592
GE OIL & GAS ELAP 110kVA ACTIVE FRONT END VFD PROJECT JOB INFORMATION PACKAGE SERVTECH, INC JOB #11615 12/10/12 Table of Contents 1. Title Page 2. Electrical Schematic 3. Enclosure Detail 4. Subpanel Layout 5. VFD Dimensions 6. VFD Ratings Chart (Selection Highlighted) 7. ABB ACS800U31 Hardware Manual 8. ABB ACS800 Firmware Manual 9. ABB ACS800 ESP/PCP Firmware Manual

VFD Documents

Embed Size (px)

DESCRIPTION

Inverter

Citation preview

Page 1: VFD Documents

GE OIL & GAS 

ELAP 110kVA ACTIVE FRONT END VFD PROJECT 

JOB INFORMATION PACKAGE 

 

SERVTECH, INC 

JOB #11615 

12/10/12 

 

Table of Contents 

1. Title Page 

2. Electrical Schematic 

3. Enclosure Detail 

4. Sub‐panel Layout 

5. VFD Dimensions 

6. VFD Ratings Chart (Selection Highlighted) 

7. ABB ACS800‐U31 Hardware Manual 

8. ABB ACS800 Firmware Manual 

9. ABB ACS800 ESP/PCP Firmware Manual 

Page 2: VFD Documents

A AAA

11/5/12 AKELAP Pump 110 kVA VFD 480VAC 3 PHASE POWER

Servtech, Inc.

+ -24 VDC

750 VA

L1

N

480 VAC

#2/0DLO

#14THHN

Job No. 11615

Marathon

CP1

CP2

H1

H2H1 H3 H4H5 N1 N4

H6

N6

.Index Code

Drawn

Approved

N1

FAN

L3

REV. 0

H7

F2N2

480 VAC IN

5

24 VDC Power Supply

H2

1

120 VACTO 120 VAC

CONTROL CIRCUIT

C3 C4

3 4

5 34 2

GND

4AFB-2

4AFB-1

10AFB-3

N3H4

N6

H1

GND

#2/0DLO

T-STAT

2A

#2/0DLO

GND

N2 N3

N1

F

F1

N4

H6F1

234567

891011121314151617181920

16A

G

65

17A

10

HAND

OFF

AUTO

16A14A

8A9A

1915

8

11

212223

8

9

2425

N5

SU

RG

E

AR

RE

STO

R

GND

L N

GND

SU

RG

E

AR

RE

STO

R

L N

N2N3 H3H3

H4N4

+ - -+

N7N8

9A8A

89

14

1410

12/4/12 AK

14A

0.5AC5

ABB#OS200J03 Fused Disconnect

L2

L1

#EPBAD71Distribution Block

SA1

SA2

SA3

Marathon#EPBAD74Distribution Block

H7

Marathon#EPBAD71Distribution Block

#14THHN

Citel#DS43-480Surge Suppresion

T1

T2

T3

L4

L5

L6

L7

L8

L9 L4 L5 L6

TB #1

TB #2

Citel#DS42-120Surge Suppresion

Citel#DS210-24DCSurge SuppresionIDEC

PS5R-SC24

A1

B1

C1

A2

B2

C2

U2

V2

W2

TCI#KTRMG160ALine Reactor

KC

AP1

0A6B

CAP

C1A C1B C1C

Wiring Legend

TCI

#6AWG

I/O Board Terminals

9A 8A

12A12A

12A20A

20A 20

20

DWG# 1 OF 3

GND

1 2

7 6 5 4 3

9 8

VREF

AI1+GND

#10AWG

10

12 11

AI1-AI2+AI2-AI3+AI3-AO1+AO1-AO2+AO2-

SUR

GE

ARR

ESTO

R

19 20 2524232221 2726

AC

IN

N L

AC

IN

#16THHN

#16THHN

#10AWG

#6AWG

- Ana

log

+ O

ut 1

- Ana

log

+ O

ut 2

+ - -

J119

28 2930

- Dig

ital

+ I/O

1- D

igita

l

- Dig

ital

- Dig

ital

- Dig

ital

- Dig

ital

+ I/O

2

+ I/O

3

+ I/O

4

+ I/O

5

+ I/O

6

19 20 2524232221 2726

J115

28 2930

- Dig

ital

+ I/O

7- D

igita

l

- Dig

ital

- Dig

ital

- Dig

ital

- Dig

ital

+ I/O

8

+ I/O

9

+ I/O

10

+ I/O

11

+ I/O

12

J129

+

110 kVA

U2 V 2 W2

ABBACS800-U31-0120-5

START/ STOP PID AUTO

U1 V1 W1

START/STOP HAND

PEINPUT

PEOUTPUT

+24

GND1

DI1DI2DI3

DI6DI5DI4 EXT1/EXT2 SELECTION(SELECTS PID CONTROL)

COM

NC

NO

COM

NC

NO

COM

NC

NO

X25

X26

X27

X22

X21

1 2

7 6 5 4 3

9 8

10

12 11

+24

GND1DI IL

Apollo

1716

18

16

18

17EXTERNAL FAULT

200AFUSE

200AFUSE

200AFUSE

RUN

FAULT

FAULT

19

(Optional) Field installed E-stop orpressure switch

(Optional) Field installed remote AUTO switch

480V

480V Field

24VDC

24VDC Field120VAC

120V N

Ground

Jumper between 19 and 18 mustbe installed if noremote AUTO switch

RUN ENABLE

SPEED REFERENCE

Page 3: VFD Documents

<-- GRAIN -->

<-- GRAIN -->

11.6

3"

12.88"

9.50"8.75"

4.91

"4.

91" 10

.56"

A AAA

11/5/12 AKELAP Pump 110 kVAVFD NEMA 3 Enclosure Detail

Servtech, Inc. Job No. 11615Index Code

Drawn

Approved

REV. 0

12/10/12 AK

19.75"19.75"

4.57"

DWG# 2 of 3

4.57

"13.24"

12.3

4 "

24.00"

24.00"

62.5

0" D

oor

1.75"

1.13

1.13"

3-PT. DOORHARDWARE

22.94" DOOR

72.0

0"

1.75

17.56"

3.63"

1.13

60.25"

3-PT. DOORHARDWARE

3-PT. DOORHARDWARE3-PT. DOORHARDWARE

FUSED DISCONNECTHANDLE

TOP VIEW

BOTTOM VIEW

RAINHOOD

RAINHOOD

RAINHOOD

RAINHOOD

RAINHOOD

RAINHOOD

LEFT VIEW FRONT VIEW RIGHT VIEW BACK VIEW

FUSED DISCONNECTHANDLE

Page 4: VFD Documents

18.25"

58.2

5"

59.9

4"

SUBPANEL FRONT VIEW

ABB FusedDisconnect

11.81"

19.94"

38.1

9"

MarathonDist Block

#OS200J03#EPBAD71

MarathonDist Block#EPBAD747.15"

8.59

"

4.75

"

6.5"

ABBVFD

ACS800-U31-0120-5

CitelSurge Suppression#DS43-480

Hammond750VA CPT

TCICapacitor#KCAP10A6BCap hangs behind Line Reactor

TB#1120VACTerminal Blocks

TB#224VDCTerminal Blocks

4.75

"

3.40"

2.75

"

4.00"

8.00

"

5.00"

4.50

"

Mar

atho

nD

ist B

lock

#EP

BA

D71

4.75"6.5"

2"

7.00"

2"

4.00

"

A AAA

11/5/12 AKELAP Pump 110 kVA Subpanel Layout

Servtech, Inc. Job No. 11615Index Code

Drawn

Approved

REV. 0

12/10/12 AK

DWG# 3 OF 3

1. Sides of enclosure will have Panduit attached for Notes

cable routing.2. TCI Line Reactor will sit on the bottom of the

mounted on unistrut.

Page 5: VFD Documents

Dimensional drawings

117

Frame size R6 (IP21, UL type 1)

6840

5726

A

US

glan

d/co

ndui

t pl

ate

Dia

met

ers

of k

nock

-ou

t hol

es: 6

3.5

mm

[2

.50

in.],

22.

7m

m

[.89

in.].

The

uni

t is

UL

type

1 w

hen

equi

pped

with

the

US

glan

d pl

ate.

Page 6: VFD Documents

Low voltage AC drives

ABB industrial drivesACS800, single drives0.55 to 5600 kWCatalog

Page 7: VFD Documents

18 ABB industrial drives ACS800 single drives | Catalog

Wall-mounted low harmonic drivesACS800-31, up to 110 kW

Easy low harmonic solutionThere is increasing concern among end users and power companies about the harmful effects of harmonics. Harmonic distortion may disturb or even damage sensitive equipment connected in the same environment. Harmonics also cause additional losses in the network. Harmonic standards are thus becoming stricter and there is a growing demand for low harmonic solutions.

ABB’s low harmonic drives offer an easy low harmonic solution incorporated in the drive. The solution to overcome harmonic issues simply comes with the drive without the need for additional filtering equipment or complicated multi-pulse transformer arrangements.

Compact solutionThe ACS800-31 is low harmonic drive in a single, complete wall-mounted package. It has an active supply unit and low harmonic line filter integrated in the drive resulting in less cabling and installation work on site. This compact drive package itself has extremely low line harmonics and thus meets the strictest harmonic standards without any need for additional filtering equipment. Due to the active supply unit it always operates with power factor 1.

The power ratings of the ACS800-31 start from 5.5 kW heavy duty rating and go up to 110 kW continuous load rating. It is available in the IP21 protection degree. In line with the ACS800 series, an extensive range of external options are available including EMC filters and extension modules for additional I/O.

Main standard hardware features − Wall-mounting − IP21 protection degree − Active supply unit inside − Low harmonic filter inside − Long lifetime cooling fan and capacitors − Extensive, programmable I/O with galvanically isolated

inputs − Three I/O and fieldbus extension slots inside − Alphanumeric, multilingual control panel with startup

assistant feature − Large power terminals allowing the use of a wide range of

cable sizes

Options for ACS800-31Built-in options:

− EMC filter for 1st environment, restricted distribution according to EN 61800-3 (category C2)

− EMC filter for 2nd environment, unrestricted distribution according to EN 61800-3 (category C3)

− Analog and digital I/O extension modules − Fieldbus modules − Pulse encoder interface module

External options: − Output filters − Brake chopper and resistor − Safe torque-off (STO)

Page 8: VFD Documents

Catalog | ABB industrial drives ACS800 single drives 19

Ratings, types and voltagesACS800-31

Nominal ratings No-overloaduse

Light-overloaduse

Heavy-duty use

Noise level

Heatdissipation

Air flow Type designation Framesize

Icont. max Imax Pcont. max IN PN Ihd Phd

A A kW A kW A kW dBA W m3/hUN = 230 V (Range 208 to 240 V). The power ratings are valid at nominal voltage 230 V.34 52 7.5 32 7.5 26 5.5 70 505 350 ACS800-31-0011-2 R547 68 11 45 11 38 7.5 70 694 350 ACS800-31-0016-2 R559 90 15 56 15 45 11 70 910 350 ACS800-31-0020-2 R575 118 22 69 18.5 59 15 70 1099 350 ACS800-31-0025-2 R588 137 22 83 22 72 18.5 70 1315 350 ACS800-31-0030-2 R5120 168 37 114 30 84 22 73 1585 405 ACS800-31-0040-2 R6150 234 45 143 45 117 30 73 2125 405 ACS800-31-0050-2 R6169 264 45 157 45 132 37 73 2530 405 ACS800-31-0060-2 R6UN = 400 V (Range 380 to 415 V). The power ratings are valid at nominal voltage 400 V.34 52 15 32 15 26 11 70 550 350 ACS800-31-0016-3 R538 61 18.5 36 18.5 34 15 70 655 350 ACS800-31-0020-3 R547 68 22 45 22 38 18.5 70 760 350 ACS800-31-0025-3 R559 90 30 56 30 45 22 70 1000 350 ACS800-31-0030-3 R572 118 37 69 37 59 30 70 1210 350 ACS800-31-0040-3 R586 137 45 83 45 65 30 70 1450 350 ACS800-31-0050-3 R5120 168 55 114 55 88 45 73 1750 405 ACS800-31-0060-3 R6150 234 75 143 75 117 55 73 2350 405 ACS800-31-0070-3 R6165 264 90 157 75 132 75 73 2800 405 ACS800-31-0100-3 R6UN = 500 V (Range 380 to 500 V). The power ratings are valid at nominal voltage 500 V.31 52 18.5 29 18.5 25 15 70 655 350 ACS800-31-0020-5 R536 61 22 34 22 30 18.5 70 760 350 ACS800-31-0025-5 R547 68 30 45 30 37 22 70 1000 350 ACS800-31-0030-5 R558 90 37 55 37 47 30 70 1210 350 ACS800-31-0040-5 R570 118 45 67 45 57 37 70 1450 350 ACS800-31-0050-5 R582 130 55 78 45 62 1) 37 70 1750 350 ACS800-31-0060-5 R5120 168 75 114 75 88 55 73 2350 405 ACS800-31-0070-5 R6139 234 90 132 90 114 75 73 2800 405 ACS800-31-0100-5 R6156 264 110 148 2) 90 125 75 73 3400 405 ACS800-31-0120-5 R6UN = 690 V (Range 525 to 690 V). The power ratings are valid at nominal voltage 690 V.57 3) 86 55 54 45 43 37 76 1750 405 ACS800-31-0060-7 R679 120 75 75 55 60 55 76 2350 405 ACS800-31-0070-7 R693 4) 142 90 88 75 71 55 76 2800 405 ACS800-31-0100-7 R6

ACS800 – 31 – XXXX – 2 + XXXX357

Nominal ratingsIcont.max Rated current available continuously without overloadability at 40 °C.Imax Maximum output current. Available for 10 s at start, otherwise as long as

allowed by drive temperature. Note: max. motor shaft power is 150% Phd.Typical ratings: No-overload usePcont.max Typical motor power in no-overload use.Light-overload useIN Continuous current allowing 110% IN for 1 min / 5 min at 40 °C.PN Typical motor power in light-overload use.Heavy-duty useIhd Continuous current allowing 150% Ihd for 1 min / 5 min at 40 °C.Phd Typical motor power in heavy-duty use.

The current ratings are the same regardless of the supply voltage within onevoltage range.The ratings apply at 40 °C ambient temperature. At higher temperatures (up to 50 °C) the derating is 1% / 1 °C.For sine fi lter selections and ratings, contact ABB.

DimensionsFramesize

IP21

Heightmm

Widthmm

Depthmm

Weightkg

R5 816 265 390 62R6 970 300 440 100

EnclosureDegree of protection: IP21 (Standard)Paint color: NCS 1502-Y (RAL 9002/PMS 420C)

Notes:1) 65 A is allowed at 460 V.2) 156 A is allowed at 460 V.3) 62 A is allowed at 575 V.4) 99 A is allowed at 575 V.

AaronK
Highlight
Page 9: VFD Documents

ACS800

Hardware ManualACS800-31 Drives (5.5 to 110 kW) ACS800-U31 Drives (7.5 to 125 HP)

Page 10: VFD Documents

ACS800 Single Drive Manuals

HARDWARE MANUALS (appropriate manual is included in the delivery)

ACS800-01/U1 Hardware Manual 0.55 to 110 kW (0.75 to 150 HP) 3AFE64382101 (English)ACS800-01/U1 Marine Supplement 3AFE64291275 (English)ACS800-02/U2 Hardware Manual 90 to 500 kW (125 to 600 HP) 3AFE64567373 (English)ACS800-11/U11 Hardware Manual 5.5 to110 kW (7.5 to 125 HP) 3AFE68367883 (English)ACS800-31/U31 Hardware Manual 5.5 to110 kW (7.5 to 125 HP) 3AFE68599954 (English)ACS800-04 Hardware Manual 0.55 to 132 kW 3AFE68372984 (English)ACS800-04/04M/U4 Hardware Manual 45 to 560 kW (60 to 600 HP) 3AFE64671006 (English)ACS800-04/04M/U4 Cabinet Installation 45 to 560 kW (60 to 600 HP) 3AFE68360323 (English)ACS800-07/U7 Hardware Manual 45 to 560 kW (50 to 600 HP) 3AFE64702165 (English)ACS800-07/U7 Dimensional Drawings 45 to 560 kW (50 to 600 HP) 3AFE64775421 ACS800-07 Hardware Manual 500 to 2800 kW3AFE64731165 (English)ACS800-17 Hardware Manual 75 to 1120 kW3AFE64681338 (English) ACS800-37 Hardware Manual 160 to 2800 kW (200 to 2700 HP)3AFE68557925 (English)

� Safety instructions� Electrical installation planning� Mechanical and electrical installation� Motor control and I/O board (RMIO)� Maintenance� Technical data� Dimensional drawings� Resistor braking

FIRMWARE MANUALS, SUPPLEMENTS AND GUIDES (appropriate documents are included in the delivery)

Standard Application Program Firmware Manual 3AFE64527592 (English)System Application Program Firmware Manual 3AFE63700177 (English)Application Program Template Firmware Manual 3AFE64616340 (English)Master/Follower 3AFE64590430 (English)Pump Control Application Program Firmware Manual 3AFE68478952 (English)Extruder Control Program Supplement 3AFE64648543 (English)Centrifuge Control Program Supplement 3AFE64667246 (English)Traverse Control Program Supplement 3AFE64618334 (English)Crane Control Program Firmware Manual 3BSE11179 (English)Adaptive Programming Application Guide 3AFE64527274 (English)

OPTION MANUALS (delivered with optional equipment)

Fieldbus Adapters, I/O Extension Modules etc.

Page 11: VFD Documents

ACS800-31 Drives5.5 to 110 kW

ACS800-U31 Drives7.5 to 125 HP

Hardware Manual

3AFE68599954 Rev A ENEFFECTIVE: 14.10.2005

© 2005 ABB Oy. All Rights Reserved.

Page 12: VFD Documents
Page 13: VFD Documents

1

Update Notice

NEW (page 6): Safety / Installation and maintenance work• After maintaining or modifying a drive safety circuit or changing circuit boards

inside the module, retest the functioning of the safety circuit according to the start-up instructions.

• Do not change the electrical installations of the drive except for the essential control and power connections. Changes may affect the safety performance or operation of the drive unexpectedly. All customer-made changes are on the customer's responsibility.

[...]

Note:

• The Safe torque off function (option +Q967) does not remove the voltage from the main and auxiliary circuits.

NEW (page 10): Safety / Operation• The Safe torque off function (option +Q967) can be used for stopping the drive in

emergency stop situations. In the normal operating mode, use the Stop command instead.

NEW (page 20): Contents• Installation of ASTO board (Safe torque off, +Q967) describes the electrical

installation of the optional Safe torque off function.

CHANGED (page 22): Installation and commissioning flowchartSee Electrical installation, Motor control and I/O board (RMIO), Installation of AGPS board (Prevention of Unexpected Start, +Q950), Installation of ASTO board (Safe torque off, +Q967) and the optional module manual delivered with the module.

The notice concerns the following ACS800-31 Drives (5.5 to 110 kW) and ACS800-U31 Drives (7.5 to 125 HP) Hardware Manuals:

Code: 3AUA0000059448 Rev BValid: from 01.09.2010 until the release of the next revision of the manualContents:The headings in this update notice refer to the modified subsections in the original English manual. Each heading also includes a page number and a classifier NEW, CHANGED, or DELETED. The page number refers to the page number in the original English manual. The classifier describes the type of the modification.

Code Revision Language3AFE68599954 A English EN

3AFE68626552 A German DE

3AFE68626561 A French FR

Update Notice

Page 14: VFD Documents

2

NEW (page 31): Type codeThe table below contains the new option code definition for the Safe torque off function.

NEW (page 49): Emergency stopNote: If you add or modify the wiring in the drive safety circuits, ensure that the appropriate standards (e.g. IEC 61800-5-1, EN 62061, EN/ISO 13849-1 and -2) and the ABB guidelines are met. After making the changes, verify the operation of the safety function by testing it.

NEW (page 51): Safe torque offThe drive supports the Safe torque off (STO) function according to standards EN 61800-5-2:2007; EN/ISO 13849-1:2008, IEC 61508, and EN 62061:2005. The function also corresponds to an uncontrolled stop in accordance with category 0 of EN 60204-1 and prevention of unexpected start-up of EN 1037.

The STO may be used where power removal is required to prevent an unexpected start. The function disables the control voltage of the power semiconductors of the drive output stage, thus preventing the inverter from generating the voltage required to rotate the motor (see the diagram below). By using this function, short-time operations (like cleaning) and/or maintenance work on non-electrical parts of the machinery can be performed without switching off the power supply to the drive.

Code Description

+Q967 Safe torque off (STO)

Update Notice

Page 15: VFD Documents

3

Update Notice

Page 16: VFD Documents

4

WARNING! The Safe torque off function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore maintenance work on electrical parts of the drive or the motor can only be carried out after isolating the drive system from the main supply.

Note: The Safe torque off function can be used for stopping the drive in emergency stop situations. In the normal operating mode, use the Stop command instead. If a running drive is stopped by using the function, the drive will trip and stop by coasting. If this is not acceptable, e.g. causes danger, the drive and machinery must be stopped using the appropriate stopping mode before using this function.

Note concerning permanent magnet motor drives in case of a multiple IGBT power semiconductor failure: In spite of the activation of the Safe torque off function, the drive system can produce an alignment torque which maximally rotates the motor shaft by 180/p degrees. p denotes the pole pair number.

Note: If you add or modify the wiring in the drive safety circuits, ensure that the appropriate standards (e.g. IEC 61800-5-1, EN 62061, EN/ISO 13849-1 and -2) and the ABB guidelines are met. After making the changes, verify the operation of the safety function by testing it.

NEW (page 75): Installation of ASTO board (Safe torque off, +Q967)

What this chapter containsThis chapter describes

• electrical installation of the optional Safe torque off function (+Q967) of the drive.

• specifications of the board.

Safe torque off (+Q967)The optional Safe torque off function includes an ASTO board, which is connected to the drive and an external power supply. See also chapter Planning the electrical installation, page 50.

Installation of the ASTO board

WARNING! Dangerous voltages can be present at the ASTO board even when the 24 V supply is switched off. Follow the Safety instructions on the first pages of this manual and the instruction in this chapter when working on the ASTO board.Make sure that the drive is disconnected from the mains (input power) and the 24 V source for the ASTO board is switched off during installation and maintenance. If the drive is already connected to the mains, wait for 5 min after disconnecting mains power.

Update Notice

Page 17: VFD Documents

5

See

• page 24 for location of terminal block X41 of the drive

• page 6 (in this Update Notice) for the circuit diagram

• page 6 (in this Update Notice) for the dimensions of the ASTO-11C board

• section ASTO-11C in chapter Technical data for the technical data of the ASTO-11C board.

Note: Maximum cable length between ASTO terminal block X2 and the drive terminal block is restricted to 3 metres.

Connect the ASTO board as follows:

• Remove the cover of the enclosed ASTO unit by undoing the fixing screws (1).

• Ground the ASTO unit via the bottom plate of the enclosure or via terminal X1:2 or X1:4 of the ASTO board.

• Connect the cable delivered with the kit between terminal block X2 of the ASTO board (2) and drive terminal block X41.

• Connect a cable between connector X1 of the ASTO board (3) and the 24 V source.

• Fasten the cover of the ASTO unit back with screws.

1

2

3

X2

X1

24 V

Update Notice

Page 18: VFD Documents

6

Circuit diagram

The diagram below shows the connection between the ASTO board and the drive when it is ready. For an example diagram of a complete Safe torque off circuit, see page 3 (in this Update Notice).

Dimensions

The dimensions of the ASTO board are the same as the dimensions of the AGPS board. See Dimensional drawing on page 74.

NEW (page 111): ASTO-11C

Nominal input voltage 24 V DCNominal input current 40 mA (20mA per channel)X1 terminal sizes 4 x 2.5 mm2

Nominal output current 0.4 AX2 terminal block type JST B4P-VHAmbient temperature 0...50°CRelative humidity Max. 90%, no condensation allowedDimensions (with enclosure)

167 x 128 x 52 mm (Height x Weight x Depth)

Weight (with enclosure) 0.75 kg

3AUA0000069101

Update Notice

Page 19: VFD Documents

7

NEW (page 111): Ambient conditionsModules with option +Q967: the installation site altitude in operation is 0 to 2000 m.

Operationinstalled for stationary use

Installation site altitude [...] Modules with option +Q967: 0 to 2000 m

Update Notice

Page 20: VFD Documents

8

Update Notice

Page 21: VFD Documents

5

Safety instructions

What this chapter containsThis chapter contains the safety instructions which you must follow when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, motor or driven equipment. Read the safety instructions before you work on the unit.

To which products this chapter appliesThis chapter applies to the ACS800-01/U1, ACS800-11/U11, ACS800-31/U31, ACS800-02/U2 and ACS800-04/04M/U4 of frame sizes R7 and R8.

Use of warnings and notesThere are two types of safety instructions throughout this manual: warnings and notes. Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment. They also tell you how to avoid the danger. Notes draw attention to a particular condition or fact, or give information on a subject. The warning symbols are used as follows:

Dangerous voltage warning warns of high voltage which can cause physical injury and/or damage to the equipment.

General warning warns about conditions, other than those caused by electricity, which can result in physical injury and/or damage to the equipment.

Electrostatic discharge warning warns of electrostatic discharge which can damage the equipment.

Safety instructions

Page 22: VFD Documents

6

Installation and maintenance workThese warnings are intended for all who work on the drive, motor cable or motor.

WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment:

� Only qualified electricians are allowed to install and maintain the drive.

� Never work on the drive, motor cable or motor when main power is applied. After disconnecting the input power, always wait for 5 min to let the intermediate circuit capacitors discharge before you start working on the drive, motor or motor cable.

Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that:

1. voltage between drive input phases U1, V1 and W1 and the frame is close to 0 V.

2. voltage between terminals UDC+ and UDC- and the frame is close to 0 V.

� Do not work on the control cables when power is applied to the drive or to the external control circuits. Externally supplied control circuits may cause dangerous voltages inside the drive even when the main power on the drive is switched off.

� Do not make any insulation or voltage withstand tests on the drive or drive modules.

� When reconnecting the motor cable, always check that the phase order is correct.

Note:

� The motor cable terminals on the drive are at a dangerously high voltage when the input power is on, regardless of whether the motor is running or not.

� The brake control terminals (UDC+, UDC-, R+ and R- terminals) carry a dangerous DC voltage (over 500 V).

� Depending on the external wiring, dangerous voltages (115 V, 220 V or 230 V) may be present on the terminals of relay outputs RO1 to RO3.

� ACS800-02 with enclosure extension: The main switch on the cabinet door does not remove the voltage from the input busbars of the drive. Before working on the drive, isolate the whole drive from the supply.

� ACS800-04M, ACS800-07: The Prevention of Unexpected Start function does not remove the voltage from the main and auxiliary circuits.

� At installation sites above 2000 m (6562 ft), the terminals of the RMIO board and optional modules attached to the board do not fulfil the Protective Extra Low Voltage (PELV) requirements stated in EN 50178.

Safety instructions

Page 23: VFD Documents

7

Grounding

These instructions are intended for all who are responsible for the grounding of the drive.

WARNING! Ignoring the following instructions can cause physical injury, death, increased electromagnetic interference and equipment malfunction:

� Ground the drive, motor and adjoining equipment to ensure personnel safety in all circumstances, and to reduce electromagnetic emission and pick-up.

� Make sure that grounding conductors are adequately sized as required by safety regulations.

� In a multiple-drive installation, connect each drive separately to protective earth (PE).

� ACS800-01, ACS800-11, ACS800-31: In European CE compliant installations and in other installations where EMC emissions must be minimized, make a 360° high frequency grounding of cable entries in order to suppress electromagnetic disturbances. In addition, connect the cable shields to protective earth (PE) in order to meet safety regulations.

ACS800-04 (45 to 560 kW) and ACS800-02 in first environment: make a 360° high frequency grounding of motor cable entries at the cabinet lead-through.

� Do not install a drive with EMC filter option +E202 or +E200 (available for ACS800-01 and ACS800-11, ACS800-31 only) on an ungrounded power system or a high-resistance-grounded (over 30 ohms) power system.

Note:

� Power cable shields are suitable for equipment grounding conductors only when adequately sized to meet safety regulations.

� As the normal leakage current of the drive is higher than 3.5 mA AC or 10 mA DC (stated by EN 50178, 5.2.11.1), a fixed protective earth connection is required.

Safety instructions

Page 24: VFD Documents

8

Mechanical installation and maintenance

These instructions are intended for all who install and service the drive.

WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment:

� Handle the unit carefully.

� ACS800-01, ACS800-11, ACS800-31: The drive is heavy. Do not lift it alone. Do not lift the unit by the front cover. Place the unit only on its back.

ACS800-02, ACS800-04: The drive is heavy. Lift the drive by the lifting lugs only. Do not tilt the unit. The unit will overturn from a tilt of about 6 degrees. Use extreme caution when manoeuvring a drive that runs on wheels. An overturning unit can cause physical injury.

� Beware of hot surfaces. Some parts, such as heatsinks of power semiconductors, remain hot for a while after disconnection of the electrical supply.

� Make sure that dust from drilling does not enter the drive when installing. Electrically conductive dust inside the unit may cause damage or malfunctioning.

� Ensure sufficient cooling.

� Do not fasten the drive by riveting or welding.

Do not tilt!

Safety instructions

Page 25: VFD Documents

9

Printed circuit boards

Fibre optic cables

WARNING! Ignoring the following instructions can cause damage to the printed circuit boards:

� The printed circuit boards contain components sensitive to electrostatic discharge. Wear a grounding wrist band when handling the boards. Do not touch the boards unnecessarily.

WARNING! Ignoring the following instructions can cause equipment malfunction and damage to the fibre optic cables:

� Handle the fibre optic cables with care. When unplugging optic cables, always grab the connector, not the cable itself. Do not touch the ends of the fibres with bare hands as the fibre is extremely sensitive to dirt. The minimum allowed bend radius is 35 mm (1.4 in.).

Safety instructions

Page 26: VFD Documents

10

OperationThese warnings are intended for all who plan the operation of the drive or operate the drive.

WARNING! Ignoring the following instructions can cause physical injury or death, or damage to the equipment:

� Before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. The drive can be adjusted to operate the motor at speeds above and below the speed provided by connecting the motor directly to the power line.

� Do not activate automatic fault reset functions of the Standard Application Program if dangerous situations can occur. When activated, these functions will reset the drive and resume operation after a fault.

� Do not control the motor with the disconnecting device (disconnecting means); instead, use the control panel keys and , or commands via the I/O board of the drive. The maximum allowed number of charging cycles of the DC capacitors (i.e. power-ups by applying power) is five in ten minutes.

� ACS800-04M, ACS800-07: Do not use the optional Prevention of Unexpected Start function for stopping the drive when the drive is running. Give a Stop command instead.

Note:

� If an external source for start command is selected and it is ON, the drive (with Standard Application Program) will start immediately after fault reset unless the drive is configured for 3-wire (a pulse) start/stop.

� When the control location is not set to Local (L not shown in the status row of the display), the stop key on the control panel will not stop the drive. To stop the drive using the control panel, press the LOC/REM key and then the stop key .

Safety instructions

Page 27: VFD Documents

11

Permanent magnet motorThese are additional warnings concerning permanent magnet motor drives. Ignoring the instructions can cause physical injury or death, or damage to the equipment.

Installation and maintenance work

WARNING! Do not work on the drive when the permanent magnet motor is rotating. Also, when the supply power is switched off and the inverter is stopped, a rotating permanent magnet motor feeds power to the intermediate circuit of the drive and the supply connections become live.

Before installation and maintenance work on the drive:

� Stop the motor.

� Ensure that the motor cannot rotate during work.

� Ensure that there is no voltage on the drive power terminals:Alternative 1) Disconnect the motor from the drive with a safety switch or by other means. Measure that there is no voltage present on the drive input or output terminals (U1, V1, W1, U2, V2, W2, UDC+, UDC-).Alternative 2) Measure that there is no voltage present on the drive input or output terminals (U1, V1, W1, U2, V2, W2, UDC+, UDC-). Ground the drive output terminals temporarily by connecting them together as well as to the PE.Alternative 3) If possible, both of the above.

Start-up and operation

WARNING! Do not run the motor over the rated speed. Motor overspeed leads to overvoltage which may damage or explode the capacitors in the intermediate circuit of the drive.

Controlling a permanent magnet motor is only allowed using the ACS800 Permanent Magnet Synchronous Motor Drive Application Program, or other application programs in scalar control mode.

Safety instructions

Page 28: VFD Documents

12

Safety instructions

Page 29: VFD Documents

13

Table of contents

ACS800 Single Drive Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Safety instructions

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5To which products this chapter applies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Use of warnings and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Installation and maintenance work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Mechanical installation and maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Printed circuit boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Fibre optic cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Permanent magnet motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Installation and maintenance work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Start-up and operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table of contents

About this manual

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Common chapters for several products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Categorization according to the frame size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Categorization according to the plus code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Installation and commissioning flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

The ACS800-31/U31

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23The ACS800-31/U31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Operation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Line-side converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Motor-side converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

AC voltage and current waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Printed circuit boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27DDCS communication modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Main circuit and control interfaces diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Fieldbus control of the line-side converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Control block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Connection diagram of the RMIO board in the line-side converter . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table of contents

Page 30: VFD Documents

14

Type code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Mechanical installation

Unpacking the unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Delivery check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Moving the unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Before installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Requirements for the installation site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Free space around the unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Mounting the drive on the wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Units without vibration dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Units with vibration dampers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Cabinet installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Preventing cooling air recirculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Unit above another . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Planning the electrical installation

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39To which products this chapter applies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Motor selection and compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Protecting the motor insulation and bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Requirements table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Permanent magnet synchronous motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Supply connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Disconnecting device (disconnecting means) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45ACS800-01, ACS800-U1, ACS800-11, ACS800-U11, ACS800-31, ACS800-U31, ACS800-02 and ACS800-U2 without enclosure extension, ACS800-04, ACS800-U4 . . . . . . . . . . . . . . . 45ACS800-02 and ACS800-U2 with enclosure extension, ACS800-07 and ACS800-U7 . . . . 45EU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Thermal overload and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Thermal overload protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Ground fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Emergency stop devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ACS800-02/U2 with enclosure extension and ACS800-07/U7 . . . . . . . . . . . . . . . . . . . . . . . . . 49Restarting after an emergency stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Prevention of Unexpected Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Selecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

General rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Alternative power cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Motor cable shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Additional US requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Conduit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Armored cable / shielded power cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table of contents

Page 31: VFD Documents

15

Power factor compensation capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Equipment connected to the motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Installation of safety switches, contactors, connection boxes, etc. . . . . . . . . . . . . . . . . . . . . . . . 54Bypass connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Before opening a contactor (DTC control mode selected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Protecting the relay output contacts and attenuating disturbances in case of inductive loads . . . . 55Selecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Relay cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Control panel cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Connection of a motor temperature sensor to the drive I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Installation sites above 2000 metres (6562 feet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Routing the cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Control cable ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Electrical installation

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Checking the insulation of the installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Input cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Motor and motor cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

IT (ungrounded) systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Disconnecting the EMC filter capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Connecting the power cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Conductor stripping lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Allowed wire sizes, tightening torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Wall installed units (European version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Power cable installation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Wall installed units (US version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Warning sticker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Cabinet installed units (IP 00, UL type open) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Connecting the control cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67360 degrees grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

When the outer surface of the shield is covered with non-conductive material . . . . . . . . . . . 68Connecting the shield wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Cabling of I/O and fieldbus modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Pulse encoder module cabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Fastening the control cables and covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Installation of optional modules and PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Installation of AGPS board (Prevention of Unexpected Start, +Q950)

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Prevention of Unexpected Start (+Q950) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Installation of the AGPS board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Dimensional drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table of contents

Page 32: VFD Documents

16

Motor control and I/O board (RMIO)

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75To which products this chapter applies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Note for the ACS800-02 with enclosure extension and the ACS800-07 . . . . . . . . . . . . . . . . . . . . 75Note on terminal labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Note on external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76External control connections (non-US) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77External control connections (US) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

RMIO board specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Constant voltage output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Auxiliary power output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80DDCS fibre optic link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8024 VDC power input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Installation checklist

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Installation checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Start-up and use

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Start-up and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

To control the line-side converter... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86To control the motor-side converter... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Actual signals and parameters

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Line-side converter actual signals and parameters in the motor-side converter application program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

09 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

95 HARDWARE SPECIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90ACS800-31/U31 specific parameters in the IGBT Supply Control Program . . . . . . . . . . . . . . . . . 91

Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

16 SYSTEM CTR INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9131 AUTOMATIC RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Fixed parameters with the ACS800-31 and ACS800-U31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table of contents

Page 33: VFD Documents

17

Maintenance

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Maintenance intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Heatsink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Main cooling fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Fan replacement (R5, R6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Additional fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Replacement (R5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Replacement (R6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Fault tracing

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Faults and warnings displayed by the CDP-312R Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Warning/Fault message from unit not being monitored by control panel . . . . . . . . . . . . . . . . . . 99Conflicting ID numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Technical data

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101IEC data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Temperature derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Altitude derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Mains cable fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Cable entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Dimensions, weights and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

NEMA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Input cable fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Cable types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Cable Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Dimensions, weights and noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Input power connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Motor connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Degrees of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110AGPS-11C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Ambient conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table of contents

Page 34: VFD Documents

18

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Applicable standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112CE marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Compliance with the EMC Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Compliance with the EN 61800-3 (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

First environment (drive of category C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Second environment (drive of category C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Second environment (drive of category C4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Machinery Directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 �C-tick� marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Compliance with IEC 61800-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

First environment (drive of category C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Second environment (drive of category C3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Second environment (drive of category C4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

UL/CSA markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117UL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Equipment warranty and liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Dimensional drawings

Frame size R5 (IP21, UL type open, UL type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Frame size R6 (IP21, UL type open, UL type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Resistor braking

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123How to select the correct drive/chopper/resistor combination . . . . . . . . . . . . . . . . . . . . . . . . . . . 123External brake chopper and resistor(s) for the ACS800-31/U31 . . . . . . . . . . . . . . . . . . . . . . . . . 124Brake chopper and resistor installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Brake circuit commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

External +24 V power supply for the RMIO boards via terminal X34

What this chapter contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127Connecting +24 V external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

RMIO board of the motor-side converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128RMIO board of the line-side converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Frame size R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Frame size R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Table of contents

Page 35: VFD Documents

19

About this manual

What this chapter containsThis chapter describes the intended audience and contents of this manual. It contains a flowchart of steps in checking the delivery, installing and commissioning the drive. The flowchart refers to chapters/sections in this manual and other manuals.

Intended audienceThis manual is intended for people who plan the installation, install, commission, use and service the drive. Read the manual before working on the drive. The reader is expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

This manual is written for readers worldwide. Both SI and imperial units are shown. Special US instructions for installations within the United States that must be installed per the National Electrical Code and local codes are marked with (US).

Common chapters for several productsChapters Safety instructions, Planning the electrical installation and Motor control and I/O board (RMIO) apply to several ACS800 products which are listed at the beginning of the chapters.

Categorization according to the frame sizeSome instructions, technical data and dimensional drawings which concern only certain frame sizes are marked with the symbol of the frame size R2, R3, ... or R8. The frame size is not marked on the drive designation label. To identify the frame size of your drive, see the rating tables in chapter Technical data.

The ACS800-31/U31 is manufactured in frame sizes R5 and R6.

Categorization according to the plus codeThe instructions, technical data and dimensional drawings which concern only certain optional selections are marked with plus codes, e.g. +E202. The options included in the drive can be identified from the plus codes visible on the type designation label of the drive. The plus code selections are listed in chapter The ACS800-31/U31 under Type code.

About this manual

Page 36: VFD Documents

20

ContentsThe chapters of this manual are briefly described below.

Safety instructions give safety instructions for the installation, commissioning, operation and maintenance of the drive.

About this manual lists the steps in checking the delivery and installing and commissioning the drive and refers to chapters/sections in this manual and other manuals for particular tasks.

The ACS800-31/U31 describes the drive.

Mechanical installation instructs in how to place and mount the drive.

Planning the electrical installation instructs in the motor and cable selection, protections and cable routing.

Electrical installation shows how to wire the drive.

Installation of AGPS board (Prevention of Unexpected Start, +Q950) describes the electrical installation of the optional Prevention of Unexpected Start function (+Q950).

Motor control and I/O board (RMIO) shows the external control connections to the I/O board.

Installation checklist contains a list for checking the mechanical and electrical installation of the drive.

Start-up and use describes the start-up procedure and use of the drive.

Actual signals and parameters contains listings of parameters specific to the ACS800-31 and ACS800-U31.

Maintenance contains preventive maintenance instructions.

Fault tracing contains guide lines for fault tracing.

Technical data contains the technical specifications of the drive, e.g. the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings and warranty policy.

Dimensional drawings contains the dimensional drawings of the drive.

Resistor braking describes how to select, protect and wire external brake choppers and resistors for the drive. The chapter also contains installation instructions and the technical data.

External +24 V power supply for the RMIO boards via terminal X34 describes how to connect an external +24 V power supply for the RMIO board using terminal X34.

