30
VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, [email protected] CARMEN GAIDAU INCDTP – Division Leather and Footwear Research Institute Bucharest, Romania icpi@ icpi .ro AURA IONITA, POLITEHNICA University of Bucharest, Romania, [email protected] MIHAELA NICULESCU INCDTP – Division Leather and Footwear Research Institute Bucharest, Romania icpi@ icpi .ro MARIANA POPESCU SC PIELOREX SA, Jilava, Romania pielorexsa @ yahoo . com DOREL ACSINTE SC PIELOREX SA, Jilava, Romania pielorexsa @ yahoo . com LAURENTIU FILIPESCU POLITEHNICA University of Bucharest, Romania, laurentiu_fi[email protected] FIELD TEST FOR FOLIAR NUTRITIVE PRODUCTS FORMULATED WITH THE LEATHER PROTEIN HYDROLYSATES 2nd International Conference on Advanced Materials And Systems, Bucharest Romania, 2008

VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, [email protected] [email protected] CARMEN GAIDAU INCDTP – Division

Embed Size (px)

Citation preview

Page 1: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, [email protected]

CARMEN GAIDAU INCDTP – Division Leather and Footwear Research Institute Bucharest, Romania [email protected]

AURA IONITA, POLITEHNICA University of Bucharest, Romania, [email protected]

MIHAELA NICULESCU INCDTP – Division Leather and Footwear Research Institute Bucharest, Romania [email protected]

MARIANA POPESCU SC PIELOREX SA, Jilava, Romania [email protected]

DOREL ACSINTE SC PIELOREX SA, Jilava, Romania [email protected]

LAURENTIU FILIPESCU POLITEHNICA University of Bucharest, Romania, [email protected]

FIELD TEST FOR FOLIAR NUTRITIVE PRODUCTS FORMULATED WITH

THE LEATHER PROTEIN HYDROLYSATES

2nd International Conference on Advanced Materials And Systems, Bucharest Romania, 2008

Page 2: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

INTRODUCTION

Waste leather hydrolysates prove to be a valuable protein resource possible to be converted to added value commercial products as soil fertilizers, biodegradable polymers and additives for cosmetic industry, building materials, etc.

Colak, S., JALCA, 100,137, 2005; Cabeza, L.F., Clauson, S.M., Taylor, M.M., J.Am.Leather Chem.Assoc., 94, no.5, 1999, pp. 190; Gaidau, C., Ghiga, M., Filipescu, L., Stepan, E., Lacatus, V., Popescu, M., Excellence Research as a way to E.R.A, 2007, ISSN 1843-5904, Editors: Nicolae Vasiliu & Lanyi Szabolcs;

Chromium free protein hydrolysates with amino acids content, obtained by using chemical and chemical-enzymatic hydrolysis, may be used as foliar growth enhancers and bio-stimulators for fruit and vegetable crops.

Niculescu, M., Bajenaru, S., Gaidau, C., Simion, D., Filipescu, F., Rev Chimie 2009 under pressGaidau, C., Ghiga, M., Stepan, E., Taloi, D., Filipescu, L., Proceedings of 29th Congress of the International Union of Leather Chemists Association, Washington, 2007Gaidau, C., Ghiga, M., Stepan, E., Taloi, D., Filipescu, L., Rev. Chimie (Bucharest), 60(5):501-507, 2009Gaidau C, Ghiga M, Stepan E, Lacatus V, Cirjaliu-Murgea M, Ionita AD, Filipescu L (2008) CEEX Conference 2008, Brasov, Research a way to E.R.A., editors: Nicolae Vasiliu and Lanyi Szabolcs, ISSN 1844-7090, Editura Tehnica;

 

Our previous papers illuminate some particular ways to convey to these hydrolysis products specific foliar properties as: low surface tension, moderate viscosity and capacity to dissolve the usual macro and micronutrients and to penetrate leaf cuticular membranes.  

