Vinayak Bindu Basic Pneumatic Syste

Embed Size (px)

Citation preview

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    1/95

    Introduction toPneumatics

    By- Prof. S.B. CHIKALTHANKAR

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    2/95

    2

    Air Production System Air Consumption System

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    3/95

    3

    What can Pneumatics do? Operation of system valves for air, water or chemicals

    Operation of heavy or hot doors

    Unloading of hoppers in building, steel making, mining and chemical industries Ramming and tamping in concrete and asphalt laying

    Lifting and moving in slab molding machines

    Crop spraying and operation of other tractor equipment

    Spray painting

    Holding and moving in wood working and furniture making

    Holding in jigs and fixtures in assembly machinery and machine tools

    Holding for gluing, heat sealing or welding plastics Holding for brazing or welding

    Forming operations of bending, drawing and flattening

    Spot welding machines

    Riveting

    Operation of guillotine blades

    Bottling and filling machines

    Wood working machinery drives and feeds Test rigs

    Machine tool, work or tool feeding

    Component and material conveyor transfer

    Pneumatic robots

    Auto gauging

    Air separation and vacuum lifting of thin sheets

    Dental drills

    and so much more new applications are developed daily

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    4/95

    4

    Properties of compressed air Availability

    Storage

    Simplicity of design and control

    Choice of movement

    Economy

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    5/95

    5

    Properties of compressed air

    Reliability

    Resistance to Environment

    Environmentally clean.

    Safety

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    6/95

    6

    What is Air?

    Nitrogen

    Oxygen

    Carbon Dioxide

    Argon

    Nitrous Oxide

    Water Vapor

    In a typical cubic foot of air ---

    there are over 3,000,000

    particles of dust, dirt, pollen,and other contaminants.

    Industrial air may be 3 times (or more)

    more polluted.

    The image cannot be displayed. Yourcomputer may not have enough memoryto open the image, or the image may have

    been corrupted. Restart your computer,and then open the file again. If the red xstill appears, you may have to delete theimage and then insert it again.

    The weight of a

    one square inch

    column of air(from sea level

    to the outer atmosphere,

    @ 680F, & 36% RH)

    is 14.69 pounds.

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    7/95

    7

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m3

    n *(Standard)4.98 6.99 9.86 13.76 18.99 25.94 35.12 47.19 63.03

    g/m3(Atmospheric) 4.98 6.86 9.51 13.04 17.69 23.76 31.64 41.83 54.11

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m3

    n (Standard) 4.98 3.36 2.28 1.52 1.00 0.64 0.4 0.25 0.15

    g/m3 (Atmospheric) 4.98 3.42 2.37 1.61 1.08 0.7 0.45 0.29 0.18

    Temperature F 32 40 60 80 100 120 140 160 180

    g/ft3

    *(Standard) .137 .188 .4 .78 1.48 2.65 4.53 7.44 11.81

    g/ft3(Atmospheric) .137 .185 .375 .71 1.29 2.22 3.67 5.82 8.94

    Temperature F 32 30 20 10 0 -10 -20 -30 40

    g/ft3

    (Standard) .137 .126 .083 .053 .033 .020 .012 .007 .004

    g/ft3 (Atmospheric) .137 .127 .085 .056 .036 .023 .014 .009 .005

    HUMIDITY & DEWPOINT

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    8/95

    8

    Pressure and Flow

    Sonic Flow

    Q n (54.44 l / min)

    S = 1 2

    0 20 40 80 100 12060

    10

    9

    8

    7

    6

    5

    4

    3

    2

    1

    (dm /min)3

    nQ

    p (bar)

    Example

    P1 = 6bar

    ( P = 1bar

    P2 = 5bar

    Q = 54 l/min

    (1 Bar = 14.5 psi)

    P1

    P2

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    9/95

    9

    Air Treatment

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    10/95

    10

    Compressing Air

    One cubic foot of air

    7.8 cubic feet of free air

    One cubic foot of

    100 psig

    compressed air

    (at Standard conditions)

    with 7.8 times the

    moisture anddirt

    compressor

    CFM vs SCFM

    psig + 1 atm

    1 atm

    Compression

    ratio=

    Compressed air is always related at Standard conditions.