About this manual

Page 37: VFD Documents

21

Installation and commissioning flowchart

Task See

Identify the frame size of your drive: R5 or R6. Technical data / IEC data or NEMA data

Plan the installation.

Check the ambient conditions, ratings, required cooling air flow, input power connection, compatibility of the motor, motor connection, and other technical data.

Select the cables.

Technical data

Planning the electrical installation

For compliance with the European Union EMC Directive, see Technical data: CE marking.

Option manual (if optional equipment is included)

Unpack and check the units.

Check that all necessary optional modules and equipment are present and correct.

Only intact units may be started up.

Mechanical installation: Unpacking the unit.

If the converter has been non-operational for more than one year, the converter DC link capacitors need to be reformed. Ask ABB for instructions.

If the drive is about to be connected to an IT (ungrounded) system, check that the drive is not equipped with EMC filtering intended for grounded systems.

The ACS800-31/U31: Type code; Electrical installation: IT (ungrounded) systems.

Check the installation site. Mechanical installation: Before installation

Technical data

Install the drive on a wall or in a cabinet. Mechanical installation

Route the cables. Planning the electrical installation: Routing the cables

For compliance with the European Union EMC Directive, see Technical data: CE marking.

About this manual

Page 38: VFD Documents

22

InquiriesAddress any inquiries about the product to the local ABB representative, quoting the type code and serial number of the unit. If the local ABB representative cannot be contacted, address inquiries to the manufacturing facility.

Check the insulation of the motor and the motor cable.

Electrical installation: Checking the insulation of the installation

Connect the power cables. Electrical installation

Connect the control and auxiliary control cables. Electrical installation, Motor control and I/O board (RMIO), Installation of AGPS board (Prevention of Unexpected Start, +Q950) and the optional module manual delivered with the module.

Check the installation. Installation checklist

Commission the drive. Start-up and use, appropriate application program firmware manual

Task See

About this manual

Page 39: VFD Documents

23

The ACS800-31/U31

What this chapter containsThis chapter describes the operating principle and construction of the drive in short.

The ACS800-31/U31The ACS800-31/U31 is wall mountable, low-harmonic drive for controlling AC motors.

Heat sink

Control panelCDP312R

Front cover

Cooling fan

IP21 (UL type 1)

Frame size R6

Connection box cover

IP20 (UL type open)

Top cover

Clear plastic shroud

The ACS800-31/U31

Page 40: VFD Documents

24

Frame size R6 without front and connection box covers

Location of the line-side converter RMIO board

Location of the motor-side converter RMIO board

Frame size R5 without front and connection box covers

PE

I/O terminals

Power cable

terminalsPE

U1 V1 W1 V2 W2U2UD

C+

UD

C-

X41

U1 V1 U2 V2 W2UD

C+

UD

C-

W1X41

The ACS800-31/U31

Page 41: VFD Documents

25

TermsLine-side converter: A converter that is connected to the supply network and is capable of transferring energy from the network to the DC link.

Motor-side converter: A converter that is connected to the motor and controls the motor operation.

Operation principleThe line-side and motor-side converters consist of six insulated gate bipolar transistors (IGBT) with free wheeling diodes.

The converters have their own control programs. The parameters of both programs can be viewed and changed using one control panel. The control panel can be switched between the converters as described on page 86.

Line-side converter

The IGBT supply module rectifies three phase AC current to direct current for the intermediate DC link of the drive. The intermediate DC link is further supplying the motor-side converter that runs the motor. The line filter suppresses the AC voltage and current harmonics.

By default, the converter controls the DC link voltage to the peak value of the line-to-line voltage. The DC voltage reference can be set also higher by a parameter. The control of the IGBT power semiconductors is based on the Direct Torque Control (DTC) method also used in the motor control of the drive. Two line currents and the DC link voltage are measured and used for the control.

Motor-side converter

The motor control is based on the Direct Torque Control (DTC) method. Two phase currents and DC link voltage are measured and used for the control. The third phase current is measured for earth fault protection.

The ACS800-31/U31

Page 42: VFD Documents

26

AC voltage and current waveformsThe AC line current of the drive is sinusoidal with power factor equal to 1. The IGBT supply unit does not generate characteristic current or voltage overtones like a traditional 6- or 12-pulse bridge does.

The Total Harmonic Distortion (THD) in current is given in chapter Technical data / Input power connection. The THD in voltage depends slightly on the Short Circuit Ratio in the Point of Common Coupling (PCC). The high frequency switching and high du/dt slightly distort the voltage waveform at the input of the converter.

Typical line current (i) and voltage (u) waveforms are shown below.

Example spectra of the current and voltage distortion at the output of the transformer are shown below. Each harmonic is presented as compared to fundamental voltage (reference value = 1). n denotes the ordinal number of the harmonic.

u (V)

i (A)

t (ms)

t (ms)

Test 13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

IL1 [A]

Test 13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

UL12 [%]

nn

Phase current (A) Line-to-line voltage (%)

The ACS800-31/U31

Page 43: VFD Documents

27

Printed circuit boardsThe drive contains the following printed circuit boards as standard:

� main circuit board (GINT)

� motor control and I/O board (RMIO), 2 pcs

� EMC filter unit (GRFCU) when EMC equipment is selected

� filter boards (GRFC or RRFC)

� varistor board (GVAR)

� control panel (CDP 312R)

� current measurement board (GCUR, in frame size R5 only)

� charging diode board (GDIO).

DDCS communication modulesThe drive includes an RDCO-03 module in the line-side converter and another RDCO module in the motor-side converter.

The ACS800-31/U31

Page 44: VFD Documents

28

Main circuit and control interfaces diagram

App

licat

ion

spec

ific

prog

ram

an

d m

otor

co

ntro

l pro

gram

RM

IO b

oard

of

the

mot

or-s

ide

conv

erte

r

Varis

tor

conn

ectio

n

M 3~

LCL

filte

r

Opt

iona

l E

MC

fil

ter

U1

V1

W1

Line

-sid

e co

nver

ter

Mot

or-s

ide

conv

erte

r

UD

C+

UD

C-

Line

-sid

e co

nver

ter

cont

rol p

rogr

am

Ext

erna

l co

ntro

l via

an

alog

ue/

digi

tal

inpu

ts a

nd

outp

uts

Opt

iona

l mod

ule

1:

RM

BA

, RA

IO, R

DIO

, R

DN

A, R

LON

, RIB

A,

RP

BA

, RC

AN

, RC

NA

, R

MB

P, R

ETA

, RR

IA

or R

TAC

Opt

iona

l mod

ule

2: R

TAC

, R

AIO

, RR

IA o

r RD

IO

DD

CS

com

mun

icat

ion

mod

ule:

RD

CO

-03

(def

ault)

, R

DC

O-0

1 or

RD

CO

-02

RM

IO b

oard

of

the

line-

side

co

nver

ter

DD

CS

U2

V2

W2

RD

CO

-03

Sim

plifi

ed m

ain

circ

uit

~=

~=

Inpu

tpo

wer

Out

put

pow

er

UD

C+

UD

C-

X39

X39

ID number 2

K1

CH

0C

H1

ID number 1

The ACS800-31/U31

Page 45: VFD Documents

29

Fieldbus control of the line-side converterFieldbus control of the line-side converter can only be performed via the motor-side converter RMIO board. The control signal dataset receive and actual signal dataset transmit addresses are shown in section Control block diagram below.

Control block diagramThe figure below shows the parameters for DC and reactive power reference selection of the line-side converter control program. The AMC table contains actual values and parameters of the line-side converter. The control and actual signal interchange between the line-side and motor-side converters is also shown.

Dataset 123 (CH1)95.08 LCU PAR1 SEL95.09 LCU PAR2 SEL

++

24.04

Dataset 122 (CH0)MSW (fixed)106 (value)110 (value)

PARAM 23.01

AI1

AI2

AI3

FIELD BUS

11.01 DC REF SELECT

23.01

Dataset 121 (CH0)MCW (fixed)Q-REF(fixed)DC REF(fixed)

Dataset 121 (CH1)MCW95.06 LCU Q POW REF95.07 LCU DC REF (V)

Dataset 122 (CH1)MSW9.12 LCU ACT SIGNAL 19.13 LCU ACT SIGNAL 2

98.02 COMM. MODULE = INVERTER

112.04 SUPPLY CTRL MODE = LINE CONV

MCW = Main Control WordMSW = Main Status Word

DC VOLT REF

Dataset 123 (CH0)106110

PARAM 24.01

AI1

AI2

AI3

PARAM 24.02

24.03 Q POWER REF2 SEL

PERCENTkVArPHICOSPHI

24.02

11.02 Q REF SELECT

24.01

Q POWER REF

Motor-side converter RMIO

Line-side converter RMIO board

AMC table

The ACS800-31/U31

Page 46: VFD Documents

30

Connection diagram of the RMIO board in the line-side converterInternal connections to the RMIO board for the ACS800 IGBT Supply Control Program are shown below. Do not change the connections.

X201 VREF- Reference voltage -10 VDC,

1 kohm < RL < 10 kohm2 GNDX211 VREF+ Reference voltage 10 VDC,

1 kohm < RL < 10 kohm2 GND3 AI1+ By default, not in use. 0(2)...10 V,

Rin > 200 kohm4 AI1-5 AI2+ By default, not in use. 0(4)...20 mA,

Rin = 100 ohm6 AI2-7 AI3+ By default, not in use. 0(4)...20 mA,

Rin = 100 ohm8 AI3-9 AO1+ By default, not in use. 0(4)...20 mA,

RL < 700 ohm10 AO1-11 AO2+ By default, not in use. 0(4)...20 mA,

RL < 700 ohm12 AO2-X221 DI1 Acknowledgement of converter fan 1)

2 DI2 By default not in use.3 DI3 Acknowledgement from main contactor 1)

4 DI4 By default not in use. 2)

5 DI5 By default not in use. 3)

6 DI6 By default not in use.7 +24V +24 VDC max. 100 mA8 +24V9 DGND Digital ground10 DGND Digital ground11 DI7(DIIL) Stop/StartX231 +24V Auxiliary voltage output or input, non-

isolated, 24 VDC 250 mA2 GNDX251 RO11 Relay output 1: By default not in

use.2 RO123 RO13X261 RO21 Relay output 2: By default not in

use.2 RO223 RO23X271 RO31 Relay output 3: Main contactor

control 1)2 RO323 RO33

Terminal block size:cables 0.3 to 3.3 mm2 (22 to 12 AWG)Tightening torque:0.2 to 0.4 Nm (2 to 4 lbf in.)

+ 24 VDC-

1) non-programmable I/O

2) External earth (ground) fault indication via digital input DI4: See parameter 30.04 EXT EARTH FAULT.

3) External alarm/fault indication via digital input DI5: See parameter 30.05 EXT EVENT.

The ACS800-31/U31

Page 47: VFD Documents

31

Type codeThe type code contains information on the specifications and configuration of the drive. The first digits from left express the basic configuration (e.g. ACS800-31-0030-5). The optional selections are given thereafter, separated by plus signs (e.g. +E202). The main selections are described below. Not all selections are available for all types. For more information, refer to ACS800 Ordering Information (EN code: 64556568, available on request).

Selection AlternativesProduct series ACS800 product seriesType 31 wall mounted. When no options are selected: IP21, Control Panel

CDP312R, DDCS communication option module RDCO-03, no EMC filter, Standard Application Program, cable connection box (cabling from below), boards with coating, one set of manuals.

U31 wall mounted (USA). When no options are selected: UL type 1, Control Panel CDP312R, DDCS communication option module RDCO-03, no EMC filter, US version of the Standard Application Program (three-wire start/stop as default setting), US gland/conduit plate, boards with coating, one set of English manuals.

Size Refer to Technical data: IEC data or NEMA data.Voltage range (nominal rating in bold)

2 208/220/230/240 VAC3 380/400/415 VAC5 380/400/415/440/460/480/500 VAC7 525/575/600/690 VAC

+ optionsDegree of protection B051 IP20 (UL type open)Filter E200 EMC/RFI filter for second environment TN (grounded) system,

unrestricted distribution, drive category C3 E202 EMC/RFI filter for first environment TN (grounded) system, restricted

distribution, drive category C2Cabling H357 European lead-through plate for the ACS800-U31

H358 US/UK gland/conduit plate for the ACS800-31Control panel 0J400 no control panel Fieldbus K... Refer to ACS800 Ordering Information (EN code: 64556568).I/O L...Application program N...Manual language R...Safety features Q950 Prevention of Unexpected Start

The ACS800-31/U31

Page 48: VFD Documents

32

The ACS800-31/U31

Page 49: VFD Documents

33

Mechanical installation

Unpacking the unitThe drive is delivered in a box that also contains:

� plastic bag containing: screws (M3), clamps and cable lugs (2 mm2, M3) for grounding the control cable screens

� residual voltage warning stickers

� hardware manual

� appropriate firmware manuals and guides

� optional module manuals

� delivery documents.

Delivery check

Check that there are no signs of damage. Before attempting installation and operation, check the information on the type designation label of the drive to verify that the unit is of the correct type. The label includes an IEC and NEMA rating, C-UL, CSA and CE markings, a type code and a serial number, which allow individual recognition of each unit. The first digit of the serial number refers to the manufacturing plant. The next four digits refer to the unit�s manufacturing year and week, respectively. The remaining digits complete the serial number so that there are no two units with the same serial number.

Mechanical installation

Page 50: VFD Documents

34

The type designation label is attached to the heat sink and the serial number label to the lower part of the back plate of the unit. Example labels are shown below.

Moving the unitLift the unit using the lifting holes at the top and bottom.

Type designation label

Serial number label

Lifting a unit of frame size R6

Mechanical installation

Page 51: VFD Documents

35

Before installationThe drive must be installed in an upright position with the cooling section facing a wall. Check the installation site according to the requirements below. Refer to chapter Dimensional drawings for frame details.

Requirements for the installation site

See chapter Technical data for the allowed operation conditions of the drive.

Wall

The wall should be as close to vertical as possible, of non-flammable material and strong enough to carry the weight of the unit. Check that there is nothing on the wall to inhibit the installation.

Floor

The floor/material below the installation should be non-flammable.

Free space around the unit

Required free space around the drive to enable cooling air flow, service and maintenance is shown below in millimetres and [inches].

IP21 (UL 1)

50 [2.0] 50 [2.0]

200 [7.9]

Cooling air flow

200 [7.9]

Mechanical installation

Page 52: VFD Documents

36

Mounting the drive on the wall

Units without vibration dampers

1. Mark the locations for the four holes. The mounting points are shown in chapter Dimensional drawings.

2. Fix the screws or bolts to the marked locations.

3. Position the drive onto the screws on the wall. Note: Lift the drive by its lifting holes, not by its cover.

4. Tighten the screws in the wall securely.

Units with vibration dampers

In applications with considerable vibration in the frequency range of 50 Hz to 100 Hz, vibration dampers can be used. For units of frame size R5, see ACS800-01/U1 Vibration Damper Installation Guide [3AFE68295351 (English)]. For units of frame size R6, contact ABB for installation instructions.

Cabinet installationThe drive can be installed in a cabinet without the plastic front, top and connection box covers and without the lead-through plate. Vibration dampers are not needed. The required distance between parallel units is 50 millimetres (1.97 in.) in installations without the front cover. The cooling air entering the unit must not exceed +40°C (+104°F). Contact ABB, if two units are to be installed side by side at a distance smaller than 50 millimetres (1.97 in.), i.e. the side air holes will be covered at one side.

Mechanical installation

Page 53: VFD Documents

37

Preventing cooling air recirculation

Prevent air recirculation inside and outside the cabinet.

Example

HOT AREA Main air flow out

Main air flow in

Air baffle plates

COOL AREA

Mechanical installation

Page 54: VFD Documents

38

Unit above another

Lead the out-coming hot cooling air away from the air input of the drive above.

Example

max.+40°C (+104°F)

Mechanical installation

Page 55: VFD Documents

39

Planning the electrical installation

What this chapter containsThis chapter contains the instructions that you must follow when selecting the motor, cables, protections, cable routing and way of operation for the drive system.

Note: The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not followed, the drive may experience problems that the warranty does not cover.

To which products this chapter appliesThis chapter applies to the ACS800-01/U1, ACS800-11/U11, ACS800-31/U31, ACS800-02/U2, ACS800-04/U4, and ACS800-07/U7 types up to -0610-x.

Note: All options described in this chapter are not available for all products. Check the availability from section Type code on page 31.

Motor selection and compatibility1. Select the motor according to the rating tables in chapter Technical Data. Use the

DriveSize PC tool if the default load cycles are not applicable.

2. Check that the motor ratings lie within the allowed ranges of the drive control program:

� motor nominal voltage is 1/2 ... 2 · UN of the drive

� motor nominal current is 1/6 ... 2 · I2hd of the drive in DTC control and 0 ... 2 · I2hd in scalar control. The control mode is selected by a drive parameter.

Planning the electrical installation

Page 56: VFD Documents

40

3. Check that the motor voltage rating meets the application requirements:

See notes 6 and 7 below the Requirements table, pages 43 and 44.

4. Consult the motor manufacturer before using a motor in a drive system where the motor nominal voltage differs from the AC power source voltage.

5. Ensure that the motor insulation system withstands the maximum peak voltage in the motor terminals. See the Requirements table below for the required motor insulation system and drive filtering.

Example 1: When the supply voltage is 440 V and a drive with a diode supply is operating in motor mode only, the maximum peak voltage in the motor terminals can be approximated as follows: 440 V · 1.35 · 2 = 1190 V. Check that the motor insulation system withstands this voltage.

Example 2: When the supply voltage is 440 V and the drive is equipped with an IGBT supply, the maximum peak voltage in the motor terminals can be approximated as follows: 440 V · 1.41 · 2 = 1241 V. Check that the motor insulation system withstands this voltage.

If the drive is equipped with �

� and � � then the motor voltage rating should be �

diode supply ACS800-01, -U1, -02, -U2, -04, -04M, -U4 -07, -U7

no resistor braking is in use UN

frequent or long term brake cycles will be used

UACeq1

IGBT supplyACS800-11, -U11, -31, -U31, -17, -37

DC link voltage will not be increased from nominal (parameter setting)

UN

DC link voltage will be increased from nominal (parameter setting)

UACeq2

UN = Rated input voltage of the driveUACeq1 = UDC/1.35UACeq2 = UDC/1.41

UACeq is the equivalent AC power source voltage of the drive in VAC.UDC is the maximum DC link voltage of the drive in VDC.

For resistor braking: UDC= 1.21 × nominal DC link voltage.For units with IGBT supply: See the parameter value.(Note: Nominal DC link voltage is UN × 1.35 or UN × 1.41 in VDC.)

Planning the electrical installation

Page 57: VFD Documents

41

Protecting the motor insulation and bearings

The output of the drive comprises � regardless of output frequency � pulses of approximately 1.35 times the equivalent mains network voltage with a very short rise time. This is the case with all drives employing modern IGBT inverter technology.

The voltage of the pulses can be almost double at the motor terminals, depending on the attenuation and reflection properties of the motor cable and the terminals. This in turn can cause additional stress on the motor and motor cable insulation.

Modern variable speed drives with their fast rising voltage pulses and high switching frequencies can generate current pulses that flow through the motor bearings, which can gradually erode the bearing races and rolling elements.

The stress on motor insulation can be avoided by using optional ABB du/dt filters. du/dt filters also reduce bearing currents.

To avoid damage to motor bearings, the cables must be selected and installed according to the instructions given in the hardware manual. In addition, insulated N-end (non-driven end) bearings and output filters from ABB must be used according to the following table. Two types of filters are used individually or in combinations:

� optional du/dt filter (protects motor insulation system and reduces bearing currents).

� common mode filter (mainly reduces bearing currents).

Planning the electrical installation

Page 58: VFD Documents

42

Requirements tableThe following table shows how to select the motor insulation system and when an optional ABB du/dt filter, insulated N-end (non-driven end) motor bearings and ABB common mode filters are required. The motor manufacturer should be consulted regarding the construction of the motor insulation and additional requirements for explosion-safe (EX) motors. Failure of the motor to fulfil the following requirements or improper installation may shorten motor life or damage the motor bearings.

Man

ufac

ture

r

Motor type Nominal mains voltage (AC line

voltage)

Requirement for

Motor insulation system

ABB du/dt filter, insulated N-end bearing and ABB common mode filter

PN < 100 kW and

frame size < IEC 315

100 kW < PN < 350 kW or

frame size > IEC 315

PN > 350 kWor

frame size > IEC 400

PN < 134 HPand frame size <

NEMA 500

134 HP < PN < 469 HPor frame size >

NEMA 500

PN > 469 HPor frame size >

NEMA 580

ABB

Random-wound M2_ and M3_

UN < 500 V Standard - + N + N + CMF

500 V < UN < 600 V Standard + du/dt + du/dt + N + du/dt + N + CMF

or

Reinforced - + N + N + CMF

600 V < UN < 690 V Reinforced + du/dt + du/dt + N + du/dt + N + CMF

Form-wound HX_ and AM_

380 V < UN < 690 V Standard n.a. + N + CMF PN < 500 kW: + N + CMF

PN > 500 kW: + N + CMF + du/dt

Old* form-wound HX_ and modular

380 V < UN < 690 V Check with the motor manufacturer.

+ du/dt with voltages over 500 V + N + CMF

Random-wound HX_ and AM_ **

0 V < UN < 500 V Enamelled wire with fibre glass taping

+ N + CMF

500 V < UN < 690 V + du/dt + N + CMF

NON-ABB

Random-wound and form-wound

UN < 420 V Standard: ÛLL = 1300 V

- + N or CMF + N + CMF

420 V < UN < 500 V Standard: ÛLL = 1300 V

+ du/dt + du/dt + N + du/dt + N + CMF

or

+ du/dt + CMF

or

Reinforced: ÛLL = 1600 V, 0.2 microsecond rise time

- + N or CMF + N + CMF

500 V < UN < 600 V Reinforced: ÛLL = 1600 V

+ du/dt + du/dt + N + du/dt + N + CMF

or

+ du/dt + CMF

or

Reinforced: ÛLL = 1800 V

- + N or CMF + N + CMF

600 V < UN < 690 V Reinforced: ÛLL = 1800 V

+ du/dt + du/dt + N + du/dt + N + CMF

Reinforced: ÛLL = 2000 V, 0.3 microsecond rise time ***

- N + CMF N + CMF

Planning the electrical installation

Page 59: VFD Documents

43

* manufactured before 1.1.1998

** For motors manufactured before 1.1.1998, check for additional instructions with the motor manufacturer.

*** If the intermediate DC circuit voltage of the drive is increased from the nominal level by resistor braking or by the IGBT supply unit control program (parameter selectable function), check with the motor manufacturer if additional output filters are needed in the applied drive operation range.

Note 1: The abbreviations used in the table are defined below.

Note 2: Explosion-safe (EX) motors

The motor manufacturer should be consulted regarding the construction of the motor insulation and additional requirements for explosion-safe (EX) motors.

Note 3: High-output motors and IP 23 motors

For motors with higher rated output than what is stated for the particular frame size in EN 50347 (2001) and for IP 23 motors, the requirements of ABB random-wound motor series M3AA, M3AP, M3BP are given below. For other motor types, see the Requirements table above. Apply the requirements of range 100 kW < PN < 350 kW to motors with PN < 100 kW. Apply the requirements of range PN > 350 kW to motors within the range 100 kW < PN < 350 kW. In other cases, consult the motor manufacturer.

Note 4: HXR and AMA motors All AMA machines (manufactured in Helsinki) for drive systems have form-wound windings. All HXR machines manufactured in Helsinki starting 1.1.1998 have form-wound windings.

Note 5: ABB motors of types other than M2_, M3_, HX_ and AM_ Use the selection criteria given for non-ABB motors.

Note 6: Resistor braking of the drive When the drive is in braking mode for a large part of its operation time, the intermediate circuit DC voltage of the drive increases, the effect being similar to increasing the supply voltage by up to 20 percent. The voltage increase should be taken into consideration when determining the motor insulation requirement.

Example: Motor insulation requirement for a 400 V application must be selected as if the drive were supplied with 480 V.

Abbreviation Definition

UN nominal voltage of the supply network

ÛLL peak line-to-line voltage at motor terminals which the motor insulation must withstand

PN motor nominal power

du/dt du/dt filter at the output of the drive +E205

CMF common mode filter +E208

N N-end bearing: insulated motor non-driven end bearing

n.a. Motors of this power range are not available as standard units. Consult the motor manufacturer.

Man

ufac

ture

r Motor type Nominal mains voltage (AC line

voltage)

Requirement for

Motor insulation system

ABB du/dt filter, insulated N-end bearing and ABB common mode filter

PN < 55 kW 55 kW < PN < 200 kW PN > 200 kW

PN < 74 HP 74 HP < PN < 268 HP PN > 268 HP

ABB

Random-wound M3AA, M3AP, M3BP

UN < 500 V Standard - + N + N + CMF

500 V < UN < 600 V Standard + du/dt + du/dt + N + du/dt + N + CMF

or

Reinforced - + N + N + CMF

600 V < UN < 690 V Reinforced + du/dt + du/dt + N + du/dt + N + CMF

Planning the electrical installation

Page 60: VFD Documents

44

Note 7: Drives with an IGBT supply unit

If voltage is raised by the drive (this is a parameter selectable function), select the motor insulation system according to the increased intermediate circuit DC voltage level, especially in the 500 V supply voltage range.

Note 8: Calculating the rise time and the peak line-to-line voltage

The peak line-to-line voltage at the motor terminals generated by the drive as well as the voltage rise time depend on the cable length. The requirements for the motor insulation system given in the table are �worst case� requirements covering installations with 30 metre and longer cables. The rise time can be calculated as follows: t = 0.8 · ÛLL/(du/dt). Read ÛLL and du/dt from the diagrams below. Multiply the values of the graph by the supply voltage (UN). In case of drives with an IGBT supply unit or resistor braking, the ÛLL and du/dt values are approximately 20 % higher.

Note 9: Sine filters protect the motor insulation system. Therefore, du/dt filter can be replaced with a sine filter. The peak phase-to-phase voltage with the sine filter is approximately 1.5 × UN.

Permanent magnet synchronous motorOnly one permanent magnet motor can be connected to the inverter output.

It is recommended to install a safety switch between the permanent magnet synchronous motor and the drive output. The switch is needed to isolate the motor during any maintenance work on the drive.

ÛLL/UN

Without du/dt Filter

Cable length (m)

du/dtUN

-------------(1/µs)

1.0

2.0

5.0

4.0

3.0

1.5

2.5

3.5

4.5

100 200 300100 200 3000.0

0.5

1.0

1.5

2.0

2.5

3.0

Cable length (m)

With du/dt Filter

du/dtUN

-------------(1/µs)

ÛLL/UN

5.5

Planning the electrical installation

Page 61: VFD Documents

45

Supply connection

Disconnecting device (disconnecting means)

ACS800-01, ACS800-U1, ACS800-11, ACS800-U11, ACS800-31, ACS800-U31, ACS800-02 and ACS800-U2 without enclosure extension, ACS800-04, ACS800-U4

Install a hand-operated input disconnecting device (disconnecting means) between the AC power source and the drive. The disconnecting device must be of a type that can be locked to the open position for installation and maintenance work.

ACS800-02 and ACS800-U2 with enclosure extension, ACS800-07 and ACS800-U7

These units are equipped with a hand-operated input disconnecting device (disconnecting means) which isolates the drive and the motor from the AC power as standard. The disconnecting device does not, however, isolate the input busbars from the AC power. Therefore, during installation and maintenance work on the drive, the input cables and busbars must be isolated from the input power with a disconnector at the distribution board or at the supplying transformer.

EU

To meet the European Union Directives, according to standard EN 60204-1, Safety of Machinery, the disconnecting device must be one of the following types:

� switch-disconnector of utilization category AC-23B (EN 60947-3)

� disconnector that has an auxiliary contact that in all cases causes switching devices to break the load circuit before the opening of the main contacts of the disconnector (EN 60947-3)

� circuit breaker suitable for isolation in accordance with EN 60947-2.

US

The disconnecting means must conform to the applicable safety regulations.

Fuses

See section Thermal overload and short-circuit protection.

Planning the electrical installation

Page 62: VFD Documents

46

Thermal overload and short-circuit protection

Thermal overload protection

The drive protects itself and the input and motor cables against thermal overload when the cables are dimensioned according to the nominal current of the drive. No additional thermal protection devices are needed.

WARNING! If the drive is connected to multiple motors, a separate thermal overload switch or a circuit breaker must be used for protecting each cable and motor. These devices may require a separate fuse to cut off the short-circuit current.

The drive protects the motor cable and motor in a short-circuit situation when the motor cable is dimensioned according to the nominal current of the drive.

Planning the electrical installation

Page 63: VFD Documents

47

Short-circuit protection

Protect the input cable and drive against short-circuit according to the following guide lines.

1) Size the fuses according to local safety regulations, appropriate input voltage and the rated current of the drive (see Technical data).

Standard gG fuses (US: CC or T for the ACS800-U1, ACS800-U11 and ACS800-U31; T or L for the ACS800-U2 and ACS800-U4) will protect the input cable in short-circuit situations, restrict drive damage and prevent damage to adjoining equipment in case of a short-circuit inside the drive.

Check that the operating time of the fuse is below 0.5 seconds (0.1 seconds with ACS800-11/U11, ACS800-31/U31). The operating time depends on the fuse type (gG or aR), supply network impedance and the cross-sectional area, material and length of the supply cable. In case the 0.5 seconds (0.1 seconds with ACS800-11/U11 and ACS800-31/U31) operating time is exceeded with gG fuses (US: CC/T/L), ultrarapid (aR) fuses will in most cases reduce the operating time to an acceptable level. The US fuses must be of the �non-time delay� type.

For fuse ratings, see Technical data.

Circuit diagram Drive type Short-circuit protection

DRIVE IS NOT EQUIPPED WITH INPUT FUSESACS800-01ACS800-U1ACS800-02ACS800-U2+0C111ACS800-11ACS800-U11ACS800-31ACS800-U31ACS800-04ACS800-U4

Protect the drive and input cable with fuses or a circuit breaker. See footnotes 1) and 2).

DRIVE IS EQUIPPED WITH INPUT FUSESACS800-02+C111ACS800-U2ACS800-07ACS800-U7

Protect the input cable with fuses or a circuit breaker according to local regulations. See footnotes 3) and 4).

~ ~ M3~

Distribution board Input cable

~ ~ M3~

Drive or drive module

1)

2)

I >

DriveDistribution board Input cable

~ ~ M3~

Drive

~ ~ M3~

3) 4)

4)

I >

Planning the electrical installation

Page 64: VFD Documents

48

2) Circuit breakers which have been tested by ABB with the ACS800 can be used. Fuses must be used with other circuit breakers. Contact your local ABB representative for approved breaker types and supply network characteristics.

The protective characteristics of circuit breakers depend on the type, construction and settings of the breakers. There are also limitations pertaining to the short-circuit capacity of the supply network.

WARNING! Due to the inherent operating principle and construction of circuit breakers, independent of the manufacturer, hot ionized gases may escape from the breaker enclosure in case of a short-circuit. To ensure safe use, special attention must be paid to the installation and placement of the breakers. Follow the manufacturer�s instructions.

Note: Circuit breakers without fuses are not recommended in the USA.

3) Size the fuses according to local safety regulations, appropriate input voltage and the rated current of the drive (see Technical data).

4) ACS800-07/U7 units and ACS800-02/U2 units with enclosure extension are equipped with standard gG (US: T/L) or optional aR fuses listed in Technical data. The fuses restrict drive damage and prevent damage to adjoining equipment in case of a short-circuit inside the drive.

Check that the operating time of the fuse is below 0.5 seconds. The operating time depends on the fuse type (gG or aR), supply network impedance and the cross-sectional area, material and length of the supply cable. In case the 0.5 seconds operating time is exceeded with gG fuses (US: CC/T/L), ultrarapid (aR) fuses will in most cases reduce the operating time to an acceptable level. The US fuses must be of the �non-time delay� type.

For fuse ratings, see Technical data.

Planning the electrical installation

Page 65: VFD Documents

49

Ground fault protectionThe drive is equipped with an internal ground fault protective function to protect the unit against ground faults in the motor and motor cable. This is not a personal safety or a fire protection feature. The ground fault protective function can be disabled with a parameter, refer to the appropriate ACS800 Firmware Manual.

The EMC filter of the drive includes capacitors connected between the main circuit and the frame. These capacitors and long motor cables increase the ground leakage current and may cause fault current circuit breakers to function.

Emergency stop devicesFor safety reasons, install the emergency stop devices at each operator control station and at other operating stations where emergency stop may be needed.

Note: Pressing the stop key ( ) on the control panel of the drive does not generate an emergency stop of the motor or separate the drive from dangerous potential.

ACS800-02/U2 with enclosure extension and ACS800-07/U7

An emergency stop function is optionally available for stopping and switching off the whole drive. Two stop categories according to IEC/EN 60204-1 (1997) are available: immediate removal of power (Category 0 for ACS800-02/U2 and ACS800-07/U7) and controlled emergency stop (Category 1 for ACS800-07/U7).

Restarting after an emergency stop

After an emergency stop, the emergency stop button must be released and the drive started by turning the operating switch of the drive from position �ON� to �START�.

Planning the electrical installation

Page 66: VFD Documents

50

Prevention of Unexpected Start The ACS800-04, ACS800-31/U31 and ACS800-07/U7 can be equipped with an optional Prevention of Unexpected Start function according to standards IEC/EN 60204-1: 1997; ISO/DIS 14118: 2000 and EN 1037: 1996.

The Prevention of Unexpected Start function disables the control voltage of the power semiconductors, thus preventing the inverter from generating the AC voltage required to rotate the motor. By using this function, short-time operations (like cleaning) and/or maintenance work on non-electrical parts of the machinery can be performed without switching off the AC power supply to the drive.

The operator activates the Prevention of Unexpected Start function by opening a switch on a control desk. An indicating lamp on the control desk will light, signalling that the prevention is active. The switch can be locked out.

The user must install on a control desk near the machinery:

� switching/disconnecting device for the circuitry. �Means shall be provided to prevent inadvertent, and/or mistaken closure of the disconnecting device.� EN 60204-1: 1997.

� indicating lamp; on = starting the drive is prevented, off = drive is operative.

For connections to the drive, see the circuit diagram delivered with the drive.

WARNING! The Prevention of Unexpected Start function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore maintenance work on electrical parts of the drive or the motor can only be carried out after isolating the drive system from the main supply.

Note: The Prevention of Unexpected Start function is not intended for stopping the drive. If a running drive is stopped by using the Prevention of Unexpected Start function, the drive will cut off the motor supply voltage and the motor will coast to stop.

Planning the electrical installation

Page 67: VFD Documents

51

Selecting the power cables

General rules

Dimension the mains (input power) and motor cables according to local regulations:

� The cable must be able to carry the drive load current. See chapter Technical data for the rated currents.

� The cable must be rated for at least 70 °C maximum permissible temperature of conductor in continuous use. For US, see Additional US requirements.

� The inductance and impedance of the PE conductor/cable (grounding wire) must be rated according to permissible touch voltage appearing under fault conditions (so that the fault point voltage will not rise excessively when a ground fault occurs).

� 600 VAC cable is accepted for up to 500 VAC. 750 VAC cable is accepted for up to 600 VAC. For 690 VAC rated equipment, the rated voltage between the conductors of the cable should be at least 1 kV.

For drive frame size R5 and larger, or motors larger than 30 kW (40 HP), symmetrical shielded motor cable must be used (figure below). A four-conductor system can be used up to frame size R4 with up to 30 kW (40 HP) motors, but shielded symmetrical motor cable is recommended.

Note: When continuous conduit is employed, shielded cable is not required.

A four-conductor system is allowed for input cabling, but shielded symmetrical cable is recommended. To operate as a protective conductor, the shield conductivity must be as follows when the protective conductor is made of the same metal as the phase conductors:

Compared to a four-conductor system, the use of symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as motor bearing currents and wear.

The motor cable and its PE pigtail (twisted shield) should be kept as short as possible in order to reduce electromagnetic emission.

Cross-sectional area of the phase conductors

S (mm2)

Minimum cross-sectional area of the corresponding protective conductor

Sp (mm2) S < 16 S

16 < S < 35 1635 < S S/2

Planning the electrical installation

Page 68: VFD Documents

52

Alternative power cable types

Power cable types that can be used with the drive are represented below.

Motor cable shield

To effectively suppress radiated and conducted radio-frequency emissions, the shield conductivity must be at least 1/10 of the phase conductor conductivity. The requirements are easily met with a copper or aluminium shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires with an open helix of copper tape. The better and tighter the shield, the lower the emission level and bearing currents.

Symmetrical shielded cable: three phase conductors and a concentric or otherwise symmetrically constructed PE conductor, and a shield

Recommended

PE conductor and shield

Shield Shield

A separate PE conductor is required if the conductivity of the cable shield is < 50 % of the conductivity of the phase conductor.

A four-conductor system: three phase conductors and a protective conductor

Shield

PE

PE

PE

Not allowed for motor cables with phase conductor cross section larger than 10 mm2 [motors > 30 kW (40 HP)].

Not allowed for motor cables

Insulation jacket Copper wire screen Helix of copper tape

Cable core

Inner insulation

Planning the electrical installation

Page 69: VFD Documents

53

Additional US requirements

Type MC continuous corrugated aluminum armor cable with symmetrical grounds or shielded power cable must be used for the motor cables if metallic conduit is not used. For the North American market, 600 VAC cable is accepted for up to 500 VAC. 1000 VAC cable is required above 500 VAC (below 600 VAC). For drives rated over 100 amperes, the power cables must be rated for 75 °C (167 °F).

Conduit

Where conduits must be coupled together, bridge the joint with a ground conductor bonded to the conduit on each side of the joint. Bond the conduits also to the drive enclosure. Use separate conduits for input power, motor, brake resistor, and control wiring. When conduit is employed, type MC continuous corrugated aluminium armor cable or shielded cable is not required. A dedicated ground cable is always required.

Note: Do not run motor wiring from more than one drive in the same conduit.

Armored cable / shielded power cable

Six conductor (3 phases and 3 ground) type MC continuous corrugated aluminum armor cable with symmetrical grounds is available from the following suppliers (trade names in parentheses):

� Anixter Wire & Cable (Philsheath)

� BICC General Corp (Philsheath)

� Rockbestos Co. (Gardex)

� Oaknite (CLX).

Shielded power cables are available from Belden, LAPPKABEL (ÖLFLEX) and Pirelli.

Power factor compensation capacitorsPower factor compensation is not needed with AC drives. However, if a drive is to be connected in a system with compensation capacitors installed, note the following restrictions.

WARNING! Do not connect power factor compensation capacitors to the motor cables (between the drive and the motor). They are not meant to be used with AC drives and can cause permanent damage to the drive or themselves.

Planning the electrical installation

Page 70: VFD Documents

54

If there are power factor compensation capacitors in parallel with the three phase input of the drive:

1. Do not connect a high-power capacitor to the power line while the drive is connected. The connection will cause voltage transients that may trip or even damage the drive.

2. If capacitor load is increased/decreased step by step when the AC drive is connected to the power line: Ensure that the connection steps are low enough not to cause voltage transients that would trip the drive.

3. Check that the power factor compensation unit is suitable for use in systems with AC drives i.e. harmonic generating loads. In such systems, the compensation unit should typically be equipped with a blocking reactor or harmonic filter.

Equipment connected to the motor cable

Installation of safety switches, contactors, connection boxes, etc.

To minimize the emission level when safety switches, contactors, connection boxes or similar equipment are installed in the motor cable between the drive and the motor:

� EU: Install the equipment in a metal enclosure with 360 degrees grounding for the shields of both the incoming and outgoing cable, or connect the shields of the cables otherwise together.

� US: Install the equipment in a metal enclosure in a way that the conduit or motor cable shielding runs consistently without breaks from the drive to the motor.

Bypass connection

WARNING! Never connect the supply power to the drive output terminals U2, V2 and W2. If frequent bypassing is required, employ mechanically connected switches or contactors. Mains (line) voltage applied to the output can result in permanent damage to the unit.

Before opening a contactor (DTC control mode selected)

Stop the drive and wait for the motor to stop before opening a contactor between the output of the drive and the motor when the DTC control mode is selected. See the appropriate ACS800 application program firmware manual for the required parameter settings. Otherwise, the contactor will be damaged. In scalar control, the contactor can be opened with the drive running.

Planning the electrical installation

Page 71: VFD Documents

55

Protecting the relay output contacts and attenuating disturbances in case of inductive loads

Inductive loads (relays, contactors, motors) cause voltage transients when switched off.

The relay contacts on the RMIO board are protected with varistors (250 V) against overvoltage peaks. In spite of this, it is highly recommended to equip inductive loads with noise attenuating circuits [varistors, RC filters (AC) or diodes (DC)] in order to minimize the EMC emission at switch-off. If not suppressed, the disturbances may connect capacitively or inductively to other conductors in the control cable and form a risk of malfunction in other parts of the system.

Install the protective component as close to the inductive load as possible. Do not install protective components at the RMIO board terminal block.

