54
VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Embed Size (px)

Citation preview

Page 1: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

VITURBO: A Reconfigurable Architecture for Future Ubiquitous

Wireless Networks

Mani Vaya

August 7, 2002

Rice University

Page 2: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Overview

• Motivation• Communication Systems and Standards• Channel Encoding and Decoding Techniques• VITURBO• Design Tools • Results• Conclusions & Future Work

Page 3: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Ubiquitous Networks

• Anytime, Anywhere Networks

• Ubiquitous = Outdoor Cellular Networks + High Speed Indoor Wireless LANs

• Seamless transfer between different environments

• One receiver for all environments

Page 4: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Ubiquitous Networks

Cellular Systems High Speed Local Area Networks

Page 5: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Motivation

• Motivation: Instead of multiple architectures for multiple standards one single receiver architecture for multiple standards

• Means: Exploitation of commonalities between channel decoding algorithms for multiple standards, and their architectural realizations

• End Result : Reduced area, reduced cost reconfigurable architectures

Page 6: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Related Work

• Lucent: Unified Turbo/Viterbi Decoder– Uses log-MAP for Turbo decoding– 4 ACS units in total – Limited to 3G (2 Mbps Turbo, 384 Kbps Viterbi)

• Rice: Reconfigurable Viterbi Decoder– Uses hard metrics (practical systems use soft metrics)– Data Rates up to 26 Mbps– Unable to turn down units not in use– Only does Viterbi decoding

Page 7: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Our Contribution

• Design and Implementation of reconfigurable channel decoder for 802.11a and 3G systems

– Achieves data rates for both systems

– SOVA based Turbo decoding, and HDVA based Viterbi decoding

– Extremely flexible and is capable of decoding constraint length 3-9 convolutional codes+ Turbo codes

– Power saving mechanisms employed in the system

Page 8: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Next

• Ubiquitous Wireless Networks• Communication Systems and Standards• Channel Encoding and Decoding Techniques• VITURBO• Design Tools • Results• Conclusions & Future Work

Page 9: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

CDMA System

S o u rc eE n c o d er

C h an n elE n c o d er

C D M AS p read o r

T R AN S M I T T E R

S o u rc eD ec o d er

C h an n elD ec o d er

M u ltiu s erD etec to r

C h ip M at ch edF ilt er

C h an n elE s tim ato r

R E C E I VE R

I n p u t

O u tp u t

Channel

Page 10: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

OFDM System

C h an n elE n co d er

S /PIF F T

M o d u lat o rP /S C P

T R AN S M I T T E R

P /S E q u alizerF F T

D em o d u lat o rS /P C /P

C h an n elD eco d er

C h an n elE s tim ato r

R E C E I VE R

Channel

Page 11: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Next

• Motivation• Communication Systems and Standards• Channel Encoding and Decoding Techniques• VITURBO• Design Tools • Results• Conclusions & Future Work

Page 12: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Channel Encoding in Different Standards

Standard Maximum Data Rate

Code Type Code

Rate

Constraint length

WLAN 54 Mbps Convolutional 1/2 7

CDMA2000 2 Mbps Convolutional 1/2,1/3 9

CDMA2000 2 Mbps Turbo 1/3 4

3GPP 2 Mbps Convolutional 1/2,1/3 9

3GPP 2 Mbps Turbo 1/3 4

Page 13: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Simple Convolutional Coder (SCC)

D DU

y00

y01

: XOR

D : Shift Register

U : Input Data

Y00,Y0

1: Output Data

Rate: Number of Inputs/Number of Outputs = 1/2

Constraint Length: Number of Shift Registers +1= 3

Generator Polynomials: g0=[1 1 1], g1= [1 0 1]

Page 14: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Viterbi Algorithm

•Decoding complexity increases exponentially with constraint length

•Finds the most likely sequence of state transitions througha finite state trellis

Page 15: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Viterbi Decoder

Viter b iBM U

Viter b iAC S

S M U

Viter b i C O N T R O L

Q u an tizedC o d ed D ata D ec o d ed D ata ( + /- 1 )