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    11/95

    11

    Relative HumidityCompressor

    1 ft3

    @100 psig1950 F

    100% RH

    57.1

    grams of

    H20

    1 ft3 @100 psig

    770 F

    100% RH

    .73

    grams of H20

    1 ft3 @100 psig

    -200 F

    100% RH

    .01

    grams of

    H20

    1 ft3 @100 psig

    770 F

    0.15% RH

    .01

    grams of

    H20

    56.37

    grams of

    H20

    .72

    grams of

    H20

    Adsorbtion DryerCompressor

    Exit

    Reservoir

    TankAirline

    Drop

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    12/95

    12

    Air Mains

    Ring

    Main

    Dead-End

    Main

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    13/95

    13

    Pressure

    It should be noted that the SIunit of pressure is the Pascal (Pa)

    1 Pa = 1 N/m2(Newton per square meter)

    This unit is extremely small and so, to avoid huge numbers in practice, an

    agreement has been made to use the bar as a unit of 100,000 Pa. 100,000 Pa = 100 kPa = 1 bar

    Atmospheric Pressure

    =14.696 psi =1.01325 bar =1.03323 kgf/cm2.

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    14/95

    14

    Isothermic change (Boyles Law)with constant temperature, the pressure of a given mass of gas is inversely

    proportional to its volume

    P1 x V1 = P2 x V2

    P2 = P1 x V1

    V2

    V2 = P1 x V1P2

    Example P2 = ?

    P1 = Pa (1.013bar)

    V1 = 1m V2 = .5m

    P2 = 1.013 x 1

    .5 = 2.026 bar

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    15/95

    15

    Isobaric change (Charles Law)at constant pressure, a given mass of gas increases in volume by 1 of its

    volume for every degree C in temperature rise. 27

    3

    V1 = T1 V2 T2

    V2 = V1 x T2T1

    T2 = T1 x V2V1

    Example V2 = ?

    V1 = 2m

    T1 = 273K (0C) T2 = 303K (30C)

    V2 = 2 x 303

    273 = 2.219m

    10

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    16/95

    16

    Isochoric change Law of Gay Lussacat constant volume, the pressure is proportional to the temperature

    P1 x P2

    T1 x T2

    P2 = P1 x T2T1

    T2 = T1 x P2

    P1

    Example P2 = ?

    P1 = 4bar

    T1 = 273K (OC) T2 = 298K (25C)

    P2 = 4 x 298

    273 = 4.366bar

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    17/95

    17

    P1 = ________bar

    T1 = _______C ______K

    T2 = _______C ______K

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    18/95

    18

    400

    2000

    20000

    250

    500

    1000

    1500

    2500

    4000

    5000

    10000

    15000

    25000

    40000

    50000

    10000025 30

    32 40 50 63 80 100 125 140 160 200 250 300

    10 7 5 (bar)p :

    (mm)

    F(N)

    1250

    12500

    5

    4

    2.5

    10

    15

    202530

    40

    50

    100

    500

    1000

    250

    2.5 4 6 8 10 12 20 16 (mm)

    F(N)

    125

    150

    200

    400

    300

    12.5

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    19/95

    19

    Force formula transposed

    D = 4 x FE

    T x P

    Example FE = 1600N

    P = 6 bar. D = 4 x 1600

    3.14 x 600,000

    D = 6400

    1884000

    D = .0583m

    D = 58.3mm A 63mm bore cylinder would be selected.

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    20/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    21/95

