2∆t + 3c3 (∆t)2 + 4c4 (∆t)3 + . . .

= −2(tk +∆t)(u (tk) + c1∆t+ c2 (∆t)2 + c3 (∆t)3 + c4 (∆t)4 + . . .

)2

= −2(tk +∆t)(u2 (tk) + 2c1u (tk)∆t+

(c21 + 2c2u (tk)

)(∆t)2+

+ (2c1c2 + 2c3u (tk)) (∆t)3 + . . .)

= −2tku2 (tk) +

(−2u2 (tk)− 4c1tku (tk)

)∆t+

(−4c1u (tk)− 2tk

(c21 + 2c2u (tk)

))(∆t)2 +

+(−2(c21 + 2c2u (tk)

)− 4tk (c1c2 + c3u (tk))

)(∆t)3 + . . .

c1 = −2tku2 (tk) ≈− 2tku

2k

c2 = − (u (tk) + 2c1tk)u (tk) ≈− (uk − 2c1tk)uk

c3 =−(4c1u (tk) + 2tk

(c21 + 2c2u (tk)

))

3≈− 1

3

(4c1uk + 2tk

(c21 + 2c2uk

))

c4 = −1

2c21 − c2u (tk)− tk (c1c2 + c3u (tk)) ≈− 1

2c21 − c2uk − tk (c1c2 + c3uk)

Page 29: Vorlesung Modellierung und Simulation I

ek := u (tk)− uk

∆t ∆t2

u(1)k+1 = uk +∆tf (uk, tk)

u(2)k+ 1

2

= uk +∆t

2f (uk, tk)

u(2)k+1 = u(2)k+ 1

2

+∆t

2f

(u(2)k+ 1

2

, tk +∆t

2

)

uk+1 := 2u(2)k+1 − u(1)k+1 = 2u(2)k+ 1

2

+∆tf

(u(2)k+ 1

2

, tk +∆t

2

)− uk −∆tf (uk, tk)

= uk +∆tf

(uk +

∆t

2f (uk, tk) , tk +

∆t

2

).

k1 := f (uk, tk) ,

k2 := f

(uk +

∆t

2k1, tk +

∆t

2

),

uk+1 = uk +∆tk2.

u′(t) = f (u(t), t)

[tk, tk+1]

tk+1ˆtk

u′(t)dt =

tk+1ˆtk

f (u(t), t) dt

⇔ u(tk+1)− u(tk) =

tk+1ˆtk

f (u(t), t) dt.

Page 30: Vorlesung Modellierung und Simulation I

u(t)

tk+1ˆtk

f (u(t), t) dt ≈ ∆t

2(f (uk, tk) + f (uk+1, tk+1)) .

uk+1 = uk +∆t

2(f (uk, tk) + f (uk+1, tk+1))

uk+1

u(0)k+1 = uk +∆tf (uk, tk)

u(n+1)k+1 = uk +

∆t

2

(f (uk, tk) + f

(u(n)k+1, tk+1

))

uk+1 fL ∆tL

2 < 1 ∆t < 2L

Φ (uk, uk+1, tk) :=1

2(f (uk, tk) + f (uk+1, tk+1)) .

dk+1 = u (tk+1)− u (tk)−∆t

2(f (u (tk) , tk) + f (u (tk+1) , tk+1))

= u (tk+1)− u (tk)−∆t

2

(u′ (tk) + u′ (tk+1)

)

= ∆tu′ (tk) +(∆t)2

2u′′ (tk) +

(∆t)3

6u′′′ (tk) +O

((∆t)4

)

−∆t

2

(u′ (tk) + u′ (tk) +∆tu′′ (tk) +

(∆t)2

2u′′′ (tk) +O

((∆t)3

))

= − 1

12(∆t)3 u′′′ (tk) +O

((∆t)4

).

(∆t)3

Page 31: Vorlesung Modellierung und Simulation I

uk+1 ≈ u(tk+1)

u(p)k+1 = uk +∆tf (uk, tk) ,

uk+1 = uk +∆t

2

(f (uk, tk) + f

(u(p)k+1, tk+1

)).

k1 = f (uk, tk) ,

k2 = f (uk +∆tk1, tk+1) ,

uk+1 = uk +∆t

2(k1 + k2) .

k1 k2 (tk, uk)(tk+1, u

(p)k+1

)

Page 32: Vorlesung Modellierung und Simulation I
Page 33: Vorlesung Modellierung und Simulation I

U ⊂ Rn f : U → R fx ∈ U

Dif(x) :=h→0

f(x+ hei)− f(x)

h

ei ∈ Rn (ei)j = δij∂if ∂eif

∂f∂xi

Dif

U ⊂ Rn f : U → Rx ∈ U

f(x) :=

(∂f

∂x1(x), . . . ,

∂f

∂xn(x)

)

f x

(f) ∇f

∇ :=

(∂

∂x1, . . . ,

∂xn

)

f, g : U → R

(f · g) = g · f + f · g

Page 34: Vorlesung Modellierung und Simulation I

U ⊂ Rn

v = (v1, . . . , vn) : U → Rn

vi

v :=n∑

i=1

∂vi∂xi

v

∇ · v.

U ⊂ R3 v : U →R3

v :=

(∂v3∂x2

− ∂v2∂x3

,∂v1∂x3

− ∂v3∂x1

,∂v2∂x1

− ∂v1∂x2

)

v

v

v = ∇× v

U → Rn f : U → R

∆f := f = ∇f =∂2f

∂x21+ . . .+

∂2f

∂x2n

∆ :=∂2

∂x21+ . . .+

∂2

∂x2n=

n∑

i=1

∂2

∂x2i

u

t= f(t, u)

t f(t, u)f

Page 35: Vorlesung Modellierung und Simulation I

c(x, t)

F c(x, t)

F = −D · c,

D

Vc V c V

ˆ

V

∂c

∂tdx.

V

−ˆ

∂V

F · ndS =

ˆ

V

∂c

∂tdx.

F : Rn → Rn

V ⊂ Rn

ˆ

V

F (x) dx =

ˆ

∂V

F (x) · n dS.

−ˆ

V

F (x) dx = −ˆ

∂V

F · n dS =

ˆ

V

∂c

∂tdx ∀V

⇒ − F =∂c

∂t

⇒ ∂c

∂t= − (D∇c)

v ρp

Page 36: Vorlesung Modellierung und Simulation I

∂ρ

∂t= −ρ0 v

ρ0

ρ0∂v

∂t= − p.

p

⇒ p = c2 · ρ

⇒ ∂2

∂t2ρ = −ρ0

(∂v∂t

)= −

(ρ0∂v

∂t

)

⇒ 1

c2∂2

∂t2p = ( p)

⇔ ∂2

∂t2p = c2 · ( p) = c2∆p

R1 R2

R1

utt = uxx.

R2

utt = c2∆u.

Ω ⊂ Rd d ∈ 2, 3 ρ : Ω → R ΩΦ

−∆Φ = ρ Ω.

Page 37: Vorlesung Modellierung und Simulation I

∆u = 0 Ω ⊂ Rd.

Ω := (x, y) ∈ R2;x2+y2 < 1 x y

x := r · φ

y := r · φ

∆u =∂2u

∂r2+

1

r

∂u

∂r+

1

r2∂2u

∂φ2.

rk (kφ) rk (kφ)r = 1

u|∂Ω = u( φ, φ) = a0 +∞∑

k=1

(ak (kφ) + bk (kφ)) .

r < 1

u(x, y) = a0

∞∑

k=1

rk · (ak (kφ) + bk (kφ)) .

ciΦ

∂ci∂t

= ∇ ·(Di∇ci +Di

ziF

RTci∇Φ

)

−∇(εrε0∇Φ) = ρf +∑

i

ziFci

Di ci zi ρfεr ε0 F

R T

Page 38: Vorlesung Modellierung und Simulation I
Page 39: Vorlesung Modellierung und Simulation I

−∆u = f Ω

Ω

Ω

Ω

Ω −∆u = f

Page 40: Vorlesung Modellierung und Simulation I

Ω = (x, y) : 0 < x < 1, 0 < y < 1.

Ω

ΩΩh h

Ωh =(x, y) ∈ Ω :

x

h,y

h∈ Z

.

Ωh

u(x) uh(x) u(x) uh(x)

h→0

u(x+ h)− u(x)

h≈ u(x+ h)− u(x)

h

Ωh

Ωh

Ω

R

Page 41: Vorlesung Modellierung und Simulation I

u′′(x) = f(x) Ω = (0, 1),

u(0) = ϕ0,

u(1) = ϕ1.

δ+u(x) = u(x+h)−u(x)h

δ−u(x) = u(x)−u(x−h)h

δ0u(x) = u(x+h)−u(x−h)2h

δ+ δ−

u′′(x) ≈ δ+δ−u(x) =u(x+h)−u(x)

h − u(x)−u(x−h)h

h=

u(x+ h)− 2u(x) + u(x− h)

h2.

[x− h, x+ h] ⊂ Ω

δ±u(x) = u′(x) + hR |R| ≤ 12∥u

′′∥∞

δ0u(x) = u′(x) + h2R |R| ≤ 16∥u

′′′∥∞

δ+δ−u(x) = u′′(x) + h2R |R| ≤ 112∥u

(4)∥∞

u(x± h) = u(x)± hu′(x) +h2

2u′′(x) + . . .