24 VDC

230 VAC

X25

1 RO12 RO13 RO1

X26

1 RO22 RO23 RO2

X27

1 RO32 RO33 RO3

Relay outputsRMIO

230 VAC

Diode

Varistor

RC filter

Planning the electrical installation

Page 72: VFD Documents

56

Selecting the control cablesAll control cables must be shielded.

Use a double-shielded twisted pair cable (Figure a, e.g. JAMAK by NK Cables, Finland) for analogue signals. This type of cable is recommended for the pulse encoder signals also. Employ one individually shielded pair for each signal. Do not use common return for different analogue signals.

A double-shielded cable is the best alternative for low-voltage digital signals but single-shielded twisted pair cable (Figure b) is also usable.

Run analogue and digital signals in separate, shielded cables.

Relay-controlled signals, providing their voltage does not exceed 48 V, can be run in the same cables as digital input signals. It is recommended that the relay-controlled signals be run as twisted pairs.

Never mix 24 VDC and 115/230 VAC signals in the same cable.

Relay cable

The cable type with braided metallic screen (e.g. ÖLFLEX by LAPPKABEL, Germany) has been tested and approved by ABB.

Control panel cable

In remote use, the cable connecting the control panel to the drive must not exceed 3 metres (10 ft). The cable type tested and approved by ABB is used in control panel option kits.

aA double-shielded twisted pair cable

bA single-shielded twisted pair cable

Planning the electrical installation

Page 73: VFD Documents

57

Connection of a motor temperature sensor to the drive I/O

WARNING! IEC 60664 requires double or reinforced insulation between live parts and the surface of accessible parts of electrical equipment which are either non-conductive or conductive but not connected to the protective earth.

To fulfil this requirement, the connection of a thermistor (and other similar components) to the digital inputs of the drive can be implemented in three alternate ways:

1. There is double or reinforced insulation between the thermistor and live parts of the motor.

2. Circuits connected to all digital and analogue inputs of the drive are protected against contact and insulated with basic insulation (the same voltage level as the drive main circuit) from other low voltage circuits.

3. An external thermistor relay is used. The insulation of the relay must be rated for the same voltage level as the main circuit of the drive. For connection, see ACS800 Firmware Manual.

Installation sites above 2000 metres (6562 feet)

WARNING! Protect against direct contact when installing, operating and servicing the RMIO board wiring and optional modules attached to the board. The Protective Extra Low Voltage (PELV) requirements stated in EN 50178 are not fulfilled at altitudes above 2000 m (6562 ft).

Routing the cablesRoute the motor cable away from other cable routes. Motor cables of several drives can be run in parallel installed next to each other. It is recommended that the motor cable, input power cable and control cables be installed on separate trays. Avoid long parallel runs of motor cables with other cables in order to decrease electromagnetic interference caused by the rapid changes in the drive output voltage.

Where control cables must cross power cables make sure they are arranged at an angle as near to 90 degrees as possible. Do not run extra cables through the drive.

The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminium tray systems can be used to improve local equalizing of potential.

Planning the electrical installation

Page 74: VFD Documents

58

A diagram of the cable routing is shown below.

Control cable ducts

90 ° min 500 mm (20 in.)

Motor cable Input power cable

Control cables

min 200 mm (8 in.)

min 300 mm (12 in.)

Motor cable

Power cable

Drive

24 V24 V230 V

Lead 24 V and 230 V (120 V) control cables in separate ducts inside the cabinet.

Not allowed unless the 24 V cable is insulated for 230 V (120 V) or insulated with an insulation sleeving for 230 V (120 V).

(120 V)230 V

(120 V)

Planning the electrical installation

Page 75: VFD Documents

59

Electrical installation

What this chapter containsThis chapter describes the electrical installation procedure of the drive.

WARNING! The work described in this chapter may only be carried out by a qualified electrician. Follow the Safety instructions on the first pages of this manual. Ignoring the safety instructions can cause injury or death.

Make sure that the drive is disconnected from the mains (input power) during the installation. If the drive is already connected to the mains, wait for 5 min after disconnecting mains power.

Checking the insulation of the installation

Drive

Every drive has been tested for insulation between the main circuit and the chassis (2500 V rms 50 Hz for 1 second) at the factory. Therefore, do not make any voltage tolerance or insulation resistance tests (e.g. hi-pot or megger) on any part of the drive.

Input cable

Check the insulation of the input cable according to local regulations before connecting it to the drive.

Motor and motor cable

Check the insulation of the motor and motor cable as follows:

1. Check that the motor cable is disconnected from the drive output terminals U2, V2 and W2.

2. Measure the insulation resistances of the motor cable and motor between each phase and the Protective Earth by using a measuring voltage of 1 kV DC. The insulation resistance must be higher than 1 Mohm.PE

ohmM

Electrical installation

Page 76: VFD Documents

60

IT (ungrounded) systems In units with EMC filter options (+E202 and +E200 in the type code), disconnect the filter capacitors before connecting the drive to an ungrounded system.

WARNING! If a drive with EMC filter selection +E202 or +E200 is installed on an IT system [an ungrounded power system or a high resistance-grounded (over 30 ohms) power system], the system will be connected to earth potential through the EMC filter capacitors of the drive. This may cause danger or damage the unit.

Disconnecting the EMC filter capacitors

Remove the two screws shown below.

Note concerning units of frame size R5: When the capacitors of EMC filter +E202 or +E200 are disconnected, the EMC Directive requirements in second environment will not be fulfilled.

Note concerning units of frame size R6: When the capacitors of EMC filter +E202 are disconnected, the EMC Directive requirements may not be fulfilled in first environment, but are fulfilled in second environment. When the capacitors of EMC filter +E200 are disconnected, the EMC Directive requirements in second environment are still fulfilled.

See chapter Technical data / CE marking.

View of frame size R5

Electrical installation

Page 77: VFD Documents

61

Connecting the power cables

Diagram

INPUT OUTPUT

U1V1 W1

3 ~Motor

U1 V1 W11)

U2 V2 W2

L1 L2 L3

(PE) (PE)PE

2)

5)

4)3)

Drive

PE

For alternatives, see Planning the electrical installation: Disconnecting device (disconnecting means)

Grounding of the motor cable shield at the motor endFor minimum radio frequency interference:

� ground the cable shield 360 degrees at the lead-through of the motor terminal box

� or ground the cable by twisting the shield as follows: flattened width > 1/5 · length.

360 degrees grounding

Conductive gaskets

a b

b > 1/5 · a

1), 2)If shielded cable is used (not required but recommended), use a separate PE cable (1) or a cable with a grounding conductor (2) if the conductivity of the input cable shield is < 50% of the conductivity of the phase conductor.

Ground the other end of the input cable shield or PE conductor at the distribution board.3) 360 degrees grounding recommended if shielded

cable is used 4) 360 degrees grounding required

5) Use a separate grounding cable if the conductivity of the cable shield is < 50% of the conductivity of the phase conductor and there is no symmetrically constructed grounding conductor in the cable (see Planning the electrical installation / Selecting the power cables).

Note: If there is a symmetrically constructed grounding conductor in the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the drive and motor ends. Do not use an asymmetrically constructed motor cable for motors > 30 kW (40 HP). Connecting its fourth conductor at the motor end increases bearing currents and causes extra wear.

UDC+ UDC-

Electrical installation

Page 78: VFD Documents

62

Conductor stripping lengths

Strip the conductor ends as follows to fit them inside the power cable connection terminals.

Allowed wire sizes, tightening torques

See Technical data: Cable entries.

Wall installed units (European version)

Power cable installation procedure

1. Remove the connection box cover.

2. Remove the front cover by releasing the retaining clip with a screw driver and lifting the cover from the bottom outwards.

3. Remove the clear plastic shroud of the phase conductor terminals.

4. Cut adequate holes into the rubber grommets and slide the grommets onto the cables. Slide the cables through the holes of the bottom plate.

5. Strip off the outer sheathing of the cables under the 360 degrees grounding clamps. Fasten the clamps onto the stripped parts of the cables.

6. Tighten the grounding clamps onto the twisted shields of the cables.

7. Connect the phase conductors of the mains cable to the U1, V1 and W1 terminals and the phase conductors of the motor cable to the U2, V2 and W2 terminals.

8. Cut holes to the clear plastic shroud for the conductors in frame size R5 and in cable lug installations of frame size R6.

9. Press the clear plastic shroud onto the phase conductor terminals.

10. Secure the cables outside the unit mechanically. Connect the control cables as described in section Connecting the control cables on page 67. Fasten the covers, see Fastening the control cables and covers on page 70.

Frame size Stripping lengthmm in.

R5 16 0.63

R6 28 1.10

Electrical installation

Page 79: VFD Documents

63

2

1

3

Views of frame size R5

U1 V1 W1 V2 W2U2UDC+ UDC-

55

PE

6

6

8

9 9

Electrical installation

Page 80: VFD Documents

64

Frame size R6: Screw terminal installation [95 to 185 mm2 (3/0 to 350 AWG)] cables

Frame sizes R6: Cable lug installation [16 to 70 mm2 (6 to 2/0 AWG) cables]

Isolate the ends of the cable lugs with insulating tape or shrink tubing.

5 5

a. Connect the cable to the terminal.

b. Connect the terminal to the drive.

WARNING! If the wire size is less than 95 mm2 (3/0 AWG), a cable lug must be used. A cable of wire size less than 95 mm2 (3/0 AWG) connected to this terminal will loosen and may damage the drive.

a

5 5

6PE

6PE

Shroud on the conductor terminals (screw terminal installation)

9 9

b

Remove the screw terminals. Fasten the cable lugs to the remaining bolts with M10 nuts.

Electrical installation

Page 81: VFD Documents

65

Wall installed units (US version)

1. Remove the connection box cover.

2. Remove the front cover by releasing the retaining clip with a screw driver and lifting the cover from the bottom outwards.

3. Remove the gland plate by undoing the fastening screws.

4. Make the cable entry holes in the gland plate by breaking off the suitable knock-out plates with a screw driver.

5. Fasten the cable glands to the opened holes of the gland plate.

6. Lead the cables through the glands.

7. Fasten the gland plate (3).

8. Connect the grounding conductors of the input and motor cables to the grounding clamps.

9. Remove the clear plastic shroud as shown in section Power cable installation procedure on page 62.

10. Connect the phase conductors of the input cable to the U1, V1 and W1 terminals and the phase conductors of the motor cable to the U2, V2 and W2 terminals.

See Wall installed units (European version) for cabling figures. In case of a cable lug installation, use UL listed cable lugs and tools given below or corresponding to meet UL requirements.

2

1

3 3

44

8 8

Electrical installation

Page 82: VFD Documents

66

11. Tighten the clamping nuts of the cable glands.

After connecting the control cables, fasten the clear plastic shroud and front covers.

Warning sticker

There are warning stickers in different languages inside the packing box of the drive. Attach a warning sticker in the language of your choice onto the plastic skeleton above the power cable terminals.

Cabinet installed units (IP 00, UL type open)

The drive can be installed in a cabinet without the plastic front, top and connection box covers and without the lead-through plate.

It is recommended:

� to ground the cable shield 360 degrees at the cabinet entry. Grounding with the 360 degrees grounding clamps at the connection box back plate is then not needed.

� to lead the cable unstripped as close to the terminals as possible. Ground the twisted shields of the power cables under the PE and grounding clamps.

Secure the cables mechanically.

Protect the RMIO board terminals X25 to X27 against contact when input voltage exceeds 50 VAC.

Cover the power cable terminals with the clear plastic shroud as shown in section Power cable installation procedure on page 62.

Wire size Compression lug Crimping toolkcmil/AWG Manufacturer Type Manufacturer Type No. of crimps4 Burndy YA4C-L4BOX Burndy MY29-3 1

Ilsco CCL-4-38 Ilsco MT-25 12 Burndy YA2C-L4BOX Burndy MY29-3 2

Ilsco CRC-2 Ilsco IDT-12 1Ilsco CCL-2-38 Ilsco MT-25 1

1 Burndy YA1C-L4BOX Burndy MY29-3 2Ilsco CRA-1-38 Ilsco IDT-12 1Ilsco CCL-1-38 Ilsco MT-25 1

Thomas & Betts 54148 Thomas & Betts TBM-8 31/0 Burndy YA25-L4BOX Burndy MY29-3 2

Ilsco CRB-0 Ilsco IDT-12 1Ilsco CCL-1/0-38 Ilsco MT-25 1

Thomas & Betts 54109 Thomas & Betts TBM-8 32/0 Burndy YAL26T38 Burndy MY29-3 2

Ilsco CRA-2/0 Ilsco IDT-12 1Ilsco CCL-2/0-38 Ilsco MT-25 1

Thomas & Betts 54110 Thomas & Betts TBM-8 3

Electrical installation

Page 83: VFD Documents

67

Connecting the control cablesLead the cable through the control cable entry (1).

Connect the control cables as described below. Connect the conductors to the appropriate detachable terminals of the RMIO board [refer to chapter Motor control and I/O board (RMIO)]. Tighten the screws to secure the connection.

Terminals

Detachable connection terminals (pull up)

Optional module 1

Optional module 2

Control panel

Control cable grounding: see section 360 degrees grounding

DDCS communication module: RDCO.Channel CH1 is used for the internal communication between the line-side and motor-side converters.

View of frame size R6

1

Electrical installation

Page 84: VFD Documents

68

360 degrees grounding

When the outer surface of the shield is covered with non-conductive material

� Strip the cable carefully (do not cut the grounding wire and the shield)

� Turn the shield inside out to expose the conductive surface.

� Wrap the grounding wire around the conductive surface.

� Slide a conductive clamp onto the conductive part.

� Fasten the clamp to the grounding plate with a screw as close as possible to the terminals where the wires are about to be connected.

Connecting the shield wires

Single-shielded cables: Twist the grounding wires of the outer shield and connect them through the shortest possible route to the nearest grounding hole with a cable lug and a screw. Double-shielded cables: Connect each pair cable shield (twisted grounding wires) with other pair cable shields of the same cable to the nearest grounding hole with a cable lug and a screw.

Do not connect shields of different cables to the same cable lug and grounding screw.

Leave the other end of the shield unconnected or ground it indirectly via a few nanofarads high-frequency capacitor (e.g. 3.3 nF / 630 V). The shield can also be grounded directly at both ends if they are in the same ground line with no significant voltage drop between the end points.

Keep the signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire reduces disturbances caused by inductive coupling.

1 23 4

Insulation

Double-shielded cable Single-shielded cable

Electrical installation

Page 85: VFD Documents

69

Cabling of I/O and fieldbus modules

Pulse encoder module cabling

Shield

Module

23 4

1

As short as possible

Note: The RDIO module does not include a terminal for cable shield grounding. Ground the pair cable shields here.

Shield

RTAC

2 3 4

1

Wrap copper tape around the stripped part of the cable under the clamp. Be careful. Do not cut the grounding wire. Clamp as close to the terminals as possible.

Note1: If the encoder is of unisolated type, ground the encoder cable at the drive end only. If the encoder is galvanically isolated from the motor shaft and the stator frame, ground the encoder cable shield at the drive and the encoder end.Note 2: Twist the pair cable wires.

As short as possible

Electrical installation

Page 86: VFD Documents

70

Fastening the control cables and covers

When all control cables are connected, fasten them together with cable ties. Units with a connection box: fasten the cables to the entry plate with cable ties. Units with a gland box: tighten the clamping nuts of the cable glands.

Fasten the connection box cover.

Replace the front cover.

Installation of optional modules and PCThe optional module (such as fieldbus adapter, I/O extension module and the pulse encoder interface) is inserted in the optional module slot of the RMIO board (see Connecting the control cables) and fixed with two screws. See the appropriate optional module manual for cable connections.

Note: Two RDCO modules are provided for the DDCS fibre optic link between the RMIO boards of the line-side and motor-side converters. Channel CH0 of the RDCO-03 module in the line-side converter and channel CH1 of the RDCO module in the motor-side converter are used for the internal communication. In case multiple devices are to be connected to one channel, they must be connected in a ring.

Electrical installation

Page 87: VFD Documents

71

Installation of AGPS board (Prevention of Unexpected Start, +Q950)

What this chapter containsThis chapter describes the electrical installation of the optional Prevention of Unexpected Start function (+Q950) of the drive.

Prevention of Unexpected Start (+Q950)The optional Prevention of Unexpected Start function includes an AGPS board which is connected to the drive and an external power supply. See also chapter Planning the electrical installation, page 50.

Installation of the AGPS board

WARNING! Dangerous voltages can be present on the AGPS board even when the 115...230 V supply is switched off. Follow the Safety instructions on the first pages of this manual and the instruction in this chapter when working on the AGPS board.

Make sure that the drive is disconnected from the mains (input power) and the 115...230 V source for the AGPS board is switched off during installation and maintenance. If the drive is already connected to the mains, wait for 5 min after disconnecting mains power.

See

� page 24 for location of terminal block X41 of the drive

� page 73 for the circuit diagram

� page 74 for the dimensions of the AGPS board

� section AGPS-11C in chapter Technical data for the technical data of the board. Note: Maximum cable length between AGPS terminal block X2 and the drive terminal block is restricted to 10 metres.

Installation of AGPS board (Prevention of Unexpected Start, +Q950)

Page 88: VFD Documents

72

Connect the AGPS board as follows:

� Remove the enclosure cover by undoing the fixing screws (1).

� Ground the bottom plate of the enclosure or via terminal X1:1 of the AGPS board.

� Connect the cable delivered with the kit between terminal block X2 of the AGPS board (2) and drive terminal block X41.

� Connect a cable between connector X1 of the AGPS board (3) and the 115...230 V source.

� Fasten the enclosure cover back with screws.

1

2

3

X2

X1

115...230 V

Installation of AGPS board (Prevention of Unexpected Start, +Q950)

Page 89: VFD Documents

73

Circuit diagram

This circuit diagram shows how the AGPS-11 kit is installed.

3AFE00374994

Drive

115/230 VACN

Installation of AGPS board (Prevention of Unexpected Start, +Q950)

Page 90: VFD Documents

74

Dimensional drawing

The dimensional drawing of the AGPS board is shown below.

3AFE

6829

3898

Installation of AGPS board (Prevention of Unexpected Start, +Q950)

Page 91: VFD Documents

75

Motor control and I/O board (RMIO)

What this chapter containsThis chapter shows

� external control connections to the RMIO board for the ACS800 Standard Application Program (Factory Macro)

� specifications of the inputs and outputs of the board.

To which products this chapter appliesThis chapter applies to ACS800 units which employ RMIO-01 board from revision J onwards and RMIO-02 board from revision H onwards.

Note for the ACS800-02 with enclosure extension and the ACS800-07The connections for the RMIO board shown below apply also to optional terminal block X2 available for the ACS800-02 and ACS800-07. The terminals of the RMIO board are wired to terminal block X2 internally.

Terminals of X2 accept cables from 0.5 to 4.0 mm2 (22 to 12 AWG). Tightening torque for screw terminals is 0.4 to 0.8 Nm (0.3 to 0.6 lbf ft). For disconnecting wires from spring terminals, use a screw driver with a blade thickness of 0.6 mm (0.024 in.) and width of 3.5 mm (0.138 in.), e.g. PHOENIX CONTACT SZF 1-0,6X3,5.

Note on terminal labellingOptional modules (Rxxx) may have identical terminal designations with the RMIO board.

Motor control and I/O board (RMIO)

Page 92: VFD Documents

76

Note on external power supplyExternal +24 V power supply for the RMIO board is recommended if

� the application requires a fast start after connecting the input power supply

� fieldbus communication is required when the input power supply is disconnected.

The RMIO board can be supplied from an external power source via terminal X23 or X34 or via both X23 and X34. The internal power supply to terminal X34 can be left connected when using terminal X23.

WARNING! If the RMIO board is supplied from an external power source via terminal X34, the loose end of the cable removed from the RMIO board terminal must be secured mechanically to a location where it cannot come into contact with electrical parts. If the screw terminal plug of the cable is removed, the wire ends must be individually insulated.

Parameter settings

In Standard Application Program, set parameter 16.9 CTRL BOARD SUPPLY to EXTERNAL 24V if the RMIO board is powered from an external supply.

Motor control and I/O board (RMIO)

Page 93: VFD Documents

77

External control connections (non-US)

External control cable connections to the RMIO board for the ACS800 Standard Application Program (Factory Macro) are shown below. For external control connections of other application macros and programs, see the appropriate Firmware Manual.

X2* RMIOX20 X201 1 VREF- Reference voltage -10 VDC, 1 kohm < RL <

10 kohm2 2 AGNDX21 X211 1 VREF+ Reference voltage 10 VDC, 1 kohm < RL <

10 kohm2 2 AGND3 3 AI1+ Speed reference 0(2) ... 10 V, Rin >

200 kohm4 4 AI1-5 5 AI2+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm6 6 AI2-7 7 AI3+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm8 8 AI3-9 9 AO1+ Motor speed 0(4)...20 mA 0...motor nom.

speed, RL < 700 ohm10 10 AO1-11 11 AO2+ Output current 0(4)...20 mA 0...motor

nom. current, RL < 700 ohm12 12 AO2-X22 X221 1 DI1 Stop/Start2 2 DI2 Forward/Reverse 1)

3 3 DI3 Not in use4 4 DI4 Acceleration & deceleration select 2)

5 5 DI5 Constant speed select 3)

6 6 DI6 Constant speed select 3)

7 7 +24VD +24 VDC max. 100 mA8 8 +24VD9 9 DGND1 Digital ground10 10 DGND2 Digital ground11 11 DIIL Start interlock (0 = stop) 4)

X23 X231 1 +24V Auxiliary voltage output and input, non-

isolated, 24 VDC 250 mA 5)2 2 GNDX25 X251 1 RO1 Relay output 1: ready2 2 RO13 3 RO1X26 X261 1 RO2 Relay output 2: running2 2 RO23 3 RO2X27 X271 1 RO3 Relay output 3: fault (-1)2 2 RO33 3 RO3

=

=

Fault

A

rpm

* optional terminal block in ACS800-02 and ACS800-07

1) Only effective if par. 10.03 is set to REQUEST by the user.

2) 0 = open, 1 = closed

3) See par. group 12 CONSTANT SPEEDS.

4) See parameter 21.09 START INTRL FUNC.

5) Total maximum current shared between this output and optional modules installed on the board.

DI4 Ramp times according to0 parameters 22.02 and 22.031 parameters 22.04 and 22.05

DI5 DI6 Operation0 0 Set speed through AI11 0 Constant speed 10 1 Constant speed 21 1 Constant speed 3

RMIOTerminal block size: cables 0.3 to 3.3 mm2 (22 to 12 AWG) Tightening torque: 0.2 to 0.4 Nm (0.2 to 0.3 lbf ft)

Motor control and I/O board (RMIO)

Page 94: VFD Documents

78

External control connections (US)

External control cable connections to the RMIO board for the ACS800 Standard Application Program (Factory Macro US version) are shown below. For external control connections of other application macros and programs, see the appropriate Firmware Manual.

X2* RMIOX20 X201 1 VREF- Reference voltage -10 VDC, 1 kohm < RL <

10 kohm2 2 AGNDX21 X211 1 VREF+ Reference voltage 10 VDC, 1 kohm < RL <

10 kohm2 2 AGND3 3 AI1+ Speed reference 0(2) ... 10 V, Rin >

200 kohm4 4 AI1-5 5 AI2+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm6 6 AI2-7 7 AI3+ By default, not in use. 0(4) ... 20 mA, Rin =

100 ohm8 8 AI3-9 9 AO1+ Motor speed 0(4)...20 mA 0...motor nom.

speed, RL < 700 ohm10 10 AO1-11 11 AO2+ Output current 0(4)...20 mA 0...motor

nom. current, RL < 700 ohm12 12 AO2-X22 X221 1 DI1 Start ( )2 2 DI2 Stop ( )3 3 DI3 Forward/Reverse 1)

4 4 DI4 Acceleration & deceleration select 2)

5 5 DI5 Constant speed select 3)

6 6 DI6 Constant speed select 3)

7 7 +24VD +24 VDC max. 100 mA8 8 +24VD9 9 DGND1 Digital ground10 10 DGND2 Digital ground11 11 DIIL Start interlock (0 = stop) 4)

X23 X231 1 +24V Auxiliary voltage output and input, non-

isolated, 24 VDC 250 mA 5)2 2 GNDX25 X251 1 RO1 Relay output 1: ready2 2 RO13 3 RO1X26 X261 1 RO2 Relay output 2: running2 2 RO23 3 RO2X27 X271 1 RO3 Relay output 3: fault (-1)2 2 RO33 3 RO3

=

=

Fault

A

rpm

RMIOTerminal block size: cables 0.3 to 3.3 mm2 (22 to 12 AWG) Tightening torque: 0.2 to 0.4 Nm (0.2 to 0.3 lbf ft)

* optional terminal block in ACS800-U2 and ACS800-U7

1) Only effective if par. 10.03 is set to REQUEST by the user.

2) 0 = open, 1 = closed

3) See par. group 12 CONSTANT SPEEDS.

4) See parameter 21.09 START INTRL FUNC.

5) Total maximum current shared between this output and optional modules installed on the board.

DI4 Ramp times according to0 parameters 22.02 and 22.031 parameters 22.04 and 22.05

DI5 DI6 Operation0 0 Set speed through AI11 0 Constant speed 10 1 Constant speed 21 1 Constant speed 3

Motor control and I/O board (RMIO)

Page 95: VFD Documents

79

RMIO board specificationsAnalogue inputs

With Standard Application Program two programmable differential current inputs (0 mA / 4 mA ... 20 mA, Rin = 100 ohm) and one programmable differential voltage input (-10 V / 0 V / 2 V ... +10 V, Rin > 200 kohm).The analogue inputs are galvanically isolated as a group.

Isolation test voltage 500 VAC, 1 minMax. common mode voltage between the channels

±15 VDC

Common mode rejection ratio > 60 dB at 50 HzResolution 0.025 % (12 bit) for the -10 V ... +10 V input. 0.5 % (11 bit) for the 0 ... +10 V and 0 ...

20 mA inputs.Inaccuracy ± 0.5 % (Full Scale Range) at 25 °C (77 °F). Temperature coefficient: ± 100 ppm/°C

(± 56 ppm/°F), max.

Constant voltage outputVoltage +10 VDC, 0, -10 VDC ± 0.5 % (Full Scale Range) at 25 °C (77 °F). Temperature

coefficient: ± 100 ppm/°C (± 56 ppm/°F) max.Maximum load 10 mAApplicable potentiometer 1 kohm to 10 kohm

Auxiliary power outputVoltage 24 VDC ± 10 %, short circuit proofMaximum current 250 mA (shared between this output and optional modules installed on the RMIO)

Analogue outputsTwo programmable current outputs: 0 (4) to 20 mA, RL < 700 ohm

Resolution 0.1 % (10 bit)Inaccuracy ± 1 % (Full Scale Range) at 25 °C (77 °F). Temperature coefficient: ± 200 ppm/°C

(± 111 ppm/°F) max.

Digital inputsWith Standard Application Program six programmable digital inputs (common ground: 24 VDC, -15 % to +20 %) and a start interlock input. Group isolated, can be divided in two isolated groups (see Isolation and grounding diagram below).Thermistor input: 5 mA, < 1.5 kohm �1� (normal temperature), > 4 kohm �0� (high temperature), open circuit �0� (high temperature).Internal supply for digital inputs (+24 VDC): short-circuit proof. An external 24 VDC supply can be used instead of the internal supply.

Isolation test voltage 500 VAC, 1 minLogical thresholds < 8 VDC �0�, > 12 VDC �1�Input current DI1 to DI 5: 10 mA, DI6: 5 mAFiltering time constant 1 ms

Motor control and I/O board (RMIO)

Page 96: VFD Documents

80

Relay outputsThree programmable relay outputs

Switching capacity 8 A at 24 VDC or 250 VAC, 0.4 A at 120 VDCMinimum continuous current 5 mA rms at 24 VDCMaximum continuous current 2 A rmsIsolation test voltage 4 kVAC, 1 minute

DDCS fibre optic linkWith optional communication adapter module RDCO. Protocol: DDCS (ABB Distributed Drives Communication System)

24 VDC power inputVoltage 24 VDC ± 10 %Typical current consumption (without optional modules)

250 mA

Maximum current consumption 1200 mA (with optional modules inserted)

The terminals on the RMIO board as well as on the optional modules attachable to the board fulfil the Protective Extra Low Voltage (PELV) requirements stated in EN 50178 provided that the external circuits connected to the terminals also fulfil the requirements and the installation site is below 2000 m (6562 ft). Above 2000 m (6562 ft), see page 57.

Motor control and I/O board (RMIO)

Page 97: VFD Documents

81

Isolation and grounding diagram

X201 VREF-2 AGND

X211 VREF+2 AGND3 AI1+4 AI1-5 AI2+6 AI2-7 AI3+8 AI3-

9 AO1+10 AO1-11 AO2+12 AO2-X221 DI12 DI23 DI34 DI4

9 DGND1

5 DI56 DI67 +24VD8 +24VD

11 DIIL

10 DGND2X231 +24 V2 GNDX251 RO12 RO13 RO1X261 RO22 RO23 RO2X271 RO32 RO33 RO3

Common mode voltage between channels ±15 V

J1

(Test voltage: 500 V AC)

or

Jumper J1 settings:

All digital inputs share a common ground. This is the default setting.

Grounds of input groups DI1�DI4 and DI5/DI6/DIIL are separate (isolation voltage 50 V).

Ground

(Test voltage: 4 kV AC)

Motor control and I/O board (RMIO)

Page 98: VFD Documents

82

Motor control and I/O board (RMIO)

Page 99: VFD Documents

83

Installation checklist

What this chapter containsThis chapter contains an installation checklist.

Installation checklistCheck the mechanical and electrical installation of the drive before start-up. Go through the checklist below together with another person.

WARNING! Only qualified electricians are allowed to commission the drive. Read and follow the Safety instructions on the first pages of this manual. Ignoring the safety instructions can cause injury or death.

Check...

MECHANICAL INSTALLATION

The ambient operating conditions are allowed. (See Mechanical installation, Technical data)

The unit is fixed properly on a vertical non-flammable wall. (See Mechanical installation.)

The cooling air will flow freely.

The motor and the driven equipment are ready for start. (See Planning the electrical installation: Motor selection and compatibility, Technical data: Motor connection.)

ELECTRICAL INSTALLATION (See Planning the electrical installation, Electrical installation.)

The +E202 and +E200 EMC filter capacitors are disconnected if the drive is connected to an IT (ungrounded) system.

The capacitors are reformed if stored over one year (refer to ACS 600/800 Capacitor Reforming Guide [64059629 (English)].

The drive is grounded properly.

The mains (input power) voltage matches the drive nominal input voltage.

The mains (input power) connections at U1, V1 and W1 and their tightening torques are OK.

Appropriate mains (input power) fuses and disconnector are installed.

Installation checklist

Page 100: VFD Documents

84

The motor connections at U2, V2 and W2 and their tightening torques are OK.

The motor cable is routed away from other cables.

There are no power factor compensation capacitors in the motor cable.

The external control connections inside the drive are OK.

There are no tools, foreign objects or dust from drilling inside the drive.

Mains (input power) voltage cannot be applied to the output of the drive (with bypass connection).

Drive, motor connection box and other covers are in place.

Check...

Installation checklist

Page 101: VFD Documents

85

Start-up and use

What this chapter containsThis chapter describes the start-up procedure and use of the drive.

Start-up and use

WARNING! Only qualified electricians are allowed to commission the drive. Read and follow the Safety instructions on the first pages of this manual. Ignoring the safety instructions can cause injury or death.

Perform the start-up procedure as described in the appropriate application program firmware manual. The parameters of the line-side converter control program need not be set in a normal start-up procedure or in normal use. However, it is recommended to set parameter 16.15 I/O START MODE to DI2 LEVEL:� if the motor is started and stopped frequently. This prolongs the lifespan of the

charging contactor.

� when starting the motor without start delay is required.

� if the drive is connected to other drives via a common DC bus. Otherwise, the charging resistor may be damaged.

For setting of parameter 16.15 I/O START MODE, change the control panel to control the line-side converter as shown on page 86.

Note

� In normal use, have the control panel control the RMIO board of the motor-side converter (default, ID number 1). If the control panel is set to control the RMIO board of the line-side converter (ID number 2), the drive does not stop by pressing the control panel Stop key.

� Do not change the ID numbers of the converters from the default settings. If the ID numbers of the line-side and motor side converters are set equal, the control panel stops communicating.

� Keep parameter 20.05 OVERVOLTAGE CTRL set to ON (default) when no brake chopper and resistor are installed. The parameter index is valid for Standard Application Program. For other application programs, see the appropriate firmware manual. For parameter settings with a brake chopper and resistor, see chapter Resistor braking.

Start-up and use

Page 102: VFD Documents

86

Control panelThe drive is equipped with a control panel (type CDP-312R). The CDP-312R is the user interface of the line-side converter and the motor-side converter of the drive, providing the essential controls such as Start/Stop/Direction/Reset/Reference, and the parameter settings for the units� application programs. More information on using the panel can be found in the Firmware Manual delivered with the drive.

The control panel is wired to both the line-side converter and the motor-side converter using a Y-splitter. The converter that is currently being controlled is indicated by the converter name on the drive display; the suffix �MR� denotes motor-side converter, �LR� denotes line-side converter. The control is switched between the converters as follows:

To control the line-side converter...

WARNING! The drive does not stop by pressing the control panel Stop key in local control mode.

Step Action Press key Display (example)

1. Enter the Drive Selection Mode.Note: In local control mode, the motor-side converter trips if parameter 30.02 PANEL LOSS is set to FAULT. Refer to the appropriate application program firmware manual.

2. Scroll to ID number 2.

3. Verify the change to the line-side converter and display the warning or fault text .

DRIVE

ACS 800 0050_5MR

ASXR7xxxID-NUMBER 1

ACS 800 0050_5LR

IXXR7xxxID-NUMBER 2

ACT ACS 800 0050_5LR

DC OVERVOLT (3210)

2 -> 380.0 V

** FAULT **

Start-up and use

Page 103: VFD Documents

87

To control the motor-side converter...

Step Action Press key Display (example)

1. Enter the Drive Selection Mode.

2. Scroll to ID number 1.

3. Verify the change to the motor-side converter.

DRIVE

ACS 800 0050_5LR

IXXR7xxxID-NUMBER 2

ACS 800 0050_5MR

ACXR7xxxID-NUMBER 1

ACT FREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

1 L -> 0.0 rpm I

Start-up and use

Page 104: VFD Documents

88

Start-up and use

Page 105: VFD Documents

89

Actual signals and parameters

What this chapter containsThis chapter contains listings of parameters specific to the ACS800-31 and ACS800-U31.

Line-side converter actual signals and parameters in the motor-side converter application program

This section describes the actual signals and parameters of the line-side converter control program which are copied to the motor-side converter application program. The user can view two actual signals (by default, measured line current and intermediate circuit DC voltage) and change the values of the copied parameters without changing the control panel between two control boards and programs. In normal use, there is no need to set these or other parameters of the line-side converter control program. For more information on the parameters, refer to IGBT Supply Control Program Firmware Manual [3AFE68315735 (English)], available on request from ABB.

Terms and abbreviations

Actual signals

Term Definition

Actual signal Signal measured or calculated by the drive. Can be monitored by the user. No user setting possible.

Def. Default value

FbEq Fieldbus equivalent: The scaling between the value shown on the control panel and the integer used in serial communication.

Parameter A user-adjustable operation instruction of the drive.

No. Name/Value Description FbEq Def.

09 ACTUAL SIGNALS Signals from the line converter.

09.12 LCU ACT SIGNAL 1 Line converter signal selected by par. 95.08 LCU PAR1 SEL. 1 = 1 106

09.13 LCU ACT SIGNAL 2 Line converter signal selected by par. 95.09 LCU PAR2 SEL. 1 = 1 110

Actual signals and parameters

Page 106: VFD Documents

90

Parameters

No. Name/Value Description FbEq Def.

95 HARDWARE SPECIF Line converter references and actual signal selections.

95.06 LCU Q POW REF Reactive power reference for the line converter i.e. the value for par. 24.02 Q POWER REF2 in the IGBT Supply Control Program. Scaling example 1: 10000 equals to a value of 10000 of parameter 24.02 Q POWER REF2 and 100% of par. 24.01 Q POWER REF (i.e. 100% of the converter nominal power given in par. 04.06 CONV NOM POWER) when par. 24.03 Q POWER REF2 SEL is set to PERCENT.Scaling example 2: Par. 24.03 Q POWER REF2 SEL is set to kVAr. A value of 1000 of par. 95.06 equals to 1000 kVAr of par. 24.02 Q POWER REF2. Value of par. 24.01 Q POWER REF is then 100 · (1000 kVAr divided by converter nominal power in kVAr)%.

0

Scaling example 3: Par. 24.03 Q POWER REF2 SEL is set to PHI. A value of 10000 of par. 95.06 equals to a value of 100 deg of parameter 24.02 Q POWER REF2 which is limited to 30 deg. The value of par. 24.01 Q POWER REF will be determined approximately according to the following equation where P is read from actual signal 1.06 POWER:

-10000 ... +10000 Setting range. 1 = 1

95.07 LCU DC REF (V) DC voltage reference for line converter i.e. the value for par. 23.01 DC VOLT REF.

0

0 � 1100 Setting range in volts. 1 = 1 V

95.08 LCU PAR1 SEL Selects the line-side converter address from which actual signal 09.12 LCU ACT SIGNAL 1 is read.

106

0 � 10000 Parameter index. 1 = 1

95.09 LCU PAR2 SEL Selects the line-side converter address from which actual signal 09.13 LCU ACT SIGNAL 2 is read.

110

0 � 10000 Parameter index. 1 = 1

30cos PS--- P

P2 Q2+------------------------==

30 deg

SQ

PPositive reference 30 deg denotes capacitive load. Negative reference 30 deg denotes inductive load.

-10000 +100000

30 (deg)

3000-3000

10

1000-1000

-10-30 0

Par. 95.06

Par. 24.02

Actual signals and parameters

Page 107: VFD Documents

91

ACS800-31/U31 specific parameters in the IGBT Supply Control ProgramThe signals and parameters of the IGBT Supply Control Program which are specific to the ACS800-31 and ACS800-U31 are described in the tables below. These parameters need not be set in a normal start-up. For more information on parameters of the IGBT Supply Control Program, refer to IGBT Supply Control Program Firmware Manual [3AFE68315735 (English)].

Terms and abbreviations

Parameters

Term DefinitionB Boolean data type

C Character string data type

Def. Default value data type

FbEq Fieldbus equivalent: the scaling between the value shown on the control panel and the integer used in serial communication

I Integer data type

R Real data type

T. Data type (see B, C, I, R)

No. Name/Value Description T./FbEq Def.

16 SYSTEM CTR INPUTS

Parameter lock, parameter back-up etc.

16.15 I/O START MODE Selects I/O control start mode when par. 98.01 COMMAND SEL is set to I/O.

B DI2 EDGE

DI2 EDGE Starts the line converter by digital input DI2 rising edge. The line converter starts to modulate and the charging resistors will be by-passed when the motor-side converter is started.

0

DI2 LEVEL Starts the line converter by the level of digital input DI2. The line converter starts to modulate and the charging resistors will be by-passed when the line converter RMIO board is powered, its digital input DI2 is ON and there are no faults.Note: This selection changes the value of par. 98.01 COMMAND SEL from the default setting MCW to I/O on the next RMIO board power-up.

1

Actual signals and parameters

Page 108: VFD Documents

92

31 AUTOMATIC RESET Automatic fault reset. Automatic resets are possible only for certain fault types and when the automatic reset function is activated for that fault type.The automatic reset function is not operational if the drive is in local control (L visible on the first row of the control panel display).

WARNING! If the start command is selected and it is ON, the line converter may restart immediately after automatic fault reset. Ensure that the use of this feature will not cause

danger.WARNING! Do not use these parameters when the drive is connected to a common DC bus. The charging resistors may be damaged in an automatic reset.

31.01 NUMBER OF TRIALS Defines the number of automatic fault resets the drive performs within the time defined by parameter 31.02 TRIAL TIME.

I 0

0 � 5 Number of the automatic resets 0

31.02 TRIAL TIME Defines the time for the automatic fault reset function. See parameter 31.01 NUMBER OF TRIALS.

R 30 s

1.0 � 180.0 s Allowed resetting time 100 � 18000

31.03 DELAY TIME Defines the time that the drive will wait after a fault before attempting an automatic reset. See parameter 31.01 NUMBER OF TRIALS.

R 0 s

0.0 � 3.0 s Resetting delay 0 � 300

31.04 OVERCURRENT Activates/deactivates the automatic reset for the line converter overcurrent fault.

B NO

NO Inactive 0

YES Active 65535

31.05 OVERVOLTAGE Activates/deactivates the automatic reset for the intermediate link overvoltage fault.

B NO

NO Inactive 0

YES Active 65535

31.06 UNDERVOLTAGE Activates/deactivates the automatic reset for the intermediate link undervoltage fault.

B NO

NO Inactive 0

YES Active 65535

No. Name/Value Description T./FbEq Def.

Actual signals and parameters

Page 109: VFD Documents

93

Fixed parameters with the ACS800-31 and ACS800-U31

When the IGBT Supply Control Program is loaded into the ACS800-31 or ACS800-U31, the following parameters are set to the default values given in the table below.