    21

    C y l.D ia M a ss (k g ) o 60 45 30 m

    0.01 0.2

    0.01 0.2

    0.01 0.2

    0.01 0.2

    25 100 4 80

    50 2.2 40

    25 (87.2) (96.7) 71.5 84.9 50.9 67.4 1 20

    12.5 51.8 43.6 48.3 35.7 342.5 25.4 33.7 0.5 10

    32 180 - - - - - 4.4 -

    90 - - - - 2.2 43.9

    45 - (95.6) - 78.4 (93.1) 55.8 73.9 1.1 22

    22.5 54.9 47.8 53 39.2 46.6 27.9 37 0.55 11

    40 250 3.9 78

    125 (99.2) 2 39

    65 72.4 (86) 51.6 68.3 1 20.3

    35 54.6 47.6 52.8 39 46.3 27.8 36.8 0.5 10.9

    50 400 -- - - - 4 79.9

    200 - _ 2 40100 (87) (96.5) 71.3 8 4.8 5 0.8 6 7.3 1 20

    50 50 43.5 4 8.3 3 5.7 4 2.4 2 5.4 3 3.6 0.5 0

    63 650 4.1 81.8

    300 1.9 37.8

    150 (94.4) 82.3 (91.2) 67.4 80.1 48 63.6 0.9 18.9

    75 47.2 41.1 45.6 33.7 40.1 24 31.8 0.5 9.4

    80 1000 3.9 78.1500 2 39

    250 (97.6) 85 (94.3) 69.7 82.8 49.6 65.7 1 19.5

    125 48.8 42.5 47.1 34.8 41.4 24.8 32.8 0.5 9.8

    100 1 600 4 79.9

    800 2 40

    400 (87) (96.5) 71.4 8 4.4 5 0.8 6 7.3 1 20

    200 50 43.5 48.3 35.7 42.2 25.4 33.6 0.5 10

    Tab le 6 .16 Load Ra tios for 5 bar working pressure an d fr iction coefficients of 0.01 and 0.2

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    22/95

    22

    Speed control

    The speed of a cylinder is define by the

    extra force behind the piston, above the

    force opposed by the load

    The lower the load ratio, the better the

    speed control.

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    23/95

    23

    Angle of Movement1. If we totally neglect friction, which cylinder diameter is needed to

    horizontally push a load with an 825 kg mass with a pressure of6 bar;speed is not important.

    2. Which cylinder diameter is necessary to lift the same mass with the

    same pressure of6 bar vertically if the load ratio can not exceed 50%.

    3. Same conditions as in #2 except from vertical to an angle of30.

    Assume a friction coefficient of 0.2.

    4. What is the force required when the angle is increased to 45?

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    24/95

    24

    b c d

    x

    h

    y

    E

    E

    R a

    = = = / 2 v a 2

    = (s in E + cosE )

    a db c

    Y axes, (vertical lifting force).. sinE x M

    X axes, (horizontal lifting force).cosE x Q x M

    Total force = Y + X

    Q = friction coefficients

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    25/95

    25

    Example

    40E

    F = ________ (N)150kg

    Q = .01

    Force Y = sin E x M = .642 x 150 = 96.3 N

    Force X = cos E x Q x M = .766 x .01 x 150 = 1.149 N

    Total Force = Y + X = 96.3 N + 1.149 N = 97.449 N

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    26/95

    26

    _____E

    F = ________ (N)

    ______kg

    Q = __

    Force Y = sin E x M =

    Force X = cos E x Q x M =

    Total Force = Y + X =

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    27/95

    27

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m3

    n *(Standard)4.98 6.99 9.86 13.76 18.99 25.94 35.12 47.19 63.03

    g/m

    3(Atmospheric)

    4.98 6.86 9.51 13.04 17.69 23.76 31.64 41.83 54.11

    Temperature C 0 5 10 15 20 25 30 35 40

    g/m3

    n (Standard)4.98 3.36 2.28 1.52 1.00 0.64 0.4 0.25 0.15

    g/m3 (Atmospheric) 4.98 3.42 2.37 1.61 1.08 0.7 0.45 0.29 0.18

    13

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    28/95

    28

    Relative humidity (r.h.) = actual water content X 100%saturated quantity (dew point)

    Example 1

    T = 25C

    r.h = 65%

    V = 1m

    From table 3.7 air at 25C contains

    23.76 g/m

    23.76 g/m x .65 r.h = 15.44 g/m

    13

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    29/95

    29

    Relative Humidity Example 2

    V = 10m

    T1= 15C

    T2= 25C

    P1 = 1.013bar

    P2 = 6bar

    r.h = 65%

    ? H0will condense out

    From 3.17, 15C = 13.04 g/m

    13.04 g/m x 10m = 130.4 g

    130.4 g x .65 r.h = 84.9 g

    V2 = 1.013 x 10 = 1.44 m6 + 1.013

    From 3.17, 25C = 23.76 g/m

    23.76 g/m x 1.44 m = 34.2 g

    84.9 - 34.2 = 50.6 g

    50.6 g of water will condense out

    13

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    30/95

    30

    V = __________m

    T1= __________CT2= __________C

    P1 =__________bar

    P2 =__________barr.h =__________%

    ? __________H0

    will condense out

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    31/95

    31

    Formulae, for when more exact values are required

    Sonic flow = P1 + 1.013 > 1.896 x (P2 + 1,013)

