14
Laura del Olmo 1 Tema 6: VÍA DE LAS PENTOSAS FOSFATO La vía o ruta de la pentosa fosfato es una ruta metabólica secundaria de la glucosa (comparándola con la glucólisis, aunque es imprescindible), cuya principal función es generar energía, pero no como ATP, si no en forma de poder reductor: NADPH + H + . Es una vía secundaria del metabolismo de la glucosa cuya finalidad principal es genera NADPH + H + . Tiene 3 funciones principales cuantitativamente hablando: 1. Producir poder reductor (NADPH + H + ) 2. Producir Pentosas P (necesitamos menos pentosa-P que poder reductor, pero su producción también es muy importante, ya que *solo la podemos producir aquí*): Ribosa-5-P: pentosa-P más importante porque a partir de ella formamos ácidos nucleicos (RNA, DNA), ATP, FAD, NAD… De manera que a partir de la ribosa-5-P no solo formamos ácidos nucleicos sino también multitud de nucleótidos importantísimos en el metabolismo (funcionando como CoE…) 3. Interconversión de monosacáridos fosfato También tiene otras 3 funciones secundarias: 1. Producir CO 2 (necesario para la formación de AG) 2. Degradar glucosa (ruta del catabolismo de la glucosa) 3. Degradar pentosas (no solo formarlas sino también eliminarlas) Es una vía muy peculiar porque se produce en casi todo el organismo, pero en algunos órganos hace muy poca falta, y en otros mucha (los que por ej. necesiten poder reductor). Además tiene distintas estructuras dependiendo de lo que queramos conseguir en mayor cantidad (poder reductor, pentosas-P…).

Vías de las pentosas fosfato

Embed Size (px)

DESCRIPTION

de Laura del Olmo

Citation preview

Page 1: Vías de las pentosas fosfato

Laura del Olmo

1

Tema 6: VÍA DE LAS PENTOSAS FOSFATO

La vía o ruta de la pentosa fosfato es una ruta metabólica secundaria de la glucosa (comparándola con la glucólisis,

aunque es imprescindible), cuya principal función es generar energía, pero no como ATP, si no en forma de poder

reductor: NADPH + H+.

Es una vía secundaria del metabolismo de la glucosa cuya finalidad principal es genera NADPH + H+.

Tiene 3 funciones principales cuantitativamente hablando:

1. Producir poder reductor (NADPH + H+)

2. Producir Pentosas P (necesitamos menos pentosa-P que poder reductor, pero su producción también es

muy importante, ya que *solo la podemos producir aquí*):

Ribosa-5-P: pentosa-P más importante porque a partir de ella formamos ácidos nucleicos (RNA,

DNA), ATP, FAD, NAD…

De manera que a partir de la ribosa-5-P no solo formamos ácidos nucleicos sino también multitud de

nucleótidos importantísimos en el metabolismo (funcionando como CoE…)

3. Interconversión de monosacáridos fosfato

También tiene otras 3 funciones secundarias:

1. Producir CO2 (necesario para la formación de AG)

2. Degradar glucosa (ruta del catabolismo de la glucosa)

3. Degradar pentosas (no solo formarlas sino también eliminarlas)

Es una vía muy peculiar porque se produce en casi todo el organismo, pero en algunos órganos hace muy poca falta,

y en otros mucha (los que por ej. necesiten poder reductor).

Además tiene distintas estructuras dependiendo de lo que queramos conseguir en mayor cantidad (poder

reductor, pentosas-P…).

Page 2: Vías de las pentosas fosfato

Laura del Olmo

2

¿Para qué nos hace falta fundamentalmente el principal producto de la vía de las pentosas fosfato,

es decir, el PODER/AGENTE REDUCTOR (NADPH + H+)?

1. Su mayor parte para la *biosíntesis (formación) de lípidos* (estructura: 1 grupo carboxilo + 14-16

átomos de C), sobre todo colesterol y ácidos grasos, porque es la biosíntesis más reducida.

La biosíntesis de lípidos es la biosíntesis reductora por excelencia.

Todas las biosíntesis necesitan ATP, y en especial, cuando va a ser una síntesis muy reducida, también

necesitan poder reductor.