Page 3: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

This paper continue the above studies with the field test for several formulations of foliar nutritive fluids in which growth enhancing functions are carried by amino acids and peptides available in chromium free waste leather hydrolysates.

Also, some papers about growth enhancing, biostimulation and fungicide capacities of the basic formulation on which waste leather hydrolisates were grafted have recently published:

Chitu, V., Chitu, E., Nicolae, S., Filipescu, L., Ionita, A. and Murgea Cîrjaliu, M., Acta Horticulturae (ISHS) 2009, 825:539-546; http://www.actahort.org/.

Cirjaliu-Murgea, M., Ionita, A., Chitu, E., Chitu, V., Filipescu, L., VI International Symposium on Mineral Nutrition of Fruit Crops, Faro, Portugal, 2008, under the auspices ISHS, Acta Horticulturae (under press);

Cirjaliu-Murgea, M., Ionita, A.D., Chitu, E., Filipescu L., Ann. Univ. Craiova, 12, no.48, 2007, pp. 183;

Cirjaliu – Murgea, M., Chitu, V., Chitu, E., Isopescu, R., Filipescu, L., 14th International Conference on Chemistry and Chemical Engineerig Proceegings, Bucharest, Romania, 2005;

Page 4: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

PURPOSE  Successful chemical approach of the protein hydrolysates turn into suitable intermediate for foliar nutritive fluids production has to proceed with the field trial run and plant growth efficiency evaluation at least for some convenient formulations.  This paper is reporting the studies undertaken for testing this new class of foliar nutrients through open field runs on some vegetable species, according to customary and standard schemes accepted for the evaluation and homologation of the fertilizers and growth enhancers.

Page 5: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

FORMULATION AND VARIANTS SET UP

Hydrolysate compositions

Table 1.Composition of the protein hydrolysates

No. Parameters Standard analysis method

Hydrolysate 1 Hydrolysate 2Solution

compositionDry matter

compositionSolution

compositionDry matter

composition1. Dry matter, % STAS 6615/2-74 6.40 - 12.2 -2. Total ash, % SRENISO 4047-2002 - 9.84 - 26.463. Soluble substance, % - 5.77 90.16 8.84 73.544. CaO, % 0.11 1.72 0.25 2.85. Total

nitrogen, %SRISO 5397-96 1.02 15.94 1.16 9.65

6. Dermic substance, % SRISO 5397-96 5.73 89.53 6.52 54.247. Amino

nitrogen, %0.53 0.83 0.346 2.88

8. pH STAS 8619/3-90 11.12 9.49 -9. Cr2O3, % STAS 8602-90 0.00 0.00 - -10. Molecular

mass, Da.14300 - - -

Amino-acids distribution

Table 2. Aminoacids distribution in protein hydrolysateAmino acid Glycine Aspartic

acid Glutamic acid

Serine Histidine Tyrosine Proline

Concentration*, % 0.320 0.039 0.043 0.057 0.023 0.240 0.033

* based on the total dermic substance

Page 6: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

PRODUCTS AND VARIANTS TESTESD DURING 2007 AND 2008 SEASON Table 3. Tested products and variants of the experiments on fitoxicity, germination and vegetable dinamic growth. Year 2007

Components

Product 1 Product 2Product 3

as blank for P1

Product 4as blank for

P2

Product 5Enriched

Hydrolisate 1

Product 6Enriched

Hydrolisate 2

Water

V 1 V 2 V 3 V 4 V 5 V 6 V 7Formic acid neutralized potassium naphthenate, mol/l 0,66 - 0,80 - - -

Carbonated potassium naphthenate, mol/l - 0,68 - 0,8 - -

Protein hydrolisate, g/l170,7 172,3 - - 863,3 850,2

Urea, mol/l2,22 2,26 2,75 2,63 2,25 2,24

MEA/TEA, mol/l 0,66 0,56 0,60 0,66 0,56 0,56

Boron, g/l 0,2 0,2 0,2 0,2 0,2 0,2Zink, g/l 0,2 0,2 0,2 0,2 0,2 0,2Copper, g/l 0,2 0,2 0,2 0,2 0,2 0,2