    Pneumatic systems cannotoperate under sonic flow conditions

    Subsonic flow = P1 + 1.013 < 1.896 x (P2 + 1,013)

    The Volume flow Q for subsonic flow equals:

    Q (l/min) = 22.2 x S (P2 + 1.013) x ( P

    16

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    32/95

    32

    Sonic / Subsonic flow

    Example

    P1 = 7bar

    P2 = 6.3bar

    S = 12mm

    l/min

    P1 + 1.013 ? 1.896 x (P2 + 1.013)

    7 + 1.013 ? 1.896 x (6.3 + 1.013)

    8.013 ? 1.896 x 7.313

    8.013 < 13.86 subsonic flow. Q = 22.2 x S x (P2 + 1.013) x (P

    Q = 22.2 x 12 x (6.3 + 1.013) x .7

    Q = 22.2 x 12 x 7.313 x .7

    Q = 22.2 x 12 x 5.119

    Q = 22.2 x 12 x 2.26

    Q = 602 l/min

    16,17

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    33/95

    33

    P1 = _________bar

    P2 = _________bar

    S = _________mm

    Q = ____?_____l/min

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    34/95

    34

    Receiver sizing

    Example

    V = capacity of receiver

    Q = compressor output l/min

    Pa = atmospheric pressure P1 = compressor output

    pressure

    V = Q x Pa

    P1 + Pa

    If

    Q = 5000

    P1 = 9 bar

    Pa = 1.013

    V = 5000 x 1.013

    9 + 1.013

    V = 506510.013

    V = 505.84 liters

    22

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    35/95

    35 29

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    36/95

    36 29

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    37/95

    37

    The Water remains

    in the Pipe

    The Water runs into the

    Auto Drain

    a b

    30

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    38/95

    38

    Sizing compressor air mains

    Example

    Q = 16800 l/min

    P1 = 9 bar (900kPa)

    (P = .3 bar (30kPa)

    L = 125 m pipe length

    (P = kPa/m

    L l/min x .00001667 = m/s

    30 = .24 kPa/m125

    16800 x .00001667 = 0.28 m/s

    chart lines on Nomogram

    31

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    39/95

    39

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Line

    ressure

    (bar)

    3.0

    1.0

    2.0

    1.5

    0.5

    0.4

    0.3

    0.2

    0.15

    0.6

    0.7

    0.80.9

    0.25

    1.75

    2.5

    2.25

    p

    k

    a /

    = bar /100

    ipe Length

    2

    1

    0.5

    0.1

    3

    1.5

    0.2

    0.3

    0.4

    0.01

    0.05

    0.04

    0.03

    0.02

    0.015

    0.15

    0.025

    100

    90

    80

    70

    60

    50

    40

    30

    20

    15

    25

    35

    Inner

    ipe

    ia. ,

    eference

    Line

    4"

    3"

    2.5"

    2"

    1.5"

    1.25"

    1"

    3/4"

    1/2"

    3/8"

    Q ( /s3n

    33

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    40/95

    40

    Type f Fitti g N i l pipe ize ( )

    15 20 25 30 40 50 65 80 100 125

    Elbow 0.3 0.4 0.5 0.7 0.8 1.1 1.4 1.8 2.4 3.2

    90* Bend (long) 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.2 1.5

    90*Elbow 1.0 1.2 1.6 1.8 2.2 2.6 3.0 3.9 5.4 7.1180* Bend 0.5 0.6 0.8 1.1 1.2 1.7 2.0 2.6 3.7 4.1

    Globe Valve 0.8 1.1 1.4 2.0 2.4 3.4 4.0 5.2 7.3 9.4

    Gate Valve 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.6 0.9 1.2

    Standard Tee 0.1 0.2 0.2 0.4 0.4 0.5 0.7 0.9 1.2 1.5

    Side Tee 0.5 0.7 0.9 1.4 1.6 2.1 2.7 3.7 4.1 6.4

    Table 4.20Equivalent Pipe Lengths for the main fittings

    34

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    41/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    42/95

    42

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Line

    ressure

    (bar)