2. Para mantener el glutatión reducido.

El glutatión (GSH) es un péptido presente en todas las células del organismo de estructura: γ (gamma)-Glu – Cys –Gly

(γ-glutamil-cisteinil-glicina).

Gracias al grupo –SH (azufre) de la cisteína puede funcionar como un reductor importante, de manera que cuando se

encuentra reducido (será su forma activa) es uno de los reductores más importantes del organismo.

- ¿Para qué no hacen falta los reductores, y específicamente el glutatión en el organismo?

Para eliminar oxidantes que producen el envejecimiento celular.

El envejecimiento se trata simplemente de una oxidación celular con la consecuente

aparición de los radicales libres.

Para asegurar que todas aquellas estructuras reducidas susceptibles de oxidación mantengan su

estado normal reducido, por ej.

o Los lípidos (componente mayoritario de las MB) serán muy fáciles de oxidar, y nos hacen

falta para mantener una estructura adecuada de las MB, por lo que el glutatión evita que los

lípidos se oxiden, y con ello a mantener la estabilidad de las MB.

o Asegura que el Fe2+ se encuentre en su estado reducido.

o Aquellas proteínas que puedan oxidarse, el glutatión asegura que estén reducidas.

Cuando el glutatión se oxida se produce la unión de 2 moléculas de glutatión a través de los azufres (-SH) de sus

respectivas cisteínas, con lo que pierde su capacidad reductora GSSG = glutatión oxidado que no sirve para nada.

Cuando se halla oxidado el NADPH es el que se encarga de reducirlo con la participación de la enzima GLUTATIÓN-

REDUCTASA.

Para eliminar agentes oxidantes como peróxidos, por ej.: agua oxigenada (H2O2), que se produce

como producto secundario en reacciones metabólica. El glutatión puede eliminar el agua oxigenada

tóxica fácilmente y convertirla en agua normal totalmente inocua no perjudicial, con la participación

de la enzima GLUTATIÓN-PEROXIDASA (y todo ello por su carácter reductor).

Page 3: Vías de las pentosas fosfato

Laura del Olmo

3

La enzima GLUTATIÓN-PEROXIDASA es muy importante en el organismo para eliminar

cualquier peróxido; por ej.: en ocasiones al metabolizar ciertos fármacos se producen

peróxidos que intoxicarían el organismo.

Constantemente producimos peróxidos, agentes oxidantes… y el glutatión es el encargado de reducirlos y

eliminarlos. Pero tras la reducción el glutatión se recupera oxidado, por lo que el NADPH lo vuelve a reducir.

Características de la vía de las pentosas fosfato:

- Es la vía multifuncional por excelencia en el organismo y muy especializada en función de las necesidades de

las células.

- Se produce toda ella en el citosol.

- Localización – atendiendo a las necesidades de las células:

Se produce en pequeñas cantidades en todas las células (todas las células necesitan ribosa).

Se producirá de manera cuantitivamente mayoritaria en todas aquellas células que necesiten mucho NADPH, que

necesiten tener la MB más estable…

Se produce de forma esencial en los *eritrocitos*, ya que estos tienen multitud de transporte a

través de MB, por lo que necesitan estabilidad de las MB; y además, la vía de las pentosas será de las

únicas rutas metabólicas que se den en el eritrocito.

Atendiendo a la función principal del poder reductor (NADPH), es decir, la síntesis de lípidos, esta vía

se producirá también en el TJ adiposo y en hígado (que sintetiza de todo).

En la corteza renal. Las cápsulas suprarrenales tienen 2 partes: (1) corteza renal, donde se producen

esteroides (hormonas) = corticoides corticosteroides y (2) médula, donde se producen las

catecolaminas (adrenalina y noradrenalina).

Órganos reproductores (ovario y testículos) hormonas sexuales

En resumen, la vía de las pentosas fosfato se produce en pequeñas cantidades en todas las

células (por ej. en el músculo esquelético a penas se da esta vía) pero en cantidades

importantes en: ERITROCITOS, TJ ADIPOSO, HÍGADO, CORTEZA RENAL, ÓRGANOS

REPRODUCTORES, GLÁNDULA MAMARIA (únicamente en período de lactancia)…

DIVISIÓN DE LA VÍA DE LAS PENTOSAS FOSFATO EN 2 RAMAS/PARTES MUY DIFERENCIADAS

1) Rama OXIDATIVA

Page 4: Vías de las pentosas fosfato

Laura del Olmo

4

Es totalmente irreversible y es dónde se produce todo el poder reductor (NADPH) de la vía, y donde se genera ya la

primera pentosa.