BMU: Branch Metric Unit

ACS: Add Compare Select

SMU: Survivor Management Unit

Page 16: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Turbo Encoder

R SC 1

R SC 2

I

U

X s

X 1 p

X 2 p

U: Input data

RSC: Constituent Encoders

I : Interleaver

X1p, X2p: Output Data(Parity)

Xs: Output Data(Systematic)

Page 17: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Recursive Systematic Convolutional(RSC) Encoder

U

X p

D D D

X s

Recursive: Intermediate Data is fed back to the encoder

Systematic: Output Xs is same as input U

Page 18: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Turbo Decoding

• Reliability of decisions is computed and iterated between two decoders, in order to get a reliable estimate of the data

• Two competing algorithms: Soft Output Viterbi Algorithm(SOVA) & Maximum a posteriori Probability Algorithm(MAP)

• MAP has superior performance compared to SOVA, but SOVA is very similar to VA, and hence the choice for VITURBO

Page 19: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

SOVA based Turbo Decoder

S I S O(SO VA /M A P )

I n ter leav erS I S O

(SO VA /M A P )

I n ter leav er

D e- I n ter leav erL e2 1

L e1 2

Y1 p

Ys

Y2 p

T u r b oBM U

T u r b oAC S

S o f tS M U

T u r b o C O N T R O L

D ec o d ed d a ta ( + /- 1 )

S o f t I n f o rm atio nto n ex td ec o d er

S o f t I n f o rm atio nf r o m p r ev io u sd ec o d er

Q u an tizedE n c o d ed D ata

1 b it

q b it

D ec o d ed d a ta ( + /- 1 )

S O VA

Y1p,Y2p: Received Parity data

Ys: Received Systematic Data

Le(12/21): Soft Information

Page 20: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Next

• Motivation • Communication Systems and Standards• Channel Encoding and Decoding Techniques• VITURBO• Design Tools • Results• Future Work

Page 21: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

VITURBO: Features

• Completely parallel architecture for constraint length 9 (2K-

2 ACS units ), for high speed decoding

• Smaller constraint length decoding uses parts of larger circuit

• Flexible for a wide range of constraint lengths, generator polynomials and rates

• Power saving mechanisms help in shutting down units not in use for a particular decoding type

Page 22: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

VITURBO: Complete Architecture

B M U

C o d ew o rdLU T

A C S sP athm etricM ux B ank

Thresho lder

P ath D if fe re nc eM e m o ry

D ec is io n B itM em o ry 1

D ec is io n B itM em o ry 2

S urvivo rM anager

Inte rle a v e r

S o ft D e c is io nM e m o ry

O rde rInve r s io n

M e m o ry 1

O rde rInve r s io n

M e m o ry 2

D e c is io n M u xB a n k

P a th D iffe re n c eM u x B a n k

Inve r s io nM uxB M U

M U X es

D einterleaver

M u x

Interleaver

M u xO u tp u t

Inpu

ts

Page 23: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Reconfigurable BMU

B M U

C o d ew o rdLU T

A C S sP a th m e tr icM u x B a n k

Thresho lder

P ath D if fe re nc eM e m o ry

D ec is io n B itM em o ry 1

D ec is io n B itM em o ry 2

S urvivo rM anager

Inte rle a v e r

S o ft D e c is io nM e m o ry

O rde rInve r s io n

M e m o ry 1

O rde rInve r s io n

M e m o ry 2

D e c is io n M uxB ank

P a th D iffe re n c eM u x B a n k

Inve r s io nM uxB M U

M U X es

D einterleaver

M u x

Interleaver

M u xO u tp u t

Inpu

ts

Page 24: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

BMU & Codeword Look-Up Table

• Possible Codewords for rate k/n code : 2n

• Corresponding codeword for each butterfly: Defined by generator polynomial

• Contemporary Solutions: Use of inbuilt encoders for each code configuration

• Our Solution: Programmable Codeword Look-Up Table for enhanced flexibility and low power. Programmable for any codeword for K=3-9