    3.0

    1.0

    2.0

    1.5

    0.5

    0.4

    0.3

    0.2

    0.15

    0.6

    0.7

    0.80.9

    0.25

    1.75

    2.5

    2.25

    p

    k

    a /

    = bar /100

    ipe Length

    2

    1

    0.5

    0.1

    3

    1.5

    0.2

    0.3

    0.4

    0.01

    0.05

    0.04

    0.03

    0.02

    0.015

    0.15

    0.025

    100

    90

    80

    70

    60

    50

    40

    30

    20

    15

    25

    35

    Inner

    ipe

    ia. ,

    eference

    Line

    4"

    3"

    2.5"

    2"

    1.5"

    1.25"

    1"

    3/4"

    1/2"

    3/8"

    Q ( /s3n

    33

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    43/95

    43

    Q = 20,000 l/min

    P1 = 10 bar (_________kPa)

    (P = .5 bar (_________kPa)L = 200 m pipe length

    (P = kPa/mL

    l/min x .00001667 = m/s

    Using the ring main example on page 29 size for the

    following requirements:

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    44/95

    44

    Auto

    Drain

    1

    2

    3

    4

    5

    6

    7

    Refrigerated

    Air Dryer

    Compressor

    Tank

    a

    a

    a

    a

    a

    b

    b

    b

    c

    d

    Micro Filter

    Sub-micro Filter

    Odor Removal Filter

    Adsorbtion Air

    Aftercooler

    d

    a

    b

    c

    Auto

    Drain

    39

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    45/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    46/95

    46

    400

    2000

    20000

    250

    500

    1000

    1500

    2500

    4000

    5000

    10000

    15000

    25000

    40000

    50000

    10000025 30

    32 40 50 63 80 100 125 140 160 200 250 300

    10 7 5 (bar)p :

    (

    )

    (

    )

    1250

    12500

    5

    4

    2.5

    10

    15

    202530

    40

    50

    100

    500

    1000

    250

    2.5 4 6 8 10 12 20 16 (

    )

    (

    )

    125

    150

    200

    400

    300

    12.5

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    47/95

    47

    Example

    M = 100kg P = 5bar

    = 32mm

    Q = 0.2

    F = T/4 x Dx P = 401.9 N

    From chart 6.16

    90KG = 43.9% Lo.

    To find Lo for 100kg

    43.9 x 100= 48.8 % Lo.

    90

    Calculate remaining force

    401.9 x 48.8 (.488) = 196N100

    assume a cylinder efficiency of 95%

    196 x 95 = 185.7 N

    100

    Newtons = kg m/s , therefor 185.7 N = 185.7 kg m/s

    divide mass into remaining force

    m/s = 185.7 kg m/s

    100kg

    = 1.857 m/s

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    48/95

    48

    M = _______kg

    P = _______bar

    = _______mm

    Q = 0.2

    F = T/4 x Dx P = 401.9 N

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    49/95

    49

    Air Flow and ConsumptionAir consumption of a cylinder is defined as:piston area x stroke length x number ofsingle strokes per minute x absolute pressure in bar.

    a

    b c

    Q = D (m) xTx (P + Pa) x stroke(m) x # strokes/min x 10004

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    50/95

    50

    Example.

    = 80

    stroke = 400mm

    s/min = 12 x 2

    P = 6bar.

    From table 6.19...80 at 6 bar = 3.479 (3.5)l/100mm stroke

    Qt = Q x stroke(mm) x # of extend + retract strokes

    100

    Qt = 3.5 x 400 x 24

    100 Qt = 3.5 x 4 x 24

    Qt = 336 l/min.

    W rking Press re in r

    Pist n di . 3 6

    0.124 0.155 0.1 6 0.217 0.24

    0.1 4 0.243 0.2 1 0.340 0.3

    3 0.31 0.3 0.477 0.557 0.6360.4 0.622 0.746 0. 70 0. 3

    0.777 0. 71 1.165 1.35 1.553

    63 1.235 1.542 1. 50 2.15 2.465

    1. 3 2.4 7 2. 3 3.47 3. 75

    3.111 3. 6 4.661 5.436 6.211

    Tab le 6 .19Theoret ical

    ir onsu

    pt ion of double a ct ing cyl inders fro

    20 to 100

    dia,

    in l i ters per 100

    stroke

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    51/95

    51

    Peak Flow

    For sizing the valve of an individual cylinder we need to

    calculate Pea flow. The peak flow depends on thecylinders highest possible speed. The peak flow of all

    simultaneously moving cylinders defines the flow to which

    the FRL has to be sized.