Molybdenum, g/l0,1 0,1 0,1 0,1 0,1 0,1

*Concentration of each component is given in mole/L

Page 7: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Table 4. Tested products and variants of the experiments on vegetable growth. Year 2008

ComponentsProduct 1

Product 2

Product 3 as blank for P1

Product 4 as blank for

P2

Product 5Enriched

Hydrolisate 1Water

V 1 V 2 V 3 V 4 V 5 V7 Formic acid neutralized potassium naphthenate, mol/l 0,66 - 0,80 - - -

Carbonated potassium naphthenate, mol/l - 0,68 - 0,8 - -

Proteinaceous hydrolisate, g/l 170,7 172,3 - - 863,3 -Urea, mol/l 2,22 2,26 2,75 2,63 2,25 -MEA/TEA, mol/l 0,66 0,56 0,60 0,66 0,56 -Boron, g/l 0,2 0,2 0,2 0,2 0,2 -Zink, g/l 0,2 0,2 0,2 0,2 0,2 -Copper, g/l 0,2 0,2 0,2 0,2 0,2 -Molybdenum, g/l 0,1 0,1 0,1 0,1 0,1 -

Product 1 and Product 2 - full formulations containing potassium overbasic naphthenates and hydrolysate amino-acidsProduct 3 and Product 4 - partial formulations containing only the potassium overbasic naphthenates as bio-stimulatorsProduct 5 and Product 6 - partial formulations containing potassium only the hydrolysate amino-acids as bio-stimulators

Page 8: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

ANALYTICAL MONITORING Analytical monitoring of the plants answers to the new class of emulsified nutritive fluids was made by common records of:

fruit number and weight per each harvest stage;

green and dry mass as well as rates of the accumulation of green and dry mass at each vegetative stage end;

gross production per stages and gross production per variants.

according to Undersander methods.

Undersander D, Mertens DR, Thiex N (2003) Forage Analysis Procedures, Laboratory Procedures, National Forage Testing Association (NFTA), July, 1993, www.foragetesting.org/lab.../part2.0.htm.

Simple statistical analysis tests was used to acknowledge the significance of recorded differences between measured parameters for experimental variants.

Petersen RG (2004) Agricultural field experiments: design and analysis. Marcel Dekker Inc. New York, NY Hinkelmann K, Kempthorne O (2008) Design and Analysis of Experiments. I, II 2rd edn. Wiley, New York

Page 9: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

LOCATION Institute of Research and Development for Horticulture and Vegetable Growing Vidra, Roumania, from March 2007 to October 2007, and respectively March 2008 to September 2008.

Experimental plots were located onto the flat fields inside the Sabar river meadow, 60 – 70 m altitude, 44° 15.6' north latutude, 26° 10.2' east longitude, 11 km south of Bucharest, Romania.

Mollic horizon of this area is made up by illuviated argilic chernozem soil, with loamy-clayey texture and moderately clay migration. The average multi-annual temperature and rainfall level at experiment location was 10.7ºC and 550 mm, respectively.

Dripping fertigation system applied to all experimental lots.