Page 25: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Reconfigurable BMU

V iterb iB M

C o m p u te

T urb oB M

C o m p u te

MU

X

Inp ut D ata

Inp ut D ata

D ec o d er T yp e

B MM u x(0 )

B MM u x(1 )

B MM u x(1 2 7 )

8X 8

K

R

C o de w o r d L o o k-U pTabl e

Inde

xC

orre

spon

ding

Cod

ewor

d

To C

orrespondingAC

S units

8

8

8

8

8

KR

D ec o d er T yp eN ew C o d ew o rd

Page 26: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Reconfigurable ACS Unit & ACS Routing

B M U

C o d ew o rdLU T

A C S sP athm etricM u x B a n k

Thresho lder

P ath D if fe re nc eM e m o ry

D ec is io n B itM em o ry 1

D ec is io n B itM em o ry 2

S urvivo rM anager

Inte rle a v e r

S o ft D e c is io nM e m o ry

O rde rInve r s io n

M e m o ry 1

O rde rInve r s io n

M e m o ry 2

D ec is io n M uxB ank

P a th D iffe re n c eM u x B a n k

Inve r s io nM uxB M U

M U X es

D einterleaver

M u x

Interleaver

M u xO u tp u t

Inpu

ts

Page 27: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Reconfigurable Add Compare Select Sub Unit

+

+

>S

EL

EC

T -

S u r v iv o r P M ( Vite r b i/T u r b o )

P M 0 '

BM 0 '

P M 1 '

BM 1 '

D ec is io n Bit ( Vite r b i/T u r b o )

P M D if f er en c e

P M 0

P M 1

( T u r b o )

PM0’,PM1’: Input Path Metrics

BM0’, BM1’: Input Branch Metrics

PM0, PM1: Competing Path Metrics

Decoder Type(Viterbi/Turbo)

Page 28: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

State Transitions and Butterflies

0 0

0 1

1 0

11

0 0

11

11

1 0

0 1

1 0

0 1

0 0

S ta g e s

Stat

es 1 0 0

1 0 1

11 0

11 1

0 /1

1 /0

1 /0

1 /1

0 /0

1 /1

0 /0

0 /1

0 0 0

0 0 1

0 1 0

0 11

0 /0

1 /1

1 /1

1 /0

0 /1

1 /0

0 /1

0 /0

K=3, SCC K=4, RSC

2 j

2 j+ 1

j

j+ 2 ^( K- 2 )

Jth butterfly for Constraint length K

Jth butterfly’s computations are done in Jth ACS unit

Page 29: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

ACS Path Metric Routing Problem

ACS(0)

To ACS(0)

To ACS(1)

ACS(0)

From ACS(0)

From ACS(1)

From ACS(0)

From ACS(1)

To ACS(0)

To ACS(2)

K=3 K=4 K=…..,9

Page 30: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

ACS Path Metric Routing Solution

Solution for All Ks:

ACS(0)

ACS(127)

Multiplexer Bank

(256 Muxes)

ACS(1)

Decoder Type

Constraint length

Page 31: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

A C S (j)

P o w erC o ntro l(j)

Mux(2*j)

K

Mux(2*j +

1)

P a th M e tr icM u ltip le x or

b a n k

Path M

etrics from otherA

CS units

B ra nc h M e tric sS urvivo r P ath M etric s(T urb o /V iterb i)

T o P a th M e tric D iffe re nc e M u ltip le xo r b a nk

To D ecisio n B itM u ltip lexo r bank

P a th M e tric s fro m O the r A C S u nits

PM0’,PM1’: Input Path Metrics

BM0’, BM1’: Input Branch Metrics

PM0, PM1: Competing Path Metrics

Jth ACS Unit and Mux Bank

Page 32: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

B MC o m p u te

B Mm ux(0 )

B Mm ux(3 )

B Mm u x

(1 2 7 )

P ow erCon trol (3 )

P o w e rC o n tro l (0 )

P ow erCon trol (1 2 7 )

A C S (0 )

A C S (3 )

A C S (1 2 7 )

P a thm etr icM u xB ank

T u rb o /V ite rb i C om pu ta tion

B Mm ux(4 )