= u(x)± hu′(x) +h2

2u′′(ξ), x ≤ ξ ≤ x+ h

⇔ u(x+ h)− u(x)

h= u′(x) +

h

2u′′(ξ)

≤ u′(x) +h

2∥u′′∥∞

x± h

u(x+ h) = u(x) + hu′(x) +h2

2u′′(x) +

h3

6u′′′(ξ),

u(x− h) = u(x)− hu′(x) +h2

2u′′(x)− h3

6u′′′(ξ).

Page 42: Vorlesung Modellierung und Simulation I

δ0u(x) =2hu′(x) + h3

6 (u′′′(ξ) + u′′′(ξ))

2h

= u′(x) +h2

12(u′′′(ξ) + u′′′(ξ)

≤ u′(x) +h2

12· 2∥u′′′∥∞ = u′(x) +

h2

6∥u′′′∥∞

x± h

u(x+ h) = u(x) + hu′(x) +h2

2u′′(x) +

h3

6u′′′(x) +

h4

24u(4)(ξ)

u(x− h) = u(x)− hu′(x) +h2

2u′′(x)− h3

6u′′′(x) +

h4

24u(4)(ξ)

2u(x) h2

δ+δ−u(x) =h2u′′(x) + h4

24

(u(4)(ξ) + u(4)(ξ)

)

h2

⇒ δ+δ−u(x) = u′′(x) +h2

24

(u(4)(ξ) + u(4)(ξ)

)

≤ u′′(x) +h2

12∥u(4)∥∞

u′′(x) = ∆u(x) = f(x),

∆ ≈ ∆h = δ+δ−

δ+δ−u(x) = f(x) +O(h2)

δ+δ−u(x) =1

h2

⎝−2 1 01 −2 10 1 −2

⎠ ·

⎝uh(x1)uh(x2)uh(x3)

⎠ =

⎝f(x1)− 1

h2u(0)f(x2)f(x3)− 1

h2u(1)

⎠ .

Page 43: Vorlesung Modellierung und Simulation I

10 x3x2x1

1

h2·

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 0 0 01 −2 1 0 . . . 0 00 1 −2 1 0 . . . 0

0 0 . . . 0 1 −2 10 0 . . . 0 0 1 −2

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

un

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 − u0h2

f2

fn−1fn − un

h2

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Kh · uh = fh

Kh

(i, j) ∈ 1, . . . , n2 : Ki,j = 0 = O(n).

R

Ω :=(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1

Ωh :=(x, y) ∈ Ω :

x

h,y

h∈ Z

Γ :=(x, y) ∈ R2 : x ∈ 0, 1, y ∈ 0, 1

,

Γh :=(x, y) ∈ Γ :

x

h,y

h∈ Z

.

−∆u = f Ω,

u = ϕ Γ

Page 44: Vorlesung Modellierung und Simulation I

−∆huh := (−δ−x δ+x − δ−y δ+y )uh(x).

uh uu Ωh

∆h uh

−∆huh = (−δ−x δ+x − δ−y δ+y )uh(x)

= − 1

h2(uh(x− h, y) + uh(x+ h, y) + uh(x, y − h) + uh(x, y + h)− 4uh(x, y)) .

uh

R

R2

1 2

4

3

5 6

7 8 9

Page 45: Vorlesung Modellierung und Simulation I

1

h2

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 0 −1 0 0 0 0 0−1 4 −1 0 −1 0 0 0 00 −1 4 −1 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 00 −1 0 −1 4 −1 0 −1 00 0 −1 0 −1 4 0 0 −10 0 0 −1 0 0 4 −1 00 0 0 0 −1 0 −1 4 −10 0 0 0 0 −1 0 −1 4

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· uh = fh

fh f

Kh =1

h2

⎜⎜⎜⎝

D −I 0 0−I D −I 0

0 0 −I D

⎟⎟⎟⎠

D =

⎜⎜⎜⎜⎜⎜⎝

4 −1 0 · · · 0−1 4 −1 0 · · ·

−1

−10 · · · 0 −1 4

⎟⎟⎟⎟⎟⎟⎠,

−I =

⎜⎜⎜⎜⎜⎜⎝

−1 0 0 · · · 00 −1 0 · · · 0

0 · · · 0 0 −1

⎟⎟⎟⎟⎟⎟⎠.

Page 46: Vorlesung Modellierung und Simulation I

1 2

4

3

5

6

7 8

9

1

h2

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 −1 −1 0 00 4 0 0 0 −1 0 −1 00 0 4 0 0 −1 −1 −1 −10 0 0 4 0 0 −1 0 −10 0 0 0 4 0 0 −1 −1

−1 −1 −1 0 0 4 0 0 0−1 0 −1 −1 0 0 4 0 00 −1 −1 0 −1 0 0 4 00 0 −1 −1 −1 0 0 0 4

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· uh = fh

Kh =

(D1 LLT D2

)

Kh Di L LT

R2

Page 47: Vorlesung Modellierung und Simulation I

−∆huh =1

h2(−u(x− h, y)− u(x+ h, y)− u(x, y − h)− u(x, y + h) + 4u(x, y))

=:1

h2

⎣−1

−1 4 −1−1

⎦ = −∆h.

Ωh

Kh

R1

δ+ = 1h ·[0 −1 1

]

δ− = 1h ·[−1 1 0

]

δ0 = 12h ·

[−1 0 1

]

1

hk

⎢⎢⎢⎢⎢⎢⎣

c−1,1 c0,1 c1,1· · · c−1,0 c0,0 c1,0 · · ·

c−1,−1 c0,−1 c1,−1

⎥⎥⎥⎥⎥⎥⎦(x, y)

=1

hk·∑

i,j

cijuh(x+ ih, y + jh)

[a b c

] [d e f

]uh =

[a b c

]· (d · uh(x− h) + e · uh(x) + f · uh(x+ h))

= a(duh(x− 2h) + euh(x− h) + fuh(x))

+b(duh(x− h) + euh(x) + fuh(x+ h))

+c(duh(x) + euh(x+ h) + fuh(x+ 2h))

=[ad ae+ bd af + be+ cd bf + ce cf

].

Page 48: Vorlesung Modellierung und Simulation I

n∑

j=1

aij = 0 ∀i = 1 . . . n.

∆h

aii > 0, aij ≤ 0 (i = j).

∆2h

|aii| ≥n∑

j=1j =i

|aij | ∀i = 1 . . . n

|aii| >n∑

j=1j =i

|aij | ∀i = 1 . . . n

Kh

Kh

Kh

Page 49: Vorlesung Modellierung und Simulation I

A ∈ Kn×n A ∈Kn×n

A · A = A ·A = En,

En

A ∈ Kn×n

n∑

j=1

λjAj = 0 ⇔ λj = 0 ∀j = 1 . . . n,

Aj A

A ∈ Kn×n

A ∈ Kn×n

A

AT

A n A n

(AT )−1 = (A−1)T

A,B ∈ Kn×n (aij)i,j=1...n (bij)i,j=1...n

A ≥ B aij ≥bij , ∀i, j = 1 . . . n A ≤ B A < B A > B

n×n

aii > 0, aij ≤ 0 ∀i, j = 1 . . . n, i = j

A A−1 ≥ 0

Kh

−∆u = f,

Khuh = fh

Page 50: Vorlesung Modellierung und Simulation I

Kh AA−1 ≥ 0

A ∈ Kn×n i, j ∈ 1, . . . , n

i j aij = 0

i j (ik)k=1,...,p ⊂1, . . . , n i = i1, ip = j ik−1 ik

k = 2 . . . n

A i ∈ 1, . . . , nj ∈ 1, . . . , n

A ⇔ Π

ΠTAΠ =

(A1 00 A2

).

A = (aij) ∈ Cn×n

Ki :=

⎧⎪⎪⎨

⎪⎪⎩z ∈ C : |z − aii| ≤

n∑

j=1j =i

|aij |

⎫⎪⎪⎬

⎪⎪⎭, i = 1 . . . n

n A

n⋃

i=1

Ki.

v A λ∥v∥∞ := n

j=1 |vj | = 1|vi| = 1

(A− λEn)v = 0.

Page 51: Vorlesung Modellierung und Simulation I

(aii − λ)vi = −n∑

j=1j =i

aijvj .

|aii − λ| = |(aii − λ)vi| =

∣∣∣∣∣∣∣∣

n∑

j=1j =i

aijvj

∣∣∣∣∣∣∣∣

≤n∑

j=1j =i

|aij ||vj | ≤n∑

j=1j =i

|aij |

⇒ |aii − λ| ≤n∑

j=1j =i

|aij |

⇔ λ ∈ Ki =

⎧⎪⎪⎨

⎪⎪⎩z ∈ C : |z − aii| ≤

n∑

j=1j =i

|aij |

⎫⎪⎪⎬

⎪⎪⎭.

Ki

Kh

∑nj=1,j =i |aij | = 4h−2 ∀j ⇒ 4h−2

aii = 4h−2 4h−2

λ ∈[0, 8h−2

]

Kh

λ ∈(0, 8h−2

).