2) Rama NO OXIDATIVA

Es totalmente reversible y tiene como principal función la interconversión de monosacáridos-fosfato.

1) RAMA OXIDATIVA DE LA VÍA DE LAS PENTOSAS FOSFATO – Reacciones:

1. Inicio de la rama oxidativa: parte de glucosa-6-fosfato (G6P) que en la 1ª reacción oxida su grupo aldehído

(deshidrogenación) a carbonilo dando lugar a la (delta) δ-lactona del 6-fosfogluconato, y (puesto que es una

oxidación) el NADP+ se reduce a NADPH + H+.

Enzima: *Glucosa-6-fosfato deshidrogenasa* (G6P DH), cuyo inhibidor (-) competitivo (análogo

estructural) será el NADPH, es decir, cuando haya mucha cantidad de NADPH la enzima G6P DH se

inhibe. Es la enzima (limitante) más importante de la vía ya que cataliza la 1ª reacción irreversible.

o Inhibidor (-) competitivo: altos niveles de NADPH (poder reductor).

o Activador (+) hormonal: la insulina aumenta los niveles de la G6P DH (es secretada después

de una comida).

- ¿Cuándo se potencia la biosíntesis de lípidos y por tanto los niveles de NADPH + H+?

Cuando hay un exceso de nutrientes (los más abundantes son los hidratos de carbono). Una dieta rica en HC

potenciará la síntesis de lípidos porque como glucosa solo podremos almacenar 0,5 Kg entre el hígado (como

glucógeno) y MS esquelético.

Si quiero sintetizar muchos lípidos además de energía necesito NADPH + H+ (poder reductor), por tanto, una dieta

rica en HC aumenta la cantidad de NADPH+H+, inhibidor competitivo de la G6P DH la cual se inhibe.

La glucosa nos aporta todo lo que necesitamos para sintetizar lípidos.

En una 1ª oxidación el ácido 6-fosfoglucónigo se va a formar ciclado, por eso se genera la δ-

lactona del 6-fosfogluconato, que es muy inestable, por lo que se rompe inmediatamente

para dar el 6-fosfogluconato.

2. La 2ª reacción consiste en una 2ª oxidación de la δ-lactona del 6-fosfogluconato para forma el 6-

fosfogluconato (6-P-gluconato), con la adición de 1 molécula de H2O.

Enzima: Lactonasa

3. Última reacción de la rama oxidativa: el 6-fosfogluconato se descarboxila a *ribulosa-5-fosfato* (cetosa)

formando la 1ª pentosa de la vía. Es una reacción similar a la 1ª y se genera una 2ª molécula de poder

reductor (NADPH + H+). Además se genera también CO2 (producto secundario de la vía).

Page 5: Vías de las pentosas fosfato

Laura del Olmo

5

Enzima: 6-Fosfogluconato deshidrogenasa (6-P-gluconato DH)

En resumen, la rama oxidativa consiste en una doble oxidación, 1º de G6P 6-P-gluconato,

que después se oxida y descarboxila a ribulosa-5-P. Ya que es la fase irreversible (única

irreversible de toda la vía), es la rama que controla toda la ruta (“fase limitante”), y en

concreto, sobre todo la primera enzima, la *G6P DH*, que va a ser la mayor reguladora de

la vía.

- Balance material y energético de la Rama Oxidativa:

Producción a partir de 1G6P de 1 pentosa (cetosa), la 1ª de la vía: ribulosa-5-P.

Liberación de 1 CO2 y de 2 moléculas de poder reductor (2 NADPH + H+).

2) RAMA NO OXIDATIVA DE LA VÍA DE LAS PENTOSAS FOSFATO – Intermediarios NO importantes

Recordemos que una cetosa es un monosacárido que tiene un grupo cetona (-CO)

dihidroxiacetona = cetosa más simple; y una aldosa es un monosacárido que tiene un grupo

aldehído (-CHO) gliceraldehído = aldosa más simple.