    To compensate foradiabatic change, the theoretical

    volume flow has to be multiplied by a factor of 1.4. This

    represents a fair average confirmed in a high number of

    practical tests.

    Q = 1.4 x D (m) xTx (P + Pa) x stroke(m) x # strokes/min x 10004

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    52/95

    52

    Wor ing ress re in ar

    iston ia. 3 4 5 6 7

    20 0.174 0.217 0.260 0.304 0.347

    25 0.272 0.340 0.408 0.476 0.543

    32 0.446 0.557 0.668 0.779 0.890

    40 0.697 0.870 1.044 1.218 1.391

    50 1.088 1.360 1.631 1.903 2.174

    63 1.729 2.159 2.590 3.021 3.451

    80 2.790 3.482 4.176 4.870 5.565

    100 4.355 5.440 6.525 7.611 8.696

    Tab le 6 .20 i r onsu p t ion o f doub le act ing cy l inders in l ite rs

    per 100 stroke corrected for losses by adiaba t ic chan ge

    Example.

    = 80

    stroke = 400mm

    s/min = 12 x 2

    P = 6bar

    From table 6.20... 80 at 6 bar = 4.87 (4.9)l/100mm stroke

    Qt= Q x stroke(mm) x # of extend + retract strokes

    100

    Qt = 4.9 x 400 x 24

    100

    Qt = 4.9 x 4 x 24

    Qt = 470.4 l/min.

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    53/95

    53

    Formulae comparison

    Q = 1.4 x D (m) xTx (P + Pa) x stroke(m) x # strokes/min x 10004

    Q = 1.4 x .08 x .785 x ( 6 + 1.013) x .4 x 24 x 1000

    Q = 1.4 x .0064 x .785 x 7.013 x .4 x 24 x 1000

    Q = 473.54

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    54/95

    54

    Q = 1.4 x D (m) xTx (P + Pa) x stroke(m) x # strokes/min x 10004

    = _______mm

    stroke = _______mm

    s/min = _______ x 2

    P =_______bar

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    55/95

    55

    Inertia

    Example 1

    m = 10kg

    a = 30mm

    j = ___?

    J= m (kg) x a (m)12

    J= 10 x .03

    12

    J= 10 x .0009

    12

    J= .00075

    a

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    56/95

    56

    Inertia

    Example 2

    m = 9 kg

    a = 10mm

    b = 20mm

    J = ___?

    J = ma x a + mb x b3 3

    J = 3 x .01 + 6 x .02

    3 3

    J = 3 x .0001 + 6 x .00043 3

    J = .0001 + .0008

    J = .0009

    a b

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    57/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    58/95

    58

    Valve identification

    A(4) B(2)

    EA P EB(5) (1) (3)

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    59/95

    59

    Valve Sizing

    The Cv factor of 1 is a flow capacity of one USGallon of water per minute, with a pressure drop

    of 1 psi.

    The kv factor of 1 is a flow capacity of one liter ofwater per minute with a pressure drop of 1 bar.

    The equivalent Flow Section S of a valve is the

    flow section in mm

    2

    of an orifice in a diaphragm,creating the same relationship between pressure

    and flow.

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    60/95

    60

    Q = 400 x Cv x (P2 + 1.013) x (P x 273

    273 + U

    Q = 27.94 x kv x (P2 + 1.013) x (P x 273273 + U

    Q = 22.2 x S x (P2 + 1.013) x (P x 273273 + U

    1 Cv = 1 kv = 1 S =

    The normal lo Qn or other various lo capacity units is: 981.5 68.85 54.44

    The elationship bet een these units is as ollo s: 1 14.3 18

    0.07 1 1.26

    0.055 0.794 1

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    61/95

    61

    Flow example

    S = 35 P1 = 6 bar

    P2 =5.5 bar

    U = 25C

    Q = 22.2 x S x (P2 + 1.013) x (P x 273

    273 + U

    Q = 22.2 x 35 x (5.5+ 1.013) x .5 x 273

    273 + 25

    Q = 22.2 x 35 x 6.613 x .5 x 273298

    Q = 22.2 x 35 x 6.613 x .5 x 273

    298

    Q = 22.2 x 35 x 1.89 x .957

    Q = 1405.383

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    62/95

    62

    Cv = ________between 1 -5

    P1 = ________bar

    P2 = ________5 bar

    U = ________C

    Fl it f l t d

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    63/95

    63

    Flow capacity formulae transposed

    Cv = Q

    400 x (P2 + 1.013) x (P

    Kv = Q27.94 x (P2 + 1.013) x (P

    S = Q22.2 x (P2 + 1.013) x (P

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    64/95

    64

    Flow capacity example

    Q =7

    50 l/min P1 = 9 bar

    (P = 10%

    S = ?