A

λ ∈(

n⋃

i=1

Ki

)∪(

n⋂

i=1

∂Ki

)

Page 52: Vorlesung Modellierung und Simulation I

Ki :=

⎧⎨

⎩z ∈ C : |z − aii| <n∑

j=1,j =i

|aij |

⎫⎬

⎭ ,

∂Ki :=

⎧⎨

⎩z ∈ C : |z − aii| =n∑

j=1,j =i

|aij |

⎫⎬

⎭ .

λ A v ∥v∥∞ = 1i ∈

1, . . . , n |vi| = 1 |λ − aii| ≤∑n

j=1,j =i |aij | |λ − aii| <∑nj=1,j =i |aij | λ ∈ Ki

k |vk| = 1

|λ− akk| =n∑

j=1,j =k

|akj | ∀k ∈ k ∈ 1, . . . , n : |vk| = 1 .

|λ−ajj | =∑n

k=1,k =j |ajk| ∀j = 1 . . . n λ ∈⋂n

i=1 ∂Ki

j ∈ 1, . . . , n \ i

i = i0, i1, . . . , il = j aip−1ip = 0.

∣∣λ− aipip∣∣ =

∑nk=1,k =ip

∣∣aipk∣∣ ∣∣vip

∣∣ = 1∣∣λ− aip+1ip+1

∣∣ =∑n

k=1,k =ip+1

∣∣aip+1k

∣∣ ∣∣vip+1

∣∣ = 1 p = 0 . . . l−1

∣∣λ− aipip∣∣ =

∑nj=1,j =ip

∣∣aipj∣∣ ∣∣vip

∣∣ = 1 p ∈ 0, . . . , l − 1

∣∣λ− aipip∣∣ ≤

n∑

k=1,k =ip

∣∣aipk∣∣ |vk|

n∑

k=1,k =ip

∣∣aipk∣∣ |vk| ≥

n∑

k=1,k =ip

∣∣aipk∣∣ .

∥v∥∞ = 1

n∑

k=1,k =ip

∣∣aipk∣∣ |vk| =

n∑

k=1,k =ip

∣∣aipk∣∣ .

Page 53: Vorlesung Modellierung und Simulation I

|vk| ≤ 1 ∀k |vk| = 1 ∀k aipk = 0∣∣vip+1

∣∣ = 1.|λ− aip+1ip+1 | =

∑nk=1,k =ip+1

|aip+1k|

Kh

aii =4

h2

ri =n∑

j=1,j =i

|aij | =

⎧⎨

2/h2

3/h2

4/h2.

Kh Kh ∂Kj

Kh

λ ∈(0,

8

h2

).

A ∈ Kn×n

j,j =i

|aij | < |aii| ∀i = 1, . . . , n

A∑

j,j =i

|aij | < |aii| i

j,j =i

|aij | ≤ |aii| ∀i = 1, . . . , n

ϱ(A) A ∈ Kn×n

ϱ(A) := |λ| : λ A.

Page 54: Vorlesung Modellierung und Simulation I

D−1B D := aii : i = 1, . . . , nB := D −A

A ϱ(D−1B) < 1.

A A ⇔ ϱ(D−1B) < 1

C := D−1B

cij = −aijaii

, (i = j),

cii = 0.

ri :=n∑

j=1j =i

|cij | < 1 ∀i = 1, . . . , n.

λ ∈n⋃

i=1

Kri(cii) =n⋃

i=1

Kri(0)

⇒ |λ| ≤i=1...n

ri < 1

⇒ ϱ(D−1B) < 1.

A ⇒ rj ≤ 1 ∀j = 1, . . . , nri < 1 i

λ ∈n⋃

j=1

Krj (0) ∪

⎝n⋂

j=1

∂Krj (0)

⎠ .

i ri < 1 ∂Kri(0) ⊂ K1(0)⋂nj=1 ∂Krj (0) ⊂ K1(0) ϱ(D−1B) < 1

AA A−1 ≥ 0 ⇔ ϱ(D−1B) < 1

⇐ ϱ(D−1B) = ϱ(C) < 1

S :=∞∑

ν=0

Cν = (I − C)−1

⇔ S(I − C) = I

⇔ SD−1(D −B) = SD−1A = I

⇔ A−1 = SD−1.

Page 55: Vorlesung Modellierung und Simulation I

D−1 ≥ 0, B ≥ 0 ⇒ C ≥ 0 ⇒ Cν ≥ 0 ⇒ S ≥ 0 ⇒ A−1 ≥ 0.⇒ A u = 0 D−1B λ

|u| (|ui|)ni=1

|λ| · |u| = |λu| =∣∣D−1Bu

∣∣ ≤ D−1B |u|

A−1 ≥ 0 D ≥ 0 ⇒ A−1D ≥ 0

⇒ −A−1DD−1B |u| ≤ −A−1D |λ| |u|⇒ |u| = A−1(D −B) |u| = A−1D(I −D−1B) |u|

≤ A−1D |u|−A−1D |λ| |u| = (1− |λ|)A−1D |u|

|λ| ≥ 1 |u|− (1− |λ|)A−1D |u| ≤ 0

I − (1− |λ|)A−1D ≥ 0,

|u| ≤ 0 ⇒ u = 0

A A−1 > 0

B C D α,β ∈ 1, . . . , nA

α = α0,α1, . . . ,αk = β aαpαp+1 < 0 ∀p ∈ 0, . . . , k − 1cαpαp+1 > 0 ∀p ∈ 0, . . . , k − 1

(Ck)αβ =∑

γ1,...,γk−1

cαγ1cγ1γ2 . . . cγk−1β ≥ cαα1cα1α2 · . . . · cαk−1β > 0.

ϱ(C) < 1 S :=∑∞

ν=0Cν

Sαβ ≥ (Ck)αβ > 0 S Ck > 0 S > 0A−1 = SD−1 > 0 A−1 > 0

Kh

V K R C ∥ · ∥ : V → RV u, v ∈ V λ ∈ K

∥u∥ = 0 ⇔ u = 0 ,

∥λu∥ = |λ| ∥u∥ ,

∥u+ v∥ ≤ ∥u∥+ ∥v∥ .

Page 56: Vorlesung Modellierung und Simulation I

V ∥ · ∥ AV

∥A∥M :=

∥Au∥∥u∥ : u ∈ V \ 0

= ∥Au∥ : u ∈ V, ∥u∥ = 1

∥ · ∥A

∥A∥M ≥ ϱ (A) .

∥A∥M =∥Au∥∥u∥ : u ∈ V \ 0

v A

∥Av∥∥v∥ =

∥λv∥∥v∥ = |λ|

⇒∥Au∥∥u∥

v

∥Av∥∥v∥ = |λ∗| = ϱ(A).

∥·∥∞

∥A∥∞ =i∈1,...,n

⎧⎨

⎩∑

j∈1,...,n

|aij |

⎫⎬

⎭ .

A ≥ B ∥A∥∞ ≥ ∥B∥∞ A ≥ B

A w Aw ≥∥∥A−1

∥∥∞ ≤ ∥w∥∞ .

Page 57: Vorlesung Modellierung und Simulation I

|u| u

|u| ≤ ∥u∥∞ · ≤ ∥u∥∞ ·Aw.

A A−1 ≥ 0∣∣A−1u

∣∣ ≤ A−1 |u| ≤ A−1 ∥u∥∞Aw

= ∥u∥∞A−1Aw = ∥u∥∞ · w

⇒∣∣A−1u

∣∣∥u∥∞

≤ w

∥∥A−1u∥∥∞

∥u∥∞≤ ∥w∥∞

⇒∥∥A−1

∥∥∞ ≤ ∥w∥∞ .

A B B ≥ A

0 ≤ B−1 ≤ A−1∥∥B−1

∥∥∞ ≤

∥∥A−1∥∥∞

A−1 −B−1 = A−1(B −A)B−1.

A,B A−1 ≥ 0 B−1 ≥ 0 B ≥ A B −A ≥ 0

⇒ A−1 −B−1 = A−1(B −A)B−1 ≥ 0

⇔ A−1 ≥ B−1 ⇒∥∥B−1

∥∥∞ ≤

∥∥A−1∥∥∞ .

∥u∥2 =√∑n

i=1 |ui|2

V∥·∥2

∥A∥2 =√ϱ (ATA)

∥A∥2 =∥Au∥2∥u∥2

: u ∈ V \ 0

=u∈V,∥u∥2=1

∥Au∥2 .

∥A∥22 =u∈V,∥u∥2=1

∥Au∥22 = ∥u∥2=1⟨Au,Au⟩ =

∥u∥2=1⟨ATAu, u⟩.

Page 58: Vorlesung Modellierung und Simulation I

ATA

P TATAP = (λi) =: D

PP T =∥∥P Tu

∥∥ = ∥u∥ ∀u ∈ V λi > 0 ATA

∥Au∥22 =∥u∥2=1

⟨ATAu, u⟩ =∥u∥2=1

⟨ATAPP Tu, PP Tu⟩

=︸︷︷︸u=PTu

∥u∥2=1⟨ATAPu, P u⟩ =

∥u∥2=1⟨P TATAPu, u⟩ =

∥u∥2=1⟨Du, u⟩

=∥u∥2=1

(n∑

i=1

λi|ui|2)

= λmax = ϱ(ATA

)

⇒ ∥A∥2 =√ϱ (ATA).