Page 10: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

OBJECTIVES 

2007 SIMPLE EXPERIMENTS WITHOUT BLOCKS OF REPETIONNS ON TOMATOS EGG PLANTS AND PEPPERSDYNAMIC GROWTHCROP PRODUCTION 

2008EXPERIMENTS WITH BLOCKS OF REPETIONNS ON TOMATOS EGG PLANTS AND PEPPERSCROP PRODUCTION

Page 11: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

RESULTS SEASON 2007 TOMATOES

Figura 1. Tomatos crop dynamics, kg/variant (Table 2b)

Page 12: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 2. Tomatos fruit number dynamics, number/variant (Table 2a)

0

50

100

150

200

250

300

350

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

10-20.07.2007 21-30.07.2007 31.07-09.08.2007

Tom

atoe

s fr

uit

sn

um

ber

, n

um

ber

/var

ian

t

19.08-18.09.2007 TOTAL

It seems the growth in crop production in coming mainly from the increase in fruit number and less from increase in fruit dimension and weight

Page 13: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 3. Tomatoes green mass cumulative growth in stalks, grams/plant (table 3a)

100

150

200

250

300

350

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741APO

04.07.200757 APO

18.07.200771APO

13.08.200797APO

18.09.2007133APO

Gre

en m

ass

cum

ula

tive

acc

um

ula

tion

in

sta

lks,

gra

ms/

pla

nt

Stalks: Variants V1- V4 perform better than variants V4-V5

Page 14: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 4. Tomatoes green mass cumulative growth in leaves and inflorescences, grams/plant (table 3 b)

100

150

200

250

300

350

400

450

500

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

13.08.200797DAPO

18.09.2007133DAPO

Gre

en m

ass

cum

ula

tive

acc

um

ula

tion

in le

aves

an

d in

flor

esce

nce

s,

gram

s/p

aln

t

At the beginning of season variants V1-Vr perform better than Water; at the end all the variants perform equally

Page 15: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 5. Tomatoes green mass cumulative growth in fruits, grams/plant (table 3c)

100

700

1300

1900

2500

3100

3700

4300

4900

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

13.08.200797DAPO

18.09.2007133DAPO

Gre

en m

ass

cum

ula

tive

acc

um

ula

tion

in f

ruit

s,

gram

s/va

rian

t

Decreases of variants V2 and V4 below water performance at the end of season, show the best performing plants might be the untreated ones. The increase in production might

be explained through inducing growth to all the plants as the best untreated plants

Page 16: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 6. Tomatoes total green mass cumulative growth, grams/plant (table 4)

200

1200

2200

3200

4200

5200

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

Tot

al g

reen

mas

s cu

mu

lati

ve

accu

mu

lati

on, g

ram

es/p

lan

t

13.08.200797DAPO

18.09.2007133DAPO

Total cumulative: V1-V6 in the first stages better than in the last 3 stages. Crop production is raise because all the plant growth as the best in untreated variants

Page 17: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 7. Tomatoes green mass rate of growth, grams/plant/day (table 4b)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

13.08.200797DAPO

18.09.2007133DAPO

Gre

en m

ass

rate

of

accu

mu

lati

on,

gram

es/p

lan

t an

d d

ay

Page 18: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 8. Tomatoes dry mass cumulative growth in stalks, grams/plant (table 5a)

10

15

20

25

30

35

40

45

50

55

60

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

13.08.200797DAPO

18.09.2007133DAPO

Dry

mas

s cu

mul

ativ

e ac

cum

ulat

ion

in

stal

ks, g

ram

s/pl

ant

Page 19: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 9. Tomatoes dry mass cumulative growth in leaves and inflorescences, grams/plant (table 5b)

10

20

30

40

50

60

70

80

90

100

110

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

13.08.200797ADPO

18.09.2007133DAPO

Dry

mas

s cu

mu

lati

ve a

ccu

mu

lati

on in

le

aves

an

d in

flor

esce

nce

s,gr

ames

/pla

nt

Page 20: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

10

30

50

70

90

110

130

150

170

190

210

230

250

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

13.08.200797DAPO

18.09.2007133DAPO

Dry

mas

s cu

mu

lati

ve a

ccu

mu

lati

on

in r

iped

and

un

rip

ed fr

uit

s,

gram

es/p

lan

t

Figure 10. Tomatoes dry mass cumulative growth in fruits, grams/plant (table 5c)