    S = Q22.2 x (P2 + 1.013) x (P

    S = 750

    22.2 x (8.1 + 1.013) x .9

    S = 75022.2 x 9.113 x .9

    S = 750

    22.2 x 2.86

    S = 750 S = 11.8163.49

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    65/95

    65

    Q = _________ l/min

    P1 = _________ bar

    (P = _________%

    Cv = _________ ?

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    66/95

    66

    Orifices in a series connection S total = 1

    1 + 1 + 1

    S1 S2 S3

    Example

    S1 = 12mm

    S2 = 18mm

    S3 = 22mm

    S total = 11 + 1 + 1

    12 18 22

    S total = 11 + 1 + 1

    144 324 484

    S total = 1 = 1.00694 + .00309 + .00207 .0121

    S total = 9.09

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    67/95

    67

    Cv = _________

    Cv = _________

    Cv = _________

    Cv total = ________

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    68/95

    68

    Tube Le ng th in

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    0 .1 1 5 1 0 0 .50 .05 0 .0 2 0 .2 2

    2

    9

    7 .5

    6

    4

    3

    S m m

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    69/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    70/95

    70

    A ve r a g e p i t p eed i /

    dia . 5 0 10 0 1 50 2 0 0 25 0 30 0 40 0 5 0 0 7 5 0 1 0 0 0

    8,1 0 0.1 0.1 0.1 5 0.2 0.2 5 0.3 0.4 0.5 0.7 5 11 2 ,1 6 0.1 2 0.2 3 0.3 6 0.4 6 0.6 0.7 2 1 1 .2 1 .8 2 .4

    20 0.2 0.4 0.6 0.8 1 1 .2 1 .6 2 3 4

    25 0.3 5 0.6 7 1 1 .3 1 .7 2 2 .7 3 .4 5 6.7

    32 0.5 5 1 .1 1 .7 2 .2 2 .8 3 .7 4 .4 5.5 8.5 1 1

    40 0.8 5 1 .7 2 .6 3 .4 4 .3 5 6.8 8.5 1 2 .8 1 7

    50 1 .4 2 .7 4 5.4 6.8 8.1 10.8 1 3 .5 2 0.3 2 7

    63 2 .1 4 .2 6.3 8.4 10.5 12 .6 16.8 2 1 3 1 .5 4 2

    80 3 .4 6.8 1 0.2 1 3 .6 1 7 20 .4 27.2 34 5 1 6 8

    1 0 0 5 .4 10.8 1 6.2 2 1 .6 2 7 32 .4 43 .2 5 4 8 1 1 0 8

    1 2 5 8 .4 16.8 2 5.2 3 3 .6 4 2 50 .4 67.2 8 4 1 2 6 1 6 8

    1 4 0 10 .6 21 .1 3 1 .7 4 2 .2 52 .8 6 2 84 .4 1 06 1 5 8 2 1 1

    1 6 0 13 .8 27.6 4 1 .4 5 5.2 6 9 82 .8 11 0 1 38 2 0 7 2 7 6 Eq uiva len t Fl ect i n in 2

    Table7.31 Equivalent ecti n in 2 f rthevalveand the tubing, f r6bar rkingpressureandapressuredropof1 bar( n Conditions)

    l A lifi i

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    71/95

    71

    Flow Amplification

    Si l I i

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    72/95

    72

    Signal Inversion

    S l i

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    73/95

    73

    greenred

    Selection

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    74/95

    74

    greenred

    Memory Function

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    75/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    76/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    77/95

    77

    Pulse on switching on

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    78/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    79/95

    79

    Direct Operation and Speed Control

    C t l f t i t OR F ti

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    80/95

    80

    Sh ut tle Va lve

    Control from two points: OR Function

    Safety interlock: AND Function

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    81/95

    81

    Safety interlock: AND Function

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    82/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    83/95