A ATA = A2 ρ(A2)= ρ2 (A)

∥A∥2 = ϱ(A)

A ∈ Kn×n A

⟨Au, u⟩ > 0 ∀u ∈ Kn \ 0 .

A A

A ⇒ ∃P : P TAP = (λi) λi AP

⇒ ⟨Au, u⟩ = ⟨APu, P u⟩ = ⟨P TAPu, u⟩ =n∑

i=1

λi |ui|2

⟨Au, u⟩ > 0 ∀u ∈ Kn \ 0 ⇔ λi > 0 ∀i.

Page 59: Vorlesung Modellierung und Simulation I

Aaii > 0 A

n∑

j=1,j =i

|aij | < aii ⇒ (0,∞)

⇒ λi ⇒ A

λ λ A

∥A∥2 = λ

∥A−1∥2 =1

λ

A ∥A∥2 = ϱ (A) = λ A−1

∥A−1∥2 = ϱ(A−1

)= 1

λ

Kh

Ω Ω = (0, 1)× (0, 1)

⎣1

1 −4 11

⎦ ,

Kh

Kh

Kh

∥Kh∥∞ ≤ 8h2

∥∥K−1h

∥∥∞ ≤ 1

8

∥Kh∥2 ≤8h2

2(πh2

)< 8

h2

∥∥K−1h

∥∥2≤ 1

8h2 −2 (πh

2

)= 1

2π2+O(h2) <116 h

Kh

Kh

Kh Kh

Page 60: Vorlesung Modellierung und Simulation I

∥Kh∥∞ = i=1,...,n

∑nj=1 |Kij |

= 1

h2 6, 7, 8 = 8h2

∥∥K−1h

∥∥∞ ≤ 1

8

w(x, y) =x(1− x)

2

Khwh (x, y) = −(x− h)(1− (x− h))

2h2−(x+ h)(1− (x+ h))

2h2+2 · x(1− x)

2h2= 1

Khwh ≥ wh ∥wh∥∞ ≤ x,y w (x, y) = 18∥∥K−1h

∥∥∞ ≤ ∥w∥∞ ≤ 1

8

Kh uν,µ (1 ≤ ν, µ ≤ n− 1)

uν,µj,k = (νπjh) (µπkh)

λν,µ =2

h2

(2

(νπh

2

)+ 2

(µπh

2

)).

(j, k)

(Khuν,µ)j,k =

1

h2(4 (νπjh) (µπkh)

− (νπ (j − 1)h) (µπkh)− (νπ (j + 1)h) (µπkh)

− (νπjh) (µπ (k − 1)h)− (νπjh) (µπ (k + 1)h)) .

(a± b) = a b± b a

a := νπjh b := νπh a := µπkh b := µπh

(Khuν,µ)j,k =

1

h2(4− 2 (νπh)− 2 (µπh)) (νπjh) (µπkh) .

1− (a) = 2 2(a2

)

(Khuν,µ)j,k =

4

h2

(2

(νπh

2

)+ 2

(µπh

2

))uν,µj,k .

⇒ ∥Kh∥2 = ϱ(A) = λmax ≤ 8h2

2(π(n−1)h

2

)= 8

h22(πh2

)< 8

h2

Page 61: Vorlesung Modellierung und Simulation I

∥∥K−1h

∥∥2

= ϱ(K−1h ) =1

λmin

λmin =8

h22

(πh

2

)=

8

h2

(πh

2−O(h3)

)2

=8

h2

((πh

2

)2

−O(h4)

)= 2π2 −O(h2)

⇒∥∥K−1h

∥∥2

≤ 1

2π2 −O(h2).

uh −∆huh = fh fh = 0 uh|∂Ωh= ϕh

uh ∂Ωh

−∆huh = 0

uh(x, y) =1

4(uh(x− h, y) + uh(x+ h, y) + uh(x, y − h) + uh(x, y + h))

uh(x, y) (x, y) ∈ Ωh

uh(x ± h, y) uh(x, y ± h)Kh Ωh uh

Page 62: Vorlesung Modellierung und Simulation I

uh, vh

−∆huh = fh uh|∂Ωh= ϕu

h

−∆hvh = fh vh|∂Ωh= ϕv

h

∥uh − vh∥∞ ≤ x∈∂Ωh|ϕu(x)− ϕv(x)|

uh ≤ vh ϕu ≤ ϕv ∂Ωh

wh := vh−uh wh −∆hwh = 0wh ≥ 0 ∂Ωh

ϕu ≤ ϕv.

wh > 0 ⇒uh = ϕu vh = ϕv ∂Ωh

|wh| ≤∂Ωh

|ϕu − ϕv| ∂Ωh.

Ωh ⇒

−∆u = f Ω,

u|Γ = ϕ

−∆huh = fh Ωh,

uh|Γh = ϕh.

h ∈ H ⊂ R+ H H =1n : n ∈ N

Uh Ωh

Rh : C(Ω)

−→ Uh

u $→ Rhu

(Rhu)(x) = u(x) x ∈ Ωh Ω Ωh

Page 63: Vorlesung Modellierung und Simulation I

K

Kh h ∈ H ⊂ R+

h∈H

∥∥K−1h

∥∥ ≤ C < ∞

Kh(uh) = fh,

Kh(uh) = fh + ε.

uh = K−1h (fh)

uh = K−1h (fh + ϵ)

⇒ ∥uh − uh∥ ≤ C · ∥ε∥

Kh

∥∥K−1h

∥∥∞ ≤ 1

8,

Khuh = fh Ku = f Km Rh Rh u f

(Kh, Rh, Rh) Kk

∥∥∥KhRhu− RhKu∥∥∥ ≤ C · hk · ∥u∥Ck+m(Ω) ∀u ∈ Ck+m(Ω).

Rh = Rh

(Rhu)(x) = u(x) ∀x ∈ Ωh.

(Kh, Rh, Rh) = (∆h, Rh, Rh)

Page 64: Vorlesung Modellierung und Simulation I

(∂−∂+u)(x) = u′′(x) + h2R, |R| ≤ 1

12

∥∥∥u(4)∥∥∥C0(Ω)

.

R2 x y

−∆hRu(x, y) = −∆u(x, y) + h2(Rx +Ry)

|Rx| , |Ry| ≤ 1

12

∥∥∥u(4)∥∥∥C0(Ω)

≤ 1

12∥u∥C4(Ω) .

∥KhRhu−RhKu∥ ≤ C · h2∥u∥C4(Ω) C = 16

Khuh = fh Ku = f Km uh ∈ Uh (h ∈ H)

k u

∥uh −Rhu∥ ≤ C · hk · ∥u∥Ck+m(Ω)

uh −Rhu

K m (Kh, Rh, Rh) Kk

k u ∈ Ck+m(Ω)

wh = uh −Rhu wh → 0 h → 0.

Khwh = Khuh −KhRhu = fh −KhRhu = Rhf −KhRhu = RhKu−KhRhu

⇒ wh = K−1h (RhKu−KhRhu)

⇒ ∥wh∥ ≤∥∥K−1h

∥∥∥∥∥RhKu−KhRhu

∥∥∥

⇒ ∥uh −Rhu∥ ≤ Chk ∥u∥Ck+m(Ω) .

u ∈ C4(Ω)

∥uh −Rhu∥∞ ≤ h2

48· ∥u∥C4(Ω) .

Page 65: Vorlesung Modellierung und Simulation I

u|Γ = ϕ u

−∆u = f Ω = (0, 1)× (0, 1)∂u

∂n= ϕ Γ

∂u∂n

u u+ c´Ω u dx = 0

f ϕ

Ω

f dx+

ˆ

∂Ω

ϕ ds = 0.

−ˆ

Ω

f dx =

ˆ

Ω

∆u dx =

ˆ

Ω

(∇u) dx

=

ˆ

∂Ω

∇u · n ds =

ˆ

∂Ω

∂u

∂nds =

ˆ

∂Ω

ϕ ds.

Ω = [0, 1] × [0, 1]

Page 66: Vorlesung Modellierung und Simulation I

−∆huh(x, y) =1h2 (4uh(x, y)− uh(x− h, y)− uh(x+ h, y)− uh(x, y − h)− uh(x, y + h))

Ω−∆huh(x, y) =

1h2 (3uh(x, y)− uh(x− h, y)− uh(x, y − h)− uh(x, y + h))

−∆huh(x, y) =1h2 (2uh(x, y)− uh(x− h, y)− uh(x, y + h))

u n

∂uh∂n

(x) ≈ (∂−n uh)(x) =1

h(uh(x)− u(x− hn)) = ϕ(x)

1

h(uh(x, 0)− uh(x, h)) = ϕ(x, 0) ,

1

h(uh(x, 1)− uh(x, 1− h)) = ϕ(x, 1)

1

h(uh(0, y)− uh(h, y)) = ϕ(0, y) ,

1

h(uh(1, y)− uh(1− h, y)) = ϕ(1, y)

uh

Khuh = fh = fh +1

hϕh,

ϕh =∑

ϕ (x, y)

h2∑

x∈Ωh

f(x) + h∑

x∈Γ′h

ϕ(x) = 0,

Γ′h

Page 67: Vorlesung Modellierung und Simulation I

Khuh = fh

c

Kh

Kh · c · = 0 ⇒ c · ∈ (Kh) .