Page 21: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

50

100

150

200

250

300

350

400

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

Tot

al d

ry m

ass

cum

ulat

ive

accu

mul

atio

n , g

ram

es/p

lant

13.08.200797DAPO

18.09.2007133DAPO

Figura 11. Tomatoes total dry mass cumulative growth, grams/plant (table 6a )

Page 22: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figura 12. Tomatoes dry mass rate of growth, grams/plant/day (table 6 b)

0

1

2

3

4

5

6

7

8

9

10

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7

18.06.200741DAPO

04.07.200757DAPO

18.07.200771DAPO

13.08.200797DAPO

18.09.2007133DAPO

Dry

mas

s ra

te o

f ac

cum

ula

tion

,gr

ames

/pla

nt

and

day

Page 23: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

80

90

100

110

120

130

140

150

160

170

180

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7Fruit production Fresh vegetative mass Dry vegetative mass

Rel

ativ

e gr

owth

, %

Figura 13. Tomatoes total relative growth in fruit production, fresh vegetative mass and dry vegetative mass (table 17)

Page 24: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

80

100

120

140

160

180

200

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7Fruit production Fresh vegetative mass Dry vegetative mass

Rel

ati

ve

gro

wth

, %

Figure 14. Egg plants total relative growth in fruit production, fresh vegetative mass and dry vegetative mass (tabel 18)

Page 25: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

80

90

100

110

120

130

140

150

160

V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V6 V7Fruit production Fresh vegetative mass Dry vegetative mass

Rel

ativ

egr

owth

, %

Figure 15. Peppers total relative growth in fruit production, fresh vegetative mass and dry vegetative mass (table 19)

Page 26: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

50

100

150

200

250

300

350

V1 V2 V3 V4 V5 V7 V1 V2 V3 V4 V5 V7 V1 V2 V3 V4 V5 V7

Rel

ati

ve

gro

wt

, %

Crop production/plant

Fruit number/plant

Mean fruit mass

Figure 16. Tomatoes total relative growth in crop production/plant, fruit number/plant and mean fruit mass.

Season 2008

RESULTS SEASON 2008 

Page 27: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 17. Egg plants total relative growth in crop production/plant, fruit number/plant and mean fruit mass.

Season 2008

Page 28: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

Figure 18. Peppers total relative growth in crop production/plant, fruit number/plant and mean fruit mass.

Season 2008

Page 29: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

CONCLUSIONS

An innovative concept in the formulation and properties design of a foliar bio-fertilizer containing amino acids originating from proteinaceous waste leather hydrolysis was developed on the ground of foliar properties transfer from the emulsified naphthenic overbasic salts intermediaries to the careful selected mixtures of these intermediaries and waste proteinaceous hydrolysate. These mixtures act as growth enhancers and biostimulators in equilibrated formulations individually amended by adding micro and macronutrient, and additives for cuticle penetration easiness.

Efficiency of these foliar nutritive fluids was tested through trials on tomatoes and egg plants according to standard procedures accepted for the evaluation and homologation of new products for agricultural use. The trials have shown that the 30-60% increase in production is accompanied by significant raise in fruit number and quality when the new formulated products have been applied in suitable doses during the three main stages of growth.

The proteinaceous hydrolysates happen to be byproducts discharged from a well known polluting leather industy. Their anchoring in worthwhile and profitable products as foliar fertilizers is a routine deed to protect the environment. Therefore, not only the usefulness of manufaturing a required product has to be thought as a valuable opportunity, but also the chance to turn back to the nature a byproduct which otherway will come down as a polluter.

Page 30: VICTOR LACATUS, Research Institute for Vegetable and Flower Growing Vidra, Romania, inclf@mediasat.ro inclf@mediasat.ro CARMEN GAIDAU INCDTP – Division

The work was carried out with the financial support of CNCIS, Program Idei, project 1035/2007

Acknowledgment

Thanks for your attention