- Función: interconversión de unos monosacáridos-fosfato en otros, respondiendo siempre a un patrón

común:

Para que se inicie la 2ª fase de la vía de las pentosas, es decir, la rama no oxidativa, necesitaré una cetosa y una

aldosa que siempre seguirán ese mecanismo, y que pueden intercambiar 2 ó 3 carbonos.

La rama oxidativa ha terminado en una cetosa (ribulosa-5-P), pero esa no nos sirve de forma directa para comenzar

la fase no oxidativa, si no que a partir de ella obtendré una cetosa y una aldosa que serán las que inicien esta 2ª

rama.

- Reacciones:

1. Una cetosa-fosfato se va a transformar en una aldosa-fosfato, a la vez que una aldosa-P se trasforma en una

cetosa-P.

¿Cómo conseguimos la transformación? La transformación se lleva a cabo de esta forma:

La cetosa cede carbonos La aldosa acepta carbonos

¿Quién cataliza estas reacciones?

Cuando el intercambio es de 2C enzima: TRANSCETOLASA (que necesita TPP - Pirofosfato de

Tiamina - como CoE para funcionar)

Cuando el intercambio es de 3C enzima: TRANSALDOLASA (NO necesita ninguna CoE)

La CETOSA y la ALDOSA nos las proporciona la Ribulosa-5-P (pentosa producto final de la rama oxidativa), que es una

cetosa, y se puede transformar fácilmente en otra cetosa, la Xilulosa-5-P.

Page 6: Vías de las pentosas fosfato

Laura del Olmo

6

Ribulosa-5-P y Xilulosa-5-P son epímeros entre sí, es decir, solo se diferencian en la posición del –OH en un carbono.

Enzima: EPIMERASA

Isómeros, una un grupo cetona y otra un grupo aldehído.

También nos puede dar una Ribosa-5-P, que es la importante.

Enzima: ISOMERASA

Esta fase también es conocida como etapa de conexión.

2. La XILULOSA-5-P y la RIBOSA-5-P iniciarán la Rama No Oxidativa. TRANSCETOLASA (TPP) 2C

Xilulosa-5-P (cetosa 5C) cede 2C = G3P (aldosa 3C)

Ribosa-5-P (aldosa 5C) acepta 2C = sedoheptulosa-7-P (cetosa de 7 C no importante en humanos,

tan solo como simple intermediario)

3. TRANSALDOLASA 3C

G3P (aldosa 3C) acepta 3C = *F6P* (producto final)

La fructosa se queda como producto final pero por el otro lado la rama continúa.

Sedoheptulosa-7-P (cetosa 7C) cede 3C = eritriosa-4-P (aldosa 4C no importante en humanos)

4. TRANSCETOLASA 2C

Eritriosa-4-P (alsoda 4C) acepta 2C = *F6P* (producto final)

*Xilulosa-5-P* (cetosa 5C) cede 2C = *G3P* (producto final)

En resumen la rama no oxidativa de la Vía de las Pentosas Fosfato se trata de la interconversión de

monosacáridos: una cetosa en una aldosa y una aldosa en una cetosa. ¿Cómo? Cetosa cediendo y aldosa

aceptando, 2 (transcetolasa) ó 3 C (transaldolasa). Todas las reacciones serán reversibles.

Es una vía que se puede parar en cualquier punto, por lo que es adaptable. De manera que por eso es

multifuncional y muy especializada, ya que dependiendo de lo que necesite la célula se adapta.

- Balance material y energético de la Rama No Oxidativa:

Partimos de 1 Ribosa-5-P y 2 Xilulosas (otra al final)

1 Ribosa-5-P + 2 Xilulosas-5-P 2 F6P + 1 G3P

Page 7: Vías de las pentosas fosfato

Laura del Olmo

7

MODALIDADES DE LA VÍA DE LAS PENTOSAS FOSFATO - ¿Cuándo y dónde se produce cada una?

Habíamos dicho que la Vía de las Pentosas Fosfato en función de las necesidades de la célula (evidencia de su

multifuncionalidad) presenta 4 modalidades distintas que clasificamos en 2 grupos según su frecuencia:

- Poco frecuentes:

(1) Cuando la célula requiere cantidades de ribosa-5-P y de poder reductor (NADPH) equilibradas: realiza la

rama oxidativa y se para, formando ribosa.