Kh ( (Kh)) = 1.Khuh = fh fh ∈ (Kh) (Kh) =

(KTh )⊥ = (Kh)⊥ = span( )⊥ Khuh = fh∑x∈Ωh

fh(x) = 0 fh ϕh∑x∈Ωh

fh(x) =∑

x∈Ωhfh(x) +

1h

∑x∈Γ′

hϕ(x)

fh fh− 1hϕh fh

x0 ∈ Ωh uh

uh(x0) = 0.

Khuh = fh

Kh Kh Kh

Kh

Kh

xi

Khuh = fh

(fh)j=

(fh)j , j = i

−∑

k =i (fh)k , j = i

(uh)i = 0.

Page 68: Vorlesung Modellierung und Simulation I

(fh)i= (fh)i

ii

f ϕ(fh)i− (fh)i = O

(h−1

)xi

Khuh = fh

Kh =

(KhT 0

), uh =

(uhλ

), fh =

(fhσ

)

σ

Khuh = fh

/∈ (Kh) (Kh, ) = (Kh)+1Kh Kh

uh Khuh = fh uhKhuh = fh fh = fh − λ ·

λ

λ = 0 uh

T · uh =∑

x∈Ωh

uh(x) = σ

λ =

∑x∈Ωh

fh(x)T

f ϕ λ = O (h)

Page 69: Vorlesung Modellierung und Simulation I

Ku = f Ω,

K =n∑

i,j=1

aij(x)∂2

∂xixj+

n∑

i=1

bi(x)∂

∂xi+ c(x).

aij(x) = aji(x)∂2

∂xixj= ∂2

∂xjxi

A(x) = (aij(x))i,j=1...naij(x)

A

n∑

i,j=1

aij(x)ξiξj > 0 ∀x ∈ Ω, 0 = ξ ∈ Rn

n∑

i,j=1

aij(x)ξiξj < 0 ∀x ∈ Ω, 0 = ξ ∈ Rn.

−∆u = f

A =

(−1 00 −1

).

K Ωn∑

i,j=1

aij(x)ξiξj ≥ c(x) ∥ξ∥2 , c(x) > 0 ∀x ∈ Ω, 0 = ξ ∈ Rn

Ω = (0, 1)× (0, 1)

a11(x, y)∂+x ∂−x + 2a12 (x, y) ∂

0x∂

0y + a22(x, y)∂

+y ∂−y + b1(x, y)∂

0x + b2(x, y)∂

0y + c(x, y)

= h−2

⎣−1

2a12(x, y) a22(x, y)12a12(x, y)

a11(x, y) −2(a11(x, y) + a22(x, y)) a11(x, y)12a12(x, y) a22(x, y) −1

2a12(x, y)

⎦+

+(2h)−1

⎣0 b2(x, y) 0

−b1(x, y) 0 b1(x, y)0 b2(x, y) 0

⎦+

⎣0 0 00 c(x, y) 00 0 0

⎦ .

Page 70: Vorlesung Modellierung und Simulation I
Page 71: Vorlesung Modellierung und Simulation I

X R C ∥·∥X : X → [0,∞)

(X, ∥·∥X)

Ω Ω ⊂ Rn

C0(Ω) ∥·∥∞∥·∥(1) ∥·∥(2) X

0 < C < ∞1

C∥x∥(1) ≤ ∥x∥(2) ≤ C ∥x∥(1) ∀x ∈ X.

Page 72: Vorlesung Modellierung und Simulation I

X Y ∥·∥X ∥·∥YT : X → Y

∥T∥ :=x∈X

∥Tx∥Y∥x∥X

: x = 0

.

∥T∥ T

L (X,Y )(T1 + T2)x = T1x+ T2x

(X, ∥·∥) A ⊂ Xx ∈ A ε > 0

Kε (x) := y ∈ X : ∥x− y∥ < ε

A

(X, ∥·∥) xn ∈ X : n ≥ 1

∥xn − xm∥ : n,m ≥ k → 0, k → ∞

∀ ε > 0 ∃n0 (ε) ∈ N : ∀n,m ≥ n0 (ε) : ∥xn − xm∥ < ε.

(X, ∥·∥) X

(·, ·) : X ×X → K X

(x, x) > 0 ∀x ∈ X,x = 0,

(λx+ y, z) = λ(x, z) + (y, z) ∀λ ∈ K, x, y, z ∈ X,

(x, y) = (y, x) ∀x, y ∈ X.

∥x∥ :=√

(x, x).

X (·, ·) XX (·, ·)

Page 73: Vorlesung Modellierung und Simulation I

X A Xσ X

∅ ∈ A

A ∈ A ⇒ Ac ∈ A

(An)n∈N ⊂ A ⇒⋃

n∈NAn ∈ A

(X,A) A

X Oσ σ O

X

(X,A) f : X → RX =

⋃n

k=1Ak Ak ∈ A k = 1, . . . n f |Ak

k = 1 . . . n

(X,A) (Y,B) f : X → Y

f−1 (B) ∈ A ∀B ∈ B.

Y = R σ f(tn)n∈N f

(X,A) µ : A → [0,∞]

µ (∅) = 0

(An)n∈N ⊂ A An ∩Am = ∅ n = m σ

µ

(⋃

n∈NAn

)=∑

n∈Nµ (An) .

(X,A, µ)

In

n∏n

k=1(ak, bk] ⊂ Rn ak ≤ bk

µIn : In → [0,∞] µIn

⎝m⋃

j=1

n∏

k=1

(ajk, bjk]

⎠ =m∑

j=1

n∏

j=1

(bjk − ajk)

Page 74: Vorlesung Modellierung und Simulation I

In

In σ σ B Rn µIn

µ (Rn,B)

(X,A, µ) A ∈ Aµ(A) = 0

X Y f, g : X → YN

f (x) = g (x) ∀ x ∈ X \N.

(X,A, µ) Y f : X → Y(Ak)

nk=1 ∈ A

µ (Ak) < ∞ f |Ak f |A = 0 A =⋃n

k=1Ak

X Y T (X,Y )t ∈ T (X,Y )

ˆ

X

t dµ :=n∑

k=1

t (Ak)µ (Ak) .

(X,A, µ)L1 (X) f : X → R (tn)n∈N ⊂ T (X,R)

T (X,R)

|t|1 :=

ˆ

X

|t| dµ

ff ∈ L1 (X)

ˆ

X

f dµ :=k→∞

ˆ

X

tk dµ.

L1 (X) L1 (X)

In µ

Page 75: Vorlesung Modellierung und Simulation I

f, g ∈ L1 (X) f = g ⇔ f(x) = g(x)L1 (X)

∥f∥1 :=

ˆ

X

|f | dµ

µ (X) < ∞

L1 (X)f : X → Rf : X → R ⇔ f |f |

X ⊂ Rn σ Bµ

L1 (X)

∞ ( )

D ⊂ Rn (Rn,B, µ)σ µ L∞ (D)

D L∞ (D)

f = g, f = g ;

∥u∥L∞(D) :=A∈B

µ(A)=0

x∈D\A|u (x)|

.

L2 (Ω)

Ω Rn L2 (Ω)

L2 (Ω) :=f : Ω → R : f , |f |2 ∈ L1 (Ω)

.

Page 76: Vorlesung Modellierung und Simulation I

f g A µ(A) = 0

(u, v)0 = (u, v)L2(Ω) :=

ˆ

Ω

uv dµ ∀u, v ∈ L2(Ω)

∥u∥0 = ∥u∥L2(Ω) =

√√√√ˆ

Ω

|u|2 dµ

L2 (Ω)

L2(Ω) f ∈ L2(Ω)

ˆΩf ′(x)ϕ(x)dx = −

ˆΩf(x)ϕ′(x)dx

f,ϕ ϕ|∂Ω = 0

L2 (Ω)

Ω ⊂ Rn

C∞c (Ω)ϕ

C∞c (Ω) :=ϕ ∈ C∞ (Ω) : x ∈ Ω : ϕ (x) = 0

.

f ∈ L2(Ω) g ∈ L2(Ω)ˆ

Ω

g(x)ϕ(x) dx = −ˆ

Ω

f(x)ϕ′(x) dx ∀ϕ ∈ C∞c (Ω) ,

g f

Page 77: Vorlesung Modellierung und Simulation I

α = (α1, . . . ,αn)

|α| :=n∑

i=1

αi,

Dα :=∂|α|

∂α1x1 . . . ∂αnxn

f ∈ L2(Ω) g α fˆ

Ω

g(x)ϕ(x) dx = (−1)|α|ˆ

Ω

f(x)Dαϕ(x) dx ∀ϕ ∈ C∞c (Ω) .

Hk (Ω) Hk0 (Ω)

u L2 (Ω) Dαu ∈ L2 (Ω)

Hk (Ω) :=u ∈ L2 (Ω) : Dαu ∈ L2 (Ω) , |α| ≤ k

k ∈ N0 Hk (Ω) W k2 (Ω) W k,2 (Ω)

Hk (Ω)

(u, v)k := (u, v)Hk(Ω) :=

⎝∑

|α|≤k

∥Dαu∥2L2(Ω)

12

.