Parameter Default value If changed,11.01 DC REF SELECT FIELDBUS the default values will be

restored on the next power-up.

11.02 Q REF SELECT PARAM 24.02

98.01 COMMAND SEL MCW. Note: If par. 16.15 I/O START MODE is set to DI2 LEVEL, the default value is changed to I/O on the next RMIO board power-up.

98.02 COMM. MODULE INVERTER

30.02 EARTH FAULT FAULT. Note: The ACS800-31/U31 line converter is not equipped with internal earth fault supervision.

the default values will not be restored on the next power-up. Do not change. If the default values are changed, the drive will not operate.70.01 CH0 NODE ADDR 120

70.19 CH0 HW CONNECTION RING

70.20 CH3 HW CONNECTION RING

71.01 CH0 DRIVEBUS MODE NO

Actual signals and parameters

Page 110: VFD Documents

94

Actual signals and parameters

Page 111: VFD Documents

95

Maintenance

What this chapter containsThis chapter contains preventive maintenance instructions.

Safety

WARNING! Read the Safety instructions on the first pages of this manual before performing any maintenance on the equipment. Ignoring the safety instructions can cause injury or death.

Maintenance intervalsIf installed in an appropriate environment, the drive requires very little maintenance. This table lists the routine maintenance intervals recommended by ABB.

Maintenance Interval Instruction

Capacitor reforming Every year when stored See Reforming.

Heatsink temperature check and cleaning

Depends on the dustiness of the environment (every 6 to 12 months)

See Heatsink.

Change of additional cooling fan

Every three years See Additional fan.

Main cooling fan change Every six years See Main cooling fan.

Capacitor change Every ten years See Capacitors.

Maintenance

Page 112: VFD Documents

96

HeatsinkThe heatsink fins pick up dust from the cooling air. The drive runs into overtemperature warnings and faults if the heatsink is not clean. In a �normal� environment (not dusty, not clean) the heatsink should be checked annually, in a dusty environment more often.

Clean the heatsink as follows (when necessary):

1. Remove the cooling fan (see section Main cooling fan).

2. Blow clean compressed air (not humid) from bottom to top and simultaneously use a vacuum cleaner at the air outlet to trap the dust. Note: If there is a risk of the dust entering adjoining equipment, perform the cleaning in another room.

3. Replace the cooling fan.

Main cooling fanThe cooling fan lifespan of the drive is about 50 000 operating hours. The actual lifespan depends on the drive usage and ambient temperature. See the appropriate ACS800 firmware manual for an actual signal which indicates the hours of usage of the fan. For resetting the running time signal after a fan replacement, please contact ABB.

Fan failure can be predicted by the increasing noise from fan bearings and the gradual rise in the heatsink temperature in spite of heatsink cleaning. If the drive is operated in a critical part of a process, fan replacement is recommended once these symptoms start appearing. Replacement fans are available from ABB. Do not use other than ABB specified spare parts.

Maintenance

Page 113: VFD Documents

97

Fan replacement (R5, R6)

1. Loosen the fastening screws of the top plate.

2. Push the top plate backwards.

3. Lift the top plate up.

4. Disconnect the fan supply wires (detachable connector).

5. Lift the fan up.

6. Install the new fan in reverse order.

Additional fan

Replacement (R5)

Remove the front cover. The fan is located on the right-hand side of the control panel (R5). Lift the fan out and disconnect the cable. Install the new fan in reverse order.

3

4

115

Maintenance

Page 114: VFD Documents

98

Replacement (R6)

Remove the top cover by lifting it by the rear edge. To remove the fan, release the retaining clips by pulling the back edge (1) of the fan upwards. Disconnect the cable (2, detachable terminal). Install the new fan in reverse order.

CapacitorsThe drive intermediate circuit employs several electrolytic capacitors. Their lifespan is from 45 000 to 90 000 hours depending on drive loading and ambient temperature. Capacitor life can be prolonged by lowering the ambient temperature.

It is not possible to predict a capacitor failure. Capacitor failure is usually followed by a mains fuse failure or a fault trip. Contact ABB if capacitor failure is suspected. Replacements are available from ABB. Do not use other than ABB specified spare parts.

Reforming

Reform (re-age) spare part capacitors once a year according to ACS 600/800 Capacitor Reforming Guide (code: 3AFE64059629).

LEDsThis table describes LEDs of the drive.

* The LEDs are not visible

Where LED When the LED is lit

RMIO board * Red Drive in fault state

Green The power supply on the board is OK.

Control panel mounting platform Red Drive in fault state

Green The main +24 V power supply for the control panel and the RMIO board is OK.

View from above when top cover is removed

2Air flow upwards

Rotation direction

1

Maintenance

Page 115: VFD Documents

99

Fault tracing

What this chapter containsThis chapter describes the fault tracing of the line-side converter. For motor-side converter fault tracing, see the appropriate application program firmware manual.

Faults and warnings displayed by the CDP-312R Control PanelThe control panel will display the warnings and faults of the unit (i.e. line-side converter or motor-side converter) the panel is currently controlling.

Information on warnings and faults concerning the line-side converter are contained within the IGBT Supply Control Program Firmware Manual [3AFE68315735 (English)].

The warnings and faults concerning the motor-side converter are dealt with in the application program (e.g. Standard Application Program) Firmware Manual.

Warning/Fault message from unit not being monitored by control panel

Flashing messages WARNING, ID:2 or FAULT, ID:2 on the control panel display indicate a warning or fault state in the line-side converter when the panel is controlling the motor-side converter:

To display the warning or fault identification text, switch the control panel to view the line-side converter as described in section Control panel on page 86.

Conflicting ID numbers

If the ID numbers of the line-side and the motor-side converters are set equal, the control panel stops functioning. To clear the situation:

� Disconnect the panel cable from the RMIO board of the motor-side converter.

� Set the ID number of the line-side converter RMIO board to 2. For the setting procedure, see the application program (e.g. Standard Application Program) Firmware Manual.

� Connect the disconnected cable to the RMIO board of the motor-side converter again and set the ID number to 1.

FAULT, ID:2ACS 800 0490_3MR*** FAULT ***LINE CONV (FF51)

Fault tracing

Page 116: VFD Documents

100

Fault tracing

Page 117: VFD Documents

101

Technical data

What this chapter containsThis chapter contains the technical specifications of the drive, e.g. the ratings, sizes and technical requirements, provisions for fulfilling the requirements for CE and other markings and warranty policy.

Technical data

Page 118: VFD Documents

102

IEC data

Ratings

The IEC ratings for the ACS800-31 with 50 Hz and 60 Hz supplies are given below. The symbols are described below the table.

ACS800-31 size Nominal ratings

No-overload use

Light-overload use

Heavy-duty use Frame size

Air flow Heat dissipation

Icont.maxA

ImaxA

Pcont.maxkW

I2NA

PNkW

I2hdA

Phd kW m3/h W

Three-phase supply voltage 208 V, 220 V, 230 V or 240 V -0011-2 34 52 7.5 32 7.5 26 5.5 R5 350 505-0016-2 47 68 11 45 11 38 7.5 R5 350 694-0020-2 59 90 15 56 15 45 11 R5 350 910-0025-2 75 118 22 69 18.5 59 15 R5 350 1099-0030-2 88 144 22 83 22 72 18.5 R5 350 1315-0040-2 120 168 37 114 30 84 22 R6 405 1585-0050-2 150 234 45 143 45 117 30 R6 405 2125-0060-2 169 264 45 157 45 132 37 R6 405 2530Three-phase supply voltage 380 V, 400 V or 415 V -0016-3 34 52 15 32 15 26 11 R5 350 550-0020-3 38 61 18.5 36 18.5 34 15 R5 350 655-0025-3 47 68 22 45 22 38 18.5 R5 350 760-0030-3 59 90 30 56 30 45 22 R5 350 1000-0040-3 72 118 37 69 37 59 30 R5 350 1210-0050-3 86 144 45 83 45 65 30 R5 350 1450-0060-3 120 168 55 114 55 88 45 R6 405 1750-0070-3 150 234 75 143 75 117 55 R6 405 2350-0100-3 165 264 90 157 75 132 75 R6 405 2800Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0020-5 31 52 18.5 29 18.5 25 15 R5 350 655-0025-5 36 61 22 34 22 30 18.5 R5 350 760-0030-5 47 68 30 45 30 37 22 R5 350 1000-0040-5 58 90 37 55 37 47 30 R5 350 1210-0050-5 70 118 45 67 45 57 37 R5 350 1450-0060-5 82 144 55 78 45 62 37 R5 350 1750-0070-5 120 168 75 114 75 88 55 R6 405 2350-0100-5 139 234 90 132 90 114 75 R6 405 2800-0120-5 156 264 110 148 90 125 75 R6 405 3400Three-phase supply voltage 525 V, 550 V, 575 V, 600 V, 660 V or 690 V-0060-7 57 86 55 54 45 43 37 R6 405 1750-0070-7 79 120 75 75 55 60 55 R6 405 2350-0100-7 93 142 90 88 75 71 55 R6 405 2800

PDM code: 00184674-G

Technical data

Page 119: VFD Documents

103

Symbols

SizingThe current ratings are the same regardless of the supply voltage within one voltage range. To achieve the rated motor power given in the table, the rated current of the drive must be higher than or equal to the rated motor current.

Note 1: The maximum allowed momentary motor shaft power is limited to approximately 1.3 · Pcont.max. If the limit is exceeded, motor torque and current are automatically restricted. The function protects the input bridge and LCL filter of the drive against overload.

Note 2: The ratings apply at an ambient temperature of 40°C (104°F). At lower temperatures the ratings are higher (except Imax).

Note 3: Use the DriveSize PC tool for a more accurate dimensioning if the ambient temperature is below 40°C (104°F) or the drive is loaded cyclically.

DeratingThe load capacity (current and power) decreases if the installation site altitude exceeds 1000 metres (3300 ft), or if the ambient temperature exceeds 40°C (104°F).

Temperature derating

In the temperature range +40°C (+104°F) to +50°C (+122°F) the rated output current is decreased 1% for every additional 1°C (1.8°F). The output current is calculated by multiplying the current given in the rating table by the derating factor.

Example If the ambient temperature is 50°C (+122°F), the derating factor is 100% - 1 · 10°C = 90 % or 0.90. The output current is then 0.90 · I2N or 0.90 · I2hd.

Altitude derating

In altitudes from 1000 to 4000 m (3300 to 13123 ft) above sea level, the derating is 1% for every 100 m (328 ft). For a more accurate derating, use the DriveSize PC tool.

Nominal ratingsIcont.max continuous rms output current. No overload capability at 40°C. Imax maximum output current. Available for 10 s at start, otherwise as long as allowed by drive

temperature. Typical ratings:No-overload usePcont.max typical motor power. The power ratings apply to most IEC 34 motors at the nominal voltage,

230 V, 400 V, 500 V or 690 V.Light-overload use (10% overload capability)I2N continuous rms current. 10% overload is allowed for one minute every 5 minutes. PN typical motor power. The power ratings apply to most IEC 34 motors at the nominal voltage,

230 V, 400 V, 500 V or 690 V. Heavy-duty use (50% overload capability)I2hd continuous rms current. 50% overload is allowed for one minute every 5 minutes.Phd typical motor power. The power ratings apply to most IEC 34 motors at the nominal voltage,

230 V, 400 V, 500 V or 690 V.

%°C

Technical data

Page 120: VFD Documents

104

Mains cable fuses

Fuses for short-circuit protection of the mains cable are listed below. The fuses also protect the adjoining equipment of the drive in case of a short-circuit. Check that the operating time of the fuse is below 0.1 seconds. The operating time depends on the supply network impedance and the cross-sectional area and length of the supply cable. See also Planning the electrical installation: Thermal overload and short-circuit protection. For UL recognized fuses, see NEMA data. Note 1: In multicable installations, install only one fuse per phase (not one fuse per conductor). Note 2: Larger fuses must not be used.

Note 3: Fuses from other manufacturers can be used if they meet the ratings.

* maximum total I2t value for 550 V

ACS800-31 size Input current

FuseA A2s * V Manufacturer Type IEC size

Three-phase supply voltage 208 V, 220 V, 230 V or 240 V-0011-2 32 40 9140 500 ABB Control OFAF000H40 000-0016-2 44 50 15400 500 ABB Control OFAF000H50 000-0020-2 55 63 21300 500 ABB Control OFAF000H63 000-0025-2 70 80 34500 500 ABB Control OFAF000H80 000-0030-2 82 100 63600 500 ABB Control OFAF000H100 000-0040-2 112 125 103000 500 ABB Control OFAF00H125 00-0050-2 140 160 200000 500 ABB Control OFAF00H160 00-0060-2 157 200 350000 500 ABB Control OFAF1H200 1Three-phase supply voltage 380 V, 400 V or 415 V -0016-3 32 40 9140 500 ABB Control OFAF000H40 000-0020-3 35 40 9140 500 ABB Control OFAF000H40 000-0025-3 44 50 15400 500 ABB Control OFAF000H50 000-0030-3 55 63 21300 500 ABB Control OFAF000H63 000-0040-3 67 80 34500 500 ABB Control OFAF000H80 000-0050-3 80 100 63600 500 ABB Control OFAF000H100 000-0060-3 112 125 103000 500 ABB Control OFAF00H125 00-0070-3 140 160 200000 500 ABB Control OFAF00H160 00-0100-3 153 200 350000 500 ABB Control OFAF1H200 1Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0020-5 29 40 9140 500 ABB Control OFAF000H40 000-0025-5 33 40 9140 500 ABB Control OFAF000H40 000-0030-5 44 50 15400 500 ABB Control OFAF000H50 000-0040-5 54 63 21300 500 ABB Control OFAF000H63 000-0050-5 65 80 34500 500 ABB Control OFAF000H80 000-0060-5 76 100 63600 500 ABB Control OFAF000H100 000-0070-5 112 125 103000 500 ABB Control OFAF00H125 00-0100-5 129 160 200000 500 ABB Control OFAF00H160 00-0120-5 145 200 350000 500 ABB Control OFAF1H200 1Three-phase supply voltage 525 V, 550 V, 575 V, 600 V, 660 V or 690 V-0060-7 53 63 28600 690 ABB Control OFAA0GG63 0-0070-7 73 80 52200 690 ABB Control OFAA0GG80 0-0100-7 86 100 93000 690 ABB Control OFAA1GG100 1

PDM code: 00184674-G

Technical data

Page 121: VFD Documents

105

Cable types

The table below gives copper and aluminium cable types for different load currents. Cable sizing is based on max. 9 cables laid on a cable ladder side by side, ambient temperature 30°C, PVC insulation, surface temperature 70°C (EN 60204-1 and IEC 60364-5-2/2001). For other conditions, size the cables according to local safety regulations, appropriate input voltage and the load current of the drive.

Cable entries

Mains, DC link and motor cable terminal sizes (per phase), accepted cable diameters and tightening torques are given below.

* with cable lugs 16...70 mm2, tightening torque 20...40 Nm

Dimensions, weights and noise

Copper cables with concentric copper shield

Aluminium cables with concentric copper shield

Max. load current

A

Cable type

mm2

Max. load current

A

Cable type

mm2

34 3x6 61 3x2547 3x10 75 3x3562 3x16 91 3x5079 3x25 117 3x7098 3x35 143 3x95119 3x50 165 3x120153 3x70 191 3x150186 3x95215 3x120249 3x150284 3x185

PDM code: 00096931-C

Frame size U1, V1, W1, U2, V2, W2, UDC+,UDC- Earthing PEWire size Max. cable Ø

IP21Tightening

torqueWire size Tightening

torque

mm2 mm Nm mm2 NmR5 6�70 35 10 6�70 15R6 95...185 * 53 20�40 16...95 8

Frame size IP21 NoiseHeight Width Depth Weight

mm mm mm kg dBR5 816 265 390 65 70R6 970 300 439 100 73

Technical data

Page 122: VFD Documents

106

NEMA data

Ratings

The NEMA ratings for the ACS800-U31 and ACS800-31 with 60 Hz supplies are given below. The symbols are described below the table. For sizing, derating and 50 Hz supplies, see IEC data on page 102.

* allowed with motor power < 125 HP and a reactive power reference of 0** allowed with motor power < 50 HP and a reactive power reference of 0

Symbols

Note 1: The ratings apply at an ambient temperature of 40°C (104°F). At lower temperatures the ratings are higher (except Imax).

ACS800-U31 sizeACS800-31 size

Imax Normal use Heavy-duty use Frame size

Air flow Heat dissipation

AI2NA

PN HP

I2hdA

PhdHP ft3/min BTU/Hr

Three-phase supply voltage 208 V, 220 V, 230 V or 240 V-0011-2 52 32 10 26 7.5 R5 206 1730-0016-2 68 45 15 38 10 R5 206 2380-0020-2 90 56 20 45 10 R5 206 3110-0025-2 118 69 25 59 15 R5 206 3760-0030-2 144 83 30 72 20 R5 206 4500-0040-2 168 114 40 84 25 R6 238 5420-0050-2 234 143 50 117 30 R6 238 7260-0060-2 264 157 60 132 40 R6 238 8650Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V or 480 V-0020-5 52 29 20 25 15 R5 206 2240-0025-5 61 34 25 30 20 R5 206 2600-0030-5 68 45 30 37 25 R5 206 3420-0040-5 90 55 40 47 30 R5 206 4140-0050-5 118 67 50 57 40 R5 206 4960-0060-5 144 78 60 65** 50 R5 206 5980-0070-5 168 114 75 88 60 R6 238 8030-0100-5 234 132 100 114 75 R6 238 9570-0120-5 264 156* 125 125 100 R6 238 11620Three-phase supply voltage 525 V, 575 V, 600 V-0060-7 62 54 40 43 30 R6 238 5980-0070-7 79 75 50 60 40 R6 238 8030-0100-7 99 88 75 71 50 R6 238 9570

PDM code: 00184674-G

Nominal ratingsImax maximum output current. Available for 10 s at start, otherwise as long as allowed by drive

temperature. Normal use (10% overload capability)I2N continuous rms current. 10% overload is typically allowed for one minute every 5 minutes. PN typical motor power. The power ratings apply to most 4-pole NEMA rated motors (230 V,

460 Vor 575 V).Heavy-duty use (50% overload capability)I2hd continuous rms current. 50% overload is typically allowed for one minute every 5 minutes.Phd typical motor power. The power ratings apply to most 4-pole NEMA rated motors (230 V,

460 Vor 575 V).

Technical data

Page 123: VFD Documents

107

Input cable fuses

The ratings of UL listed fuses for branch circuit protection are listed below. The fuses also prevent damage to the adjoining equipment of the drive in case of a short-circuit inside the drive. Check that the operating time of the fuse is below 0.1 seconds. The operating time depends on the supply network impedance and the cross-sectional area and length of the supply cable. The fuses must be of the �non-time delay� type. See also Planning the electrical installation: Thermal overload and short-circuit protection. Note 1: In multicable installations, install only one fuse per phase (not one fuse per conductor). Note 2: Larger fuses must not be used.

Note 3: Fuses from other manufacturers can be used if they meet the ratings.

ACS800-U31 typeACS800-31 type

Input current

Fuse

A A V Manufacturer Type UL classThree-phase supply voltage 208 V, 220 V, 230 V or 240 V-0011-2 32 40 600 Bussmann JJS-40 T-0016-2 44 70 600 Bussmann JJS-70 T-0020-2 55 80 600 Bussmann JJS-80 T-0025-2 70 90 600 Bussmann JJS-90 T-0030-2 82 100 600 Bussmann JJS-100 T-0040-2 112 150 600 Bussmann JJS-150 T-0050-2 140 200 600 Bussmann JJS-200 T-0060-2 157 200 600 Bussmann JJS-200 TThree-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V -0020-5 29 40 600 Bussmann JJS-40 T-0025-5 33 50 600 Bussmann JJS-50 T-0030-5 44 70 600 Bussmann JJS-70 T-0040-5 54 80 600 Bussmann JJS-80 T-0050-5 65 90 600 Bussmann JJS-90 T-0060-5 76 100 600 Bussmann JJS-100 T-0070-5 112 150 600 Bussmann JJS-150 T-0100-5 129 200 600 Bussmann JJS-200 T-0120-5 145 200 600 Bussmann JJS-200 TThree-phase supply voltage 525 V, 575 V, 600 V-0060-7 53 80 600 Bussmann JJS-80 T-0070-7 73 100 600 Bussmann JJS-100 T-0100-7 86 125 600 Bussmann JJS-125 T

PDM code: 00184674-G

Technical data

Page 124: VFD Documents

108

Cable types

Cable sizing is based on NEC Table 310-16 for copper wires, 75°C (167°F) wire insulation at 40°C (104°F) ambient temperature. Not more than three current-carrying conductors in raceway or cable or earth (directly buried). For other conditions, dimension the cables according to local safety regulations, appropriate input voltage and the load current of the drive.

Cable Entries

Input, DC link and motor cable (per phase) terminal sizes, accepted cable diameters and tightening torques are given below.

* with cable lugs 6...2/0 AWG, tightening torque 14.8...29.5 lbf ft

Dimensions, weights and noise

Copper cables with concentric copper shieldMax. load

currentA

Cable type

AWG/kcmil31 1044 857 675 488 3101 2114 1132 1/0154 2/0176 3/0202 4/0224 250 MCM or 2 x 1251 300 MCM or 2 x 1/0273 350 MCM or 2 x 2/0

PDM code: 00096931-C

Frame size U1, V1, W1, U2, V2, W2, UDC+, UDC- Grounding PEWire size Wire Ø

(UL type 1)Tightening

torqueWire size Tightening

torqueAWG in. lbf ft AWG lbf ft

R5 10...2/0 1.39 11.1 10...2/0 11.1R6 3/0 ... 350 MCM * 2.09 14.8...29.5 5...4/0 5.9

Frame size UL type 1 NoiseHeight Width Depth Weight

in. in. in. lb dBR5 32.03 10.43 15.35 143 70R6 38.19 11.81 17.28 220 73

Technical data

Page 125: VFD Documents

109

Input power connectionVoltage (U1) 208/220/230/240 VAC 3-phase ± 10% for 230 VAC units

380/400/415 VAC 3-phase ± 10% for 400 VAC units 380/400/415/440/460/480/500 VAC 3-phase ± 10% for 500 VAC units525/550/575/600/660/690 VAC 3-phase ± 10% for 690 VAC units

Prospective short-circuit current (IEC 60439-1, UL 508C)

Maximum allowed prospective short-circuit current in the supply is 65 kA in a second providing that the mains cable of the drive is protected with appropriate fuses. US and Canada: The drive is suitable for use on a circuit capable of delivering not more than 65 kA rms symmetrical amperes at the drive nominal voltage when protected by T class fuses.

Frequency 48 to 63 Hz, maximum rate of change 17%/sImbalance Max. ± 3% of nominal phase to phase input voltageVoltage dips Max. 25%Fundamental power factor (cos phi1)

1.00 (fundamental at nominal load)

Harmonic distortion Harmonics are below the limits defined in IEEE519 for all Isc/IL. Each individual harmonic current fulfils IEEE519 table 10-3 for Isc/IL > 20. Current THD and each individual current harmonic fulfil IEC 61000-3-4 table 5.2 for Rsce > 66. The values will be met if the supply network voltage is not distorted by other loads.

Rsc THD voltage (%) THD current (%)20 4 4100 0.8 5

THD = Total Harmonic Distortion (THD). The voltage THD depends on the short-circuit ratio (Rsc). The spectrum of the distortion also contains interharmonics.In = nth harmonic componentRsc = Rsce = Isc/INIsc = short-circuit current at point of common coupling (PCC)I1contmax = continuous maximum input current of the IGBT supply unit IL = maximum demand load current

THDIn

I1contmax---------------------⎝ ⎠⎛ ⎞2

2

50

∑=

Technical data

Page 126: VFD Documents

110

Motor connectionVoltage (U2) 0 to U1, 3-phase symmetrical, Umax at the field weakening pointFrequency DTC mode: 0 to 3.2 · ffwp. Maximum frequency 300 Hz.

ffwp =

ffwp: frequency at field weakening point; UNmains: mains (input power) voltage; UNmotor: rated motor voltage; fNmotor: rated motor frequency

Frequency resolution 0.01 HzCurrent See section IEC data or NEMA data.Power limit Approximately 1.3 · Pcont.maxField weakening point 8 to 300 HzSwitching frequency 3 kHz (average). Maximum recommended motor cable length

300 m (984 ft). Additional restriction for units with EMC filtering (type code selections +E202 and +E200): max. motor cable length is 100 m (328 ft). With longer cables the EMC Directive requirements may not be fulfilled.

EfficiencyApproximately 97% at nominal power level

CoolingMethod Internal fan, flow direction from bottom to top. Free space around the unit See chapter Mechanical installation.

Degrees of protectionIP20 (UL type open) and IP21 (UL type 1). IPXXD from above. Without front cover, the unit must be protected against contact according to IP2x [see chapter Electrical installation: Cabinet installed units (IP 00, UL type open)].

AGPS-11CNominal input voltage 115...230 VAC ±10%Nominal input current 0.1 A (230 V) / 0.2 A (115 V)Nominal frequency 50/60 HzMax. external fuse 16 AX1 terminal sizes 3 x 2.5 mm2

Output voltage 15 VDC ±0.5 VNominal output current 0.4 AX2 terminal block type JST B4P-VHAmbient temperature 0...50°CRelative humidity Max. 90%, no condensation allowedDimensions (with enclosure) 167 x 128 x 52 mm (Height x Weight x Depth)Weight (with enclosure) 0.75 kgApprovals C-UL, US listed

UNmainsUNmotor

· fNmotor

Technical data

Page 127: VFD Documents

111

Ambient conditionsEnvironmental limits for the drive are given below. The drive is to be used in a heated, indoor, controlled environment.

Operation installed for stationary use

Storagein the protective package

Transportationin the protective package

Installation site altitude 0 to 4000 m (13123 ft) above sea level [above 1000 m (3281 ft), see section Derating]

- -

Air temperature -15 to +50°C (5 to 122°F). No frost allowed. See section Derating.

-40 to +70°C (-40 to +158°F) -40 to +70°C (-40 to +158°F)

Relative humidity 5 to 95% Max. 95% Max. 95%No condensation allowed. Maximum allowed relative humidity is 60% in the presence of corrosive gases.

Contamination levels (IEC 60721-3-3, IEC 60721-3-2, IEC 60721-3-1)

No conductive dust allowed.Boards with coating: Chemical gases: Class 3C2Solid particles: Class 3S2

Boards with coating: Chemical gases: Class 1C2Solid particles: Class 1S3

Boards with coating: Chemical gases: Class 2C2Solid particles: Class 2S2

Atmospheric pressure 70 to 106 kPa0.7 to 1.05 atmospheres

70 to 106 kPa0.7 to 1.05 atmospheres

60 to 106 kPa0.6 to 1.05 atmospheres

Vibration (IEC 60068-2) Max. 1 mm (0.04 in.)(5 to 13.2 Hz),max. 7 m/s2 (23 ft/s2)(13.2 to 100 Hz) sinusoidal

Max. 1 mm (0.04 in.)(5 to 13.2 Hz),max. 7 m/s2 (23 ft/s2)(13.2 to 100 Hz) sinusoidal

Max. 3.5 mm (0.14 in.)(2 to 9 Hz), max. 15 m/s2 (49 ft/s2)(9 to 200 Hz) sinusoidal

Shock (IEC 60068-2-29) Not allowed Max. 100 m/s2 (330 ft./s2), 11 ms

Max. 100 m/s2 (330 ft./s2), 11 ms

Free fall Not allowed 250 mm (10 in.) for weight under 100 kg (220 lb)100 mm (4 in.) for weight over 100 kg (220 lb)

250 mm (10 in.) for weight under 100 kg (220 lb)100 mm (4 in.) for weight over 100 kg (220 lb)

Technical data

Page 128: VFD Documents

112

MaterialsDrive enclosure � PC/ABS 2.5 mm, colour NCS 1502-Y (RAL 90021 / PMS 420 C)

� hot-dip zinc coated steel sheet 1.5 to 2 mm, thickness of coating 100 micrometres� extruded aluminium AlSi

Package Plywood, bands PP or steelDisposal The drive contains raw materials that should be recycled to preserve energy and natural

resources. The package materials are environmentally compatible and recyclable. All metal parts can be recycled. The plastic parts can either be recycled or burned under controlled circumstances, according to local regulations. Most recyclable parts are marked with recycling marks.If recycling is not feasible, all parts excluding electrolytic capacitors and printed circuit boards can be landfilled. The DC capacitors (C1-1 to C1-x) contain electrolyte and the printed circuit boards contain lead, both of which are classified as hazardous waste within the EU. They must be removed and handled according to local regulations. For further information on environmental aspects and more detailed recycling instructions, please contact your local ABB distributor.

Applicable standardsThe drive complies with the following standards. The compliance with the European Low Voltage Directive is verified according to standards EN 50178 and EN 60204-1.

� EN 50178 (1997) Electronic equipment for use in power installations� EN 60204-1 (1997) Safety of machinery. Electrical equipment of machines. Part 1: General requirements.

Provisions for compliance: The final assembler of the machine is responsible for installing - an emergency-stop device - a supply disconnecting device.

� EN 60529: 1991 (IEC 60529)

Degrees of protection provided by enclosures (IP code)

� IEC 60664-1 (1992) Insulation coordination for equipment within low-voltage systems. Part 1: Principles, requirements and tests.

� EN 61800-3 (2004) Adjustable speed electrical power drive systems. Part 3: EMC requirements and specific test methods

� UL 508C UL Standard for Safety, Power Conversion Equipment, second edition� NEMA 250 (2003) Enclosures for Electrical Equipment (1000 Volts Maximum)� CSA C22.2 No. 14-95 Industrial control equipment

Technical data

Page 129: VFD Documents

113

CE markingA CE mark is attached to the drive to verify that the unit follows the provisions of the European Low Voltage and EMC Directives (Directive 73/23/EEC, as amended by 93/68/EEC and Directive 89/336/EEC, as amended by 93/68/EEC).

DefinitionsEMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality.

First environment includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes.

Second environment includes establishments connected to a network not supplying domestic premises.

Drive of category C2: drive of rated voltage less than 1000 V and intended to be installed and commissioned only by a professional when used in the first environment. Note: A professional is a person or organisation having necessary skills in installing and/or commissioning power drive systems, including their EMC aspects.

Drive of category C3: drive of rated voltage less than 1000 V and intended for use in the second environment and not intended for use in the first environment.

Drive of category C4: drive of rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment.

Compliance with the EMC DirectiveThe EMC Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard [EN 61800-3 (2004)] covers requirements stated for drives.

Compliance with the EN 61800-3 (2004)

First environment (drive of category C2)The drive complies with the standard with the following provisions:

1. The drive is equipped with EMC filter +E202.

2. The motor and control cables are selected as specified in the Hardware Manual.

3. The drive is installed according to the instructions given in the Hardware Manual.

4. Maximum cable length is 100 metres.

WARNING! The drive may cause radio interference if used in a residential or domestic environment. The user is required to take measures to prevent interference, in addition to the requirements for CE compliance listed above, if necessary.

Note: It is not allowed to install a drive equipped with EMC filter +E202 on IT (unearthed) systems. The supply network becomes connected to earth potential through the EMC filter capacitors which may cause danger or damage the unit.

Technical data

Page 130: VFD Documents

114

Second environment (drive of category C3)The drive complies with the standard with the following provisions:

1. The drive is equipped with EMC filter +E200. See also page 60.

2. The motor and control cables are selected as specified in the Hardware Manual.

3. The drive is installed according to the instructions given in the Hardware Manual.

4. Maximum cable length is 100 metres.

WARNING! A drive of category C3 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Second environment (drive of category C4)If the provisions under Second environment (drive of category C3) cannot be met, e.g. the drive cannot be equipped with EMC filter +E200 when installed to an IT (unearthed) network, the requirements of the EMC Directive can be met as follows:

1. It is ensured that no excessive emission is propagated to neighbouring low-voltage networks. In some cases, the inherent suppression in transformers and cables is sufficient. If in doubt, a supply transformer with static screening between the primary and secondary windings can be used.

2. An EMC plan for preventing disturbances is drawn up for the installation. A template is available from the local ABB representative.

3. The motor and control cables are selected as specified in the Hardware Manual.

4. The drive is installed according to the instructions given in the Hardware Manual.

WARNING! A drive of category C4 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Machinery DirectiveThe drive complies with the European Union Machinery Directive (98/37/EC) requirements for an equipment intended to be incorporated into machinery.

Low voltage

Equipment

Low voltage

Equipment

Equipment(victim)

Supply transformer

Medium voltage network

Static screen

Point of measurement

Drive

Neighbouring network

Technical data

Page 131: VFD Documents

115

�C-tick� marking�C-tick� marking is required in Australia and New Zealand. A �C-tick� mark is attached to each drive in order to verify compliance with the relevant standard (IEC 61800-3 (2004) � Adjustable speed electrical power drive systems. Part 3: EMC requirements and specific test methods), mandated by the Trans-Tasman Electromagnetic Compatibility Scheme.

DefinitionsEMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality.

The Trans-Tasman Electromagnetic Compatibility Scheme (EMCS) was introduced by the Australian Communication Authority (ACA) and the Radio Spectrum Management Group (RSM) of the New Zealand Ministry of Economic Development (NZMED) in November 2001. The aim of the scheme is to protect the radiofrequency spectrum by introducing technical limits for emission from electrical/electronic products.

First environment includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes.

Second environment includes establishments connected to a network not supplying domestic premises.

Drive of category C2: drive of rated voltage less than 1000 V and intended to be installed and commissioned only by a professional when used in the first environment. Note: A professional is a person or organisation having necessary skills in installing and/or commissioning power drive systems, including their EMC aspects.

Drive of category C3: drive of rated voltage less than 1000 V and intended for use in the second environment and not intended for use in the first environment.

Drive of category C4: drive of rated voltage equal to or above 1000 V, or rated current equal to or above 400 A, or intended for use in complex systems in the second environment.

Compliance with IEC 61800-3

First environment (drive of category C2)The drive complies with the limits of IEC 61800-3 with the following provisions:

1. The drive is equipped with EMC filter +E202.

2. The drive is installed according to the instructions given in the Hardware Manual.

3. The motor and control cables used are selected as specified in the Hardware Manual.

4. Maximum cable length is 100 metres.

Note: The drive must not be equipped with EMC filter +E202 when installed to IT (unearthed) systems. The mains becomes connected to earth potential through the EMC filter capacitors. In IT systems this may cause danger or damage the unit.

Technical data

Page 132: VFD Documents

116

Second environment (drive of category C3)The drive complies with the standard with the following provisions:

1. The drive is equipped with EMC filter +E200. See also page 60.

2. The motor and control cables are selected as specified in the Hardware Manual.

3. The drive is installed according to the instructions given in the Hardware Manual.

4. Maximum cable length is 100 metres.

WARNING! A drive of category C3 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Second environment (drive of category C4)If the provisions under Second environment (drive of category C3) cannot be met, e.g. the drive cannot be equipped with EMC filter +E200 when installed to an IT (unearthed) network, the requirements of the EMC Directive can be met as follows:

1. It is ensured that no excessive emission is propagated to neighbouring low-voltage networks. In some cases, the inherent suppression in transformers and cables is sufficient. If in doubt, a supply transformer with static screening between the primary and secondary windings can be used.

2. An EMC plan for preventing disturbances is drawn up for the installation. A template is available from the local ABB representative.

3. The motor and control cables are selected as specified in the Hardware Manual.

4. The drive is installed according to the instructions given in the Hardware Manual.

WARNING! A drive of category C4 is not intended to be used on a low-voltage public network which supplies domestic premises. Radio frequency interference is expected if the drive is used on such a network.

Low voltage

Equipment

Low voltage

Equipment

Equipment(victim)

Supply transformer

Medium voltage network

Static screen

Point of measurement

Drive

Neighbouring network

Technical data

Page 133: VFD Documents

117

UL/CSA markingsThe ACS800-U31 and ACS800-31 are C-UL US listed. CSA marking is pending.

ULThe drive is suitable for use on a circuit capable of delivering not more than 65 kA rms symmetrical amperes at the drive nominal voltage (600 V maximum for 690 V units) when protected by T class fuses.

The drive provides overload protection in accordance with the National Electrical Code (US). See ACS800 Firmware Manual for setting. Default setting is off, must be activated at start-up.

The drives are to be used in a heated indoor controlled environment. See section Ambient conditions for specific limits.

Equipment warranty and liabilityThe manufacturer warrants the equipment supplied against defects in design, materials and workmanship for a period of twelve (12) months after installation or twenty-four (24) months from date of manufacturing, whichever first occurs. The local ABB office or distributor may grant a warranty period different to the above and refer to local terms of liability as defined in the supply contract.

The manufacturer is not responsible for

� any costs resulting from a failure if the installation, commissioning, repair, alternation, or ambient conditions of the drive do not fulfil the requirements specified in the documentation delivered with the unit and other relevant documentation.

� units subjected to misuse, negligence or accident

� units comprised of materials provided or designs stipulated by the purchaser.

In no event shall the manufacturer, its suppliers or subcontractors be liable for special, indirect, incidental or consequential damages, losses or penalties.

This is the sole and exclusive warranty given by the manufacturer with respect to the equipment and is in lieu of and excludes all other warranties, express or implied, arising by operation of law or otherwise, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose.

If you have any questions concerning your ABB drive, please contact the local distributor or ABB office. The technical data, information and specifications are valid at the time of printing. The manufacturer reserves the right to modifications without prior notice.

Technical data

Page 134: VFD Documents

118

Technical data

Page 135: VFD Documents

119

Dimensional drawings

The dimensions are given in millimetres and [inches].

Dimensional drawings

Page 136: VFD Documents

120

Frame size R5 (IP21, UL type open, UL type 1)

6840

6200

A

US

glan

d/co

ndui

t pla

teD

iam

eter

s of

kno

ck-o

ut h

oles

: 50

mm

[1.9

7in

.], 2

2.7

mm

[.8

9in

.]. T

he u

nit i

s U

L ty

pe 1

w

hen

equi

pped

with

the

US

gl

and

plat

e.

Dimensional drawings

Page 137: VFD Documents

121

Frame size R6 (IP21, UL type open, UL type 1)

6840

5726

A

US

glan

d/co

ndui

t pl

ate

Dia

met

ers

of k

nock

-ou

t hol

es: 6

3.5

mm

[2

.50

in.],

22.

7m

m

[.89

in.].

The

uni

t is

UL

type

1 w

hen

equi

pped

with

the

US

glan

d pl

ate.

Dimensional drawings

Page 138: VFD Documents

122

Dimensional drawings

Page 139: VFD Documents

123

Resistor braking

What this chapter containsThis chapter describes how to select, protect and wire external brake choppers and resistors for the drive. The chapter also contains installation instructions and the technical data.

How to select the correct drive/chopper/resistor combinationRefer to NBRA-6xx Braking Choppers Installation and Start-up Guide [3AFY58920541 (English)].

WARNING! Never use a brake resistor with a resistance below the value specified for the particular drive / brake chopper / resistor combination. The drive and the chopper are not able to handle the overcurrent caused by the low resistance.

Resistor braking

Page 140: VFD Documents

124

External brake chopper and resistor(s) for the ACS800-31/U31The nominal ratings for dimensioning the brake resistors for the ACS800-31 and ACS800-U31 are given below at an ambient temperature of 40°C (104°F).

R Resistance value for the listed resistor assembly. Note: This is also the minimum allowed resistance for the brake resistor. ER Short energy pulse that the resistor assembly withstands every 400 seconds. This energy will heat the resistor element from 40 °C

(104 °F) to the maximum allowable temperature.PRcont Continuous power (heat) dissipation of the resistor when placed correctly. Energy ER dissipates in 400 seconds. Pbrmax Maximum braking power of the drive equipped with the standard chopper and resistor. The drive and the chopper will withstand this

braking power for one minute every ten minutes. Note: The braking energy transmitted to the resistor during any period shorter than 400 seconds may not exceed ER.

All braking choppers and resistors must be installed outside the converter module. Note: The SACE and SAFUR resistors are not UL listed.