(2) Cuando la célula requiere mucha ribosa-5-P y no poder reductor para formar ácidos nucleicos, solo en el

momento de la división celular.

- Frecuentes:

(3) Cuando la célula requiere elevadas cantidades de NADPH simplemente como agente reductor en general

(más poder reductor que ribosa): la vía de las pentosas fosfato se combina con la gluconeogénesis y da lugar

al CICLO DE LAS PENTOSAS FOSFATO.

(4) Cuando la célula requiere mucho poder reductor (NADPH + H+) como agente reductor y además

para sintetizar lípidos, por lo que además requiere energía (ATP) = *modalidad más frecuente de

las 4* que adquirirá entrando en la glucólisis.

En el hígado se producirán las 4 modalidades y también en el TJ adiposo, ya que como ya hemos dicho,

dependerá de la célula y del momento, por ej. en el músculo apenas se producirá.

1) Cantidades equilibradas de Ribosa-5-P y poder reductor - Poco frecuente

Si las necesidades de poder reductor y ribosa son equilibradas no necesito más de uno que de otro (aunque lo

normal sería necesitar más poder reductor – 3ª modalidad).

- Reacciones:

1. Rama Oxidativa

Page 8: Vías de las pentosas fosfato

Laura del Olmo

8

Cuando las cantidades son equilibradas la vía se adapta de manera que produce poder reductor y ribosa en su

primera rama oxidativa y ya ha terminado.

2. Interconversión

Solo tendríamos la Rama Oxidativa y ese paso de Interconversión.

2) Cantidades elevadas de Ribosa-5-P en división celular - Poco frecuente

Para que salgan las cuentas partimos de 5 G6P, que irán destinadas a la obtención de 6 moléculas de Ribosa-5-P.

- Reacciones (libreta) Rama Oxidativa al revés

Así se evidencia su multifuncionalidad (“hace casi de todo”) y su especialización. Por eso es interesante que

la rama oxidativa sea reversible.

3) Cantidades elevadas de poder reductor simplemente como agente reductor: CICLO DE LAS

PENTOSAS-FOSFATO - Lo normal

Es una de las modalidades de la Vía de las Pentosas más frecuente en la célula, y será muy activa en eritrocitos, ya

que son los que necesitan mantener muy estables (mediante el poder reductor) sus membranas (lípidos reducidos)

para un adecuado transporte.

Lo normal es que necesitemos mucho más poder reductor que Ribosa, por ej. en los eritrocitos, en el hígado, o en el

TJ adiposo, formándose el CICLO DE LAS PENTOSAS FOSFATO.

En vez de partir de lo mínimo (3 G6P) vamos a partir de 6 G6P.

1. Rama Oxidativa: genero 6 Ribulosa-5-P, 6 CO2 y 12 de poder reductor (12 NADPH + H+).

A partir de 6 G he generado 6 moléculas de poder reductor, 6 de CO2 y 6 de Ribulosa.

2. Rama No Oxidativa: necesito que la Ribulosa se transforme en 2 Ribosas-5-P y 4 Xilulosas-5-P

Final: 4 F6P y 2 G3P

Si a partir de ahí hago GLUCONEOGÉNESIS, necesito que 1 G3P se transforme en 1 DHAP. Se unen las 2 y dan

lugar a la F-1,6-BP, que da a continuación 1 F6P (gluconeogénesis hacia arriba: 5F6P, 5G6P…). Gasté 6 y

acabo de formar 5, por lo cual puedo cerrarlo como un ciclo si desde fuera aporto 1G6P.

En resumen, cuando la célula necesita mucho más poder reductor la vía se produce en su totalidad (rama oxidativa

y rama no oxidativa), pero partiendo de 6 moléculas de glucosa-6-fosfato, y combinándola con la gluconeogénesis,

recupero 5, por lo que el balance definitivo es que he gastado 1 G6P que me ha proporcionado + 12 NADPH + H+ +

6 CO2.

- Balance neto:

Con una sola molécula de glucosa (1 G6P) + 12 moléculas de poder reductor (12 NADPH + H+)

Porque lo demás lo he recuperado.