Hs (Rn) ⊂ Ck (Rn) , s > k +n

2, k ∈ N0.

X R X ′

X R

X ′ = L (X,R) .

∥∥x′∥∥ :=

∥∥x′∥∥R←X

:=

|x′ (x)|∥x∥X

: 0 = x ∈ X

.

X ′ x′ ∈ X ′ X

⟨x, x′

⟩X×X′ := x′ (x) .

Page 78: Vorlesung Modellierung und Simulation I

X Y T ∈ L (X,Y ) y′ ∈ Y ′

⟨Tx, y′

⟩Y×Y ′ =

⟨x, x′

⟩X×X′ ∀x ∈ X

x′ ∈ X ′

T ′ : Y ′ −→ X ′

y′ $−→ x′

⟨Tx, y′⟩Y×Y ′ = ⟨x, T ′y′⟩X×X′

∥∥T ′∥∥X′←Y ′ = ∥T∥Y←X .

∥∥T ′∥∥X′←Y ′ =

y′ =0

∥T ′y′∥X′

∥y′∥Y ′

=

x,y′ =0

⟨x, T ′y′⟩X×X′

∥x∥X ∥y′∥Y ′

=x,y′ =0

⟨Tx, y′⟩Y×Y ′

∥x∥X ∥y′∥Y ′

x,y′ =0

∥T∥Y←X ∥x∥X ∥y′∥Y ′

∥x∥X ∥y′∥Y ′

= ∥T∥Y←X

∥T∥Y←X =x =0

∥Tx∥Y∥x∥X

x,y′ =0

⟨Tx, y′⟩Y×Y ′

∥x∥X ∥y′∥Y ′

=x,y′ =0

⟨x, T ′y′⟩X×X′

∥x∥X ∥y′∥Y ′

x,y′ =0

∥T ′∥X′←Y ′ ∥y′∥Y ′ ∥x∥X

∥x∥X ∥y′∥Y ′

= ∥T ′∥X′←Y ′ ,

y′ ∈ Y ′ ⟨Tx, y′⟩Y×Y ′ = ∥Tx∥Y ∥y′∥Y ′ = 1x ∈ X

X R y ∈ X

fy (x) := (x, y)X

fy ∈ X ′ ∥fy∥X′ = ∥y∥Xfy y ∈ X

X f ∈ X ′ yf ∈ X

f (x) = (x, yf )X ∀x ∈ X ∥yf∥X = ∥f∥X′ .

Page 79: Vorlesung Modellierung und Simulation I

N = x ∈ X : f(x) = 0 f N = X,yf = 0 N = X

w ∈ X \N d := d (w,N) = x∈N ∥w − x∥ w N(xn)n∈N N d = n→∞ ∥w − xn∥

(xn)n∈NX

∥(w − xm) + (w − xn)∥2 + ∥(w − xm)− (w − xn)∥2 = 2(∥w − xm∥2 + ∥w − xn∥2

)

⇔∥xm − xn∥2 = 2(∥w − xm∥2 + ∥w − xn∥2

)− 4

∥∥∥∥w − 1

2(xm + xn)

∥∥∥∥2

.

12 (xm + xn) ∈ N 4

∥∥w − 12 (xm + xn)

∥∥2 ≥ 4d2 ε > 0 m,n

2(∥w − xm∥2 + ∥w − xn∥2

)< 4d2 + ε

∥xm − xn∥2 < 4d2 + ε− 4d2 = ε.

(xn)n∈N f NX (xn)n∈N x∗ ∈ N ∥w − x∗∥ = d

λ ∈ R x ∈ N

d2 ≤ ∥w − (x∗ + λx)∥2 = ∥w − x∗∥2 + λ2 ∥x∥2 − 2λ (w − x∗, x)

⇒λ2 ∥x∥2 − 2λ (w − x∗, x) ≥ 0.

λ ∈ R

(w − x∗, x) = 0 ∀x ∈ N

λ = ∥x∥−2 (w − x∗, x)z = w − x∗ x ∈ X

f

(x− f (x) z

f (z)

)= f (x)− f

(f (x) z

f (z)

)

= f (x)− f (x)

f (z)f (z) = 0

⇒ x− f (x) z

f (z)∈ N.

x(z, x− f (x)

f (z)z

)= 0

⇔ (z, x)− f (x)

f (z)(z, z) = 0

⇔f(x) =(x, z)

∥z∥2f (z) =

(x,

f (z) z

∥z∥2

).

Page 80: Vorlesung Modellierung und Simulation I

yf = f(z)

∥z∥2 z

yf

f (x) = (x, yf ) = (x, yf ) ∀x ∈ X

⇒ (x, yf − yf ) = 0 ∀x ∈ X

⇒ yf − yf = 0.

V a (·, ·) : V × V −→ R

a (x+ λy, z) = a (x, z) + λa (y, z) ,

a (x, y + λz) = a (x, y) + λa (x, z) ∀λ ∈ R, x, y, z ∈ V.

a (·, ·) Cs

|a (x, y)| ≤ Cs ∥x∥V ∥y∥V ∀x, y ∈ V.

A ∈L (V, V ′)

a (x, y) = ⟨Ax, y⟩V ′×V ∀x, y ∈ V,

∥A∥V ′←V ≤ Cs.

x ∈ Vϕx (y) := a (x, y)

ϕx ∈ V ′ ∥ϕx∥V ′ ≤ Cs ∥x∥VA : V → V ′

Ax := ϕx

∥Ax∥V ′ ≤ Cs ∥x∥V

⇒∥A∥V ′←V =0=x∈V

∥Ax∥V ′

∥x∥V

≤ Cs.

a (·, ·) CE > 0

a (x, x) ≥ CE ∥x∥2V ∀x ∈ V.

Page 81: Vorlesung Modellierung und Simulation I

V

a : V × V −→ R

f : V −→ R

J (v) :=1

2a (v, v)− f (v)

V u

a (u, v) = f (v) ∀v ∈ V.

u

u, v ∈ V, t ∈ R

J (u+ tv) =1

2a (u+ tv, u+ tv)− f (u+ tv)

=1

2

(a (u, u) + 2ta (u, v) + t2a (v, v)

)− f (u)− tf (v)

= J (u) + t (a (u, v)− f (v)) +1

2t2a (v, v)

u ∈ V a(u, v) = f(v) ∀v ∈ V

t=1⇒ J (u+ v) = J (u) + (f (v)− f (v)) +1

2a (v, v)

= J (u) +1

2a (v, v) > J (u) ∀v ∈ V.

u

u ∈ V t $→ J (u+ tv) v ∈ Vt = 0

⇒ 0 =dJ (u+ tv)

dt|t=0 = a (u, v)− f (v)

⇔ a(u, v) = f(v).

Page 82: Vorlesung Modellierung und Simulation I

u1, u2

a (u1, v) = f (v) ∧ a (u2, v) = f (v) ∀v ∈ V

⇒ a (u1 − u2, v) = 0 ∀v ∈ V

⇒ u1 − u2 = 0.

Lu := −n∑

i,k=1

∂i (aik∂ku) + a0u

a0 (x) ≥ 0 (x ∈ Ω) A = (aik)i,k

Lu = f Ω

u = g ∂Ω

f ∈ L2 (Ω) g ∈ H12 (∂Ω) :=

v ∈ L2 (∂Ω) : ∃w ∈ H1 (Ω) , γ (w) = v

γg ∈ H1 (Ω) γ (g) = g

w := u− g

⇒ Lw = f − Lg =: f1 Ω

w = 0 ∂Ω.

−∑

i,k

∂i (aik∂ku) + a0u = f Ω

u = 0 ∂Ω

J (v) :=

ˆ

Ω

⎝1

2

i,k

aik∂iv∂kv +1

2a0v

2 − fv

⎠ dx →

C2(Ω) ∩ C0(Ω)

Page 83: Vorlesung Modellierung und Simulation I

ˆ

Ω

v (∇ · w) +∇v · wdx =

ˆ

∂Ω

v (w · n) ds.

v|∂Ω = 0

−ˆ

Ω

v (∇ · w) dx =

ˆ

Ω

∇v · wdx

wi =∑

k aik∂ku

−ˆ

Ω

v∑

i

∂i

(∑

k

aik∂ku

)dx =

ˆ

Ω

i,k

aik∂iv∂kudx.

a (u, v) :=

ˆ

Ω

i,k

aik∂iv∂ku+ a0uv dx,

f (v) :=

ˆ

Ω

fv dx

v

a (u, v)− f (v) =

ˆ

Ω

v(−∑

∂i (aik∂ku) + a0u− f)dx

=

ˆ

Ω

v(Lu− f)dx =Lu=f

0.

a (·, ·)f

u

u ∈ C2(Ω) ∩ C0(Ω)

u

Page 84: Vorlesung Modellierung und Simulation I

J (u) :=

ˆ

Ω

|∇u|2 dx.

J (u) → ⇐⇒ −∆u = 0 Ω,

u = ϕ Γ.

