32
Medical Physics Chapter 4 Vibration, wave motion and sound Vibration, wave motion and sound §4.1 Simple harmonic motion (SHM) 4.1.1 Equation of SHM 1. Definition of SHM Simple harmonic force: The force on a body is proportional to its displacement from the origin and always directed towards the origin. If we choose the direction of displacement as the x- axis, the equation is given by F = - k x, (4.1) the minus sign denotes that the force is a restoring force and always points to the origin (x = 0). SHM If a body moves in a straight line under the simple harmonic force, the motion of the body is called simple harmonic motion. Fig. 4.1 vibrational motion 2. Equation of SHM Generally a Hooke’s law spring satisfies the equation (4.1), but k is called spring constant. If a body’s mass is m and it is exerted by a simple harmonic force, its equation of motion can be obtained by using Newton’s second law of motion . On the other hand, considering eq. (4.1), we have or Define 2 = k/m and we have (4.2) This is the differential equation of the simple harmonic motion. Its solution can be expressed as (4.3) 36 x

Vibration, Wave Motion and Sound

  • Upload
    fauzan

  • View
    247

  • Download
    1

Embed Size (px)

DESCRIPTION

fauzan

Citation preview

Chapter 4. Vibration, Wave motion and SoundChapter 4Vibration, wave motion and soundVibration, wave motion and sound4.1 Simple harmonic motion (SHM)4.1.1 Equation of SHM1. Definition of SHMSimple harmonic force: he !orce on a bod" i# proportional to it# di#placement !rom theori$in and al%a"# directed to%ard# the ori$in. &! %e choo#e the direction o! di#placement a#the x'a(i#, the e)uation i# $iven b"F * ' k x, (4.1)the minu# #i$n denote# that the !orce i# a re#torin$!orce and al%a"# point# to the ori$in (x = +).SHM &! a bod" move# in a #trai$ht line under the #imple harmonic !orce, the motion o! the bod" i# called simple harmonic motion.,i$. 4.1 vibrational motion. Equation of SHM-enerall" a Hoo.e/# la% #prin$ #ati#!ie# the e)uation (4.1), but k i# called spring constant. &! a bod"/# ma## i# m and it i# e(erted b" a #imple harmonic !orce, it# e)uation o! motion can be obtained b" u#in$ 0e%ton/# #econd la% o! motion11dtx dm ma F .2n the other hand, con#iderin$ e). (4.1), %e have kxdtx dm 11orxmkdtx d 113e!ine1 * k/m and %e have +111 + xdtx d (4.1)hi# i# the di!!erential e)uation o! the #imple harmonic motion. &t# #olution can be e(pre##ed a# ) co#( + t A x(4.4)he motion de#cribed b" a co#ine or #ine !unction o! time i# called Simple Harmonic Motion.&t i# nece##ar" to point out that the t%o de!inition# !or SHM are the e)uivalent. 2ne i# !rom the !orce t"pe and the other i# !rom the e)uation o! motion.3i!!erentiatin$ the e)uation (4.4) %ith re#pect to t, the velocit" and acceleration o! the SHM can be obtained.45xChapter 4. Vibration, Wave motion and Sound + ) #in ( ) (co# ) (co# )6 co#( 7AdtdddAdtdAt Adtddtdxv(#et + t)