Page 9: Vías de las pentosas fosfato

Laura del Olmo

9

- Además recordemos que una de las funciones secundarias de la vía de las pentosas era la producción de

CO2.

Aunque es una vía secundaria de degradación de la glucosa, también genera CO2 (como el resto de rutas catabólicas:

glucólisis, Ciclo de Krebs, CR… que convierten la G en CO2), y en vez de generar ATP genera poder reductor, que

también es energía, porque se necesita para la síntesis.

¡OJO! Cuando hablamos del ciclo, no es la Vía de las Pentosas, sino una de las posibles modalidades que adopta esta

ruta cuando las necesidades de NADPH + H+ son superiores a las de Ribosa.

4) Cantidades elevadas de poder reductor pero que vamos a utilizar para sintetizar lípidos además

de como agente reductor (por lo que vamos a necesitar también mucho ATP) – *Lo más

frecuente*

No tienen ningún nombre porque no va a ser un ciclo. Realizará la vía de las pentosas y se combinará con otra ruta

metabólica, la GLUCÓLISIS, para obtener ATP.

Es la modalidad más frecuente de la Vía de las Pentosas, y será muy activa en TJ adiposo e hígado.

1. Rama Oxidativa para obtener el poder reductor (NADPH + H+)

La G6P a través de fase oxidativa de la vía de las pentosas genera NADPH + H+ que nos hace falta para sintetizar AG.

2. Rama No Oxidativa: interconversión de azúcares-P para dar 2 F6P y *1 G3P* (a partir de él se inicia la

glucólisis).

3. Glucólisis para obtener el ATP

Pero también nos va a dar lugar de forma indirecta Pir, Acetil-CoA (sustrato a partir del que se producen los AG), y de

ahí obtengo energía (ATP ó NADH+H+), y eso también nos sirve para sintetizar AG.

También se generan cantidades importante de CO2.

Estamos gastando glucosa para generar energía, y la “recuperamos” para formar AG.

Para sintetizar lípidos (AG) quien nos aporta todo es la G6P; y todo el exceso de glucosa se desvía a lípidos.

ALTERACIONES EN LA VÍA DE LAS PENTOSAS FOSFATO

Algunas de las consecuencias que podría originar una alteración en la Vía de las Pentosas podrían ser: (1) la

formación no adecuada de la ribosa (ya que es el único lugar en el que se produce), (2) fallos en la división celular,

(3) problemas con la síntesis de lípidos… pero el más grave será (4) *la falta de poder reductor*.

Page 10: Vías de las pentosas fosfato

Laura del Olmo

10

1. Por deficiencia de poder reductor (NADPH + H+): oxidación del glutatión hemólisis del

eritrocito = ANEMIA HEMOLÍTICA

Si el nivel de NADPH baja se producirá la oxidación de estructuras susceptibles, con lo que bajará el nivel de

glutatión reducido (el mayor agente reductor de nuestro organismo), que es el que se encarga de eliminar peróxidos

tóxicos (agua oxigenada como producto de nuestro metabolismo), de evitar la oxidación del Fe2+, y sobre todo de

evitar la oxidación de los lípidos de la MB para asegurar un transporte de MB adecuada.

La célula más sensible a la oxidación será el eritrocito, que depende de todo el transporte a través de MB porque

efectúa muy pocas vías metabólicas. La oxidación hará más frágil al eritrocito o glóbulo rojo que normalmente vive

unos 120 días, por lo que los frágiles vivirán mucho menos, produciéndose la rotura o hemólisis del eritrocito. La

destrucción del eritrocito tiene como consecuencia la aparición de la anemia hemolítica.

Los glóbulos rojos de la sangre necesitan grandes cantidades de NADPH para la reducción de la hemoglobina

oxidada y para poder regenerar el glutatión reducido, un antioxidante que presenta importantes funciones

como la eliminación de peróxidos y la reducción de ferrihemoglobina (Fe3+).

2. Por deficiencia de la enzima GLUCOSA-6-FOSFATO DESHIDROGENASA (G6P DH) debido a un factor

genético combinado con un factor ambiente (la ingestión de ciertos fármacos): ANEMIA

HEMOLÍTICA la enfermedad solo se manifestará al consumir cierto fármaco

Hay algunas personas que genéticamente son deficientes de esta enzima. El problema fundamental será la aparición

de anemia hemolítica más o menos grave dependiendo del defecto.