J (u) ≥ 0 u⇒

−∆u = 0 Ω,

u = ϕ Γ.

J (u) =

0

u2 (x) dx −→ u ∈ C0 ([0, 1])

u(0) = 1, u(1) = 0

1

1

u1(x)

1n

un(x)

un(x) =

1− nx 0 ≤ x ≤ 1

n ,0 x > 1

n .

Page 85: Vorlesung Modellierung und Simulation I

n→0 un = 0 J (u)

J (u) = 0,

V H a : H ×H −→ Rl ∈ H ′

J (v) :=1

2a (v, v)− ⟨l, v⟩ −→

V

J

J (v) ≥ 1

2CE ∥v∥2 − ∥l∥ ∥v∥

=1

2CE

(C2E ∥v∥2 − 2CE ∥l∥ ∥v∥+ ∥l∥2

)− 1

2CE∥l∥2

=1

2CE(CE ∥v∥ − ∥l∥)2 − 1

2CE∥l∥2 ≥ −∥l∥2

2CE.

c1 := J (v) : v ∈ V (vn)n∈N

n→∞J (vn) = c1.

(vn)n∈Na (·, ·)

CE ∥vn − vm∥2 ≤ a (vn − vm, vn − vm)

= 2a (vn, vn) + 2a (vm, vm)− a (vn + vm, vn + vm) .

a (v, v) a (v, v) = 2J (v) + 2 ⟨l, v⟩

CE ∥vn − vm∥2 ≤ 4J (vn) + 4 ⟨l, vn⟩+ 4J (vm) + 4 ⟨l, vm⟩

−(8J

(vn + vm

2

)+ 4 ⟨l, vn + vm⟩

)

= 4J (vn) + 4J (vm)− 8J

(vn + vm

2

)

≤ 4J (vn) + 4J (vm)− 8c1.

Page 86: Vorlesung Modellierung und Simulation I

V vn+vm2 ∈ V

J(vn+vm

2

)> c1

J (vn) → c1 (n → ∞) J (vm) → c1 (m → ∞)

CE ∥vn − vm∥2 −→ 0 n,m → ∞,

(vn)n∈N H Hu ∈ H V u ∈ V n→∞ vn = u J (u) =

n→∞ J (vn) = v∈V J (v)⇒ J (v) = 1

2a (v, v)− ⟨l, v⟩ −→ u ∈ V

u1 u2u1, u2, u1, u2, . . .

u1, u2, u1, u2, . . . u1 = u2

V = H l ∈ H ′ u ∈ H

a (u, v) = ⟨l, v⟩ ∀v ∈ H.

a (u, v) := (u, v)l ∈ H ′ u ∈ H

(u, v) = ⟨l, v⟩ ∀v ∈ H.

H ′ −→ H

l $−→ u.

u ∈ H10 (Ω)

Lu = f Ω,

u = 0 Γ

L

a (u, v) = (f, v)0 ∀v ∈ H10 (Ω)

a (u, v) :=

ˆ

Ω

i,k

aik∂iu∂kv + a0uv dx.

Page 87: Vorlesung Modellierung und Simulation I

L

Lu = f Ω,

u = 0 Γ

f ∈ L2 (Ω) H10 (Ω)

1

2a (v, v)− (f, v)0 −→ H1

0 (Ω) .

−∆u = f Ω,

u = 0 Γ

a (u, v) =

ˆ

Ω

∇u∇v dx.

u ∈ H10 (Ω)

(∇u,∇v)0 = (f, v)0 ∀v ∈ H10 (Ω) .

u

1

2

ˆ

Ω

∇u∇v dx− (f, v)0 −→ H10 (Ω) .

Lu = f Ω,∑

i,k

niaik∂ku = g Γ,

ni i f ∈ L2 (Ω) g ∈ L2 (Γ)

⟨l, v⟩ :=ˆ

Ω

fv dx+

ˆ

Γ

gv dx

u ∈ H1 (Ω)

1

2a (u, v) = (f, v)0,Ω + (g, v)0,Γ ∀v ∈ H1 (Ω) .

Page 88: Vorlesung Modellierung und Simulation I

Ω

ˆ

Ω

f (x) dx+

ˆ

∂Ω

g (x) ds = 0

V :=

⎧⎨

⎩v ∈ H1 (Ω) :

ˆ

Ω

v (x) dx = 0

⎫⎬

⎭ .

J (v) :=1

2a (u, v)− (f, v)0,Ω − (g, v)0,Γ −→ V

u

Lu = f Ω,∑

i,k

niaik∂ku = g Γ,

u ∈ C2 (Ω) ∩ C1(Ω)

H1 (Ω)C2 (Ω) ∩ C1

(Ω)

−∆u = f Ω,

u = 0 Γ

u ∈ H10 (Ω)

a (u, v) = (f, v) ∀v ∈ H10 (Ω)

a (u, v) :=

ˆ

Ω

∇u∇v dx,

(f, v) :=

ˆ

Ω

fv dx.

Page 89: Vorlesung Modellierung und Simulation I

H10 (Ω)

Vh

(⊂ H1

0 (Ω))

J (v) :=1

2a (v, v)− ⟨l, v⟩ −→ Vh.

uh ∈ Vh

a (uh, v) = ⟨l, v⟩ ∀v ∈ Vh.

ψ1,ψ2, . . . ,ψN Vh

a (uh, v) = ⟨l, v⟩ ∀v ∈ Vh

a (·, ·) l (·)

a (uh,ψi) = ⟨l,ψi⟩ ∀i = 1, 2, . . . , N.

uh ∈ Vh ψi

uh =N∑

k=1

zkψk

zk

N∑

k=1

a (ψk,ψi) zk = ⟨l,ψi⟩ i = 1, 2, . . . N.

Aik := a (ψk,ψi) bi := ⟨l,ψi⟩

Az = b.

a (·, ·) A

zTAz =∑

i,k

ziAikzk = a

(∑

k

zkψk,∑

i

ziψi

)

= a (uh, uh) ≥ CE ∥uh∥2V .

uh ∈ Vh

u ∈ V

Page 90: Vorlesung Modellierung und Simulation I

V a : V × V → R CS

CE l ∈ V ′ Vh ⊂ Vu ∈ V

a (u, v) = l (v) ∀v ∈ V

uh ∈ Vh

a (uh, v) = l (v) ∀v ∈ Vh.

∥u− uh∥ ≤ CS

CE vh∈Vh

∥u− vh∥ .

Vh ⊂ V v ∈ Vh

a (u, v)− a (uh, v) = a (u− uh, v) = 0 ∀v ∈ Vh.

a (·, ·)

CE ∥u− uh∥2 ≤ a (u− uh, u− uh) .

a (u− uh, uh − vh) vh ∈Vh

CE ∥u− uh∥2 ≤ a (u− uh, u− uh) + a (u− uh, uh − vh)

= a (u− uh, u− vh)

≤ CS ∥u− uh∥ ∥u− vh∥ ∀vh ∈ Vh.

∥u− uh∥ ≤ CS

CE∥u− vh∥ ∀vh ∈ Vh

⇒ ∥u− uh∥ ≤ CS

CE vh∈Vh

∥u− vh∥ .

u − uha Vh

CSCE

Vh

a ∥v∥a := (a (v, v))12 V

CE CS

∥·∥a uh u Vh

Page 91: Vorlesung Modellierung und Simulation I

Vh

−∆u = f Ω = (0, 1)× (0, 1),

u = 0 Γ.

Ω

I

II

III

IV

V

VI

VII

VIII

L R

O

U

LO

RU

Z

Page 92: Vorlesung Modellierung und Simulation I

∂1ψZ−1h

1h

1h

−1h

∂2ψZ−1h

−1h

1h

1h

ψZ

Vh

Vh =v ∈ C

(Ω): v v|Γ = 0

.

v

v (x, y) = a+ bx+ cy.

a b cN Vh = N N

Vh ψiNi=1

ψi (Kj) = δij , Kj j , ∀i, j = 1, . . . , N.

ψZ

Au = b

Aij = a (ψi,ψj) .

a (ψZ ,ψZ) a (ψZ ,ψO) a (ψZ ,ψU ) a (ψZ ,ψL)a (ψZ ,ψR) a (ψZ ,ψLO) a (ψZ ,ψRU )

Page 93: Vorlesung Modellierung und Simulation I

a (ψZ ,ψZ)

a (ψZ ,ψZ) =

ˆ

Ω

(∇ψZ)2 dxdy =

ˆ

(∇ψZ)2 dxdy

= 2

ˆ

, ,

((∂1ψZ)

2 + (∂2ψZ)2)dxdy

= 2

ˆ

,

(∂1ψZ)2 dxdy + 2

ˆ

,

(∂2ψZ)2 dxdy

=2

h2

ˆ

,

dxdy +2

h2

ˆ

,

dxdy

= 4.

a (ψZ ,ψO)

a (ψZ ,ψO) =

ˆ

∇ψZ∇ψOdxdy

=

ˆ

,

∇ψZ∇ψOdxdy =

ˆ

,

∂1ψZ∂1ψO + ∂2ψZ∂2ψOdxdy

=

ˆ

,

∂2ψZ∂2ψOdxdy =

ˆ

,

−1

h· 1hdxdy

= − 1

h2

ˆ

,

dxdy = −1.

a (ψZ ,ψO) = a (ψZ ,ψU ) = a (ψZ ,ψL) = a (ψZ ,ψR) = −1.

a (ψZ ,ψRU ) = a (ψZ ,ψLO) = 0.