ACS800-31ACS800-U31 type

Chopper type

Brake resistor Cable Pbrmax Degree of protection

Type R ER PRcont No. of elements

Chopper Resistor

ohm kJ kW mm2 kW

Three-phase supply voltage 380 V, 400 V or 415 V

-0016-3 NBRA-653 SACE15RE22 22 420 2 4 3x6+6 14.4 IP54 IP21

-0020-3 NBRA-656 SACE15RE13 13 435 2 4 3x6+6 26.9 IP00 IP21

-0025-3 NBRA-656 SACE15RE13 13 435 2 4 3x6+6 26.9 IP00 IP21

-0030-3 NBRA-656 SAFUR90F575 8 1800 4.5 9 3x25+16 52.8 IP00 IP00

-0040-3 NBRA-656 SAFUR90F575 8 1800 4.5 9 3x25+16 52.8 IP00 IP00

-0050-3 NBRA-656 SAFUR90F575 8 1800 4.5 9 3x25+16 52.8 IP00 IP00

-0060-3 NBRA-656 SAFUR80F500 6 2400 6 12 3x35+16 65.6 IP00 IP00

-0070-3 NBRA-656 SAFUR125F500 4 3600 9 18 3x35+16 94.2 IP00 IP00

-0100-3 NBRA-657 SAFUR125F500 4 3600 9 18 3x70+35 94.2 IP00 IP00

Three-phase supply voltage 380 V, 400 V, 415 V, 440 V, 460 V, 480 V or 500 V

-0020-5 NBRA-653 SACE15RE22 22 420 2 4 3x6+6 18.5 IP54 IP21

-0025-5 NBRA-656 SACE15RE13 13 435 2 4 3x6+6 31.4 IP00 IP21

-0030-5 NBRA-656 SACE15RE13 13 435 2 4 3x6+6 31.4 IP00 IP21

-0040-5 NBRA-656 SAFUR90F575 8 1800 4.5 9 3x25+16 62.6 IP00 IP00

-0050-5 NBRA-656 SAFUR90F575 8 1800 4.5 9 3x25+16 62.6 IP00 IP00

-0060-5 NBRA-656 SAFUR90F575 8 1800 4.5 9 3x25+16 62.6 IP00 IP00

-0070-5 NBRA-656 SAFUR80F500 6 2400 6 12 3x35+16 88.4 IP00 IP00

-0100-5 NBRA-656 SAFUR80F500 6 2400 6 12 3x35+16 88.4 IP00 IP00

-0120-5 NBRA-657 SAFUR125F500 4 3600 9 18 3x70+16 122.1 IP00 IP0000184674 E

Resistor braking

Page 141: VFD Documents

125

Brake chopper and resistor installationThe installation instructions for the chopper and resistor are given in NBRA-6xx Braking Choppers Installation and Start-up Guide [3AFY58920541 (English)]. All choppers and resistors must be installed outside the drive module in a place where they will cool.

WARNING! The materials near the brake resistor must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is hundreds of degrees Celsius. Protect the resistor against contact.

Use the cable type used for drive input cabling (refer to chapter Technical data) to ensure the input fuses will also protect the resistor cable. Alternatively, two-conductor shielded cable with the same cross-sectional area can be used. The maximum length of the resistor cable(s) is 10 m (33 ft).

ProtectionIt is highly recommended to equip the drive with a main contactor for safety reasons. Wire the contactor so that it opens in case the resistor overheats. This is essential for safety since the drive will not otherwise be able to interrupt the main supply if the chopper remains conductive in a fault situation.

Below is a simple example wiring diagram.

ACS800

U1 V1 W1

L1 L2 L3

1

2

3

4

5

6

13

14

3

4

1

2

K1

Θ

FusesOFF

ON

Thermal switch (standard in ABB resistors)

Resistor braking

Page 142: VFD Documents

126

Brake circuit commissioningFor Standard Application Program:

� Switch off the overvoltage control of the drive (parameter 20.05).

� Frame size R6: Check the setting of parameter 21.09. If stop by coasting is required, select OFF2 STOP.

For the use of the brake resistor overload protection (parameters 27.02...27.05), consult an ABB representative.

WARNING! If the drive is equipped with a brake chopper but the chopper is not enabled by parameter setting, the brake resistor must be disconnected because the protection against resistor overheating is then not in use.

WARNING! Parameter 95.07 LCU DC REF (V) must be set to the minimum value (default) with brake resistors. Otherwise energy from the supply network can flow to the brake resistor causing overheating of the resistor and damage to the equipment.

For settings of other application programs, see the appropriate firmware manual.

Resistor braking

Page 143: VFD Documents

127

External +24 V power supply for the RMIO boards via terminal X34

What this chapter containsThis chapter describes how to connect an external +24 V power supply for the RMIO boards of the motor-side and line-side converters via terminal X34. For current consumption of the RMIO board, see chapter Motor control and I/O board (RMIO).

Note: For the motor-side converter RMIO board, external power is easier to supply via terminal X23, see chapter Motor control and I/O board (RMIO).

Parameter settingsIn Standard Application Program, set parameter 16.09 CTRL BOARD SUPPLY to EXTERNAL 24V if the RMIO board is powered from an external supply.

External +24 V power supply for the RMIO boards via terminal X34

Page 144: VFD Documents

128

Connecting +24 V external power supply

RMIO board of the motor-side converter

1. Break off the tab covering the +24 VDC power input connector with pliers.

2. Pull the connector outwards.

3. Disconnect the wires from the connector (keep the connector for later use).

4. Isolate the ends of the wires individually with insulating tape.

5. Cover the isolated ends of the wires with insulating tape.

6. Push the wires into the inside of the skeleton.

7. Connect the wires of the +24 V external power supply to the disconnected connector: if a two-way connector, + wire to terminal 1 and - wire to terminal 2if a three-way connector, + wire to terminal 2 and - wire to terminal 3.

8. Plug the connector in.

1

3

X342

4 4

6

External +24 V power supply for the RMIO boards via terminal X34

Page 145: VFD Documents

129

81 2

+ -

RMIO board

X34

1 2 3

+ -

RMIO board

X34

7

Connection of a two-way connector

1 2 3

1 2 3

Connection of a three-way connector

External +24 V power supply for the RMIO boards via terminal X34

Page 146: VFD Documents

130

RMIO board of the line-side converter

Frame size R5

The location of terminal X34 in the line-side converter is shown below. Connect the external +24 V supply to the board as described in steps 2 to 8 in section RMIO board of the motor-side converter.

Frame size R6

1. Remove the top cover by releasing the retaining clip with a screw driver and lifting the cover upwards.

2. Disconnect the DDCS communication module by undoing the fastening screws and disconnecting the fibre optic cables. Disconnect other optional modules if present.

3. Disconnect the control panel cable.

4. Disconnect the additional fan cable (detachable terminal) and release the strain relief.

5. Remove the I/O terminal blocks.

6. Undo the fastening screws of the upper plastic cover.

7. Lift the cover carefully upwards by the lower sides.

8. Disconnect the control panel cable from the RMIO board.

Terminal X34

External +24 V power supply for the RMIO boards via terminal X34

Page 147: VFD Documents

131

9. Lift the upper plastic cover off.

10. Connect the external +24 V supply to the board as described in steps 2 to 5, 7 and 8 in section RMIO board of the motor-side converter.

11. Reconnect all disconnected cables and fasten the covers in reverse order.

2

1

3

44

77

8

6 2

5 55

External +24 V power supply for the RMIO boards via terminal X34

Page 148: VFD Documents

132

External +24 V power supply for the RMIO boards via terminal X34

Page 149: VFD Documents
Page 150: VFD Documents

3AFE

6859

9954

Rev

A E

NE

FFE

CTI

VE

: 14.

10.2

005

Dim

ensi

onal

dra

win

gs: 1

4.10

.200

5

ABB OyAC DrivesP.O. Box 184FI-00381 HELSINKIFINLANDTelephone +358 10 22 11Fax +358 10 22 22681Internet http://www.abb.com

ABB Inc.Automation TechnologiesDrives & Motors16250 West Glendale DriveNew Berlin, WI 53151USATelephone 262 785-3200

800-HELP-365Fax 262 780-5135

Page 151: VFD Documents

ACS800

Firmware ManualACS800 Standard Control Program 7.x

Page 152: VFD Documents
Page 153: VFD Documents

ACS800 Standard Control Program 7.x

Firmware Manual

3AFE64527592 REV LEN

EFFECTIVE: 2011-08-25

© 2011 ABB Oy. All Rights Reserved.

Page 154: VFD Documents
Page 155: VFD Documents

5

Table of contents

Table of contents

Introduction to the manual

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Start-up and control through the I/O

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15How to start-up the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

How to perform the guided start-up (covers all essential settings) . . . . . . . . . . . . . . . . . . . . . . . 15How to perform the limited start-up (covers only the basic settings) . . . . . . . . . . . . . . . . . . . . . 17

How to control the drive through the I/O interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21How to perform the ID Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Control panel

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Overview of the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Panel operation mode keys and displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Status row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Drive control with the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27How to start, stop and change direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27How to set speed reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Actual signal display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29How to select actual signals to the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29How to display the full name of the actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30How to view and reset the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30How to display and reset an active fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31About the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32How to select a parameter and change the value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32How to adjust a source selection (pointer) parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34How to enter an assistant, browse and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35How to upload data from a drive to the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table of contents

Page 156: VFD Documents

6

How to download data from the panel to a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37How to set the contrast of the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Drive selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39How to select a drive and change its panel link ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Reading and entering packed boolean values on the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Program features

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Start-up Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41The default order of the tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41List of tasks and the relevant drive parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Contents of the assistant displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Block diagram: start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Block diagram: reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Reference trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Programmable analogue inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Programmable analogue outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Programmable relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Automatic Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table of contents

Page 157: VFD Documents

7

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Safe torque off (STO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Prevention of unexpected start-up (POUS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Safely-limited speed (SLS) (AS7R firmware version only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Diagnostics and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

DC Magnetising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

DC Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Flux Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Flux Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Scalar control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Hexagonal motor flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

AI<Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Panel Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

External Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Motor Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Motor temperature thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Use of the motor thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Stall Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Underload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Motor Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Earth Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table of contents

Page 158: VFD Documents

8

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Communication Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Supervision of optional IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Preprogrammed faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Enhanced drive temperature monitoring for ACS800, frame sizes R7 and R8 . . . . . . . . . . . . . 67

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Control board temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Overfrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Automatic resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Process PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Sleep function for the process PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Motor temperature measurement through the standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Motor temperature measurement through an analogue I/O extension . . . . . . . . . . . . . . . . . . . . . . 75Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Adaptive Programming using the function blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76DriveAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Control of a mechanical brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77Operation time scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78State shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table of contents

Page 159: VFD Documents

9

Master/Follower use of several drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80Settings and diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Jogging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Reduced Run function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

User load curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Application macros

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85Note on external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Factory macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88Hand/Auto macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90PID Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Connection example, 24 VDC / 4…20 mA two-wire sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Torque Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Sequential Control macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Operation diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Default control connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

User macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9901 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10002 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10203 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10204 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10309 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10310 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10511 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10712 CONSTANT SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11313 ANALOGUE INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11614 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11915 ANALOGUE OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12516 SYST CTRL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12720 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13021 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Table of contents

Page 160: VFD Documents

10

22 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13523 SPEED CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13824 TORQUE CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14025 CRITICAL SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14026 MOTOR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14127 BRAKE CHOPPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14330 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14431 AUTOMATIC RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15032 SUPERVISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15133 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15234 PROCESS VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15335 MOT TEMP MEAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15540 PID CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15742 BRAKE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16245 ENERGY OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16450 ENCODER MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16551 COMM MODULE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16652 STANDARD MODBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16660 MASTER/FOLLOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16670 DDCS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16872 USER LOAD CURVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16983 ADAPT PROG CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17184 ADAPTIVE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17285 USER CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17390 D SET REC ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17492 D SET TR ADDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17595 HARDWARE SPECIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17596 EXTERNAL AO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17898 OPTION MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18199 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Fieldbus control

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Redundant fieldbus control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . 193Setting up communication through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Modbus addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196Setting up communication through Advant controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197Drive control parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199The fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Fieldbus reference selection and correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204Actual Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205Block diagram: Control data input from fieldbus when a type Rxxx fieldbus adapter is used . 206Block diagram: Actual value selection for fieldbus when a type Rxxx fieldbus adapter is used 207Block diagram: Control data input from fieldbus when a type Nxxx fieldbus adapter is used . 208

Table of contents

Page 161: VFD Documents

11

Block Diagram: Actual value selection for fieldbus when a type Nxxx fieldbus adapter is used 209Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

ABB Drives communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21003.01 MAIN CONTROL WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21103.02 MAIN STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Generic Drive communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215Drive commands supported by the Generic Drive communication profile . . . . . . . . . . . . . . 216Fieldbus reference scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218CONTROL WORD for the CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . 218STATUS WORD for the CSA 2.8/3.0 communication profile . . . . . . . . . . . . . . . . . . . . . . . . 218

Diverse status, fault, alarm and limit words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21903.03 AUXILIARY STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21903.04 LIMIT WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22003.05 FAULT WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22003.06 FAULT WORD 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22103.07 SYSTEM FAULT WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22203.08 ALARM WORD 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22203.09 ALARM WORD 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22303.13 AUXILIARY STATUS WORD 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22303.14 AUXILIARY STATUS WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22403.15 FAULT WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22403.16 ALARM WORD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22503.17 FAULT WORD 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22503.18 ALARM WORD 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22603.19 INT INIT FAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22603.30 LIMIT WORD INV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22703.31 ALARM WORD 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22703.32 EXT IO STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22803.33 FAULT WORD 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22804.01 FAULTED INT INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22904.02 INT SC INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Fault tracing

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Warning and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231Warning messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232Warning messages generated by the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Analogue Extension Module

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Speed control through the analogue extension module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Basic checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Table of contents

Page 162: VFD Documents

12

Settings of the analogue extension module and the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Parameter settings: bipolar input in basic speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250Parameter settings: bipolar input in joystick mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Additional data: actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . 253Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . 253

NPBA-12 Profibus Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253NIBA-01 InterBus-S Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254NMBP-01 ModbusPlus® Adapter and NMBA-01 Modbus Adapter . . . . . . . . . . . . . . . . . . . 254

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Control block diagrams

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267Reference control chain, sheet 1: FACTORY, HAND/AUTO, SEQ CTRL and T CTRL macros (continued on the next page …) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268Reference control chain sheet 1: PID CTRL macro (continued on the next page …) . . . . . . . . . 270Reference control chain sheet 2: All macros (continued on the next page …) . . . . . . . . . . . . . . 272Handling of Start, Stop, Run Enable and Start Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Handling of Reset and On/Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Index

Table of contents

Page 163: VFD Documents

13

Introduction to the manual

Chapter overviewThe chapter includes a description of the contents of the manual. In addition it contains information about the compatibility, safety and intended audience.

CompatibilityThe manual is compatible with Standard Control Program versions ASXR7360 and AS7R7363. See parameter 33.01 SOFTWARE VERSION.

Safety instructionsFollow all safety instructions delivered with the drive.

• Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are given at the beginning of the Hardware Manual.

• Read the software function specific warnings and notes before changing the default settings of the function. For each function, the warnings and notes are given in this manual in the section describing the related user-adjustable parameters.

ReaderThe reader of the manual is expected to know the standard electrical wiring practices, electronic components, and electrical schematic symbols.

ContentsThe manual consists of the following chapters:

• Start-up and control through the I/O instructs in setting up the application program, and how to start, stop and regulate the speed of the drive.

• Control panel gives instructions for using the panel.

• Program features contains the feature descriptions and the reference lists of the user settings and diagnostic signals.

• Application macros contains a short description of each macro together with a connection diagram.

• Actual signals and parameters describes the actual signals and parameters of the drive.

• Fieldbus control describes the communication through the serial communication links.

Introduction to the manual

Page 164: VFD Documents

14

• Fault tracing lists the warning and fault messages with the possible causes and remedies.

• Analogue Extension Module, describes the communication between the drive and the analogue I/O extension (optional).

• Additional data: actual signals and parameters contains more information on the actual signals and parameters.

• Control block diagrams contains block diagrams concerning reference control chains and handling of Start, Stop, Run Enable and Start Interlock.

Product and service inquiriesAddress any inquiries about the product to your local ABB representative, quoting the type code and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/drives and selecting Sales, Support and Service network.

Product trainingFor information on ABB product training, navigate to www.abb.com/drives and select Training courses.

Providing feedback on ABB Drives manualsYour comments on our manuals are welcome. Go to www.abb.com/drives and select Document Library – Manuals feedback form (LV AC drives).

Introduction to the manual

Page 165: VFD Documents

15

Start-up and control through the I/O

Chapter overviewThe chapter instructs how to:

• do the start-up

• start, stop, change the direction of rotation, and adjust the speed of the motor through the I/O interface

• perform an Identification Run for the drive.

How to start-up the driveThere are two start-up methods between which the user can select: Run the Start-up Assistant, or perform a limited start-up. The Assistant guides the user through all essential settings to be done. In the limited start-up, the drive gives no guidance: The user goes through the very basic settings by following the instructions given in the manual.

• If you want to run the Assistant, follow the instructions given in section How to perform the guided start-up (covers all essential settings) on page 15.

• If you want to perform the limited start-up, follow the instructions given in section How to perform the limited start-up (covers only the basic settings) on page 17.

How to perform the guided start-up (covers all essential settings)Before you start, ensure you have the motor nameplate data on hand.

SAFETY

The start-up may only be carried out by a qualified electrician.The safety instructions must be followed during the start-up procedure. See the appropriate hardware manual for safety instructions.

Check the installation. See the installation checklist in the appropriate hardware/installation manual.

Check that the starting of the motor does not cause any danger. De-couple the driven machine if:- there is a risk of damage in case of incorrect direction of rotation, or - a Standard ID Run needs to be performed during the drive start-up. (ID Run is essential only in applications which require the ultimate in motor control accuracy.)

Start-up and control through the I/O

Page 166: VFD Documents

16

POWER-UP

Apply the main power. The control panel first shows the panel identification data …

CDP312 PANEL Vx.xx.......

… then the Identification Display of the drive … ACS800ID NUMBER 1

… then the Actual Signal Display … 1 -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

…after which the display suggests starting the Language Selection.(If no key is pressed for a few seconds, the display starts to alternate between the Actual Signal Display and the suggestion on selecting the language.)

The drive is now ready for the start-up.

1 -> 0.0 rpm O*** INFORMATION *** Press FUNC to start Language Selection

SELECTING THE LANGUAGE

Press the FUNC key. Language Selection 1/1 LANGUAGE ? [ENGLISH]ENTER:OK ACT:EXIT

Scroll to the desired language by the arrow keys ( or ) and press ENTER to accept.(The drive loads the selected language into use, shifts back to the Actual Signal Display and starts to alternate between the Actual Signal Display and the suggestion on starting the guided motor set-up.)

1 -> 0.0 rpm O*** INFORMATION *** Press FUNC to start guided Motor Setup

STARTING THE GUIDED MOTOR SET-UP

Press FUNC to start the guided motor set-up.(The display shows which general command keys to use when stepping through the assistant.)

Motor Setup 1/10ENTER: Ok/ContinueACT: ExitFUNC: More Info

Press ENTER to step forward. Follow the instructions given on the display.

Motor Setup 2/10MOTOR NAMEPLATE DATA AVAILABLE?ENTER:Yes FUNC:Info

Start-up and control through the I/O

Page 167: VFD Documents

17

How to perform the limited start-up (covers only the basic settings)Before you start, ensure you have the motor nameplate data at your hand.

SAFETY

The start-up may only be carried out by a qualified electrician.The safety instructions must be followed during the start-up procedure. See the appropriate hardware manual for safety instructions.

Check the installation. See the installation checklist in the appropriate hardware/installation manual.

Check that the starting of the motor does not cause any danger. De-couple the driven machine if:- there is a risk of damage in case of incorrect direction of rotation, or - a Standard ID Run needs to be performed during the drive start-up. (ID Run is essential only in applications which require the ultimate in motor control accuracy.)

POWER-UP

Apply the main power. The control panel first shows the panel identification data …

CDP312 PANEL Vx.xx.......

… then the Identification Display of the drive … ACS800ID NUMBER 1

… then the Actual Signal Display … 1 -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

…after which the display suggests starting the Language Selection.(If no key is pressed for a few seconds, the display starts to alternate between the Actual Signal Display and the suggestion on starting the Language Selection.)

1 -> 0.0 rpm O*** INFORMATION *** Press FUNC to start Language Selection

Press ACT to remove the suggestion on starting the language selection.The drive is now ready for the limited start-up.

1 -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

MANUAL START-UP DATA ENTERING (parameter group 99)

Select the language. The general parameter setting procedure is described below.The general parameter setting procedure:- Press PAR to select the Parameter Mode of the panel.- Press the double-arrow keys ( or ) to scroll the parameter groups.- Press the arrow keys ( or ) to scroll parameters within a group.- Activate the setting of a new value by ENTER.- Change the value by the arrow keys ( or ), fast change by the double-arrow keys ( or ).- Press ENTER to accept the new value (brackets disappear).

1 -> 0.0 rpm O99 START-UP DATA 01 LANGUAGEENGLISH

1 -> 0.0 rpm O99 START-UP DATA01 LANGUAGE[ENGLISH]

Start-up and control through the I/O

Page 168: VFD Documents

18

Select the Application Macro. The general parameter setting procedure is given above.The default value FACTORY is suitable in most cases.

1 -> 0.0 rpm O99 START-UP DATA02 APPLICATION MACRO[ ]

Select the motor control mode. The general parameter setting procedure is given above.DTC is suitable in most cases. The SCALAR control mode is recommended- for multimotor drives when the number of the motors connected to the drive is variable- when the nominal current of the motor is less than 1/6 of the nominal current of the inverter- when the inverter is used for test purposes with no motor connected.

1 -> 0.0 rpm O99 START-UP DATA04 MOTOR CTRL MODE[DTC]

Enter the motor data from the motor nameplate: Note: Set the motor data to exactly the same value as on the motor nameplate. For example, if the motor nominal speed is 1440 rpm on the nameplate, setting the value of parameter 99.08 MOTOR NOM SPEED to 1500 rpm results in the wrong operation of the drive.

- motor nominal voltageAllowed range: 1/2 · UN … 2 · UN of ACS800. (UN refers to the highest voltage in each of the nominal voltage ranges: 415 VAC for 400 VAC units, 500 VAC for 500 VAC units and 690 VAC for 600 VAC units.)

1 -> 0.0 rpm O99 START-UP DATA05 MOTOR NOM VOLTAGE[ ]

- motor nominal currentAllowed range: approx. 1/6 · I2hd … 2 · I2hd of ACS800 (0 … 2 · I2hd if parameter 99.04 = SCALAR))

1 -> 0.0 rpm O99 START-UP DATA06 MOTOR NOM CURRENT[ ]

- motor nominal frequencyRange: 8 … 300 Hz

1 -> 0.0 rpm O99 START-UP DATA07 MOTOR NOM FREQ[ ]

- motor nominal speedRange: 1 …18000 rpm

1 -> 0.0 rpm O99 START-UP DATA08 MOTOR NOM SPEED[ ]

-motor nominal powerRange: 0 …9000 kW

1 -> 0.0 rpm O99 START-UP DATA09 MOTOR NOM POWER[ ]

M2AA 200 MLA 4

147514751470147014751770

32.55634595459

0.830.830.830.830.830.83

3GAA 202 001 - ADA

180

IEC 34-1

6210/C36312/C3

Cat. no 35 30 30 30 30 3050

5050505060

690 Y400 D660 Y380 D415 D440 D

V Hz kW r/min A cos IA/IN t E/sIns.cl. F IP 55

NoIEC 200 M/L 55

3 motor

ABB Motors

380 Vinput

voltage

Start-up and control through the I/O

Page 169: VFD Documents

19

When the motor data has been entered, two displays (warning and information) start to alternate. Move to next step without pressing any key.Note: If you select STANDARD ID Run, the brake is opened when the Start command is given from the control panel and the brake remains open until the STANDARD ID Run is completed. If you select ID MAGN, the brake is kept closed during the ID Run sequence.

1 -> 0.0 rpm OACS800** WARNING **ID MAGN REQ

1 -> 0.0 rpm I*** Information ***Press green button to start ID MAGN

Select the motor identification method.The default value ID MAGN (ID Magnetisation) is suitable for most applications. It is applied in this basic start-up procedure. If your selection is ID Magnetisation, move to next step without pressing any key. The ID Run (STANDARD or REDUCED) should be selected if:- The operation point is near zero speed constantly, and/or- Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.If your selection is ID Run, continue by following the separate instructions given a few pages ahead in section How to perform the ID Run on page 22.

IDENTIFICATION MAGNETISATION (with Motor ID Run selection ID MAGN)

Press the LOC/REM key to change to local control (L shown on the first row).Press to start the Identification Magnetisation. The motor is magnetised at zero speed for 20 to 60 s. Three warnings are displayed:The first warning is displayed when the magnetisation starts.The second warning is displayed while the magnetisation is on. The third warning is displayed after the magnetisation is completed.

1 L -> 1242.0 rpm I** WARNING **MOTOR STARTS

1 L-> 0.0 rpm I** WARNING **ID MAGN

1 L-> 0.0 rpm O** WARNING **ID DONE

Start-up and control through the I/O

Page 170: VFD Documents

20

DIRECTION OF ROTATION OF THE MOTOR

Check the direction of rotation of the motor.- Press ACT to get the status row visible. - Increase the speed reference from zero to a small value by pressing REF and then the arrow keys ( , , or ).- Press to start the motor. - Check that the motor is running in the desired direction.- Stop the motor by pressing .

1 L->[xxx] rpm IFREQ xxx HzCURRENT xx APOWER xx %

To change the direction of rotation of the motor:- Disconnect the main power from the drive, and wait 5 minutes for the intermediate circuit capacitors to discharge. Measure the voltage between each input terminal (U1, V1 and W1) and earth with a multimeter to ensure that the frequency converter is discharged.- Exchange the position of two motor cable phase conductors at the motor terminals or at the motor connection box.- Verify your work by applying the main power and repeating the check as described above.

SPEED LIMITS AND ACCELERATION/DECELERATION TIMES

Set the minimum speed. 1 L-> 0.0 rpm O20 LIMITS01 MINIMUM SPEED[ ]

Set the maximum speed. 1 L-> 0.0 rpm O20 LIMITS02 MAXIMUM SPEED[ ]

Set the acceleration time 1.Note: Check also acceleration time 2, if two acceleration times will be used in the application.

1 L-> 0.0 rpm O22 ACCEL/DECEL02 ACCELER TIME 1[ ]

Set the deceleration time 1.Note: Set also deceleration time 2, if two deceleration times will be used in the application.

1 L-> 0.0 rpm O22 ACCEL/DECEL03 DECELER TIME 1[ ]

The drive is now ready for use.

forward direction

reverse direction

Start-up and control through the I/O

Page 171: VFD Documents

21

How to control the drive through the I/O interfaceThe table below instructs how to operate the drive through the digital and analogue inputs, when:

• the motor start-up is performed, and

• the default (factory) parameter settings are valid.

PRELIMINARY SETTINGS

Ensure the Factory macro is active. See parameter 99.02.

If you need to change the direction of rotation, change the setting of parameter 10.03 to REQUEST.

Ensure the control connections are wired according to the connection diagram given for the Factory macro.

See chapter Application macros.

Ensure the drive is in external control mode. Press the LOC/REM key to change between external and local control.

In External control, there is no L visible on the first row of the panel display.

STARTING AND CONTROLLING THE SPEED OF THE MOTOR

Start by switching digital input DI1 on. 1 -> 0.0 rpm IFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

Regulate the speed by adjusting the voltage of analogue input AI1. 1 -> 500.0 rpm IFREQ 16.66 HzCURRENT 12.66 APOWER 8.33 %

CHANGING THE DIRECTION OF ROTATION OF THE MOTOR

Forward direction: Switch digital input DI2 off. 1 -> 500.0 rpm IFREQ 16.66 HzCURRENT 12.66 APOWER 8.33 %

Reverse direction: Switch digital input DI2 on. 1 <- 500.0 rpm IFREQ 16.66 HzCURRENT 12.66 APOWER 8.33 %

STOPPING THE MOTOR

Switch off digital input DI1. 1 -> 500.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

Start-up and control through the I/O

Page 172: VFD Documents

22

How to perform the ID RunThe drive performs the ID Magnetisation automatically at the first start. In most applications there is no need to perform a separate ID Run. The ID Run (Standard or Reduced) should be selected if:

• The operation point is near zero speed, and/or

• Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.

The Reduced ID Run is to be performed instead of the Standard if it is not possible to disengage the driven machine from the motor.

Note: If you select STANDARD ID Run, the brake is opened when the Start command is given from the control panel and the brake remains open until the STANDARD ID Run is completed. If you select ID MAGN, the brake is kept closed during the ID Run sequence.

ID Run Procedure

Note: If parameter values (Group 10 to 98) are changed before the ID Run, check that the new settings meet the following conditions:

• 20.01 MINIMUM SPEED < 0 rpm

• 20.02 MAXIMUM SPEED > 80% of motor rated speed

• 20.03 MAXIMUM CURRENT > 100% · Ihd

• 20.04 MAXIMUM TORQUE > 50%

• Ensure that the panel is in the local control mode (L displayed on the status row). Press the LOC/REM key to switch between modes.

• Change the ID Run selection to STANDARD or REDUCED.

• Press ENTER to verify selection. The following message will be displayed:

99 START-UP DATA

10 MOTOR ID RUN[STANDARD]

1 L ->1242.0 rpm O

1 L ->1242.0 rpm O

ACS800**WARNING**

ID RUN SEL

Start-up and control through the I/O

Page 173: VFD Documents

23

• To start the ID Run, press the key. The Start Interlock (digital input DI_IL) and Run Enable signals (parameter 16.01 RUN ENABLE) must be active.

In general it is recommended not to press any control panel keys during the ID run. However:

• The Motor ID Run can be stopped at any time by pressing the control panel stop key ( ).

• After the ID Run is started with the start key ( ), it is possible to monitor the actual values by first pressing the ACT key and then a double-arrow key ( ).

Warning when the ID Run is started

Warning during the ID Run Warning after a successfully completed ID Run

1 L -> 1242.0 rpm IACS800**WARNING**MOTOR STARTS

1 L -> 1242.0 rpm IACS800**WARNING**ID RUN

1 L -> 1242.0 rpm IACS800**WARNING**ID DONE

Start-up and control through the I/O

Page 174: VFD Documents

24

Start-up and control through the I/O

Page 175: VFD Documents

25

Control panel

Chapter overviewThe chapter describes how to use the control panel CDP 312R.

The same control panel is used with all ACS800 series drives, so the instructions given apply to all ACS800 types. The display examples shown are based on the Standard Control Program; displays produced by other application programs may differ slightly.

Overview of the panel

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR FUNC DRIVE

ENTER

LOC RESET REF

REM

I 0

1367

5 24

The LCD type display has 4 lines of 20 characters.The language is selected at start-up (parameter 99.01).The control panel has four operation modes: - Actual Signal Display Mode (ACT key)- Parameter Mode (PAR key)- Function Mode (FUNC key)- Drive Selection Mode (DRIVE key)The use of single arrow keys, double arrow keys and ENTER depend on the operation mode of the panel.The drive control keys are:

No. Use

1 Start

2 Stop

3 Activate reference setting

4 Forward direction of rotation

5 Reverse direction of rotation

6 Fault reset

7 Change between Local / Remote (external) control

Control panel

Page 176: VFD Documents

26

Panel operation mode keys and displaysThe figure below shows the mode selection keys of the panel, and the basic operations and displays in each mode.

Status rowThe figure below describes the status row digits.

Parameter Mode

Function Mode

Drive Selection Mode

Act. signal / Fault history

Enter selection modeAccept new signal

Group selection

Parameter selection

Enter change modeAccept new value

Fast value change

Slow value change

Function start

Drive selection

Enter change modeAccept new value

Actual Signal Display Mode

ENTER

ENTER

ENTER

ENTER

selection

ID number change

Status row

Status row

ACT

PAR

FUNC

DRIVE

1 L -> 1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

1 L -> 1242.0 rpm O10 START/STOP/DIR01 EXT1 STRT/STP/DIR DI1,2

1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

ACS800

ASXR7260 xxxxxxID NUMBER 1

Act. signal / Fault message scrolling

Actual signal names and values

Parameter groupParameterParameter value

Status row

List of functions

Device type

SW loading package name and ID number

Row selection

Page selection

Drive ID number

Drive control statusL = Local control

R = Remote control“ “ = External control

Drive statusI = RunningO = Stopped“ “ = Run disabled

1 L -> 1242.0 rpm I

Direction of rotation-> = Forward<- = Reverse

Drive reference

Control panel

Page 177: VFD Documents

27

Drive control with the panelThe user can control the drive with the panel as follows:

• start, stop, and change direction of the motor

• give the motor speed reference or torque reference

• give a process reference (when the process PID control is active)

• reset the fault and warning messages

• change between local and external drive control.

The panel can be used for control of the drive control always when the drive is under local control and the status row is visible on the display.

How to start, stop and change direction

Step Action Press Key Display

1. To show the status row. 1 ->1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To switch to local control.(only if the drive is not under local control, i.e. there is no L on the first row of the display.)

1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To stop 1 L ->1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

4. To start 1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

5. To change the direction to reverse. 1 L <-1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

6. To change the direction to forward. 1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR

FUNC

LOC

REM

0

I

Control panel

Page 178: VFD Documents

28

How to set speed reference

Step Action Press Key Display

1. To show the status row. 1 ->1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To switch to local control.(Only if the drive is not under local control, i.e. there is no L on the first row of the display.)

1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To enter the Reference Setting function. 1 L ->[1242.0 rpm]IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

4. To change the reference.(slow change)

(fast change)

1 L ->[1325.0 rpm]I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

5. To save the reference.(The value is stored in the permanent memory; it is restored automatically after power switch-off.)

1 L -> 1325.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR

FUNC

LOC

REM

REF

ENTER

Control panel

Page 179: VFD Documents

29

Actual signal display modeIn the Actual Signal Display Mode, the user can:

• show three actual signals on the display at a time

• select the actual signals to display

• view the fault history

• reset the fault history.

The panel enters the Actual Signal Display Mode when the user presses the ACT key, or if he does not press any key within one minute.

How to select actual signals to the display

Step Action Press key Display

1. To enter the Actual Signal Display Mode. 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To select a row (a blinking cursor indicates the selected row).

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To enter the actual signal selection function. 1 L -> 1242.0 rpm I1 ACTUAL SIGNALS04 CURRENT 80.00 A

4. To select an actual signal.

To change the actual signal group.

1 L -> 1242.0 rpm I1 ACTUAL SIGNALS05 TORQUE 70.00 %

5.a To accept the selection and to return to the Actual Signal Display Mode.

1 L -> 1242.0 rpm IFREQ 45.00 HzTORQUE 70.00 %POWER 75.00 %

5.b To cancel the selection and keep the original selection.

The selected keypad mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Control panel

Page 180: VFD Documents

30

How to display the full name of the actual signals

How to view and reset the fault history

Note: The fault history cannot be reset if there are active faults or warnings.

Step Action Press key Display

1. To display the full name of the three actual signals. Hold 1 L -> 1242.0 rpm IFREQUENCYCURRENTPOWER

2. To return to the Actual Signal Display Mode. Release 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

Step Action Press key Display

1. To enter the Actual Signal Display Mode. 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To enter the Fault History Display. 1 L -> 1242.0 rpm I1 LAST FAULT+OVERCURRENT 6451 H 21 MIN 23 S

3. To select the previous (UP) or the next fault/warning (DOWN).

1 L -> 1242.0 rpm I2 LAST FAULT+OVERVOLTAGE 1121 H 1 MIN 23 S

To clear the Fault History. 1 L -> 1242.0 rpm I2 LAST FAULTH MIN S

4. To return to the Actual Signal Display Mode. 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

ACT

ACT

RESET

Control panel

Page 181: VFD Documents

31

How to display and reset an active fault

WARNING! If an external source for start command is selected and it is ON, the drive will start immediately after fault reset. If the cause of the fault has not been removed, the drive will trip again.

About the fault history The fault history restores information on the latest events (faults, warnings and resets) of the drive. The table below shows how the events are stored in the fault history.

Step Action Press Key Display

1. To display an active fault. 1 L -> 1242.0 rpmACS800** FAULT **ACS800 TEMP

2. To reset the fault. 1 L -> 1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

RESET

1 L -> 1242.0 rpm I2 LAST FAULT+DC OVERVOLT (3210) 1121 H 1 MIN 23 S

Event Information on displayDrive detects a fault and generates a fault message

Sequential number of the event and LAST FAULT text.Name of the fault and a “+” sign in front of the name.Total power-on time.

User resets the fault message. Sequential number of the event and LAST FAULT text.-RESET FAULT text.Total power-on time.

Drive generates a warning message.

Sequential number of the event and LAST WARNING text.Name of the warning and a “+” sign in front of the name.Total power-on time.

Drive deactivates the warning message.

Sequential number of the event and LAST WARNING text.Name of the warning and a “-” sign in front of the name.Total power-on time.

Sequential number (1 is the most recent event)

Sign

Power-on time

Name andcode

A Fault History View

Control panel

Page 182: VFD Documents

32

Parameter modeIn the Parameter Mode, the user can:

• view the parameter values

• change the parameter settings.

The panel enters the Parameter Mode when the user presses the PAR key.

How to select a parameter and change the value

Step Action Press key Display

1. To enter the Parameter Mode. 1 L -> 1242.0 rpm O10 START/STOP/DIR01 EXT1 STRT/STP/DIR DI1,2

2. To select a group. 1 L -> 1242.0 rpm O11 REFERENCE SELECT01 KEYPAD REF SEL REF1 (rpm)

3. To select a parameter within a group. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI1

4. To enter the parameter setting function. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT[AI1]

5. To change the parameter value.- (slow change for numbers and text)

- (fast change for numbers only)

1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT[AI2]

6a. To save the new value. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI2

6b. To cancel the new setting and keep the original value, press any of the mode selection keys.The selected mode is entered.

1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI1

PAR

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Control panel

Page 183: VFD Documents

33

How to adjust a source selection (pointer) parameterMost parameters define values that are used directly in the drive application program. Source selection (pointer) parameters are exceptions: They point to the value of another parameter. The parameter setting procedure differs somewhat from that of the other parameters.

1)

Note: Instead of pointing to another parameter, it is also possible to define a constant by the source selection parameter. Proceed as follows:

- Change the inversion field to C. The appearance of the row changes. The rest of the line is now a constant setting field.

- Give the constant value to the constant setting field.

- Press Enter to accept.

Step Action Press Key Display

1. See the table above to- enter the Parameter Mode- select the correct parameter group and parameter- enter the parameter setting mode

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.000.00]

2. To scroll between the inversion, group, index and bit fields.1)

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.000.00]

3. To adjust the value of a field. 1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.018.00]

4. To accept the value.

PAR

ENTER

ENTER

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±001.018.00]

Inversion fieldGroup fieldIndex field

Bit field

Inversion field inverts the selected parameter value. Plus sign (+): no inversion, minus (-) sign: inversion.Bit field selects the bit number (relevant only if the parameter value is a packed boolean word).Index field selects the parameter index.Group field selects the parameter group.

Control panel

Page 184: VFD Documents

34

Function modeIn the Function Mode, the user can:

• start a guided procedure for adjusting the drive settings (assistants)

• upload the drive parameter values and motor data from the drive to the panel.

• download group 1 to 97 parameter values from the panel to the drive. 1)

• adjust the contrast of the display.

The panel enters the Function Mode when the user presses the FUNC key.

1) The parameter groups 98, 99 and the results of the motor identification are not included by default. The restriction prevents downloading of unfit motor data. In special cases it is, however, possible to download all. For more information, please contact your local ABB representative.

Control panel

Page 185: VFD Documents

35

How to enter an assistant, browse and exitThe table below shows the operation of the basic keys which lead the user through an assistant. The Motor Setup task of the Start-up Assistant is used as an example.

The Start-up Assistant is not available in Scalar mode or when the parameter lock is on. (99.04 MOTOR CTRL MODE = SCALAR or 16.02 PARAMETER LOCK = LOCKED or 16.10 ASSIST SEL = OFF)

Step Action Press Key Display

1. To enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

2. To select a task or function from the list (a flashing cursor indicates the selection).Double arrows: To change page to see more assistants/functions.

1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT 1

3. To enter the task. Motor Setup 1/10ENTER: Ok/ContinueACT: ExitFUNC: More Info

4. To accept and continue. Motor Setup 2/10MOTOR NAMEPLATE DATA AVAILABLE?ENTER:Yes FUNC:Info

5. To accept and continue. Motor Setup 3/10MOTOR NOM VOLTAGE?[0 V]ENTER:Ok RESET:Back

6. a. To adjust the requested drive parameter. Motor Setup 3/10MOTOR NOM VOLTAGE?[415 V]ENTER:Ok RESET:back

b. To ask for information on the requested value.(To scroll the information displays and return to the task).

INFO P99.05Set as given on the motor nameplate.

7. a. To accept a value and step forward. Motor Setup 4/10MOTOR NOM CURRENT?[0.0 A]ENTER:Ok RESET:Back

b. To cancel the setting and take one step back. Motor Setup 3/10MOTOR NOM VOLTAGE?[415 V]ENTER:Ok RESET:back

FUNC

ENTER

ENTER

ENTER

)(FUNC, ACT

FUNC

ENTER

RESET

Control panel

Page 186: VFD Documents

36

How to upload data from a drive to the panel

Note: • Upload before downloading.

• Ensure the firmware of the destination drive is the same (e.g. standard firmware).

• Before removing the panel from a drive, ensure the panel is in remote operating mode (change with the LOC/REM key).

• Stop the drive before downloading.

Before upload, repeat the following steps in each drive:

• Setup the motors.

• Activate the communication to the optional equipment. (See parameter group 98 OPTION MODULES.)

Before upload, do the following in the drive from which the copies are to be taken:

• Set the parameters in groups 10 to 97 as preferred.

• Proceed to the upload sequence (below).