A veces el problema pasa desapercibido si el déficit no es muy importante, y se manifiesta frente a la ingestión de

determinados fármacos debido a sus efectos secundarios (aumentar tasa de peróxidos tóxicos mientras se

degradan, reducción en su metabolismo consumiendo NADPH…). Una persona sana con el nivel adecuado de poder

reductor no tendrá problemas, en cambio, una persona con deficiencia de esta enzima sí lo tendrá.

Fármacos comunes:

Barbitúricos (sedantes del SNC) para eliminarlos hay que usar poder reductor, por tanto disminuye su

nivel y es cuando habrá problemas si la persona es deficitaria genética de la enzima G6P DH.

Primaquina (fármaco específico para combatir la malaria; fue con el que se descubrió esta enfermedad

genética de déficit de la enzima) aumenta la tasa de peróxidos, por lo que al haber más peróxidos que

eliminar se generará más glutatión oxidado (glutatión: elimina peróxidos reduciéndoles por lo que él se

oxida); además la primaquina se reduce con mucha facilidad: PRIMAQUINAox PRIMAQUINAred, para lo

que consume NADPH + H+ NADP+.

Sulfamidas (tuberculosis)

Una persona sana asumirá ese defecto, pero una con la enzima G6P DH deficiente no, por lo que le producirá

una anemia hemolítica que le puede conducir a la muerte.

3. Por la unión débil de la enzima TRANSCETOLASA a su CoE PiroFosfato de Tiamina (TPP) debido a

un factor genético combinado con un factor ambiente (dieta pobre en tiamina): SÍNDROME DE

Page 11: Vías de las pentosas fosfato

Laura del Olmo

11

WERNICKE-KORSAKOFF (un beriberi muy severo) la enfermedad solo se manifestará si la dieta

es pobre en la Vit.B1 o tiamina (ya que constituye parte de la CoE TPP) y si la persona presenta el

defecto genético

Recordemos que el beriberi era causado por deficiencia de la Vit.B1 o Tiamina en la dieta, la cual no abunda

en muchos alimentos (cereales integrales).

La enzima transcetolasa necesitaba TPP como CoE. Hay algunas personas que genéticamente presentan una unión

débil anormal de la TPP a la transcetolasa.

Mientras tengan suficiente Vit.B1 o Tiamina en la dieta no habrá problema, pero si una persona con ese defecto

tiene además deficiencia grave de Tiamina en la dieta, no funcionará la Vía de las Pentosas, por lo que se verá

afectado el catabolismo de la glucosa y todo el catabolismo en general y por tanto todo el organismo (catabolismo

de HC), y los TJS que dependen de ese metabolismo.

Puede dar lugar a alteraciones en el SNC con posible aparición de retraso mental (irreversible), alteraciones

musculares (parálisis de los MS oculares), pero en general alteración de todos los órganos.

Entre las personas que tienen el defecto genético, la aparición del síndrome es frecuente en los alcohólicos crónicos

(población que más padece esta enfermedad), ya que además de la dieta pobre en vitaminas, tienen el hígado muy

dañado (que es la que activa la Tiamina).

VÍA DE FORMACIÓN DEL ÁCIDO GLUCURÓNICO (Otra vía metabólica de la glucosa)

Vías metabólicas de glucosa mayoritarias en humanos: (1) Glucólisis, (2) _____ y (3) Vía de Formación del

Ácido Glucurónico a partir de glucosa

- Reacciones REVERSIBLES:

1. La glucosa se activa a G6P (consumiendo 1 ATP), y una vez activada se convierte en G1P.

Enzima: FOSFOGLUCOMUTASA

2. Ahora se activa con UTP (activador característico de azúcares), liberándose PPi, y generando UDP-G.

Enzima = aunque es la misma enzima, según el sentido de la vía recibe (erróneamente) un nombre

distinto:

o Si la vía va hacia la derecha (o hacia la formación de UDP-G): G1P URIDIL TRANSFERASA

o Si la vía va hacia la izquierda (o hacia la formación de G1P a partir de UDP-G): UDP-G

PIROFOSFORILASA

3. El UDP-G se transforma en UDP-glucurónico mediante la reducción de 2 NAD+ 2 NADH + 2H+.

Enzima: UDP-G DH

Page 12: Vías de las pentosas fosfato

Laura del Olmo

12

- Importancia del ÁCIDO GLUCURÓNICO

Es un componente importante de los mucopolisacáridos que son un proteoglucano (proteínas + polisacáridos). Los

mucopolisacáridos son un componente importante de la matriz de los TJs conectivos.