) #in( + t A(4.4)) co#( ) (co# ) (#in ) (#in111 + t AAdtdddAdtdAdtdvdtx da x1 (4.8)&t canbeprovedthat thee)uation(4.8) i# e)uivalent tothe e)uation# (4.1) and(4.4).here!ore the e)uation (4.4) i# indeed the #olution o! (4.1).4.1. !he characteristic quantities of SHM&n the e)uation o! SHM, 9, and are con#tant# and an" individual SHM can be determined b" them.1. 9 i# called "mplitude #$. &t i# the ma(imum di#placement o! a vibratin$ bod" !rom e)uilibrium po#ition.. %eriod and frequenc&!heperiod, denotedb"T, i# thetimeta.en!or acompletevibration%hichi#independent o! the po#ition cho#en !or the #tartin$ point o! the complete vibration.!he frequenc&, denoted b" f, i# the number o! complete vibration# per #econd, it i#the reciprocal ()o! the periodTf1(4.5)he an$ular !re)uenc" or an$ular velocit" i# de!ined a#Tf 11 (4.:)'. %hase and initial phase #$&n the e)uation o! SHM, t + i# called the phase o! SHM, %here i# the pha#e at t * +, called initial phase (unit radian). 9t t * +, e)uation# (4,4) and (4.4) become# re#pectivel" #inco#++A vA x (4.;)S)uarin$ both #ide# o! the above e)uation#, the amplitude o! the SHM can be !ound1 1 1+co# A x 1 1 1 1+#in v A 1 1 1 111+ 1+) #in (co# A Avx + + kv mxvx A1+ 1+11+ 1++ + . (4. 1+'1 .$ i# in SHM at the end o! a #prin$ %ith #prin$ con#tant k * 8+.+ 0?m.he initial di#placement and velocit" o! the particle i# 4.++ > 1+'1 m and @1.41 m?#re#pectivel". Calculate (1) the an$ular !re)uenc"A (1) the initial pha#eA (4) the amplitude o! the vibrationA (4) the periodA (8) the !re)uenc".Solution: &n order to #olve the problem, %e have to be clear %hat thin$# have been $iven in the problemB hat i# the .no%n condition#.he )uantitie# %e .no% are: m = 1.++ > 1+'1 .$ . * 8+.+ 0?m(+ * 4.++ > 1+'1 m v+ * @1.41 m?#0o% u#in$ the !ormulae %e have learned, the problem can be #olved ea#il".(1). &n order to !ind the an$ular !re)uenc", the !ormula repre#entin$ the relation amon$ thean$ular !re)uenc", ma## and #prin$ con#tant ha# to be u#ed. We have s radmk? + . 8+1+ ++ . 1+ . 8+1 (1). he initial pha#e o! the vibration can be !ound u#in$ the initial di#placement and initialvelocit". 9t t * +, %e .no%(+ * 9 co# * 4.++ > 1+'1 m v+ * ' 9 % #in * '1.41 m?#he can be obtained b" #olvin$ above e)uation#. 2n the other hand, it can be calculateddirectl" b" e). (4.1+)4 . 41+ . 8+ 1+ ++ . 441 . 1arctan arctan1++

,_

,_

xv(4). he amplitude can be calculated b" the !ormulamvx A111+ 1+1+ ++ . 4 + (4). he period can be !ound throu$h the relation bet%een the an$ular !re)uenc" and the periodAs T 115 . ++ . 8+1 1 (8). ,re)uenc" can be !ound a# f * 1?T * 1?+.115 * :.1+'1m and @1.41 m?# re#pectivel". Calculate (1) the an$ular !re)uenc"A (1) the initial pha#eA(4) the amplitude o! the vibrationA (4) the periodA (8) the !re)uenc". (e(ample in lecture)nm Suppo#e that an electron move# in the addition o! t%o vibration# %hich are alon$ ('a(i# and "'a(i# re#pectivel" and then the vibrational e)uation# are $iven a# 8;) co#() co#(1 11 1 + + t A #t A xChapter 4. Vibration, Wave motion and Soundheir compo#itive orbit in ('" plane i# Suppo#e that A1 *1, A1 *4 and 1 ' 1 * ?4. =lea#e tr" to(1) dra% the electron path o! motion on ('" planeA (1) determine it# direction o! motion (cloc.%i#e or anticloc.%i#e). H. Wave#m 9 #ource o! %ave move# in SHM. &t# e)uation o! motion i# s * +.+4 co#(1.8 t) (m). hi# %ave propa$ate# in a medium alon$ po#itive ('direction at the #peed o! 1++ m #'1. r" to !ind: (1) %ave e)uation o! motionA (1) the di#placement and velocit" o! the point ma## %hich i# 1+ meter# a%a" !rom the %ave #ource at the time o! 1.+ #econd a!ter the %ave #ource #tart# it# motion. lm lm here are t%o coherent %ave #ource# propa$atin$ in the #ame medium. heir !re)uenc" i# 55+HC, their amplitude i# A * +.8m and the propa$atin$ velocit" i# 44+ m?#. he t%o %ave# inter!ere at point =. (1). ,or t%o #ource# %hich are in pha#e, calculate the amplitudeat = %hen 9= * 11 m and H= * 18 mA (1) !or the t%o #ource# %hich are out o! pha#e, calculate the amplitude at the #ame point =.8. 9n ob#erver #tandin$ on the rail%a" #ide hear# a train movin$ a%a" at the #peed o! 4+.; m?# %ith a horn !re)uenc" o! 4:8HC. &t i# .no%n that the velocit" o! #ound i# 44+ m?# in air. ,ind the ori$inal !re)uenc" o! the horn on the train. 8