8. To cancel and exit.Note: 1 x ACT returns to the first display of the task.

1 L -> 0.0 rpm OFREQ 0.00 HzCURRENT 0.00 APOWER 0.00 %

Step Action Press Key Display

1. Enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

2. Enter the page that contains the upload, download and contrast functions.

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

3. Select the upload function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

4. Enter the upload function. 1 L -> 1242.0 rpm OUPLOAD <=<=

5. Switch to external control.(No L on the first row of the display.)

1 -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

Step Action Press Key Display

2 x ACT

FUNC

ENTER

LOC

REM

Control panel

Page 187: VFD Documents

37

How to download data from the panel to a driveConsider the notes in section How to upload data from a drive to the panel on page 36.

6. Disconnect the panel and reconnect it to the drive into which the data will be downloaded.

Step Action Press Key Display

1. Connect the panel containing the uploaded data to the drive.

2. Ensure the drive is in local control (L shown on the first row of the display). If necessary, press the LOC/REM key to change to local control.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. Enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

4. Enter the page that contains the upload, download and contrast functions.

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

5. Select the download function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

6. Start the download. 1 L -> 1242.0 rpm ODOWNLOAD =>=>

Step Action Press Key Display

LOC

REM

FUNC

ENTER

Control panel

Page 188: VFD Documents

38

How to set the contrast of the display

Step Action Press Key Display

1. Enter the Function Mode. 1 L -> 1242.0 rpm OMotor SetupApplication MacroSpeed Control EXT1

2. Enter the page that contains the upload, download and contrast functions.

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

3. Select a function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

4. Enter the contrast setting function. 1 L -> 1242.0 rpm OCONTRAST [4]

5. Adjust the contrast. 1 L -> 1242.0 rpm CONTRAST [6]

6.a Accept the selected value. 1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 6

6.b Cancel the new setting and retain the original value by pressing any of the mode selection keys.

The selected mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

FUNC

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Control panel

Page 189: VFD Documents

39

Drive selection modeIn normal use the features available in the Drive Selection Mode are not needed; the features are reserved for applications where several drives are connected to one panel link. (For more information, see the Installation and Start-up Guide for the Panel Bus Connection Interface Module, NBCI, [3AFY58919748 (English)].

In the Drive Selection Mode, the user can:

• Select the drive with which the panel communicates through the panel link.

• Change the identification number of a drive connected to the panel link.

• View the status of the drives connected on the panel link.

The panel enters the Drive Selection Mode when the user presses the DRIVE key.

Each on-line station must have an individual identification number (ID). By default, the ID number of the drive is 1.

Note: The default ID number setting of the drive should not be changed unless the drive is to be connected to the panel link with other drives on-line.

How to select a drive and change its panel link ID number

Step Action Press key Display

1. To enter the Drive Selection Mode. ACS800

ASAAA5000 xxxxxxID NUMBER 1

2. To select the next drive/view. The ID number of the station is changed by first pressing ENTER (the brackets round the ID number appear) and then adjusting the value with arrow buttons. The new value is accepted with ENTER. The power of the drive must be switched off to validate its new ID number setting.

ACS800

ASAAA5000 xxxxxx

ID NUMBER 1

The status display of all devices connected to the Panel Link is shown after the last individual station. If all stations do not fit on the display at once, press the double-arrow up to view the rest of them. Status Display Symbols:

= Drive stopped, direction forward

= Drive running, direction reverseF = Drive tripped on a fault

3. To connect to the last displayed drive and to enter another mode, press one of the mode selection keys.

The selected mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

DRIVE

1o

o

PAR

FUNC

ACT

Control panel

Page 190: VFD Documents

40

Reading and entering packed boolean values on the displaySome actual values and parameters are packed boolean, i.e. each individual bit has a defined meaning (explained at the corresponding signal or parameter). On the control panel, packed boolean values are read and entered in hexadecimal format.

In this example, bits 1, 3 and 4 of the packed boolean value are ON:

Boolean 0000 0000 0001 1010Hex 0 0 1 A

Bit 15 Bit 0

Control panel

Page 191: VFD Documents

41

Program features

Chapter overviewThe chapter describes program features. For each feature, there is a list of related user settings, actual signals, and fault and warning messages.

Start-up Assistant

IntroductionThe assistant guides the user through the start-up procedure, helping the user to feed the requested data (parameter values) to the drive. The assistant also check that the entered values are valid, i.e. within the allowed range. At the first start, the drive suggests entering the first task of the assistant, Language Select, automatically.

The Start-up Assistant is divided into tasks. The user may activate the tasks either one after the other as the Start-up Assistant suggests, or independently. The user may also adjust the drive parameters in the conventional way without using the assistant at all.

See chapter Control panel on how to start the assistant, browse and exit.

Note: Option modules assistant is not supported from firmware version AS7R7363 onwards.

The default order of the tasksDepending on the selection made in the Application task (parameter 99.02), the Start-up Assistant decide which consequent tasks it suggests. The default tasks are shown in the table below.

Application Selection

Default Tasks

FACTORY, SEQ CTRL

Language Select, Motor Set-up, Application, Option Modules, Speed Control EXT1, Start/Stop Control, Protections, Output Signals

HAND/AUTO Language Select, Motor Set-up, Application, Option Modules, Speed Control EXT2, Start/Stop Control, Speed Control 1, Protections, Output Signals

T CTRL Language Select, Motor Set-up, Application, Option Modules, Torque Control, Start/Stop Control, Speed Control EXT1, Protections, Output Signals

PID CTRL Language Select, Motor Set-up, Application, Option Modules, PID Control, Start/Stop Control, Speed Control EXT1, Protections, Output Signals

Program features

Page 192: VFD Documents

42

List of tasks and the relevant drive parameters

Name Description Set parametersLanguage Select Selecting the language 99.01

Motor Set-up Setting the motor data

Performing the motor identification. (If the speed limits are not in the allowed range: Setting the limits).

99.05, 99.06, 99.09, 99.07, 99.08, 99.0499.10 (20.8, 20.07)

Application Selecting the application macro 99.02, parameters associated to the macro

Option Modules Activating the option modules Group 98, 35, 52

Speed Control EXT1

Selecting the source for the speed reference 11.03

(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.04, 11.05

Setting the speed (frequency) limits 20.02, 20.01, (20.08, 20.07)

Setting acceleration and deceleration times 22.02, 22.03

(Setting up the brake chopper if activated by parameter 27.01) (Group 27, 20.05, 14.01)

(If 99.02 is not SEQ CTRL: Setting constant speeds) (Group 12)

Speed Control EXT2

Setting the source for the speed reference 11.06

(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.08, 11.07

Torque Control Selecting the source for the torque reference 11.06

(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.08, 11.07

Setting the torque ramp up and ramp down times 24.01, 24.02

PID Control Selecting the source for the process reference 11.06

(If AI1 is used: Setting analogue input AI1 limits, scale, inversion)

(13.01, 13.02, 13.03, 13.04, 13.05, 30.01)

Setting the reference limits 11.08, 11.07

Setting the speed (reference) limits 20.02, 20.01 (20.08, 20.07)

Setting the source and limits for the process actual value 40.07, 40.09, 40.10

Start/Stop Control Selecting the source for start and stop signals of the two external control locations, EXT1 and EXT2

10.01, 10.02

Selecting between EXT1 and EXT2 11.02

Defining the direction control 10.03

Defining the start and stop modes 21.01, 21.02, 21.03

Selecting the use of Run Enable signal 16.01, 21.07

Setting the ramp time for the Run Enable function 22.07

Protections Setting the torque and current limits 20.03, 20.04

Output Signals Selecting the signals indicated through the relay outputs RO1, RO2, RO3 and optional RO’s (if installed)

Group 14

Selecting the signals indicated through the analogue output AO1, AO2 and optional AO’s (if installed). Setting the minimum, maximum, scaling and inversion.

15.01, 15.02, 15.03, 15.04, 15.05, (Group 96)

Program features

Page 193: VFD Documents

43

Contents of the assistant displaysThere are two types of displays in the Start-up Assistant: The main displays and the information displays. The main displays prompt the user to feed in information or answer a question. The assistant steps through the main displays. The information displays contain help texts for the main displays. The figure below shows a typical example of both and explanations of the contents.

Local control vs. external controlThe drive can receive start, stop and direction commands and reference values from the control panel or through digital and analogue inputs. An optional fieldbus adapter enables control over an open fieldbus link. A PC equipped with DriveWindow can also control the drive.

Main Display Information Display1234

Motor Setup 3/10MOTOR NOM VOLTAGE?[0 V]ENTER:Ok RESET:Back

INFO P99.05Set as given on the motor nameplate.

1 Name of the assistant, step number / total number of steps

Text INFO, index of parameter to be set

2 Request/question Help text …

3 Feed-in field … help text continued

4 Commands: accept value and step forward or cancel and step backwards

double arrow symbol (indicates that the text continues)

Slot 1

CH0(DDCS)

Fieldbus

ACS800

RDCOmodule

Control panel

DriveWindow

External controlLocal control

Standard I/O

Slot 1 or Slot 2RTAC/RDIO/RAIO

adapter

module

CH3(DDCS)

Fieldbus adapterNxxx

or

Advant controller(e.g. AC 80, AC 800M)

CH1(DDCS)

RTAC/RDIO/RAIOAIMA-01 I/Oadapter module module

Program features

Page 194: VFD Documents

44

Local controlThe control commands are given from the control panel keypad when the drive is in local control. L indicates local control on the panel display.

The control panel always overrides the external control signal sources when used in local mode.

External controlWhen the drive is in external control, the commands are given through the standard I/O terminals (digital and analogue inputs), optional I/O extension modules and/or the fieldbus interface. In addition, it is also possible to set the control panel as the source for the external control.

External control is indicated by a blank on the panel display or with an R in those special cases when the panel is defined as a source for external control.

The user can connect the control signals to two external control locations, EXT1 or EXT2. Depending on the user selection, either one is active at a time. This function operates on a 12 ms time level.

Settings

Diagnostics

Panel key Additional informationLOC/REM Selection between local and external control

Parameter11.02 Selection between EXT1 and EXT2

10.01 Start, stop, direction source for EXT1

11.03 Reference source for EXT1

10.02 Start, stop, direction source for EXT2

11.06 Reference source for EXT2

Group 98 OPTION MODULES

Activation of the optional I/O and serial communication

Actual signals Additional information01.11, 01.12 EXT1 reference, EXT2 reference

03.02 EXT1/EXT2 selection bit in a packed boolean word

1 L ->1242 rpm I

External Control through the Input/Output terminals, or through the fieldbus interfaces

1 R ->1242 rpm I 1 ->1242 rpm I

External Control by control panel

Program features

Page 195: VFD Documents

45

Block diagram: start, stop, direction source for EXT1The figure below shows the parameters that select the interface for start, stop, and direction for external control location EXT1.

Block diagram: reference source for EXT1The figure below shows the parameters that select the interface for the speed reference of external control location EXT1.

DI1 / Std IO

Fb. selection See chapter Fieldbus control.

Fieldbus adapter slot 1

KEYPAD

EXT1 DI6 / Std IO

DI1 / DIO ext 1DI2 / DIO ext 1

DI1 / DIO ext 2DI2 / DIO ext 2

I/O ExtensionsSee group 98 OPTION MODULES.

DI7 to DI9

COMM. CW

DI1

DI6

Control panel

Start/stop/

DI1 / Std IO = Digital input DI1 on the standard I/O terminal blockDI1 / DIO ext 1 = Digital input DI1 on the digital I/O extension module 1

direction 10.01

Select

CH0 / RDCO boardStandard Modbus® Link

EXT1

AI1 / Std IO

AI1 / AIO extAI2 / AIO ext

11.03

Select

DI1 / DIO ext 3DI2 / DIO ext 3

KEYPAD

COMM. REF

Control panel

I/O ExtensionsSee parameter group 98 OPTION MODULES.

AI2 / Std IOAI3 / Std IODI3 / Std IODI4 / Std IO

AI1, AI2, AI3, DI3, DI4

Fb. selectionSee chapter Fieldbus control.

AI5, AI6DI11, DI12 REF1 (rpm)

Reference

AI1 / Std IO = Analogue input AI1 on the standard I/O terminal blockAI1 / AIO ext = Analogue input AI1 on the analogue I/O extension module

Fieldbus adapter slot 1CH0 / RDCO boardStandard Modbus Link

Program features

Page 196: VFD Documents

46

Reference types and processingThe drive can accept a variety of references in addition to the conventional analogue input signal and control panel signals.

• The drive reference can be given with two digital inputs: One digital input increases the speed, the other decreases it.

• The drive accepts a bipolar analogue speed reference. This feature allows both the speed and direction to be controlled with a single analogue input. The minimum signal is full speed reversed and the maximum signal is full speed forward.

• The drive can form a reference out of two analogue input signals by using mathematical functions: Addition, subtraction, multiplication, minimum selection, and maximum selection.

• The drive can form a reference out of an analogue input signal and a signal received through a serial communication interface by using mathematical functions: addition and multiplication.

It is possible to scale the external reference so that the signal minimum and maximum values correspond to a speed other than the minimum and maximum speed limits.

Settings

Diagnostics

Parameter Additional informationGroup 11 REFERENCE SELECT

External reference source, type and scaling

Group 20 LIMITS Operating limits

Group 22 ACCEL/DECEL Speed reference acceleration and deceleration ramps

Group 24 TORQUE CTRL Torque reference ramp times

Group 32 SUPERVISION Reference supervision

Actual signal Additional information01.11, 01.12 Values of external references

Group 02 ACTUAL SIGNALS The reference values in different stages of the reference processing chain.

ParameterGroup 14 RELAY OUTPUTS Active reference / reference loss through a relay output

Group 15 ANALOGUE OUTPUTS

Reference value

Program features

Page 197: VFD Documents

47

Reference trimmingIn reference trimming, the external %-reference (External reference REF2) is corrected depending on the measured value of a secondary application variable. The block diagram below illustrates the function.

Settings

Parameter Additional information40.14…40.18 Trimming function settings

40.01…40.13, 40.19 PID control block settings

Group 20 LIMITS Drive operation limits

40.14

Select

%ref

1

Mul.Mul.

Add

%ref= The drive reference before trimming%ref’ = The drive reference after trimmingmax. speed= Par. 20.02 (or 20.01 if the absolute value is greater)max. freq = Par. 20.08 (or 20.07 if the absolute value is greater)max. torq = Par. 20.14 (or 20.13 if the absolute value is greater)

%ref%ref’

DIRECT (3)

PROPOR. (2)

OFF (1)

max.speed

Switchmax.freq

99.04 (DTC)

40.17PID

trefktitdidFiltTerrVInvrIntoh1ol1

Actual Values40.05

40.07AI1AI2AI3AI5AI6

IMOT40.19

Filter

40.15

SelectAI1AI2

...40.16

40.0140.0240.03

40.0440.0540.13

PIDmaxPIDmin

.

.

.

40.18

Select

max.torque

Program features

Page 198: VFD Documents

48

ExampleThe drive runs a conveyor line. It is speed-controlled but the line tension also needs to be taken into account: If the measured tension exceeds the tension setpoint, the speed will be slightly decreased, and vice versa.

To accomplish the desired speed correction, the user:

• activates the trimming function and connects the tension setpoint and the measured tension to it

• tunes the trimming to a suitable level.

Drive rollers (pull)Tension measurement

Speed controlled conveyor line

PID

Add

Tension measurement

Speed reference

Tension setpoint

Trimmed speed reference

Simplified block diagram

Program features

Page 199: VFD Documents

49

Programmable analogue inputsThe drive has three programmable analogue inputs: one voltage input (0/2 to 10 V or -10 to 10 V) and two current inputs (0/4 to 20 mA). Two extra inputs are available if an optional analogue I/O extension module is used. Each input can be inverted and filtered, and the maximum and minimum values can be adjusted.

Update cycles in the Standard Control Program

1) Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.

Settings

Diagnostics

Input CycleAI / standard 6 ms

AI / extension 6 ms (100 ms 1))

Parameter Additional informationGroup 11 REFERENCE SELECT

AI as a reference source

Group 13 ANALOGUE INPUTS

Processing of the standard inputs

30.01 Supervision of AI loss

Group 40 PID CONTROL

AI as a PID process control reference or actual values

35.01 AI in a motor temperature measurement

40.15 AI in a drive reference trimming

42.07 AI in a mechanical brake control function

98.06 Activation of optional analogue inputs

98.13 Optional AI signal type definition (bipolar or unipolar)

98.14 Optional AI signal type definition (bipolar or unipolar)

Actual value Additional information01.18, 01.19, 01.20 Values of standard inputs

01.38, 01.39 Value of optional inputs

Group 09 ACTUAL SIGNALS

Scaled analogue input values (integer values for function block programming)

Program features

Page 200: VFD Documents

50

Programmable analogue outputsTwo programmable current outputs (0/4 to 20 mA) are available as standard, and two outputs can be added by using an optional analogue I/O extension module. Analogue output signals can be inverted and filtered.

The analogue output signals can be proportional to motor speed, process speed (scaled motor speed), output frequency, output current, motor torque, motor power, etc.

It is possible to write a value to an analogue output through a serial communication link.

Update cycles in the Standard Control Program

1) Update cycle in the motor temperature measurement function. See group 35 MOT TEMP MEAS.

Settings

Diagnostics

Output CycleAO / standard 24 ms

AO / extension 24 ms (1000 ms 1) )

Parameter Additional informationGroup 15 ANALOGUE OUTPUTS

AO value selection and processing (standard outputs)

30.20 Operation of an externally controlled AO in a communication break

30.22 Supervision of the use of optional AO

Group 35 MOT TEMP MEAS

AO in motor temperature measurement

Group 96 EXTERNAL AO

Optional AO value selection and processing

Group 98 OPTION MODULES

Activation of optional I/O

Actual value Additional information01.22, 01.23 Values of the standard outputs

01.28, 01.29 Values of the optional outputs

WarningIO CONFIG (FF8B) Improper use of optional I/O

Program features

Page 201: VFD Documents

51

Programmable digital inputsThe drive has six programmable digital inputs as a standard. Six extra inputs are available if optional digital I/O extension modules are used.

Update cycles in the Standard Control Program

Settings

Diagnostics

Input CycleDI / standard 6 ms

DI / extension 12 ms

Parameter Additional informationGroup 10 START/STOP/DIR

DI as start, stop, direction

Group 11 REFERENCE SELECT

DI in reference selection, or reference source

Group 12 CONSTANT SPEEDS

DI in constant speed selection

Group 16 SYST CTRL INPUTS

DI as external Run Enable, fault reset or user macro change signal

22.01 DI as acceleration and deceleration ramp selection signal

30.03 DI as external fault source

30.05 DI in motor overtemperature supervision function

30.22 Supervision of optional I/O use

40.20 DI as sleep function activation signal (in PID process control)

42.02 DI as mechanical brake acknowledgement signal

98.03…96.05 Activation of the optional digital I/O extension modules

98.09…98.11 Naming of the optional digital inputs in the application program

Actual value Additional information01.17 Values of the standard digital inputs

01.40 Values of the optional digital inputs

WarningIO CONFIG (FF8B) Improper use of optional I/O

FaultI/O COMM ERR (7000) Communication loss to I/O

Program features

Page 202: VFD Documents

52

Programmable relay outputsAs standard there are three programmable relay outputs. Six outputs can be added by using the optional digital I/O extension modules. By means of a parameter setting it is possible to choose which information to indicate through the relay output: ready, running, fault, warning, motor stall, etc.

It is possible to write a value to a relay output through a serial communication link.

Update cycles in the Standard Control Program

Settings

Diagnostics

Output CycleRO / standard 100 ms

RO / extension 100 ms

Parameter Additional informationGroup 14 RELAY OUTPUTS

RO value selections and operation times

30.20 Operation of an externally controlled relay output on a communication break

Group 42 BRAKE CONTROL

RO in a mechanical brake control

Group 98 OPTION MODULES

Activation of optional relay outputs

Actual value Additional information01.21 Standard relay output states

01.41 Optional relays output states

Program features

Page 203: VFD Documents

53

Actual signalsSeveral actual signals are available:

• Drive output frequency, current, voltage and power

• Motor speed and torque

• Supply voltage and intermediate circuit DC voltage

• Active control location (Local, EXT1 or EXT2)

• Reference values

• Drive temperature

• Operating time counter (h), kWh counter

• Digital I/O and Analogue I/O status

• PID controller actual values (if the PID Control macro is selected)

Three signals can be shown simultaneously on the control panel display. It is also possible to read the values through the serial communication link or through the analogue outputs.

Settings

Diagnostics

Motor identificationThe performance of Direct Torque Control is based on an accurate motor model determined during the motor start-up.

A motor Identification Magnetisation is automatically done the first time the start command is given. During this first start-up, the motor is magnetised at zero speed for several seconds to allow the motor model to be created. This identification method is suitable for most applications.

In demanding applications a separate Identification Run can be performed.

SettingsParameter 99.10.

Parameter Additional informationGroup 15 ANALOGUE OUTPUTS

Selection of an actual signal to an analogue output

Group 92 D SET TR ADDR

Selection of an actual signal to a data set (serial communication)

Actual value Additional informationGroup 01 ACTUAL SIGNALS … 09 ACTUAL SIGNALS

Lists of actual signals

Program features

Page 204: VFD Documents

54

Power loss ride-throughIf the incoming supply voltage is cut off, the drive will continue to operate by utilising the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue the operation after the break if the main contactor remained closed.

Note: Cabinet assembled units equipped with main contactor option have a “hold circuit” that keeps the contactor control circuit closed during a short supply break. The allowed duration of the break is adjustable. The factory setting is five seconds.

Automatic StartSince the drive can detect the state of the motor within a few milliseconds, the starting is immediate under all conditions. There is no restart delay. E.g. the starting of turbining pumps or windmilling fans is easy.

SettingsParameter 21.01.

130

260

390

520

1.6 4.8 8 11.2 14.4t(s)

UDC

fout

TM

UDC= Intermediate circuit voltage of the drive, fout = output frequency of the drive, TM = Motor torqueLoss of supply voltage at nominal load (fout = 40 Hz). The intermediate circuit DC voltage drops to the minimum limit. The controller keeps the voltage steady as long as the supply voltage is switched off. The drive runs the motor in generator mode. The motor speed falls but the drive is operational as long as the motor has enough kinetic energy.

Uin

20

40

60

80

40

80

120

160

TM(Nm)

fout(Hz)

UDC(V d.c.)

Program features

Page 205: VFD Documents

55

Safe torque off (STO)Safe torque off function disconnects the control voltage from the inverter power semiconductors, i.e. the drive output voltage is cut off. See the circuit diagrams delivered with the drive for the wirings to be made by the user.

WARNING! The Safe torque off function does not disconnect the voltage of the main and auxiliary circuits from the drive. Therefore, maintenance work on electrical parts may only be carried out after disconnecting the drive system from the input power line.

The Safe torque off function operates as follows:

• The operator gives an STO function activation command (for example, with a switch mounted on the control desk).

• The voltage supply of the ASTO-x1C board is disconnected.

• The drive application program receives an internal signal from the AINT board that an STO function activation command has been given. If the STO function activation command was given during run, the drive coasts to stop.

• The Safe torque off function is activated.

• Alarm START INHIBI is activated (03.08 Alarm Word 1 bit 0 value is 1).

• 03.03 AUX STATUS WORD bit 8 value is set to 1 (= Safe torque off function is active) within 3 seconds.

Note: Fault START INHIBI is generated (03.03 AUX STATUS WORD bit 8 value is 1) if the Safe torque off function is activated during motor run or if motor start command is given when the Safe torque off function is already active.

Diagnostics

Prevention of unexpected start-up (POUS)The Prevention of unexpected start-up functions as Safe torque off described above, with the following exceptions:

• POUS must not be activated during run.

• POUS requires an AGPS-x1C board (not ASTO-x1C).

Actual value Additional information03.03 AUX STATUS WORD, bit 8 Safe torque off function activation status

03.08 ALARM WORD 1, bit 0 /03.03 AUX STATUS WORD, bit 8

Safe torque off function alarm/fault

Program features

Page 206: VFD Documents

56

Safely-limited speed (SLS) (AS7R firmware version only)The SLS function limits the motor speed to a safe value.

Note: If used without a safety PLC, the SLS function does not fulfill the requirements for SIL classification as defined in EN IEC 61800-5-2.

When the SLS function is activated, speed limits are ramped from the values of 20.01 MINIMUM SPEED and 20.02 MAXIMUM SPEED to the value of 20.22 SLS SPEED LIMIT and its additive inverse, respectively. The ramping begins at the absolute value of the actual speed. If the actual speed is already below the SLS limit, the limit comes into effect immediately without ramping.

When the SLS function is deactivated, the speed limits are ramped up back to the values defined by 20.01 and 20.02, and the actual speed returns to the reference value if it was limited by this function.

Settings

Diagnostics and control

See also Safe speed functions for ACS800 cabinet-installed drives (+Q965/+Q966) Application guide [3AUA0000090742 (English)].

Note: When SLS function is active, critical speed settings in parameter group 25 are not in effect.

Parameter Additional information10.09 SLS ACTIVE Selection of DI source

20.22 SLS SPEED LIMIT Safely-limited speed limit

22.10 SLS ACCELER TIME Time required for speed limit to ramp up from SLS to normal

22.11 SLS DECELER TIME Time required for speed limit to ramp down from current actual speed to SLS

Actual value Additional information03.04 FREQ_LIMIT, bit 15 SLS activation status

20.01 MINIMUM SPEED

0

20.02 MAXIMUM SPEED

Actual speed

22.11 22.10

20.22 SLS SPEED LIMIT

SLS activated

Program features

Page 207: VFD Documents

57

DC MagnetisingWhen DC Magnetising is activated, the drive automatically magnetises the motor before starting. This feature guarantees the highest possible breakaway torque, up to 200% of motor nominal torque. By adjusting the premagnetising time, it is possible to synchronise the motor start and e.g. a mechanical brake release. The Automatic Start feature and DC Magnetising cannot be activated at the same time.

SettingsParameters 21.01 and 21.02.

DC HoldBy activating the motor DC Hold feature it is possible to lock the rotor at zero speed. When both the reference and the motor speed fall below the preset DC hold speed, the drive stops the motor and starts to inject DC into the motor. When the reference speed again exceeds the DC hold speed, the normal drive operation resumes.

SettingsParameters 21.04, 21.05, and 21.06.

Flux BrakingThe drive can provide greater deceleration by raising the level of magnetisation in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy. This feature is useful in motor power ranges below 15 kW.

DC hold t

Motor

DC Hold

speed

DC hold speed

t

Speed

ReferenceSpeed

Flux Braking

No Flux Braking

t (s)

Motor

Flux Braking

No Flux Brakingf (Hz)

TBrTN

20

40

60

(%)

TN = 100 NmTBr = Braking Torque

Speed

50 HZ / 60 Hz

Program features

Page 208: VFD Documents

58

The drive monitors the motor status continuously, also during the Flux Braking. Therefore, Flux Braking can be used both for stopping the motor and for changing the speed. The other benefits of Flux Braking are:

• The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it can start the braking.

• The cooling of the motor is efficient. The stator current of the motor increases during the Flux Braking, not the rotor current. The stator cools much more efficiently than the rotor.

SettingsParameter 26.02.

Flux OptimisationFlux Optimisation reduces the total energy consumption and motor noise level when the drive operates below the nominal load. The total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed.

SettingsParameter 26.01.

120

80

40

05 10 20 30 40 50

1

2345

120

80

40

05 10 20 30 40 50

1

2

3

45

f (Hz)

Braking Torque (%)

f (Hz)

Flux Braking

No Flux Braking

1

2

3

4

5

2.2 kW15 kW37 kW75 kW250 kW

Rated Motor Power

Program features

Page 209: VFD Documents

59

Acceleration and deceleration rampsTwo user-selectable acceleration and deceleration ramps are available. It is possible to adjust the acceleration/deceleration times and the ramp shape. Switching between the two ramps can be controlled via a digital input.

The available ramp shape alternatives are Linear and S-curve.

Linear: Suitable for drives requiring steady or slow acceleration/deceleration.

S-curve: Ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing the speed.

SettingsParameter group 22 ACCEL/DECEL.

Critical speedsA Critical Speeds function is available for applications where it is necessary to avoid certain motor speeds or speed bands because of e.g. mechanical resonance problems.

SettingsParameter group 25 CRITICAL SPEEDS.

Constant speedsIt is possible to predefine 15 constant speeds. Constant speeds are selected with digital inputs. Constant speed activation overrides the external speed reference.

This function operates on a 6 ms time level.

SettingsParameter group 12 CONSTANT SPEEDS.

Linear

t (s)

Motor

2

speed

S-curve

Program features

Page 210: VFD Documents

60

Speed controller tuningDuring the motor identification, the speed controller is automatically tuned. It is, however, possible to manually adjust the controller gain, integration time and derivation time, or let the drive perform a separate speed controller Autotune Run. In Autotune Run, the speed controller is tuned based on the load and inertia of the motor and the machine. The figure below shows speed responses at a speed reference step (typically, 1 to 20%).

The figure below is a simplified block diagram of the speed controller. The controller output is the reference for the torque controller.

SettingsParameter group 23 SPEED CTRL and 20 LIMITS.

DiagnosticsActual signal 01.02.

A: UndercompensatedB: Normally tuned (autotuning)C: Normally tuned (manually). Better dynamic performance than with BD: Overcompensated speed controller

%

t

n

CB D

nN

A

Derivative

Proportional,integral

Derivativeaccelerationcompensation

Torquereference

Speedreference

Actual speed

Errorvalue-

+ +++

Program features

Page 211: VFD Documents

61

Speed control performance figuresThe table below shows typical performance figures for speed control when Direct Torque Control is used.

Torque control performance figuresThe drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control, when Direct Torque Control is used.

100

t (s)

TTN

(%)

Tload

nact-nrefnN

0.1 - 0.4 %sec

TN = rated motor torquenN = rated motor speednact = actual speednref = speed reference

*Dynamic speed error depends on speed controller tuning.

Speed Control No Pulse Encoder

With Pulse Encoder

Static speed error, % of nN

+ 0.1 to 0.5%(10% of nominal slip)

+ 0.01%

Dynamic speed error

0.4 %sec.* 0.1 %sec.*

*When operated around zero frequency, the error may be greater.

Torque Control No Pulse Encoder

With Pulse Encoder

Linearity error + 4%* + 3%

Repeatability error

+ 3%* + 1%

Torque rise time 1 to 5 ms 1 to 5 ms

100

t(s)

TTN

< 5 ms

90

10

(%)

Tref

Tact

TN = rated motor torqueTref = torque referenceTact = actual torque

Program features

Page 212: VFD Documents

62

Scalar controlIt is possible to select Scalar Control as the motor control method instead of Direct Torque Control (DTC). In the Scalar Control mode, the drive is controlled with a frequency reference. The outstanding performance of the default motor control method, Direct Torque Control, is not achieved in Scalar Control.

It is recommended to activate the Scalar Control mode in the following special applications:

• In multimotor drives: 1) if the load is not equally shared between the motors, 2) if the motors are of different sizes, or 3) if the motors are going to be changed after the motor identification

• If the nominal current of the motor is less than 1/6 of the nominal output current of the drive

• If the drive is used without a motor connected (e.g. for test purposes)

• The drive runs a medium voltage motor via a step-up transformer.

In the Scalar Control mode, some standard features are not available.

SettingsParameter 99.04.

IR compensation for a scalar controlled driveIR Compensation is active only when the motor control mode is Scalar (see section Scalar control on page 62). When IR Compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. IR Compensation is useful in applications that require high breakaway torque. In Direct Torque Control, no IR Compensation is possible/needed.

SettingsParameter 26.03.

f (Hz)

Motor Voltage

No compensation

IR Compensation

Program features

Page 213: VFD Documents

63

Hexagonal motor fluxTypically the drive controls the motor flux in such a way that the rotating flux vector follows a circular pattern. This is ideal in most applications. When operated above the field weakening point (FWP, typically 50 or 60 Hz), it is, however, not possible to reach 100% of the output voltage. The peak load capacity of the drive is lower than with the full voltage.

If hexagonal flux control is selected, the motor flux is controlled along a circular pattern below the field weakening point, and along a hexagonal pattern in the field weakening range. The applied pattern is changed gradually as the frequency increases from 100% to 120% of the FWP. Using the hexagonal flux pattern, the maximum output voltage can be reached; The peak load capacity is higher than with the circular flux pattern but the continuous load capacity is lower in the frequency range of FWP to 1.6 · FWP, due to increased losses.

SettingsParameter 26.05.

Programmable protection functions

AI<MinAI<Min function defines the drive operation if an analogue input signal falls below the preset minimum limit.

Settings

Parameter 30.01.

Panel LossPanel Loss function defines the operation of the drive if the control panel selected as control location for the drive stops communicating.

Settings

Parameter 30.02.

External FaultExternal Faults can be supervised by defining one digital input as a source for an external fault indication signal.

Settings

Parameter 30.03.

Program features

Page 214: VFD Documents

64

Motor Thermal ProtectionThe motor can be protected against overheating by activating the Motor Thermal Protection function and by selecting one of the motor thermal protection modes available.

The Motor Thermal Protection modes are based either on a motor temperature thermal model or on an overtemperature indication from a motor thermistor.

Motor temperature thermal model

The drive calculates the temperature of the motor on the basis of the following assumptions:

1) The motor is at the estimated temperature (value of 01.37 MOTOR TEMP EST saved at power switch off) when power is applied to the drive. When power is applied for the first time, the motor is at the ambient temperature (30°C).

2) Motor temperature is calculated using either the user-adjustable or automatically calculated motor thermal time and motor load curve (see the figures below). The load curve should be adjusted in case the ambient temperature exceeds 30°C.

Use of the motor thermistor

It is possible to detect motor overtemperature by connecting a motor thermistor (PTC) between the +24 VDC voltage supply offered by the drive and digital input DI6. In normal motor operation temperature, the thermistor resistance should be less than 1.5 kohm (current 5 mA). The drive stops the motor and gives a fault indication if the thermistor resistance exceeds 4 kohm. The installation must meet the regulations for protecting against contact.

Settings

Parameters 30.04 to 30.09.

Note: It is also possible to use the motor temperature measurement function. See sections Motor temperature measurement through the standard I/O on page 73 and Motor temperature measurement through an analogue I/O extension on page 75.

Motor

100%

Temp.

63%

Motor thermal time

t

t

100%

50

100

150

Zero speed load

Motor load curve

Break pointMotor

Speed

Load Current(%)

Rise

Program features

Page 215: VFD Documents

65

Stall ProtectionThe drive protects the motor in a stall situation. It is possible to adjust the supervision limits (torque, frequency, time) and choose how the drive reacts to a motor stall condition (warning indication / fault indication & stop the drive / no reaction).

The torque and current limits, which define the stall limit, must be set according to the maximum load of the used application. Note: Stall limit is restricted by internal current limit 03.04 TORQ_INV_CUR_LIM.

When the application reaches the stall limit and the output frequency of the drive is below the stall frequency: Fault is activated after the stall time delay.

Settings

Parameters 30.10 to 30.12.

Parameters 20.03, 20.13 and 20.14 (Define the stall limit.)

Underload ProtectionLoss of motor load may indicate a process malfunction. The drive provides an underload function to protect the machinery and process in such a serious fault condition. Supervision limits - underload curve and underload time - can be chosen as well as the action taken by the drive upon the underload condition (warning indication / fault indication & stop the drive / no reaction).

Settings

Parameters 30.13 to 30.15.

Motor Phase LossThe Phase Loss function monitors the status of the motor cable connection. The function is useful especially during the motor start: the drive detects if any of the motor phases is not connected and refuses to start. The Phase Loss function also supervises the motor connection status during normal operation.

Settings

Parameter 30.16.

Program features

Page 216: VFD Documents

66

Earth Fault ProtectionThe earth fault protection detects earth faults in the motor or motor cable. The protection is based on sum current measurement.

• An earth fault in the supply cable does not activate the protection.

• In an earthed (grounded) supply, the protection activates in 200 microseconds.

• In an unearthed (ungrounded) supply, the supply capacitance should be 1 microfarad or more.

• The capacitive currents caused by shielded motor cables up to 300 metres do not activate the protection.

• Earth fault protection is deactivated when the drive is stopped.

Note: With parallel connected inverter modules, the earth fault indication is CUR UNBAL xx. See chapter Fault tracing.

Settings

Parameter 30.17.

Communication FaultThe Communication Fault function supervises the communication between the drive and an external control device (e.g. a fieldbus adapter module).

Settings

Parameters 30.18 to 30.21.

Supervision of optional IOThe function supervises the use of the optional analogue and digital inputs and outputs in the application program, and warns if the communication to the input/output is not operational.

Settings

Parameter 30.22.

Preprogrammed faults

OvercurrentThe overcurrent trip limit for the drive is 1.65 to 2.17 · Imax depending on the drive type.

DC overvoltageThe DC overvoltage trip limit is 1.3 × 1.35 × U1max, where U1max is the maximum value of the supply voltage range. For 400 V units, U1max is 415 V. For 500 V units, U1max is 500 V. For 690 V units, U1max is 690 V. The actual voltage in the intermediate circuit corresponding to the supply voltage trip level is 728 V DC for 400 V units, 877 V DC for 500 V units, and 1210 V DC for 690 V units.

Program features

Page 217: VFD Documents

67

DC undervoltageThe DC undervoltage trip limit is 0.6 × 1.35 × U1min, where U1min is the minimum value of the supply voltage range. For 400 V and 500 V units, U1min is 380 V. For 690 V units, U1min is 525 V. The actual voltage in the intermediate circuit corresponding to the supply voltage trip level is 307 V DC for 400 V and 500 V units, and 425 V DC for 690 V units.

Drive temperatureThe drive supervises the inverter module temperature. There are two supervision limits: warning limit and fault trip limit.

Enhanced drive temperature monitoring for ACS800, frame sizes R7 and R8Traditionally, drive temperature monitoring is based on the power semiconductor (IGBT) temperature measurement which is compared with a fixed maximum IGBT temperature limit. However, certain abnormal conditions such as cooling fan failure, insufficient cooling air flow or excessive ambient temperature might cause overheating inside the converter module, which the traditional temperature monitoring alone does not detect. The Enhanced drive temperature monitoring improves the protection in these situations.

The function monitors the converter module temperature by checking cyclically that the measured IGBT temperature is not excessive considering the load current, ambient temperature, and other factors that affect the temperature rise inside the converter module. The calculation uses an experimentally defined equation that simulates the normal temperature changes in the module depending on the load. Drive generates a warning when the temperature exceeds the limit, and trips when temperature exceeds the limit by 5°C.

Note: The monitoring is available for ACS800-02, -04 and -07, frame sizes R7 and R8 with Standard Control Program version ASXR7360 (and later versions). For ACS800-U2, -U4 and -U7, frame sizes R7 and R8, the monitoring is available with Standard Control Program version ASXR730U (and later versions).

Types to which the enhanced drive temperature monitoring is available:

ACS800-XX -0080-2-0100-2-0120-2-0140-2/3/7-0170-2/3/5/7-0210-2/3/5/7-0230-2-0260-2/3/5/7-0270-5-0300-2/5-0320-3/5/7-0400-3/5/7

Program features

Page 218: VFD Documents

68

Settings

Diagnostics

Short circuitThere are separate protection circuits for supervising the motor cable and the inverter short circuits. If a short circuit occurs, the drive will not start and a fault indication is given.

Input phase lossInput phase loss protection circuits supervise the supply cable connection status by detecting intermediate circuit ripple. If a phase is lost, the ripple increases. The drive is stopped and a fault indication is given if the ripple exceeds 13%.

Control board temperatureThe drive supervises the control board temperature. A fault indication CTRL B TEMP is given, if the temperature exceeds 88°C.

OverfrequencyIf the drive output frequency exceeds the preset level, the drive is stopped and a fault indication is given. The preset level is 50 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active).

Internal faultIf the drive detects an internal fault, the drive is stopped and a fault indication is given.

Operation limitsACS800 has adjustable limits for speed, current (maximum), torque (maximum) and DC voltage.

SettingsParameter group 20 LIMITS.

-0440-3/5/7-0490-3/5/7-0550-5/7-0610-5/7

Parameter Additional information95.10 TEMP INV AMBIENT Ambient temperature

Warning/Fault Additional informationINV OVERTEMP Excessive converter module temperature

Program features

Page 219: VFD Documents

69

Power limitPower limitation is used to protect the input bridge and the DC intermediate circuit. If the maximum allowed power is exceeded, the drive torque is automatically limited. Maximum overload and continuous power limits depend on the drive hardware. For specific values refer to the appropriate hardware manual.

Automatic resetsThe drive can automatically reset itself after overcurrent, overvoltage, undervoltage and “analogue input below a minimum” faults. The Automatic Resets must be activated by the user.

SettingsParameter group 31 AUTOMATIC RESET.

SupervisionsThe drive monitors whether certain user selectable variables are within the user-defined limits. The user may set limits for speed, current etc.

The supervision functions operate on a 100 ms time level.

SettingsParameter group 32 SUPERVISION.

Diagnostics

Parameter lockThe user can prevent parameter adjustment by activating the parameter lock.

SettingsParameters 16.02 and 16.03.

Actual Signals Additional information03.02 Supervision limit indicating bits in a packed boolean word

03.04 Supervision limit indicating bits in a packed boolean word

03.14 Supervision limit indicating bits in a packed boolean word

Group 14 RELAY OUTPUTS

Supervision limit indication through a relay output

Program features

Page 220: VFD Documents

70

Process PID controlThere is a built-in PID controller in the drive. The controller can be used to control process variables such as pressure, flow or fluid level.