P ow erCon trol (4 )

A C S (4 )

Viterb i C o m p u ta tio n

Pat

h M

etri

csP

ath

Met

rics

T hresho ld er

D ecis ion B it M u ltip lex or B ank

C O D E W O R D L O O K -U PT A B L E

P a thM etr ic D iffer en ceM u ltip lex or ba n k

T o P athD iffe rence M em o ry

T o D ec is io n B it M em o ry

BMU, ACS and MUX banks

Page 33: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Reconfigurable SMU

B M U

C o d ew o rdLU T

A C S sP a th m e tr icM u x B a n k

Thresho lder

P ath D if fe re nc eM e m o ry

D ec is io n B itM em o ry 1

D ec is io n B itM em o ry 2

S urvivo rM anager

Inte rle a v e r

S o ft D e c is io nM e m o ry

O rde rInve r s io n

M e m o ry 1

O rde rInve r s io n

M e m o ry 2

D e c is io n M uxB ank

P a th D iffe re n c eM u x B a n k

Inve r s io nM uxB M U

M U X es

D einterleaver

M u x

Interleaver

M u xO u tp u t

Inpu

ts

Page 34: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Flexible Hard Decision Traceback

Flexible Traceback

DecisionLUT

C

Decbit

P

K

Xt

Xt/Xv

Page 35: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Flexible Traceback for Viterbi and Turbo Decoding

• C: Current State, P: Previous State• decbit :decision bit• Xv and Xt: decoded data for Viterbi and Turbo decoding respectively• Decision-LUT is a Look-Up table for various possible decisions for

Turbo Decoding

If C >= 2K-2 then P= 2*C+ decbit - 2K-1 xv=1

else P = 2*C + decbitxv=0

end if xt = DecisionLUT(2*C+ decbit)

Page 36: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

SOVA Traceback Architecture

ML Path

Competing Paths(All colors except black)

Ik-U : Decoded data at time k-U

Lk-U : Soft Information at time k-U

D elay1

D elay2

D elay3

D elay4

M in im a

D elay1 2

R elev an c eBits ks,'

kk -U

11,' ks

Lk-U

T B1

T B2

T B3

T B1 2

T B0

Ik-U

U: Reliability depth(3*K)

Page 37: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Power Saving

• Architecture is completely parallel for constraint length 9 (128 ACS units)

• Smaller constraint length decoders use parts of the complete circuit

• In order to save power, units not being used are shut down

• Quiescent Power is constant for all the different configurations

Page 38: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Power Saving Mechanism for ACS units

>Inde x ( j )

2 ( K- 2 )

AC S ( j)

P o w er C o n tr o lled C lo c k

in p u ts

c lo c k

K: C o n s tr a in t len g thj: I n d ex o f th e AC S u n it

Outputs

ac s O N ( j)

Page 39: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Next

• Motivation • Communication Systems and Standards• Channel Encoding and Decoding Techniques• VITURBO• Design Tools• Results

• Conclusions & Future Work

Page 40: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Design Tools

• Xilinx’s Virtex-II 2000K gate FPGA used to implement the design

• Xilinx’s ISE development environment used for design, synthesis, and implementation

– Design described in VHDL

– Modelsim used for simulations

– Synplicity used for synthesis

– XPower used for power estimation

Page 41: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Next

• Motivation • Communication Systems and Standards• Channel Encoding and Decoding Techniques• Viterbi and Turbo Decoding Architectures• VITURBO• Design Tools• Results

• Conclusions & Future Work

Page 42: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Gate Requirements for Different Realizations

0

50000

100000

150000

200000

250000

300000

350000

T V7 V3-7 V3-7&T

V9 V3-9 V3-9&T

LogicMemory

V(K1-K2) : Viterbi(Constraint length)T : Turbo

Page 43: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Area Savings

• Conventional architecture:– Separate architectures for K=7,9, and Turbo– Total Logic Area requirements= 267,147

• Reconfigurable VITURBO– Same architecture for K=7,9, and Turbo– Total Logic area requirements = 190,288

Area Savings = 28.7 %

Page 44: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Maximum Clocking Frequency