    83

    Inverse Operation: NOT Function

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    84/95

    84

    P

    AB

    Direct Control

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    85/95

    85

    P

    ABHolding the end positions

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    86/95

    86

    Ca va lve

    Semi Automatic return of a cylinder

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    87/95

    87

    Repeating Strokes

    2 4

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    88/95

    88

    3

    1 2

    4

    2 4

    Sequence Control

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    89/95

    89Commands

    Signals Start

    A+ B+ A- B-

    b 0b 1 a 0a1

    b1

    A + B +

    b0 a1

    A - B -

    ao

    s t a r t

    IS O S Y M B O L S f o r A IR TR EATM E T EQ IPM E T

    A i C l i d i

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    90/95

    90

    Pressureegulator

    egulatori th rel ief

    aterSeparator

    Fi l t e r

    Auto rain A ir rye r

    Fi l t e r /Separator

    Fi l t e r /Separator. Auto rain

    Multi stageMicro Fi l t e r

    Lubricator

    Aireate r eat Exchang e rA irCoole r

    BasicSy bo l

    if fe rentia lPressure

    R egulator

    PressureG auge

    FR L nit, de tailed

    FR L nit ,

    s i p li fi ed

    R e frige ra tedA ir rye r

    AdjustableSe tt ing

    Spring

    A ir Cleaning and ry ing

    Pressur e R egulat ion

    nits

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    91/95

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    92/95

    92

    Return pring (in act not an

    operator, but a built-in element)echanical (plunger):

    Roller ever: one- ay Roller ever:

    anual operators: general: ever:

    ush utton: ush- ull utton:

    etent or mechanical and manual operators (makes a monostable valve bistable):

    ir peration is sho n by dra ing the (dashed) signal pressure line to the side o

    the square; the direction o the signal lo can be indicated by a triangle:

    ir peration or piloted operation is sho n by a rectangle ith a triangle. This

    symbol is usually combined ith another operator.

    irect solenoid operation solenoid piloted operation

    Manual Operation

    ClosedInput

    Inputconnected to

    OutputReturnSpring

    Manual Operation

    ClosedInput

    Inputconnected to

    OutputReturnSpring

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    93/95

    93

    Operation Input Output Spring

    Air SupplyExhaust

    Man ua l ly Opera ted ,

    Norm a l ly Ope n 3 /2 va l ve

    (no rma l ly pass ing )

    wi th Spr ing

    Operation Input Output Spring

    O R

    MechanicalOperation

    Inputconnected to

    Output

    Input closed,Output

    exhaustedReturnSpring

    A ir Supp ly E xhaust

    Mechan i ca l l y no rma l l y c losed 3 /2

    (non -pass ing )

    Va l ve w i th Sp r i ng Re tu rn

    O R

    MechanicalOperation

    Inputconnected to

    Output

    Input closed,Output

    exhaustedReturnSpring

    M a n u a l l y o p e r a t e d V a lv e sdetent, must co rrespond with valve posit ion

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    94/95

    94

    no pressure

    3/2, normal ly c losed/normal ly open

    pressure

    bis table v alves: both po s i tions po ss ib le

    3/2, normal ly c losed

    no pressure pressure

    3/2, normal ly ope n

    monostable valves n e v e r operated

    So len o id s ar e n ev er o p er at ed in re s t

    A i r o p er at ed va lv es m ay b e o p er at ed in re s t

    El ec t r i c a l l y an d p n eu m a t i c a l l y o p e ra ted Va lv es

    p ressu reno p ressu re

    pressure

    M e c h a n i c a l l y o p e r a t e d V a lv e s

    No v a l ve w i t h i n d e x " 1 " i s o p e ra t e d .no pressure

    a n 1a n 1

    A l l va l ve s w i t h i n d e x " 0 " a re o p e ra t e d .

    a n 0

    pressure

    a n 0

    no pressure

    First s t roke of the cycle

    A B

    Last s t roke of the cycle

    C

  • 8/7/2019 Vinayak Bindu Basic Pneumatic Syste

    95/95

    P O W E R L e v el

    L O G IC L e v e l

    SIG N A L IN P U T L e v e l

    Start

    Memor ies ,

    AND 's , OR 's ,

    Timings etc.

    A + A - B + B - C

    Codes : a , a , b , b , c and c .1010 10