When the process PID control is activated, a process reference (setpoint) is connected to the drive instead of a speed reference. An actual value (process feedback) is also brought back to the drive. The process PID control adjusts the drive speed in order to keep the measured process quantity (actual value) at the desired level (reference).

The control operates on a 24 ms time level.

Block diagramsThe block diagram below right illustrates the process PID control.

The figure on the left shows an application example: The controller adjusts the speed of a pressure boost pump according to the measured pressure and the set pressure reference.

� � � � � � � � � � � �

� �

� � �

� �

� � � � �

� � � � � � �

� � � � � � � �

� � � � � � � �

PIDrefktitdidFiltTerrVInvrIntoh1ol1

Actual Values40.06

40.12AI1AI2AI3AI5AI6

IMOT40.19

Filter

%ref40.0140.0240.03

40.0440.0540.13

PIDmaxPIDmin

Switch

Speed reference

Frequency reference

99.04 = 0(DTC)

Example:

.

..

PID Control Block Diagram

%ref = external reference EXT REF2 (see parameter 11.06)

Pressure boost pump

ACS800

Program features

Page 221: VFD Documents

71

Settings

Diagnostics

Sleep function for the process PID controlThe sleep function operates on a 100 ms time level.

The block diagram below illustrates the sleep function enable/disable logic. The sleep function can be put into use only when the process PID control is active.

Parameter Purpose99.02 Process PID control activation

40.01...40.13, 40.19, 40.25...40.27

The settings of the process PID controller

32.13...32.18 The supervision limits for the process reference REF2 and the variables ACT1 and ACT2

Actual Signals Purpose01.12, 01.24, 01.25, 01.26 and 01.34

PID process controller reference, actual values and error value

Group 14 RELAY OUTPUTS

Supervision limit exceeded indication through a relay output

Group 15 ANALOGUE OUTPUTS

PID process controller values through standard analogue outputs

Group 96 EXTERNAL AO

PID process controller values through optional analogue outputs

1)1 = Activate sleeping0 = Deactivate sleeping

40.20

SelectCompare

1<2

Or

<1

40.22

Delay

t

1

240.21

Mot.speed0

DI1

And

&%refActivePIDCtrlActive

modulating

Set/ResetS

R

S/R

Compare

1<21

240.23

0INTERNAL

DI1

40.24

Delay

t

Or

<1StartRq

03.02 (B1)

03.02 (B2)

1)

01.34

INTERNAL

...

40.20

Select

...

Mot.speed: Actual speed of the motor%refActive: The % reference (EXT REF2) is in use. See parameter 11.02.PIDCtrlActive: 99.02 is PID CTRLmodulating: The inverter IGBT control is operating

Program features

Page 222: VFD Documents

72

ExampleThe time scheme below visualises the operation of the sleep function.

Sleep function for a PID controlled pressure boost pump: The water consumption falls at night. As a consequence, the PID process controller decreases the motor speed. However, due to natural losses in the pipes and the low efficiency of the centrifugal pump at low speeds, the motor does not stop but keeps rotating. The sleep function detects the slow rotation, and stops the unnecessary pumping after the sleep delay has passed. The drive shifts into sleep mode, still monitoring the pressure. The pumping restarts when the pressure falls under the allowed minimum level and the wake-up delay has passed.

Settings

DiagnosticsWarning SLEEP MODE on the panel display.

Parameter Additional information99.02 Process PID control activation

40.05 Inversion

40.20...40.24 Sleep function settings

Actual Value

Wake-up levelParameter 42.23

Motor Speed

Sleep levelPar. 40.21

Time

TimeSTARTSTOP

t<td td

td = Sleep delay, parameter 40.22

Text on displaySLEEP MODE

twd

twd = Wake-up delay, parameter 40.24

Wake-up levelParameter 42.23

Time

twd

Actual Value

No inversion, i.e. par. 40.05 is NO.

Inverted, i.e. par. 40.05 is YES.

Program features

Page 223: VFD Documents

73

Motor temperature measurement through the standard I/OThis section describes the temperature measurement of one motor when the drive control board RMIO is used as the connection interface.

WARNING! According to IEC 664, the connection of the motor temperature sensor to the RMIO board, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm (400 / 500 VAC equipment). If the assembly does not fulfil the requirement:

• The RMIO board terminals must be protected against contact and they may not be connected to other equipment.

Or

• The temperature sensor must be isolated from the RMIO board terminals.

See also section Motor Thermal Protection on page 64.

Motor

T

RMIO board

AI1+

AI1-

AO1+

AO1-

Motor

T

RMIO board

AI1+

AI1-

AO1+

AO1-

TT

One sensor

Three sensors

The minimum voltageof the capacitor mustbe 630 VAC.

10 nF(> 630 VAC)

10 nF(> 630 VAC)

Program features

Page 224: VFD Documents

74

Settings

Diagnostics

Parameter Additional information15.01 Analogue output in a motor 1 temperature measurement. Set to M1 TEMP

MEAS.

35.01…35.03 Settings of motor 1 temperature measurement

OtherParameters 13.01 to 13.05 (AI1 processing) and 15.02 to 15.05 (AO1 processing) are not effective.

At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Actual values Additional information01.35 Temperature value

WarningsMOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set alarm limit.

T MEAS ALM (FF91) Motor temperature measurement is out of acceptable range.

Faults MOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set fault limit.

Program features

Page 225: VFD Documents

75

Motor temperature measurement through an analogue I/O extensionThis section describes the motor temperature measurement of one motor when an optional analogue I/O extension module RAIO is used as the connection interface.

WARNING! According to IEC 664, the connection of the motor temperature sensor to the RAIO module, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creepage distance of 8 mm (400 / 500 VAC equipment). If the assembly does not fulfil the requirement:

• The RAIO module terminals must be protected against contact and they may not be connected to other equipment.

Or

• The temperature sensor must be isolated from the RAIO module terminals.

See also section Motor Thermal Protection on page 64.

Motor

T

RAIO module

AI1+

AI1-

AO1+

AO1-

SHLD

Motor

TTT

One sensor

Three sensors RAIO module

AI1+

AI1-

AO1+

AO1-

SHLD

10 nF(> 630 VAC)

10 nF(> 630 VAC)

The minimum voltageof the capacitor mustbe 630 VAC.

Program features

Page 226: VFD Documents

76

Settings

Diagnostics

Adaptive Programming using the function blocksConventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make the programming easy, but the choices are limited. The user cannot customise the operation any further. The Adaptive Program makes freer customising possible without the need of a special programming tool or language:

• The program is built of standard function blocks included in the drive application program.

• The control panel is the programming tool.

• The user can document the program by drawing it on block diagram template sheets.

The maximum size of the Adaptive Program is 15 function blocks. The program may consist of several separate functions.

For more information, see the Application Guide for Adaptive Program [3AFE64527274 (English)].

DriveAPDriveAP is a Windows based tool for Adaptive Programming. With DriveAP it is possible to upload the Adaptive Program from the drive and edit it with PC.

For more information, see the DriveAP User’s Manual [3AFE64540998 (English)].

Parameter Additional information35.01 … 35.03 Settings of motor 1 temperature measurement

98.12 Activation of optional analogue I/O for motor temperature measurement

OtherParameters 13.16 to 13.20 (AI1 processing) and 96.01 to 96.05 (AO1 signal selection and processing) are not effective.

At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Actual values Additional information01.35 Temperature value

WarningsMOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set alarm limit

T MEAS ALM (FF91) Motor temperature measurement is out of acceptable range.

Faults MOTOR 1 TEMP (4312) Measured motor temperature has exceeded the set fault limit

Program features

Page 227: VFD Documents

77

Control of a mechanical brakeThe mechanical brake is used for holding the motor and driven machinery at zero speed when the drive is stopped, or not powered.

ExampleThe figure below shows a brake control application example.

WARNING! Make sure that the machinery into which the drive with brake control function is integrated fulfils the personnel safety regulations. Note that the frequency converter (a Complete Drive Module or a Basic Drive Module, as defined in IEC 61800-2), is not considered as a safety device mentioned in the European Machinery Directive and related harmonised standards. Thus, the personnel safety of the complete machinery must not be based on a specific frequency converter feature (such as the brake control function), but it has to be implemented as defined in the application specific regulations.

Motor

M

230 VAC

RMIO board

Mechanical brake

Brake control hardware

Emergency brake

X25

1 RO12 RO13 RO1

X22

5 DI5

7 +24 V

Brake control logic is integrated in the drive application program. The brake control hardware and wirings needs to be done by the user.- Brake on/off control through relay output RO1.- Brake supervision through digital input DI5 (optional).- Emergency brake switch in the brake control circuit.

Program features

Page 228: VFD Documents

78

Operation time schemeThe time scheme below illustrates the operation of the brake control function. See also the state machine on the following page.

Ts Start torque at brake release (Parameter 42.07 and 42.08)

tmd Motor magnetising delay

tod Brake open delay (Parameter 42.03)

ncs Brake close speed (Parameter 42.05)

tcd Brake close delay (Parameter 42.04)

Start command

Inverter modulating

Motor magnetised

Open brake command

Internal speed reference (actual motor speed)

Torque reference

time

tod

tcd

ncs

Ts

External speed reference

tmd

1

2

3

4

5

6

7

Program features

Page 229: VFD Documents

79

State shifts

RFG INPUTTO ZERO

CLOSEBRAKE

BRAKEACK FAULT

OPENBRAKE

From any state

1/1/1

0/1/1

1/1/1

1/1/0

0/0/1

1)

2)

RELEASE RFGINPUT

3)

4)

7)

8)

10)11)

12)

13)

5)

NOMODULATION 0/0/1

9)

6)

A

A

State (Symbol )

- NN: State name- X/Y/Z: State outputs/operations

X = 1 Open the brake. The relay output set to brake on/off control energises.Y = 1 Forced start. The function keeps the internal Start on until the brake is closed in spite of the

status of the external Start signal.Z = 1 Ramp in zero. Forces the used speed reference (internal) to zero along a ramp.

NN X/Y/Z

State change conditions (Symbol )

1) Brake control active 0 -> 1 OR Inverter is modulating = 02) Motor magnetised = 1 AND Drive running = 13) Brake acknowledgement = 1 AND Brake open delay passed AND Start = 14) Start = 05) Start = 06) Start = 17) Actual motor speed < Brake close speed AND Start = 08) Start = 19) Brake acknowledgement = 0 AND Brake close delay passed = 1 AND Start = 0Only if parameter 42.02 OFF: 10) Brake acknowledgement = 0 AND Brake open delay passed =111) Brake acknowledgement = 012) Brake acknowledgement = 013) Brake acknowledgement = 1 AND Brake close delay passed = 1

=

RFG = Ramp Function Generator in the speed control loop (reference handling).

(rising edge)

Program features

Page 230: VFD Documents

80

Settings

Diagnostics

Master/Follower use of several drivesIn a Master/Follower application, the system is run by several drives, the motor shafts of which are coupled to each other. The master and follower drives communicate via a fibre optic link. The figures below illustrate two basic application types.

Settings and diagnostics

Parameter Additional information14.01 Relay output for the brake control (set to BRAKE CTRL)

Group 42 BRAKE CONTROL Brake function settings

Actual value Additional information03.01 Ramp in zero bit

03.13 The state of bit “brake open/close command”

WarningsBRAKE ACKN (FF74) Unexpected state of brake acknowledge signal

FaultsBRAKE ACKN (FF74) Unexpected state of brake acknowledge signal

Parameter Additional informationGroup 60 MASTER/FOLLOWER

Master/Follower parameters

OtherMaster/Follower Application Guide [3AFE64590430 (English)] explains the functionality in further detail.

Supply33

Solidly coupled motor shafts:- Speed-controlled Master - Follower follows the torque reference of the Master

External control signals

Supply 3n3

22 Master/Follower LinkFollower fault

supervision

3

22 Master/Follower Link

Follower fault supervision

3 3

External control signals

Supply 3

n

Flexibly coupled motor shafts:- Speed-controlled Master - Follower follows the speed reference of the Master

Supply

M/F Application, Overview

Program features

Page 231: VFD Documents

81

JoggingThe jogging function is typically used to control a cyclical movement of a machine section. One push button controls the drive through the whole cycle: When it is on, the drive starts, accelerates to a preset speed at a preset rate. When it is off, the drive decelerates to zero speed at a preset rate.

The figure and table below describe the operation of the drive. They also represent how the drive shifts to normal operation (= jogging inactive) when the drive start command is switched on. Jog cmd = State of the jogging input, Start cmd = State of the drive start command.

The function operates on a 100 ms time level.

x = State can be either 1 or 0.

Phase Jog cmd

Start cmd

Description

1-2 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the jogging function.

2-3 1 0 Drive runs at the jogging speed.

3-4 0 0 Drive decelerates to zero speed along the deceleration ramp of the jogging function.

4-5 0 0 Drive is stopped.

5-6 1 0 Drive accelerates to the jogging speed along the acceleration ramp of the jogging function.

6-7 1 0 Drive runs at the jogging speed.

7-8 x 1 Normal operation overrides the jogging. Drive accelerates to the speed reference along the active acceleration ramp.

8-9 x 1 Normal operation overrides the jogging. Drive follows the speed reference.

9-10 0 0 Drive decelerates to zero speed along the active deceleration ramp.

10-11 0 0 Drive is stopped.

11-12 x 1 Normal operation overrides the jogging. Drive accelerates to the speed reference along the active acceleration ramp.

12-13 x 1 Normal operation overrides the jogging. Drive follows he speed reference.

13-14 1 0 Drive decelerates to the jogging speed along the deceleration ramp of the jogging function.

14-15 1 0 Drive runs at the jogging speed.

15-16 0 0 Drive decelerates to zero speed along the deceleration ramp of the jogging function.

Time

Speed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Program features

Page 232: VFD Documents

82

Note: The jogging is not operational when:

• the drive start command is on, or

• the drive is in local control (L visible on the first row of the panel display).

Note: The jogging speed overrides the constant speeds.

Note: The ramp shape time is set to zero during the jogging.

Settings

Reduced Run functionReduced Run function is available for parallel connected inverters. Reduced Run function makes it possible to continue the operation with limited current if an inverter module(s) is out of order. If one of the modules is broken, it must be removed. Parameter change is needed to continue the run with reduced current (95.03 INT CONFIG USER). For instructions on how to remove and reconnect an inverter module, see the appropriate drive hardware manual.

Settings

Diagnostics

Parameter Additional information10.06 Input for the on/off control of the jogging.

12.15 Jogging speed

21.10 Switch off delay for the inverter IGBT control. A delay keeps the inverter modulation live over a short standstill period enabling a smooth restart.

22.04, 22.05 Acceleration and deceleration times used during the jogging.

22.06 Acceleration and deceleration ramp shape time: Set to zero during the jogging.

Parameter Additional information95.03 INT CONFIG USER

Number of existing parallel connected inverters

Actual value Additional information04.01 INT board fault

FaultsINT CONFIG Number of inverter modules is not equal to original number of inverters.

Program features

Page 233: VFD Documents

83

User load curveMotor temperature rise can be limited by limiting the drive output current. The user can define a load curve (output current as a function of frequency). The load curve is defined by eight points by parameters 72.02...72.17. If the load curve is exceeded, a fault / warning / current limitation is activated.

OverloadOverload supervision can be applied to the user load curve by setting parameters 72.18 LOAD CURRENT LIMIT... 72.20 COOLING TIME according to the overload values defined by the motor manufacturer.

The supervision is based on an integrator, ∫I2dt. Whenever the drive output current exceeds the user load curve, the integrator is started. When the integrator has reached the overload limit defined by parameters 72.18 and 72.19, the drive reacts as defined by parameter 72.01 OVERLOAD FUNC. The output of the integrator is set to zero if the current stays continuously below the user load curve for the cooling time defined by parameter 72.20 COOLING TIME.

If the overload time 72.19 LOAD THERMAL TIME is set to zero, the drive output current is limited to the user load curve.

50 Hz0 Hz 100 Hz

Frequency

T/TnNormal motor load capacity

User load curve

Current

Ioutput

Iuser curve

72.20COOLING TIME

Frequency / Time

Overload

Program features

Page 234: VFD Documents

84

Settings

Diagnostics

Parameter Additional informationGroup 72 USER LOAD CURVE

User load curve

Actual value Additional information02.20 Measured motor current in percent of the user load curve current

WarningsUSER L CURVE Integrated motor current has exceeded load curve.

FaultsUSER L CURVE Integrated motor current has exceeded load curve.

Program features

Page 235: VFD Documents

85

Application macros

Chapter overviewThis chapter describes the intended use, operation and the default control connections of the standard application macros. It also describes how to save a user macro, and how to recall it.

Overview of macrosApplication macros are preprogrammed parameter sets. While starting up the drive, the user typically selects one of the macros - the one that is best suited to his needs - by parameter 99.02, makes the essential changes and saves the result as a user macro.

There are five standard macros and two user macros. The table below contains a summary of the macros and describes suitable applications.

Macro Suitable Applications

Factory Ordinary speed control applications where no, one, two or three constant speeds are used:- Conveyors- Speed-controlled pumps and fans- Test benches with predefined constant speeds

Hand/Auto Speed control applications. Switching between two external control devices is possible.

PID Control Process control applications e.g. different closed loop control systems such as pressure control, level control, and flow control. For example:- pressure boost pumps of municipal water supply systems- level controlling pumps of water reservoirs- pressure boost pumps of district heating systems- material flow control on a conveyor line.It is also possible to switch between process and speed control.

Torque Control

Torque control applications. Switching between torque and speed control is possible.

Sequential Control

Speed control applications in which speed reference, seven constant speeds and two acceleration and deceleration ramps can be used.

User The user can save the customised standard macro i.e. the parameter settings including group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. Two user macros are essential when switching between two different motors is required

Application macros

Page 236: VFD Documents

86

Note on external power supplyExternal +24 V power supply for the RMIO board is recommended if

• the application requires a fast start after connecting the input power supply

• fieldbus communication is required when the input power supply is disconnected.

The RMIO board can be supplied from an external power source via terminal X23 or X34 or via both X23 and X34. The internal power supply to terminal X34 can be left connected when using terminal X23.

WARNING! If the RMIO board is supplied from an external power source via terminal X34, the loose end of the cable removed from the RMIO board terminal must be secured mechanically to a location where it cannot come into contact with electrical parts. If the screw terminal plug of the cable is removed, the wire ends must be individually insulated.

Parameter settingsIn Standard Control Program, set parameter 16.09 CTRL BOARD SUPPLY to EXTERNAL 24V if the RMIO board is powered from an external supply.

Application macros

Page 237: VFD Documents

87

Factory macroAll drive commands and reference settings can be given from the control panel or from an external control location. The active control location is selected with the LOC/REM key of the panel. The drive is speed-controlled.

In external control, the control location is EXT1. The reference signal is connected to analogue input AI1 and Start/Stop and Direction signals are connected to digital inputs DI1 and DI2. By default, the direction is fixed to FORWARD (parameter 10.03). DI2 does not control the direction of rotation unless parameter 10.03 is changed to REQUEST.

Three constant speeds are selected by digital inputs DI5 and DI6. Two acceleration/deceleration ramps are preset. The acceleration and deceleration ramps are used according to the state of digital input DI4.

Two analogue signals (speed and current) and three relay output signals (ready, running and inverted fault) are available.

The default signals on the display of the control panel are FREQUENCY, CURRENT and POWER.

Application macros

Page 238: VFD Documents

88

Default control connectionsThe figure below shows the external control connections for the Factory macro. The markings of the standard I/O terminals on the RMIO board are shown.

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ Speed reference 0(2) … 10 V, Rin > 200 kohm4 AI1-5 AI2+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start 2)

2 DI2 Forward/reverse 1, 2)

3 DI3 By default, not in use. 2)

4 DI4 Acceleration & deceleration select 3)

5 DI5 Constant speed select 4)

6 DI6 Constant speed select 4)

7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 5)

X231 +24 V Auxiliary voltage output and input, non-

isolated, 24 V DC 250 mA 6)2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=A

rpm

Fault

1) Effective only if parameter 10.03 is switched to REQUEST by the user.

2) The US default settings differ as follows:

3) 0 = ramp times according to par. 22.02 and 22.03. 1 = ramp times according to par. 22.04 and 22.05.

4) See parameter group 12 CONSTANT SPEEDS:

5) See parameter 21.09.

6) Total maximum current shared between this output and optional modules installed on the board.

DI1 Start (Pulse: 0->1)DI2 Stop (Pulse: 1->0)DI3 Forward/Reverse

DI5 DI6 Operation0 0 Set speed through AI11 0 Speed 10 1 Speed 2 1 1 Speed 3

Application macros

Page 239: VFD Documents

89

Hand/Auto macroStart/Stop and Direction commands and reference settings can be given from one of two external control locations, EXT1 (Hand) or EXT2 (Auto). The Start/Stop/Direction commands of EXT1 (Hand) are connected to digital inputs DI1 and DI2, and the reference signal is connected to analogue input AI1. The Start/Stop/Direction commands of EXT2 (Auto) are connected to digital inputs DI5 and DI6, and the reference signal is connected to analogue input AI2. The selection between EXT1 and EXT2 is dependent on the status of digital input DI3. The drive is speed controlled. Speed reference and Start/Stop and Direction commands can be given from the control panel keypad also. One constant speed can be selected through digital input DI4.

Speed reference in Auto Control (EXT2) is given as a percentage of the maximum speed of the drive.

Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are FREQUENCY, CURRENT and CTRL LOC.

Application macros

Page 240: VFD Documents

90

Default control connectionsThe figure below shows the external control connections for the Hand/Auto macro. The markings of the standard I/O terminals on the RMIO board are shown.

A

rpm

Fault

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC, kohm < RL <

10 kohm2 GND3 AI1+ Speed reference (Hand control). 0(2) … 10 V,

Rin > 200 kohm4 AI1-5 AI2+ Speed reference (Auto control). 0(4) …

20 mA, Rin = 100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA,

Rin = 100 ohm.8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start (Hand control)2 DI2 Forward/Reverse (Hand control)3 DI3 Hand/Auto control select 1) 4 DI4 Constant speed 4: Par. 12.055 DI5 Forward/Reverse (Auto control)6 DI6 Stop/Start (Auto control)7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 2)

X231 +24 V Auxiliary voltage output and input, non-

isolated, 24 V DC 250 mA 3)2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

1) Selection between two external control locations, EXT1 and EXT2.

2) See parameter 21.09.

3) Total maximum current shared between this output and optional modules installed on the board.

Application macros

Page 241: VFD Documents

91

PID Control macroThe PID Control macro is used for controlling a process variable – such as pressure or flow – by controlling the speed of the driven motor.

Process reference signal is connected to analogue input AI1 and process feedback signal to analogue input AI2.

Alternatively, a direct speed reference can be given to the drive through analogue input AI1. Then the PID controller is bypassed and the drive no longer controls the process variable. Selection between the direct speed control and the process variable control is done with digital input DI3.

Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are SPEED, ACTUAL VALUE1 and CONTROL DEVIATION.

Connection example, 24 VDC / 4…20 mA two-wire sensor

Note: The sensor is supplied through its current output. Thus the output signal must be 4…20 mA, not 0…20 mA.

X21 / RMIO board5 AI2+ Process actual value measurement. 0(4) …

20 mA, Rin = 100 ohm6 AI2-…X23 / RMIO board1 +24 V Auxiliary voltage output, non-isolated,

24 VDC, 250 mA2 GND

PI

4…20 mA

Application macros

Page 242: VFD Documents

92

Default control connectionsThe figure below shows the external control connections for the PID Control macro. The markings of the standard I/O terminals on the RMIO board are shown.

A

rpm

PT

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ Speed ref. (speed cntrl) or process ref.

(process cntrl). 0(2) … 10 V, Rin > 200 kohm4 AI1-5 AI2+ Process actual value measurement. 0(4) …

20 mA, Rin = 100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm.8 AI3-9 AO1+ Motor speed 0(4) … 20 mA

0 … motor nom. speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA

0 … motor nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start (speed control)2 DI2 By default, not in use. 3 DI3 Speed / process control select 1)

4 DI4 Constant speed 4: Par. 12.05 2)

5 DI5 Run Enable. 3)

6 DI6 Stop/Start (process control)7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 4)

X231 +24 V Auxiliary voltage output and input, non-

isolated, 24 V DC 250 mA 6)2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

Fault

5)

1) Selection between two external control locations, EXT1 and EXT2

2) In use only when the speed control is active (DI3 = 0)

3) Off = Run Enable off. Drive will not start or stops. On = Run Enable on. Normal operation.

4) See parameter 21.09.

5) The sensor needs to be powered. See the manufacturer’s instructions. A connection example of a two-wire 24 VDC / 4…20 mA sensor is shown on previous page.

6) Total maximum current shared between this output and optional modules installed on the board.

Application macros

Page 243: VFD Documents

93

Torque Control macroTorque Control macro is used in applications in which torque control of the motor is required. Torque reference is given through analogue input AI2 as a current signal. By default, 0 mA corresponds to 0 %, and 20 mA to 100 % of the rated motor torque. The Start/Stop/Direction commands are given through digital inputs DI1 and DI2. The Run Enable signal is connected to DI6.

Through digital input DI3 it is possible to select speed control instead of torque control. It is also possible to change the external control location to local (i.e. to control panel) by pressing the LOC/REM key. The panel controls the speed by default. If torque control with panel is required, the value of parameter 11.01 should be changed to REF2 (%).

Two analogue and three relay output signals are available on terminal blocks. The default signals on the display of the control panel are SPEED, TORQUE and CTRL LOC.

Application macros

Page 244: VFD Documents

94

Default control connectionsThe figure below shows the external control connections for the Torque Control macro. The markings of the standard I/O terminals on the RMIO board are shown.

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ Speed reference. 0(2) … 10 V, Rin >

200 kohm4 AI1-5 AI2+ Torque reference. 0(4) … 20 mA, Rin = 100

ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start2 DI2 Forward/Reverse3 DI3 Speed / torque control select 1)

4 DI4 Constant speed 4: Par. 12.05 2)

5 DI5 Acceleration & deceleration select 3)

6 DI6 Run Enable 4)

7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 5)

X231 +24 V Auxiliary voltage output and input, non-

isolated, 24 V DC 250 mA 6)2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

Fault

1) Selection between external control locations EXT1 and EXT2

2) In use only when the speed control is active (DI3 = 0)

3) Off = Ramp times according to par. 22.02 and 22.03. On = Ramp times according to par. 22.04 and 22.05.

4) Off = Run Enable off. Drive will not start or stops. On = Run Enable on. Normal operation.

5) See parameter 21.09.

6) Total maximum current shared between this output and optional modules installed on the board.

A

rpm

Application macros

Page 245: VFD Documents

95

Sequential Control macroThis macro offers seven preset constant speeds which can be activated by digital inputs DI4 to DI6. Two acceleration/deceleration ramps are preset. The acceleration and deceleration ramps are applied according to the state of digital input DI3. The Start/Stop and Direction commands are given through digital inputs DI1 and DI2.

External speed reference can be given through analogue input AI1. The reference is active only when all of the digital inputs DI4 to DI6 are 0 VDC. Giving operational commands and setting reference is possible also from the control panel.

Two analogue and three relay output signals are available on terminal blocks. Default stop mode is ramp. The default signals on the display of the control panel are FREQUENCY, CURRENT and POWER.

Operation diagramThe figure below shows an example of the use of the macro.

Accel1 Accel1 Accel2 Decel2

Speed 3

Speed 2

Speed 1

Speed

Time

Start/Stop

Accel1/Decel1Speed 1

Speed 2Accel2/Decel2Speed 3

Stop with deceleration ramp

Application macros

Page 246: VFD Documents

96

Default control connectionsThe figure below shows the external control connections for the Sequential Control macro. The markings of the standard I/O terminals on the RMIO board are shown.

A

rpm

X201 VREF Reference voltage -10 VDC2 GND 1 kohm < RL < 10 kohmX211 VREF Reference voltage 10 VDC

1 kohm < RL < 10 kohm2 GND3 AI1+ External speed reference 0(2) … 10 V, Rin >

200 kohm4 AI1-5 AI2+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm6 AI2-7 AI3+ By default, not in use. 0(4) … 20 mA, Rin =

100 ohm8 AI3-9 AO1+ Motor speed 0(4) … 20 mA 0 … motor nom.

speed, RL < 700 ohm10 AO1-11 AO2+ Output current 0(4) … 20 mA 0 … motor

nom. current, RL < 700 ohm12 AO2-X221 DI1 Stop/Start2 DI2 Forward/Reverse3 DI3 Acceleration & deceleration selection 1)

4 DI4 Constant speed select 2)

5 DI5 Constant speed select 2)

6 DI6 Constant speed select 2)

7 +24 V +24 VDC, max. 100 mA8 +24 V9 DGND1 Digital ground10 DGND2 Digital ground11 DI IL Start interlock (0 = stop) 3)

X231 +24 V Auxiliary voltage output and input, non-

isolated, 24 V DC 250 mA 4)2 GNDX251 RO11 Relay output 1

Ready2 RO123 RO13X261 RO21 Relay output 2

Running2 RO223 RO23X271 R031 Relay output 3

Inverted fault2 R0323 R033

=

=

Fault

1) Off = Ramp times according to par. 22.02 and 22.03. On = Ramp times according to par. 22.04 and 22.05.

2) See parameter group 12 CONSTANT SPEEDS:

3) See parameter 21.09.

4) Total maximum current shared between this output and optional modules installed on the board.

DI4 DI5 DI6 Operation0 0 0 Set speed through AI11 0 0 Speed 10 1 0 Speed 21 1 0 Speed 30 0 1 Speed 41 0 1 Speed 50 1 1 Speed 61 1 1 Speed 7

Application macros

Page 247: VFD Documents

97

User macrosIn addition to the standard application macros, it is possible to create two user macros. The user macro allows the user to save the parameter settings including Group 99, and the results of the motor identification into the permanent memory, and recall the data at a later time. The panel reference is also saved, if the macro is saved and loaded in Local control mode. Remote control location setting is saved into the user macro, but Local control location setting is not.

To create User Macro 1:

• Adjust the parameters. Perform the motor identification if not performed yet.

• Save the parameter settings and the results of the motor identification by changing parameter 99.02 to USER 1 SAVE (press ENTER). The storing takes 20 s to 1 min.

Note: If user macro save function is executed several times, drive memory fills up and file compression starts. File compression can last up to 10 minutes. Macro saving will be completed after the file compression. (Operation is indicated on the last row of the control panel display by blinking dots).

To recall the user macro:

• Change parameter 99.02 to USER 1 LOAD.

• Press ENTER to load.

The user macro can also be switched via digital inputs (see parameter 16.05).

Note: User macro load restores also the motor settings in group 99 START-UP DATA and the results of the motor identification. Check that the settings correspond to the motor used.

Example: The user can switch the drive between two motors without having to adjust the motor parameters and to repeat the motor identification every time the motor is changed. The user needs only to adjust the settings and perform the motor identification once for both motors and then to save the data as two user macros. When the motor is changed, only the corresponding User macro needs to be loaded, and the drive is ready to operate.

Application macros

Page 248: VFD Documents

98

Application macros

Page 249: VFD Documents

99

Actual signals and parameters

Chapter overviewThe chapter describes the actual signals and parameters and gives the fieldbus equivalent values for each signal/parameter. More data is given in chapter Additional data: actual signals and parameters.

Terms and abbreviations

Term Definition

Absolute Maximum Frequency

Value of 20.08, or 20.07 if the absolute value of the minimum limit is greater than the maximum limit.

Absolute Maximum Speed

Value of parameter 20.02, or 20.01 if the absolute value of the minimum limit is higher than the maximum limit.

Actual signal Signal measured or calculated by the drive. Can be monitored by the user. No user setting possible.

FbEq Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Parameter A user-adjustable operation instruction of the drive.

Actual signals and parameters

Page 250: VFD Documents

100

No. Name/Value Description FbEq

01 ACTUAL SIGNALS Basic signals for monitoring of the drive.

01.01 PROCESS VARIABLE Process variable based on settings in parameter group 34 PROCESS VARIABLE.

1 = 1

01.02 SPEED Calculated motor speed in rpm. Filter time setting by parameter 34.04. -20000 = -100% 20000 = 100% of motor abs. max. speed

01.03 FREQUENCY Calculated drive output frequency. -100 = -1 Hz 100 = 1 Hz

01.04 CURRENT Measured motor current. 10 = 1 A

01.05 TORQUE Calculated motor torque. 100 is the motor nominal torque. Filter time setting by parameter 34.05.

-10000 = -100% 10000 = 100% of motor nom. torque

01.06 POWER Motor power. 100 is the nominal power. -1000 = -100% 1000 = 100% of motor nom. power

01.07 DC BUS VOLTAGE V Measured intermediate circuit voltage. 1 = 1 V

01.08 MAINS VOLTAGE Calculated supply voltage. 1 = 1 V

01.09 OUTPUT VOLTAGE Calculated motor voltage. 1 = 1 V

01.10 ACS800 TEMP Calculated IGBT temperature. 10 = 1%

01.11 EXTERNAL REF 1 External reference REF1 in rpm. (Hz if value of parameter 99.04 is SCALAR.)

1 = 1 rpm

01.12 EXTERNAL REF 2 External reference REF2. Depending on the use, 100% is the motor maximum speed, motor nominal torque, or maximum process reference.

0 = 0% 10000 = 100% 1)

01.13 CTRL LOCATION Active control location. (1,2) LOCAL; (3) EXT1; (4) EXT2. See section Local control vs. external control on page 43.

See descr.

01.14 OP HOUR COUNTER Elapsed time counter. Runs when the control board is powered. 1 = 1 h

01.15 KILOWATT HOURS kWh counter. Counts inverter output kWh during operation (motor side - generator side).

1 = 100 kWh

01.16 APPL BLOCK OUTPUT Application block output signal. E.g. the process PID controller output when the PID Control macro is active.

0 = 0% 10000 = 100%

01.17 DI6-1 STATUS Status of digital inputs. Example: 0000001 = DI1 is on, DI2 to DI6 are off.

01.18 AI1 [V] Value of analogue input AI1. 1 = 0.001 V

01.19 AI2 [mA] Value of analogue input AI2. 1 = 0.001 mA

01.20 AI3 [mA] Value of analogue input AI3. 1 = 0.001 mA

01.21 RO3-1 STATUS Status of relay outputs. Example: 001 = RO1 is energised, RO2 and RO3 are de-energised.

01.22 AO1 [mA] Value of analogue output AO1. 1 =0.001 mA

Actual signals and parameters

Page 251: VFD Documents

101

01.23 AO2 [mA] Value of analogue output AO2. 1 = 0.001 mA

01.24 ACTUAL VALUE 1 Feedback signal for the process PID controller. Updated only when parameter 99.02 = PD CTRL

0 = 0% 10000 = 100%

01.25 ACTUAL VALUE 2 Feedback signal for the process PID controller. Updated only when parameter 99.02 = PID CTRL.

0 = 0% 10000 = 100%

01.26 CONTROL DEVIATION Deviation of the process PID controller, i.e. the difference between the reference value and the actual value. Updated only when parameter 99.02 = PID CTRL.

-10000 = -100% 10000 = 100%

01.27 APPLICATION MACRO Active application macro (value of parameter 99.02). See 99.02

01.28 EXT AO1 [mA] Value of output 1 of the analogue I/O extension module (optional). 1 = 0.001 mA

01.29 EXT AO2 [mA] Value of output 2 of the analogue I/O extension module (optional). 1 = 0.001 mA

01.30 PP 1 TEMP Measured heatsink temperature in inverter no. 1. 1 = 1°C

01.31 PP 2 TEMP Measured heatsink temperature in inverter no. 2 (used only in high power units with parallel inverters).

1 = 1°C

01.32 PP 3 TEMP Measured heatsink temperature in inverter no. 3 (used only in high power units with parallel inverters).

1 = 1°C

01.33 PP 4 TEMP Measured heatsink temperature in inverter no. 4 (used only in high power units with parallel inverters).

1 = 1°C

01.34 ACTUAL VALUE Process PID controller actual value. See parameter 40.06. 0 = 0%10000 = 100%

01.35 MOTOR 1 TEMP Measured temperature of motor 1. See parameter 35.01. 1 = 1°C/ohm

01.36 MOTOR 2 TEMP Measured temperature of motor 2. See parameter 35.04. 1 = 1°C/ohm

01.37 MOTOR TEMP EST Estimated motor temperature. Signal value is saved at power switch off. 1 = 1°C

01.38 AI5 [mA] Value of analogue input AI5 read from AI1 of the analogue I/O extension module (optional). A voltage signal is also displayed in mA (instead of V).

1 = 0.001 mA

01.39 AI6 [mA] Value of analogue input AI6 read from AI2 of the analogue I/O extension module (optional). A voltage signal is also displayed in mA (instead of V).

1 = 0.001 mA

01.40 DI7-12 STATUS Status of digital inputs DI7 to DI12 read from the digital I/O extension modules (optional). E.g. value 000001: DI7 is on, DI8 to DI12 are off.

1 = 1

01.41 EXT RO STATUS Status of the relay outputs on the digital I/O extension modules (optional). E.g. value 0000001: RO1 of module 1 is energised. Other relay outputs are de-energised.

1 = 1

01.42 PROCESS SPEED REL Motor actual speed in percent of the Absolute Maximum Speed. If parameter 99.04 is SCALAR, the value is the relative actual output frequency.

1 = 1

01.43 MOTOR RUN TIME Motor run time counter. The counter runs when the inverter modulates. Can be reset by parameter 34.06.

1 = 10 h

01.44 FAN ON-TIME Running time of the drive cooling fan.Note: Resetting of the counter is recommended when the fan is replaced. For more information, contact your local ABB representative.

1 = 10 h

01.45 CTRL BOARD TEMP Control board temperature. 1 = 1°C

01.46 SAVED KWH Energy saved in kWh compared to direct-on-line motor connection.See parameter group 45 ENERGY OPT on page 164.

1 = 100 kWh

01.47 SAVED GWH Energy saved in GWh compared to direct-on-line motor connection. 1 = 1 GWh

No. Name/Value Description FbEq

Actual signals and parameters

Page 252: VFD Documents

102

01.48 SAVED AMOUNT Monetary savings compared to direct-on-line motor connection. This value is a multiplication of parameters 01.46 SAVED KWH and 45.02 ENERGY TARIFF1.See parameter group 45 ENERGY OPT on page 164.

1 = 100 cur

01.49 SAVED AMOUNT M Monetary savings in millions compared to direct-on-line motor connection.

1 = 1 Mcur

01.50 SAVED CO2 Reduction in CO2 emissions in kilograms compared to direct-on-line motor connection. This value is calculated by multiplying saved energy in megawatt-hours by 500 kg/MWh.See parameter group 45 ENERGY OPT on page 164.

1 = 100 kg

01.51 SAVED CO2 KTON Reduction in CO2 emissions in kilotons compared to direct-on-line motor connection.

1 = 1 kton

02 ACTUAL SIGNALS Speed and torque reference monitoring signals.

02.01 SPEED REF 2 Limited speed reference. 100% corresponds to the Absolute Maximum Speed of the motor.

0 = 0% 20000 = 100% of motor absolute max. speed

02.02 SPEED REF 3 Ramped and shaped speed reference. 100% corresponds to the Absolute Maximum Speed of the motor.

20000 = 100%

02.09 TORQUE REF 2 Speed controller output. 100% corresponds to the motor nominal torque. 0 = 0% 10000 = 100% of motor nominal torque

02.10 TORQUE REF 3 Torque reference. 100% corresponds to the motor nominal torque. 10000 = 100%

02.13 TORQ USED REF Torque reference after frequency, voltage and torque limiters. 100% corresponds to the motor nominal torque.

10000 = 100%

02.14 FLUX REF Flux reference in percent. 10000 = 100%

02.17 SPEED ESTIMATED Estimated motor speed. 100% corresponds to the Absolute Maximum Speed of the motor.

20000 = 100%

02.18 SPEED MEASURED Measured motor actual speed (zero when no encoder is used). 100% corresponds to the Absolute Maximum Speed of the motor.

20000 = 100%

02.19 MOTOR ACCELERATIO Calculated motor acceleration from signal 01.02 MOTOR SPEED. 1=1 rpm/s.

02.20 USER CURRENT Measured motor current in percent of the user load curve current. User load curve current is defined by parameters 72.02...72.09. See section User load curve on page 83.