V(K1-K2) : Viterbi(Constraint length)T : Turbo

5456

58

60

62

64

6668

70

72

T V7 V3-7 V3-7&T

V9 V3-9 V3-9&T

MaximumFrequency(MHz)

Page 45: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Power Analysis

Decoder Clock Frequency

Data Rate

Power Consumption (sans Quiescent

power)

Energy/Bit

(Joules/bit)

Quiescent Power

K=7

(WLAN)

54 Mhz 54 Mbps 501.3 mW 9.28 nJ 225 mW

K=9

(3GPP)

2 Mhz 2 Mbps 59.54 mW 29.77 nJ 225 mW

K=4 Turbo

(3GPP)

34.3 Mhz 2 Mbps 104.76 mW 52.38 nJ 225 mW

Page 46: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Next

• Motivation • Communication Systems and Standards• Channel Encoding and Decoding Techniques• VITURBO• Design Tools • Results• Conclusions & Future Work

Page 47: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Conclusions

• VITURBO achieves data rates stipulated by 802.11a and 3G systems

• Reconfigurable architectures are a feasible proposition for future communication systems, as they – Provide flexibility

– Save Area

Page 48: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Possible Future Work

• Use of log-MAP for Turbo Decoding

• Use of Termination Algorithms for Turbo Decoding for lower power consumption

• Use of remaining ACS units for high data rate Turbo decoders

• Architecture designs with smaller number of ACS units

• Exploitation of similarities in other baseband processing units for CDMA and OFDM systems

Page 49: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Backups

Page 50: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Area-Time-Decoder Tradeoffs

D ecode r T ype G ates(Lo gic) Ga te s (Me m o ry)1 2 8 b it fra m e M ax. F requency

Vite rb i (7 ) 6 2 ,9 8 7 6 5 5 3 6 7 1 .3 MHz

Vite rb i(9 ) 1 6 6 ,3 4 8 2 6 2 ,1 4 6 6 8 .4 MHz

T u rb o 3 7 ,8 1 2 6 5 5 3 6 6 7 .7 MHz

Vite rb i(3 -5 ) 3 3 ,4 8 7 1 6 ,3 8 4 6 4 .6 MHz

Vite rb i(3 -5 )+ T u rb o 4 2 ,3 8 5 8 1 ,8 1 2 6 3 .3 MHz

Vite rb i(3 -7 ) 6 7 ,0 4 2 6 5 ,5 3 6 6 2 .8 MHz

Vite rb i(3 -7 )+ T u rb o 7 6 ,0 3 7 1 3 1 ,0 7 2 6 2 .1 MHz

Vite rb i(3 -9 ) 1 8 1 ,5 6 0 2 6 2 ,1 4 6 6 1 .9 MHz

VITURBO : V ite rb i(3 -9 )+T u rb o 1 9 0 ,2 8 8 3 2 7 ,6 8 0 6 0 .5 MHz

Page 51: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

SOVA Algorithm- Branch Metric

kkckskckk pyLuyLuuLss ....).(),'( 2

21

21

21

:Branch Metric for state transition from s’ to s),'( ss

)( kuL :Extrinsic Information from previous decoder

cL :Channel Value=0

4NEc

),( kkk pux :Output of RSC1 at time k, for input uk

Page 52: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

SOVA Traceback

Page 53: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

SOVA Traceback Blocks

Har d D ec id in gS M U

P ath C o m p ar is o n Un it

D elay

D elay

Select Up d ate Un it

s k -D

's k -D Lk-D -U' s ,k

d ec s ,k

L ik elih o o d

re lev an c e b its

S y m b o l

Page 54: VITURBO: A Reconfigurable Architecture for Future Ubiquitous Wireless Networks Mani Vaya August 7, 2002 Rice University

Two Step SOVA -SM

V AS O V A

M L path C o m p e t i n gP a t h A l l P a t h s

c o n ve r g e

k-D -Uk-D

k

P o s s i b l eS u r vi vo r s

D: Decoding Depth

U: reliability Depth

k: Index of decoded bit