⎢⎢⎢⎢⎢⎢⎣

0 −1 0

−1 4 −1

0 −1 0

⎥⎥⎥⎥⎥⎥⎦

h−2

Page 94: Vorlesung Modellierung und Simulation I

T = T1, T2, . . . , TM Ω

Ω =⋃M

i=1 Ti

Ti ∩ Tj Ti

Tj

Ti ∩ Tj (i = j) Ti ∩ Tj

Ti Tj

A B

Ωh Ω ⊂ Rd

V ph (T ) =

u ∈ H1 : T ∈ T : u|T ∈ Pp

p

Page 95: Vorlesung Modellierung und Simulation I

A DCB

Rd (d = 1, 2, 3)

R1

−∆u+ u = f a (u, v) =

ˆ

Ω

(∇u∇v + uv) dx.

N = a = x0, x1, x2, . . . , xN+1 = b [a, b]hi = xi+1 − xi ϕi

ϕi (xj) = δij .

uh

uh =N∑

i=1

aiϕi

ai = uh (xi) .

uh

ϕi Φi

[xi, xi+1][0, 1]

[0, 1] Φi

Page 96: Vorlesung Modellierung und Simulation I

1

1

1

x i x i+1x i− 1

A B

Ii = [xi, xi+1] ξ ∈ [0, 1]

xIi : [0, 1] −→ Ii,

ξ $−→ xi + hiξ;

ξIi : Ii −→ [0, 1] ,

x $−→ (x− xi)

hi

[0, 1] [xi, xi+1]

uh (ξ) = α1 + α2ξ.

ui = uh (0) = α1 ui+1 = uh (1) = α1 + α2 ξ ∈ [0, 1]

uh (ξ) = α1 + α2ξ = ui + (ui+1 − ui) ξ

= (1− ξ)ui + ξui+1 =: uiΦ1 (ξ) + ui+1Φ2 (ξ) .

∀ξ ∈ [0, 1] : Φ1 (ξ) + Φ2 (ξ) = 1.

ϕi (x) =

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ2(ξIi−1 (x)

), x ∈ Ii−1

Φ1 (ξIi (x)) , x ∈ Ii

0, .

Page 97: Vorlesung Modellierung und Simulation I

a (ϕi,ϕj) A

a (ϕi,ϕj) =N∑

k=1

ˆ

Ik

∇ϕi(x)∇ϕj(x) + ϕi(x)ϕj(x) dx.

ϕi,ϕj Φn Φm

n,m ∈ 1, 2x ξ

Ik [0, 1]

(AIk)nm =

ˆ

Ik

∇xΦn (ξIk (x))∇xΦm (ξIk (x)) + Φn (ξIk (x))Φm (ξIk (x)) dx

= hk

0

∇ξΦn (ξ) ξ′Ik (xIk (ξ))∇ξΦm (ξ) ξ′Ik (xIk (ξ)) + Φn (ξ)Φm (ξ) dξ

= hk

0

1

h2k∇Φn∇Φm + ΦnΦmdξ.

Page 98: Vorlesung Modellierung und Simulation I

(AIk)mn Ikm n AIk

(AIk)11 =

0

1

hk∇Φ1∇Φ1 + Φ1Φ1 · hkdξ

=

0

1

hk+ hk(1− ξ)2dξ =

1

hk+

1

3hk

(AIk)12 =

0

1

hk∇Φ1∇Φ2 + Φ1Φ2 · hkdξ

=

0

− 1

hk+ ξ(1− ξ) · hkdξ

= − 1

hk+

1

6hk

(AIk)21 = − 1

hk+

1

6hk

(AIk)22 =1

hk+

1

3hk

⇒ AIk =1

hk

⎢⎢⎣1 −1

−1 1

⎥⎥⎦+ hk

⎢⎢⎣1/3 1/6

1/6 1/3

⎥⎥⎦ .

uh (ξ)

uh (ξ) = α1 + α2ξ + α3ξ2 I = [0, 1] .

ui ui+1

ui+ 12= uh

(xi + xi+1

2

).

ui = uh (0) = α1,

ui+1 = uh (1) = α1 + α2 + α3,

ui+ 12

= uh

(1

2

)= α1 +

1

2α2 +

1

4α3.

Page 99: Vorlesung Modellierung und Simulation I

αi, i = 1, . . . , 3

uh (ξ) = uiΦ1 (ξ) + ui+1Φ2 (ξ) + ui+ 12Φ3 (ξ)

Φi (ξ) = 2

(ξ − 1

2

)(ξ − 1)

Φ2 (ξ) = 2ξ

(ξ − 1

2

)

Φ3 (ξ) = 4ξ (1− ξ )

1

1

Φ3(ξ)

Φ2(ξ)Φ1(ξ)

AIk 3× 3

∇Φi (ξ)

R2

R1

Page 100: Vorlesung Modellierung und Simulation I

y

x

1

1

x = x1 + (x2 − x1) ξ + (x3 − x1) η,

y = y1 + (y2 − y1) ξ + (y3 − y1) η

⎜⎜⎝x

y

⎟⎟⎠ =

⎜⎜⎝x1

y1

⎟⎟⎠+

⎜⎜⎝x2 − x1 x3 − x1

y2 − y1 y3 − y1

⎟⎟⎠

⎜⎜⎝ξ

η

⎟⎟⎠ ,

(xi, yi) i

⎜⎜⎝ξ

η

⎟⎟⎠ =

⎜⎜⎝x2 − x1 x3 − x1

y2 − y1 y3 − y1

⎟⎟⎠

−1

︸ ︷︷ ︸A−1

⎜⎜⎝x− x1

y − y1

⎟⎟⎠

=1

A

⎜⎜⎝y3 − y1 x1 − x3

y1 − y2 x2 − x1

⎟⎟⎠

⎜⎜⎝x− x1

y − y1

⎟⎟⎠

A = (x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)

ux = uξξx + uηηx,

uy = uξξy + uηηy

Page 101: Vorlesung Modellierung und Simulation I

ξx =y3 − y1

A,

ηx =y1 − y2

A,

ξy =x1 − x2

A,

ηy =x2 − x1

A.

A

dxdy = Adξdη.

∇Φi, i = 1, 2, 3 ξx, ξy, ηx, ηy AIk

Φi

uh (ξ, η) = α1 + α2ξ + α3η,

uj := uh(Pj), j = 1, 2, 3.

Pj

u1 = uh(0, 0) = α1,

u2 = uh(1, 0) = α1 + α2,

u3 = uh(0, 1) = α1 + α3.

uh (ξ, η) = u1 + (u2 − u1) ξ + (u3 − u1) η = (1− ξ − η)u1 + ξu2 + ηu3.

Φ1 = 1− ξ − η, Φ2 = ξ, Φ3 = η

uh (ξ, η) = u1Φ1 + u2Φ2 + u3Φ3

Φi(Pj)

= δij i, j = 1, 2, 3,3∑

i=1

Φi (ξ, η) = 1 ξ, η ∈ T .

Page 102: Vorlesung Modellierung und Simulation I

Φi

uh

uh (ξ, η) = α1 + α2ξ + α3η + α4ξ2 + α5ξη + α6η

2.

Φ1 = (1− ξ − η)(1− 2ξ + 2η)

Φ2 = ξ(2ξ − 1)

Φ3 = η(2η − 1)

Φ4 = 4ξ(1− ξ − η)

Φ5 = 4ξη

Φ6 = 4η(1− ξ − η)

R3

uh (ξ, η, ζ) = α1 + α2ξ + α3η + α4ζ.

α1, . . . ,α4

a a (u, v) =´Ω

∇u∇vdx

∥u∥a := (a (u, u))12 .

∥u− uh∥a =vh∈Vh

∥u− vh∥a .

Ω ⊂ Rd, d ≤ 3 u ∈ H2 (Ω)uh ∈ Vh

a (uh, vh) = ⟨f, vh⟩ ∀vh ∈ Vh ⊂ H10 (Ω)

∥u− uh∥a ≤ c · h · ∥f∥L2(Ω) , f ∈ L2 (Ω) .

f ∈ L2 (Ω)

∥u∥H2(Ω) ≤ c ∥f∥L2(Ω) ,

H2

Page 103: Vorlesung Modellierung und Simulation I

L2

Ω ⊂ Rd, d ≤ 3 u ∈ H2 (Ω) H2

∥u− uh∥L2(Ω) ≤ c · h ∥u− uh∥a ,

∥u− uh∥L2(Ω) ≤ c · h2 ∥f∥L2(Ω) .

Page 104: Vorlesung Modellierung und Simulation I
Page 105: Vorlesung Modellierung und Simulation I

Ωh

ˆ

B

∂u

∂tdx =

ˆ

B

− F dx =

ˆ

∂B

F · n ds

Ωh

Ω Bi

uh

KFVh uFV

h = fFVh .

Kuh = b,

uh

uh = K−1b,

K

A