Deriva de la glucosa por oxidación del grupo alcohol a grupo ácido.

Aunque es una vía secundaria, es importante para formar los mucopolisacáridos, por lo que se producirá en

pequeñas cantidades en todas las células.

1. Importante para formar los mucopolisacáridos (matriz de los TJs conectivos)

2. Importante para facilitar la eliminación de productos insolubles en el organismo (naturales o derivados de

fármacos).

Por ej., en el catabolismo del grupo hemo (Hb, Mb, citocromos…) se forma bilirrubina, un compuesto

muy tóxico e insoluble, por lo que sería difícil enviarlo a plasma (no puede circular).

Si la bilirrubina se une al ácido glucurónico (el cual posee muchos grupos –OH por lo que es muy

soluble), al transportarla permite que ésta se “solubilice”, y por tanto permite su pérdida través del

riñón, es decir, permite su eliminación.

Ictericia: coloración amarillenta de piel y mucosas debido a un aumento de la cantidad de bilirrubina

en sangre (por que no la eliminemos o porque se produzca más de la normal).

En conclusión, una forma de eliminar la bilirrubina será mediante la unión de ésta al ácido glucurónico.

Otro ej.: determinados productos derivados de antibióticos, morfina, etc. son muy insolubles y los

eliminamos también unidos al ácido glucurónico.

- ¿Dónde se produce esta Vía de Formación del Ácido Glucurónico?

Atendiendo a la 1ª función (formación de los mucopolisacáridos de la matriz del TJ conectivo): en todas las

células.

Atendiendo a la 2ª función (eliminación de tóxicos como la bilirrubina): sobre todo en hígado y TJ adiposo.

Page 13: Vías de las pentosas fosfato

Laura del Olmo

13

Se potenciará muchos tras la ingestión de ciertos fármacos, y tras el ayuno por el aumento de la

degradación de lípidos, ya que cuando se degradan muchos lípidos se generan muchos productos

tóxicos.

1) FASE OXIDATIVA

Reactivos Productos Enzima Descripción

Glucosa-6-fosfato + NADP+

→ 6-Fosfoglucanato;-Lactona + NADPH

Glucosa-6-fosfato deshidrogenasa

Deshidrogenación. El grupo hidroxilo localizado en el C1 de la glucosa-6-fosfato es convertido en un grupo carbonilo, generando una lactona y una molécula de NADPHdurante el proceso.

6-Fosfoglucanato;-Lactona + H2O

→ 6-Fosfoglucanato + H+

6-Fosfoglucolactonasa Hidrólisis

6-Fosfoglucanato+ NADP+

→ Ribulosa-5-fosfato + NADPH + CO2

6-Fosfoglucanato deshidrogenasa

Descarboxilación. El NADP+ es el aceptor de electrones, generando otra molécula de NADPH, un CO2 i Ribulosa-5-fosfato.

Page 14: Vías de las pentosas fosfato

Laura del Olmo

14

2) FASE NO OXIDATIVA

Reactivos Productos Enzima

Ribulosa-5-fosfato → Ribosa-5-fosfato Ribulosa-5-fosfato Isomerasa

Ribulosa-5-fosfato → Xilulosa-5-fosfato Ribulosa-5-fosfato 3-Epimerasa

Xilulosa-5-fosfato + Ribosa-5-fosfato → Gliceraldehído-3-fosfato + Sedoheptulosa-7-fosfato

Transcetolasa

Sedoheptulosa-7-fosfato + Gliceraldehído-3-fosfato

→ Eritrosa-4-fosfato + Fructosa-6-fosfato Transaldolasa

Xilulosa-5-fosfato + Eritrosa-4-fosfato → Gliceraldehído-3-fosfato + Fructosa-6-fosfato

Transcetolasa