10 = 1%

03 ACTUAL SIGNALS Data words for monitoring of fieldbus communication (each signal is a 16-bit data word).

2)

03.01 MAIN CTRL WORD A 16-bit data word. See section 03.01 MAIN CONTROL WORD on page 211.

03.02 MAIN STATUS WORD A 16-bit data word. See section 03.02 MAIN STATUS WORD on page 212.

03.03 AUX STATUS WORD A 16-bit data word. See section 03.03 AUXILIARY STATUS WORD on page 219.

03.04 LIMIT WORD 1 A 16-bit data word. See section 03.04 LIMIT WORD 1 on page 220.

03.05 FAULT WORD 1 A 16-bit data word. See section 03.05 FAULT WORD 1 on page 220.

03.06 FAULT WORD 2 A 16-bit data word. See section 03.06 FAULT WORD 2 on page 221.

No. Name/Value Description FbEq

Actual signals and parameters

Page 253: VFD Documents

103

03.07 SYSTEM FAULT A 16-bit data word. See section 03.07 SYSTEM FAULT WORD on page 222.

03.08 ALARM WORD 1 A 16-bit data word. See section 03.08 ALARM WORD 1 on page 222.

03.09 ALARM WORD 2 A 16-bit data word. See section 03.09 ALARM WORD 2 on page 223.

03.11 FOLLOWER MCW A 16-bit data word. For the contents, see Master/Follower Application Guide [3AFE64590430 (English)].

03.13 AUX STATUS WORD 3 A 16-bit data word. See section 03.13 AUXILIARY STATUS WORD 3 on page 223.

03.14 AUX STATUS WORD 4 A 16-bit data word. See section 03.14 AUXILIARY STATUS WORD 4 on page 224.

03.15 FAULT WORD 4 A 16-bit data word. See section 03.15 FAULT WORD 4 on page 224.

03.16 ALARM WORD 4 A 16-bit data word. See section 03.16 ALARM WORD 4 on page 225.

03.17 FAULT WORD 5 A 16-bit data word. See section 03.17 FAULT WORD 5 on page 225.

03.18 ALARM WORD 5 A 16-bit data word. See section 03.18 ALARM WORD 5 on page 226.

03.19 INT INIT FAULT A 16-bit data word. See section 03.19 INT INIT FAULT on page 226.

03.20 LATEST FAULT Fieldbus code of the latest fault. See chapter Fault tracing for the codes.

03.21 2.LATEST FAULT Fieldbus code of the 2nd latest fault.

03.22 3.LATEST FAULT Fieldbus code of the 3rd latest fault.

03.23 4.LATEST FAULT Fieldbus code of the 4th latest fault.

03.24 5.LATEST FAULT Fieldbus code of the 5th latest fault.

03.25 LATEST WARNING Fieldbus code of the latest warning.

03.26 2.LATEST WARNING Fieldbus code of the 2nd latest warning.

03.27 3.LATEST WARNING Fieldbus code of the 3rd latest warning.

03.28 4.LATEST WARNING Fieldbus code of the 4th latest warning.

03.29 5.LATEST WARNING Fieldbus code of the 5th latest warning.

03.30 LIMIT WORD INV A 16-bit data word. See section 03.30 LIMIT WORD INV on page 227.

03.31 ALARM WORD 6 A 16-bit data word. See section 03.31 ALARM WORD 6 on page 227.

03.32 EXT IO STATUS Status of emergency stop and step up modules. See section 03.32 EXT IO STATUS on page 228.

03.33 FAULT WORD 6 A 16-bit data word. See section 03.33 FAULT WORD 6 on page 228.

04 ACTUAL SIGNALS Signals for parallel connected inverters 2)

04.01 FAULTED INT INFO A 16-bit data word. See section 04.01 FAULTED INT INFO on page 229.

04.02 INT SC INFO A 16-bit data word. See section 04.02 INT SC INFO on page 230.

09 ACTUAL SIGNALS Signals for the Adaptive Program

09.01 AI1 SCALED Value of analogue input AI1 scaled to an integer value. 20000 = 10 V

09.02 AI2 SCALED Value of analogue input AI2 scaled to an integer value. 20000 = 20 mA

09.03 AI3 SCALED Value of analogue input AI3 scaled to an integer value. 20000 = 20 mA

09.04 AI5 SCALED Value of analogue input AI5 scaled to an integer value. 20000 = 20 mA

09.05 AI6 SCALED Value of analogue input AI6 scaled to an integer value. 20000 = 20 mA

No. Name/Value Description FbEq

Actual signals and parameters

Page 254: VFD Documents

104

1) Percent of motor maximum speed / nominal torque / maximum process reference (depending on the ACS800 macro selected).

2) The contents of these data words are detailed in chapter Fieldbus control.

09.06 DS MCW Control Word (CW) of the Main Reference data set received from the master station through the fieldbus interface

0 ... 65535 (Decimal)

09.07 MASTER REF1 Reference 1 (REF1) of the Main Reference data set received from the master station through the fieldbus interface

-32768 … 32767

09.08 MASTER REF2 Reference 2 (REF2) of the Main Reference data set received from the master station through the fieldbus interface

-32768 … 32767

09.09 AUX DS VAL1 Auxiliary data set value 1 received from the master station through the fieldbus interface

-32768 … 32767

09.10 AUX DS VAL2 Auxiliary data set value 2 received from the master station through the fieldbus interface

-32768 … 32767

09.11 AUX DS VAL3 Auxiliary data set value 3 received from the master station through the fieldbus interface

-32768 … 32767

09.12 LCU ACT SIGNAL1 Line-side converter signal selected by parameter 95.08. A 16-bit data word.

09.13 LCU ACT SIGNAL2 Line-side converter signal selected by parameter 95.09. A 16-bit data word.

No. Name/Value Description FbEq

Actual signals and parameters

Page 255: VFD Documents

105

Index Name/Selection Description FbEq

10 START/STOP/DIR The sources for external start, stop and direction control

10.01 EXT1 STRT/STP/DIR Defines the connections and the source of the start, stop and direction commands for external control location 1 (EXT1).

NOT SEL No start, stop and direction command source. 1

DI1 Start and stop through digital input DI1. 0 = stop; 1 = start. Direction is fixed according to parameter 10.3 DIRECTION.

WARNING! After a fault reset, the drive will start if the start signal is on.

2

DI1,2 Start and stop through digital input DI1. 0 = stop, 1 = start. Direction through digital input DI2. 0 = forward, 1 = reverse. To control direction, parameter 10.03 DIRECTION must be REQUEST.

WARNING! After a fault reset, the drive will start if the start signal is on.

3

DI1P,2P Pulse start through digital input DI1. 0 -> 1: Start. Pulse stop through digital input DI2. 1 -> 0: Stop. Direction of rotation is fixed according to parameter 10.03 DIRECTION.

4

DI1P,2P,3 Pulse start through digital input DI1. 0 -> 1: Start. Pulse stop through digital input DI2. 1 -> 0: Stop. Direction through digital input DI3. 0 = forward, 1 = reverse. To control direction, parameter 10.03 DIRECTION must be REQUEST.

5

DI1P,2P,3P Pulse start forward through digital input DI1. 0 -> 1: Start forward. Pulse start reverse through digital input DI2. 0 -> 1: Start reverse. Pulse stop through digital input DI3. 1 -> ”0”: stop. To control the direction, parameter 10.03 DIRECTION must be REQUEST.

6

DI6 See selection DI1. 7

DI6,5 See selection DI1,2. DI6: Start/stop, DI5: direction. 8

KEYPAD Control panel. To control the direction, parameter 10.03 DIRECTION must be REQUEST.

9

COMM.CW Fieldbus Control Word. 10

DI7 See selection DI1. 11

DI7,8 See selection DI1,2. DI7: start/stop, DI8: direction. 12

DI7P,8P See selection DI1P,2P. 13

DI7P,8P,9 See selection DI1P,2P,3. 14

DI7P,8P,9P See selection DI1P,2P,3P. 15

PARAM 10.04 Source selected by 10.04. 16

DI1 F, DI2 R Start, stop and direction commands through digital inputs DI1 and DI2.

Note: Parameter 10.03 DIRECTION must be REQUEST.

17

10.02 EXT2 STRT/STP/DIR Defines the connections and the source of the start, stop and direction commands for external control location 2 (EXT2).

NOT SEL See parameter 10.01. 1

DI1 DI2 Operation0 0 Stop1 0 Start forward0 1 Start reverse1 1 Stop

Actual signals and parameters

Page 256: VFD Documents

106

DI1 See parameter 10.01. 2

DI1,2 See parameter 10.01. 3

DI1P,2P See parameter 10.01. 4

DI1P,2P,3 See parameter 10.01. 5

DI1P,2P,3P See parameter 10.01. 6

DI6 See parameter 10.01. 7

DI6,5 See parameter 10.01. 8

KEYPAD See parameter 10.01. 9

COMM.CW See parameter 10.01. 10

DI7 See parameter 10.01. 11

DI7,8 See parameter 10.01. 12

DI7P,8P See parameter 10.01. 13

DI7P,8P,9 See parameter 10.01. 14

DI7P,8P,9P See parameter 10.01. 15

PARAM 10.05 Source selected by 10.05. 16

DI1 F, DI2 R See parameter 10.01. 17

10.03 REF DIRECTION Enables the control of rotation direction of the motor, or fixes the direction.

FORWARD Fixed to forward 1

REVERSE Fixed to reverse 2

REQUEST Direction of rotation control allowed 3

10.04 EXT 1 STRT PTR Defines the source or constant for value PAR 10.04 of parameter 10.01.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.

-

10.05 EXT 2 STRT PTR Defines the source or constant for value PAR 10.05 of parameter 10.02.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

10.06 JOG SPEED SELECT Defines the signal that activates jogging function. The operation of the jogging is explained in section Jogging on page 81.

NOT SEL Not selected. 1

DI3 Digital input DI3. 0 = Jogging is inactive. 1 = Jogging is active. 2

DI4 See selection DI3. 3

DI5 See selection DI3. 4

DI6 See selection DI3. 5

DI7 See selection DI3. 6

DI8 See selection DI3. 7

DI9 See selection DI3. 8

DI10 See selection DI3. 9

DI11 See selection DI3. 10

DI12 See selection DI3. 11

Index Name/Selection Description FbEq

Actual signals and parameters

Page 257: VFD Documents

107

10.07 NET CONTROL When active, fieldbus overrides the selection of parameter 10.01. Fieldbus Control Word (except bit 11) is enabled when EXT1 is selected as the active control location.Note: Only visible with the Generic Drive communication profile selected (98.07).Note: The setting is not saved in the permanent memory (will reset to zero when power is switched off).

0 Inactive 0

1 Active 1

10.08 NET REFERENCE When active, fieldbus overrides the selection of parameter 11.03. Fieldbus reference REF1 is enabled when EXT1 is selected as the active control location.Note: Only visible with the Generic Drive communication profile selected (98.07).Note: The setting is not saved in the permanent memory (will reset to zero when power is switched off).

0 Inactive 0

1 Active 1

10.09 SLS ACTIVE Selects the source for the SLS (safely-limited speed) command.Note: This parameter is available in AS7R firmware version only.

NO No DI selected for the SLS function. 1

DI1 The SLS function is activated by a falling edge of DI1, i.e. when the value of DI1 becomes 0.

2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

DI7 See selection DI1. 8

DI8 See selection DI1. 9

DI9 See selection DI1. 10

DI10 See selection DI1. 11

DI11 See selection DI1. 12

DI12 See selection DI1. 13

11 REFERENCE SELECT

Panel reference type, external control location selection and external reference sources and limits

11.01 KEYPAD REF SEL Selects the type of the reference given from panel.

REF1 (rpm) Speed reference in rpm. (Frequency reference (Hz) if parameter 99.04 is SCALAR.)

1

REF2 (%) %-reference. The use of REF2 vary depending on the application macro. For example, if the Torque Control macro is selected, REF2 is the torque reference.

2

11.02 EXT1/EXT2 SELECT Defines the source from which the drive reads the signal that selects between the two external control locations, EXT1 or EXT2.

DI1 Digital input DI1. 0 = EXT1, 1 = EXT2. 1

DI2 See selection DI1. 2

Index Name/Selection Description FbEq

Actual signals and parameters

Page 258: VFD Documents

108

DI3 See selection DI1. 3

DI4 See selection DI1. 4

DI5 See selection DI1. 5

DI6 See selection DI1. 6

EXT1 EXT1 active. The control signal sources are defined by parameter 10.01 and 11.03.

7

EXT2 EXT2 active. The control signal sources are defined by parameter 10.02 and 11.06.

8

COMM.CW Fieldbus Control Word, bit 11. 9

DI7 See selection DI1. 10

DI8 See selection DI1. 11

DI9 See selection DI1. 12

DI10 See selection DI1. 13

DI11 See selection DI1. 14

DI12 See selection DI1. 15

PARAM 11.09 Source selected by parameter 11.09. 16

11.03 EXT REF1 SELECT Selects the signal source for external reference REF1

KEYPAD Control panel. The first line on the display shows the reference value. 1

AI1 Analogue input AI1. Note: If the signal is bipolar (±10 VDC), use the selection AI1 BIPOLAR. (The selection AI1 ignores the negative signal range.)

2

AI2 Analogue input AI2. 3

AI3 Analogue input AI3. 4

Index Name/Selection Description FbEq

Actual signals and parameters

Page 259: VFD Documents

109

AI1/JOYST Unipolar analogue input AI1 as joystick. The minimum input signal runs the motor at the maximum reference in the reverse direction, the maximum input at the maximum reference in the forward direction. Note: Parameter 10.03 must have the value REQUEST.

WARNING! Minimum reference for joystick must be higher than 0.5 V. Set parameter 13.01 to 2 V or to a value higher than 0.5 V and analogue signal loss detection parameter 30.01 to FAULT. The drive

will stop in case the control signal is lost.

Note: If the signal is bipolar (±10 VDC), use the selection AI1 BIPOLAR. The selection AI1/JOYST ignores the negative signal range.

5

AI2/JOYST See selection AI1/JOYST. 6

AI1+AI3 Summation of analogue input AI1 and AI3 7

AI2+AI3 Summation of analogue input AI2 and AI3 8

AI1-AI3 Subtraction of analogue input AI1 and AI3 9

AI2-AI3 Subtraction of analogue input AI2 and AI3 10

AI1*AI3 Multiplication of analogue input AI1 and AI3 11

AI2*AI3 Multiplication of analogue input AI2 and AI3 12

MIN(AI1,AI3) Minimum of analogue input AI1 and AI3 13

MIN(AI2,AI3) Minimum of analogue input AI2 and AI3 14

MAX(AI1,AI3) Maximum of analogue input AI1 and AI3 15

MAX(AI2,AI3) Maximum of analogue input AI2 and AI3 16

DI3U,4D(R) Digital input 3: Reference increase. Digital input DI4: Reference decrease. Stop command or power switch off resets the reference to zero. Parameter 22.04 defines the rate of the reference change.

17

DI3U,4D Digital input 3: Reference increase. Digital input DI4: Reference decrease. The program stores the active speed reference (not reset by a stop command or power switch-off). Parameter 22.04 defines the rate of the reference change.

18

DI5U,6D See selection DI3U,4D. 19

COMM. REF Fieldbus reference REF1 20

COM.REF1+AI1 Summation of fieldbus reference REF1 and analogue input AI1 21

COM.REF1*AI1 Multiplication of fieldbus reference REF1 and analogue input AI1 22

Index Name/Selection Description FbEq

0

1062

AI1

Speed Reference (REF1)

11.04

-11.04

-11.05

11.05

Par. 13.01 = 2 V, Par 13.02 = 10 V

Actual signals and parameters

Page 260: VFD Documents

110

FAST COMM As with the selection COMM. REF, except the following differences:- shorter communication cycle time when transferring the reference to the core motor control program (6 ms -> 2 ms)- the direction cannot be controlled through interfaces defined by parameters 10.01 or 10.02, nor with the control panel- parameter group 25 CRITICAL SPEEDS is not effectiveNote: If any of the following selections is true, the selection is not effective. Instead, the operation is according to COMM. REF.- parameter 99.02 is PID- parameter 99.04 is SCALAR- parameter 40.14 has value PROPORTIONAL or DIRECT

23

COM.REF1+AI5 See selection COM.REF1+AI1 (AI5 used instead of AI1). 24

COM.REF1*AI5 See selection COM.REF1*AI1 (AI5 used instead of AI1). 25

AI5 Analogue input AI5 26

AI6 Analogue input AI6 27

AI5/JOYST See selection AI1/JOYST. 28

AI6/JOYST See selection AI1/JOYST. 29

AI5+AI6 Summation of analogue input AI5 and AI6. 30

AI5-AI6 Subtraction of analogue input AI5 and AI6. 31

AI5*AI6 Multiplication of analogue input AI5 and AI6. 32

MIN(AI5,AI6) Lower of analogue input AI5 and AI6. 33

MAX(AI5,AI6) Higher of analogue input AI5 and AI6. 34

DI11U,12D(R) See selection DI3U,4D(R). 35

DI11U,12D See selection DI3U,4D. 36

PARAM 11.10 Source selected by 11.10. 37

Index Name/Selection Description FbEq

Actual signals and parameters

Page 261: VFD Documents

111

AI1 BIPOLAR Bipolar analogue input AI1 (-10 … 10 V). The figure below illustrates the use of the input as the speed reference.

38

11.04 EXT REF1 MINIMUM Defines the minimum value for external reference REF1 (absolute value).Corresponds to the minimum setting of the source signal used.

0 … 18000 rpm Setting range in rpm. (Hz if parameter 99.04 is SCALAR.)Example: Analogue input AI1 is selected as the reference source (value of parameter 11.03 is AI1). The reference minimum and maximum correspond the AI minimum and maximum settings as follows:

Note: If the reference is given through fieldbus, the scaling differs from that of an analogue signal. See chapter Fieldbus control for more information.

1 … 18000

Index Name/Selection Description FbEq

Spe

ed R

efer

ence

minAI1 = 13.01 MINIMUM AI1maxAI1 = 13.02 MAXIMUM AI1scaled maxREF1 = 13.03 SCALE AI1 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM

scaled

minREF1

-minAI1 minAI1 maxAI1-maxAI1

-minREF1

-scaled

Analogue Input Signal

Operation Range

maxREF1

maxREF1

10.03 DIRECTION =FORWARD orREQUEST

10.03 DIRECTION =REVERSE orREQUEST

AI1 Range

EXT REF1 Range

1 parameter 13.012 parameter 13.021’ parameter 11.042’ parameter 11.05

1 2

1’

2’

Actual signals and parameters

Page 262: VFD Documents

112

11.05 EXT REF1 MAXIMUM Defines the maximum value for external reference REF1 (absolute value).Corresponds to the maximum setting of the used source signal.

0 … 18000 rpm Setting range. (Hz if value of parameter 99.04 is SCALAR.)See parameter 11.04.

1 … 18000

11.06 EXT REF2 SELECT Selects the signal source for external reference REF2. REF2 is a- speed reference in percent of the Absolute Maximum Speed if parameter 99.02 = FACTORY, HAND/AUTO or SEQ CTRL.- torque reference in percent of the motor nominal torque if parameter 99.02 = TORQUE.- process reference in percent of the maximum process quantity if parameter 99.02 = PID CTRL.- frequency reference in percent of the Absolute Maximum Frequency if parameter 99.04 = SCALAR.

KEYPAD See parameter 11.03. 1

AI1 See parameter 11.03.Note: If the signal is bipolar (±10 VDC), use the selection AI1 BIPOLAR. The selection AI1 ignores the negative signal range.

2

AI2 See parameter 11.03. 3

AI3 See parameter 11.03. 4

AI1/JOYST See parameter 11.03. 5

AI2/JOYST See parameter 11.03. 6

AI1+AI3 See parameter 11.03. 7

AI2+AI3 See parameter 11.03. 8

AI1-AI3 See parameter 11.03. 9

AI2-AI3 See parameter 11.03. 10

AI1*AI3 See parameter 11.03. 11

AI2*AI3 See parameter 11.03. 12

MIN(AI1,AI3) See parameter 11.03. 13

MIN(AI2,AI3) See parameter 11.03. 14

MAX(AI1,AI3) See parameter 11.03. 15

MAX(AI2,AI3) See parameter 11.03. 16

DI3U,4D(R) See parameter 11.03. 17

DI3U,4D See parameter 11.03. 18

DI5U,6D See parameter 11.03. 19

COMM. REF See parameter 11.03. 20

COM.REF2+AI1 See parameter 11.03. 21

COM.REF2*AI1 See parameter 11.03. 22

FAST COMM See parameter 11.03. 23

COM.REF2+AI5 See parameter 11.03. 24

COM.REF2*AI5 See parameter 11.03. 25

AI5 See parameter 11.03. 26

AI6 See parameter 11.03. 27

AI5/JOYST See parameter 11.03. 28

AI6/JOYST See parameter 11.03. 29

Index Name/Selection Description FbEq

Actual signals and parameters

Page 263: VFD Documents

113

AI5+AI6 See parameter 11.03. 30

AI5-AI6 See parameter 11.03. 31

AI5*AI6 See parameter 11.03. 32

MIN(AI5,AI6) See parameter 11.03. 33

MAX(AI5,AI6) See parameter 11.03. 34

DI11U,12D(R) See parameter 11.03. 35

DI11U,12D See parameter 11.03. 36

PARAM 11.11 Source selected by 11.11. 37

AI1 BIPOLAR See parameter 11.03. 38

11.07 EXT REF2 MINIMUM Defines the minimum value for external reference REF2 (absolute value).Corresponds to the minimum setting of the source signal used.

0 … 100% Setting range in percent. Correspondence to the source signal limits:- Source is an analogue input: See example for parameter 11.04. - Source is a serial link: See chapter Fieldbus control.

0 … 10000

11.08 EXT REF2 MAXIMUM Defines the maximum value for external reference REF2 (absolute value). Corresponds to the maximum setting of the source signal used.

0 … 600% Setting range. Correspondence to the source signal limits:- Source is an analogue input: See parameter 11.04. - Source is a serial link: See chapter Fieldbus control.

0 … 6000

11.09 EXT 1/2 SEL PTR Defines the source or constant for value PAR 11.09 of parameter 11.02.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

11.10 EXT 1 REF PTR Defines the source or constant for value PAR 11.10 of parameter 11.03.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

11.11 EXT 2 REF PTR Defines the source or constant for value PAR 11.11 of parameter 11.06.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

12 CONSTANT SPEEDS Constant speed selection and values. An active constant speed overrides the drive speed reference. See section Constant speeds on page 59.Note: If parameter 99.04 is SCALAR, only speeds 1 to 5 and speed 15 are in use.

12.01 CONST SPEED SEL Activates the constant speeds or selects the activation signal.

NOT SEL No constant speeds in use 1

DI1(SPEED1) Speed defined by parameter 12.02 is activated through digital input DI1. 1 = active, 0 = inactive.

2

DI2(SPEED2) Speed defined by parameter 12.03 is activated through digital input DI2. 1 = active, 0 = inactive.

3

DI3(SPEED3) Speed defined by parameter 12.04 is activated through digital input DI3. 1 = active, 0 = inactive.

4

DI4(SPEED4) Speed defined by parameter 12.05 is activated through digital input DI4. 1 = active, 0 = inactive.

5

Index Name/Selection Description FbEq

Actual signals and parameters

Page 264: VFD Documents

114

DI5(SPEED5) Speed defined by parameter 12.06 is activated through digital input DI5. 1 = active, 0 = inactive.

6

DI6(SPEED6) Speed defined by parameter 12.07 is activated through digital input DI6. 1 = active, 0 = inactive.

7

DI1,2 Constant speed selection through digital input DI1 and DI2. 8

DI3,4 See selection DI1,2. 9

DI5,6 See selection DI1,2. 10

DI1,2,3 Constant speed selection through digital input DI1, DI2 and DI3. 11

DI3,4,5 See selection DI1,2,3. 12

DI4,5,6 See selection DI1,2,3. 13

DI3,4,5,6 Constant speed selection through digital input DI3, 4, 5 and 6 14

DI7(SPEED1) Speed defined by parameter 12.02 is activated through digital input DI7. 1 = active, 0 = inactive.

15

DI8(SPEED2) Speed defined by parameter 12.03 is activated through digital input DI8. 1 = active, 0 = inactive.

16

Index Name/Selection Description FbEq

DI1 DI2 Constant speed in use0 0 No constant speed1 0 Speed defined by parameter 12.020 1 Speed defined by parameter 12.031 1 Speed defined by parameter 12.04

DI1 DI2 DI3 Constant speed in use0 0 0 No constant speed1 0 0 Speed defined by parameter 12.020 1 0 Speed defined by parameter 12.031 1 0 Speed defined by parameter 12.040 0 1 Speed defined by parameter 12.051 0 1 Speed defined by parameter 12.060 1 1 Speed defined by parameter 12.071 1 1 Speed defined by parameter 12.08

DI1 DI2 DI3 DI4 Constant speed in use0 0 0 0 No constant speed1 0 0 0 Speed defined by parameter 12.020 1 0 0 Speed defined by parameter 12.031 1 0 0 Speed defined by parameter 12.040 0 1 0 Speed defined by parameter 12.051 0 1 0 Speed defined by parameter 12.060 1 1 0 Speed defined by parameter 12.071 1 1 0 Speed defined by parameter 12.080 0 0 1 Speed defined by parameter 12.091 0 0 1 Speed defined by parameter 12.100 1 0 1 Speed defined by parameter 12.111 1 0 1 Speed defined by parameter 12.120 0 1 1 Speed defined by parameter 12.131 0 1 1 Speed defined by parameter 12.140 1 1 1 Speed defined by parameter 12.151 1 1 1 Speed defined by parameter 12.16

Actual signals and parameters

Page 265: VFD Documents

115

DI9(SPEED3) Speed defined by parameter 12.04 is activated through digital input DI9. 1 = active, 0 = inactive.

17

DI10(SPEED4) Speed defined by parameter 12.05 is activated through digital input DI10. 1 = active, 0 = inactive.

18

DI11(SPEED5) Speed defined by parameter 12.06 is activated through digital input DI11. 1 = active, 0 = inactive.

19

DI12 (SPEED6) Speed defined by parameter 12.07 is activated through digital input DI12. 1 = active, 0 = inactive.

20

DI7,8 See selection DI1,2. 21

DI9,10 See selection DI1,2. 22

DI11,12 See selection DI1,2. 23

12.02 CONST SPEED 1 Defines speed 1. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.03 CONST SPEED 2 Defines speed 2. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.04 CONST SPEED 3 Defines speed 3. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.05 CONST SPEED 4 Defines speed 4. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.06 CONST SPEED 5 Defines speed 5. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.07 CONST SPEED 6 Defines speed 6. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.08 CONST SPEED 7 Defines speed 7. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.09 CONST SPEED 8 Defines speed 8. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.10 CONST SPEED 9 Defines speed 9. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.11 CONST SPEED 10 Defines speed 10. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.12 CONST SPEED 11 Defines speed 11. An absolute value. Does not include the direction information.

0 … 18000 rpm Setting range 0 … 18000

12.13 CONST SPEED 12 Defines speed 12. An absolute value. Does not include the direction information.Note: If inching is in use, the parameter defines the inching 1 speed. The sign is taken into account. See chapter Fieldbus control.

-18000 … 18000 rpm Setting range -18000 … 18000

Index Name/Selection Description FbEq

Actual signals and parameters

Page 266: VFD Documents

116

12.14 CONST SPEED 13 Defines speed 13. An absolute value. Does not include the direction information.Note: If inching is in use, the parameter defines the inching 2 speed. The sign is taken into account. See chapter Fieldbus control.

-18000 … 18000 rpm Setting range -18000 … 18000

12.15 CONST SPEED 14 Defines speed 14. An absolute value. Does not include the direction information.Note: If the jogging function is in use, the parameter defines the jogging speed. The sign is not taken into account. See section Jogging on page 81.

0 … 18000 rpm Setting range 0 … 18000

12.16 CONST SPEED 15 Defines speed 15 or Fault speed. The program considers the sign when used as a fault speed by parameter 30.01 and 30.02.

-18000 … 18000 rpm Setting range -18000 … 18000

13 ANALOGUE INPUTS The analogue input signal processing. See section Programmable analogue inputs on page 49.

13.01 MINIMUM AI1 Defines the minimum value for analogue input AI1. When used as a reference, the value corresponds to the reference minimum setting.Example: If AI1 is selected as the source for external reference REF1, this value corresponds to the value of parameter 11.04.

0 V Zero volts. Note: The program cannot detect a loss of analogue input signal. 1

2 V Two volts 2

TUNED VALUE The value measured by the tuning function. See the selection TUNE. 3

TUNE The value measurement triggering. Procedure:- Connect the minimum signal to input. - Set the parameter to TUNE.Note: The readable range in tuning is 0 … 10 V.

4

13.02 MAXIMUM AI1 Defines the maximum value for analogue input AI1. When used as a reference, the value corresponds to the reference maximum setting. Example: If AI1 is selected as the source for external reference REF1, this value corresponds to the value of parameter 11.05.

10 V Ten volts (DC). 1

TUNED VALUE The value measured by the tuning function. See the selection TUNE. 2

TUNE Triggering of the tuning function. Procedure:- Connect the maximum signal to input. - Set the parameter to TUNE.Note: The readable range in tuning is 0 … 10 V.

3

Index Name/Selection Description FbEq

Actual signals and parameters

Page 267: VFD Documents

117

13.03 SCALE AI1 Scales analogue input AI1.Example: The effect on speed reference REF1 when: - REF1 source selection (parameter 11.03) = AI1+AI3- REF1 maximum value setting (parameter 11.05) = 1500 rpm- Actual AI1 value = 4 V (40% of the full scale value)- Actual AI3 value = 12 mA (60% of the full scale value)- AI1 scaling = 100%, AI3 scaling = 10%

0 … 1000% Scaling range 0 … 32767

13.04 FILTER AI1 Defines the filter time constant for analogue input AI1.

Note: The signal is also filtered due to the signal interface hardware (10 ms time constant). This cannot be changed by any parameter.

0.00 … 10.00 s Filter time constant 0 … 1000

13.05 INVERT AI1 Activates/deactivates the inversion of analogue input AI1.

NO No inversion 0

YES Inversion active. The maximum value of the analogue input signal corresponds to the minimum reference and vice versa.

65535

13.06 MINIMUM AI2 See parameter 13.01.

0 mA See parameter 13.01. 1

4 mA See parameter 13.01. 2

TUNED VALUE See parameter 13.01. 3

TUNE See parameter 13.01. 4

13.07 MAXIMUM AI2 See parameter 13.02.

20 mA See parameter 13.02. 1

TUNED VALUE See parameter 13.02. 2

TUNE See parameter 13.02. 3

Index Name/Selection Description FbEq

60%

40%

150 rpm 1500 rpm 10 V

0 V 0 mA

20 mA 1500 rpm

600 rpm

90 rpm

690 rpm

0 rpm

AI1 AI3 AI1 + AI3

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Actual signals and parameters

Page 268: VFD Documents

118

13.08 SCALE AI2 See parameter 13.03.

0 … 1000% See parameter 13.03. 0 … 32767

13.09 FILTER AI2 See parameter 13.04.

0.00 … 10.00 s See parameter 13.04. 0 … 1000

13.10 INVERT AI2 See parameter 13.05.

NO See parameter 13.05. 0

YES See parameter 13.05. 65535

13.11 MINIMUM AI3 See parameter 13.01.

0 mA See parameter 13.01. 1

4 mA See parameter 13.01. 2

TUNED VALUE See parameter 13.01. 3

TUNE See parameter 13.01. 4

13.12 MAXIMUM AI3 See parameter 13.02.

20 mA See parameter 13.02. 1

TUNED VALUE See parameter 13.02. 2

TUNE See parameter 13.02. 3

13.13 SCALE AI3 See parameter 13.03.

0 … 1000% See parameter 13.03. 0 … 32767

13.14 FILTER AI3 See parameter 13.04.

0.00 … 10.00 s See parameter 13.04. 0 … 1000

13.15 INVERT AI3 See parameter 13.05.

NO See parameter 13.05. 0

YES See parameter 13.05. 65535

13.16 MINIMUM AI5 See parameter 13.01.Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.

0 mA See parameter 13.01. 1

4 mA See parameter 13.01. 2

TUNED VALUE See parameter 13.01. 3

TUNE See parameter 13.01. 4

13.17 MAXIMUM AI5 See parameter 13.02.Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.

20 mA See parameter 13.02. 1

TUNED VALUE See parameter 13.02. 2

TUNE See parameter 13.02. 3

13.18 SCALE AI5 See parameter 13.03.

0 … 1000% See parameter 13.03. 0 … 32767

13.19 FILTER AI5 See parameter 13.04.

0.00 … 10.00 s See parameter 13.04. 0 … 1000

Index Name/Selection Description FbEq

Actual signals and parameters

Page 269: VFD Documents

119

13.20 INVERT AI5 See parameter 13.05.

NO See parameter 13.05. 0

YES See parameter 13.05. 65535

13.21 MINIMUM AI6 See parameter 13.01.Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.

0 mA See parameter 13.01. 1

4 mA See parameter 13.01. 2

TUNED VALUE See parameter 13.01. 3

TUNE See parameter 13.01. 4

13.22 MAXIMUM AI6 See parameter 13.02.Note: If RAIO-01 is used with voltage input signal, 20 mA corresponds to 10 V.

20 mA See parameter 13.02. 1

TUNED VALUE See parameter 13.02. 2

TUNE See parameter 13.02. 3

13.23 SCALE AI6 See parameter 13.03.

0 … 1000% See parameter 13.03. 0 … 32767

13.24 FILTER AI6 See parameter 13.04.

0.00 … 10.00 s See parameter 13.04. 0 … 1000

13.25 INVERT AI6 See parameter 13.05.

NO See parameter 13.05. 0

YES See parameter 13.05. 65535

14 RELAY OUTPUTS Status information indicated through the relay outputs, and the relay operating delays. See section Programmable relay outputs on page 52.

14.01 RELAY RO1 OUTPUT Selects a drive status indicated through relay output RO1. The relay energises when the status meets the setting.

NOT USED Not used. 1

READY Ready to function: Run Enable signal on, no fault. 2

RUNNING Running: Start signal on, Run Enable signal on, no active fault. 3

FAULT Fault 4

FAULT(-1) Inverted fault. Relay is de-energised on a fault trip. 5

FAULT(RST) Fault. Automatic reset after the autoreset delay. See parameter group 31 AUTOMATIC RESET.

6

STALL WARN Warning by the stall protection function. See parameter 30.10. 7

STALL FLT Fault trip by the stall protection function. See parameter 30.10. 8

MOT TEMP WRN Warning trip of the motor temperature supervision function. See parameter 30.04.

9

MOT TEMP FLT Fault trip of the motor temperature supervision function. See parameter 30.04. 10

ACS TEMP WRN Warning by the drive temperature supervision function. The warning limit depends on the used inverter type.

11

ACS TEMP FLT Fault trip by the drive temperature supervision function. Trip limit is 100%. 12

FAULT/WARN Fault or warning active 13

WARNING Warning active 14

REVERSED Motor rotates in reverse direction. 15

Index Name/Selection Description FbEq

Actual signals and parameters

Page 270: VFD Documents

120

EXT CTRL Drive is under external control. 16

REF 2 SEL External reference REF 2 is in use. 17

CONST SPEED A constant speed is in use. See parameter group 12 CONSTANT SPEEDS. 18

DC OVERVOLT The intermediate circuit DC voltage has exceeded the overvoltage limit. 19

DC UNDERVOLT The intermediate circuit DC voltage has fallen below the undervoltage limit. 20

SPEED 1 LIM Motor speed at supervision limit 1. See parameters 32.01 and 32.02. 21

SPEED 2 LIM Motor speed at supervision limit 2. See parameters 32.03 and 32.04. 22

CURRENT LIM Motor current at the supervision limit. See parameters 32.05 and 32.06. 23

REF 1 LIM External reference REF1 at the supervision limit. See parameters 32.11 and 32.12.

24

REF 2 LIM External reference REF2 at the supervision limit. See parameters 32.13 and 32.14.

25

TORQUE 1 LIM Motor torque at supervision limit 1. See parameters 32.07 and 32.08. 26

TORQUE 2 LIM Motor torque at supervision limit 2. See parameters 32.09 and 32.10. 27

STARTED The drive has received the start command. 28

LOSS OF REF The drive has no reference. 29

AT SPEED The actual value has reached the reference value. In speed control, the speed error is less or equal to 10% of the nominal motor speed.

30

ACT 1 LIM Process PID controller variable ACT1 at the supervision limit. See parameters 32.15 and 32.16.

31

ACT 2 LIM Process PID controller variable ACT2 at the supervision limit. See parameters 32.17 and 32.18.

32

COMM.REF3(13) The relay is controlled by fieldbus reference REF3. See chapter Fieldbus control.

33

PARAM 14.16 Source selected by parameter 14.16. 34

BRAKE CTRL On/Off control of a mechanical brake. See parameter group 42 BRAKE CONTROL and section Control of a mechanical brake on page 77.

35

BC SHORT CIR Drive trips on a brake chopper fault. See chapter Fault tracing. 36

14.02 RELAY RO2 OUTPUT Selects the drive status to be indicated through relay output RO2. The relay energises when the status meets the setting.

NOT USED See parameter 14.01. 1

READY See parameter 14.01. 2

RUNNING See parameter 14.01. 3

FAULT See parameter 14.01. 4

FAULT(-1) See parameter 14.01. 5

FAULT(RST) See parameter 14.01. 6

STALL WARN See parameter 14.01. 7

STALL FLT See parameter 14.01. 8

MOT TEMP WRN See parameter 14.01. 9

MOT TEMP FLT See parameter 14.01. 10

ACS TEMP WRN See parameter 14.01. 11

ACS TEMP FLT See parameter 14.01. 12

FAULT/WARN See parameter 14.01. 13

WARNING See parameter 14.01. 14

Index Name/Selection Description FbEq

Actual signals and parameters

Page 271: VFD Documents

121

REVERSED See parameter 14.01. 15

EXT CTRL See parameter 14.01. 16

REF 2 SEL See parameter 14.01. 17

CONST SPEED See parameter 14.01. 18

DC OVERVOLT See parameter 14.01. 19

DC UNDERVOLT See parameter 14.01. 20

SPEED 1 LIM See parameter 14.01. 21

SPEED 2 LIM See parameter 14.01. 22

CURRENT LIM See parameter 14.01. 23

REF 1 LIM See parameter 14.01. 24

REF 2 LIM See parameter 14.01. 25

TORQUE 1 LIM See parameter 14.01. 26

TORQUE 2 LIM See parameter 14.01. 27

STARTED See parameter 14.01. 28

LOSS OF REF See parameter 14.01. 29

AT SPEED See parameter 14.01. 30

ACT 1 LIM See parameter 14.01. 31

ACT 2 LIM See parameter 14.01. 32

COMM. REF3(14) See parameter 14.01. 33

PARAM 14.17 Source selected by parameter 14.17. 34

BRAKE CTRL See parameter 14.01. 35

BC SHORT CIR See parameter 14.01. 36

14.03 RELAY RO3 OUTPUT Selects the drive status to be indicated through relay output RO3. The relay energises when the status meets the setting.

NOT USED See parameter 14.01. 1

READY See parameter 14.01. 2

RUNNING See parameter 14.01. 3

FAULT See parameter 14.01. 4

FAULT(-1) See parameter 14.01. 5

FAULT(RST) See parameter 14.01. 6

STALL WARN See parameter 14.01. 7

STALL FLT See parameter 14.01. 8

MOT TEMP WRN See parameter 14.01. 9

MOT TEMP FLT See parameter 14.01. 10

ACS TEMP WRN See parameter 14.01. 11

ACS TEMP FLT See parameter 14.01. 12

FAULT/WARN See parameter 14.01. 13

WARNING See parameter 14.01. 14

REVERSED See parameter 14.01. 15

EXT CTRL See parameter 14.01. 16

REF 2 SEL See parameter 14.01. 17

CONST SPEED See parameter 14.01. 18

Index Name/Selection Description FbEq

Actual signals and parameters

Page 272: VFD Documents

122

DC OVERVOLT See parameter 14.01. 19

DC UNDERVOLT See parameter 14.01. 20

SPEED 1 LIM See parameter 14.01. 21

SPEED 2 LIM See parameter 14.01. 22

CURRENT LIM See parameter 14.01. 23

REF 1 LIM See parameter 14.01. 24

REF 2 LIM See parameter 14.01. 25

TORQUE 1 LIM See parameter 14.01. 26

TORQUE 2 LIM See parameter 14.01. 27

STARTED See parameter 14.01. 28

LOSS OF REF See parameter 14.01. 29

AT SPEED See parameter 14.01. 30

MAGN READY The motor is magnetised and ready to give nominal torque (nominal magnetising of the motor has been reached).

31

USER 2 SEL User Macro 2 is in use. 32

COMM. REF3(15) See parameter 14.01. 33

PARAM 14.18 Source selected by parameter 14.18. 34

BRAKE CTRL See parameter 14.01. 35

BC SHORT CIR See parameter 14.01. 36

14.04 RO1 TON DELAY Defines the operation delay for the relay RO1.

0.0 … 3600.0 s Setting range. The figure below illustrates the operation (on) and release (off) delays for relay output RO1.

0 … 36000

14.05 RO1 TOFF DELAY Defines the release delay for relay output RO1.

0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.06 RO2 TON DELAY Defines the operation delay for relay output RO2.

0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.07 RO2 TOFF DELAY Defines the release delay for relay output RO2.

0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.08 RO3 TON DELAY Defines the operation delay for relay output RO3.

0.0 … 3600.0 s See parameter 14.04. 0 … 36000

14.09 RO3 TOFF DELAY Defines the release delay of relay output RO3.

0.0 … 3600.0 s See parameter 14.04. 0 … 36000

Index Name/Selection Description FbEq

1

01

0

timetOn tOff tOn tOff

tOn 14.04

tOff 14.05

Drive status

RO1 status

Actual signals and parameters

Page 273: VFD Documents

123

14.10 DIO MOD1 RO1 Selects the drive status indicated through relay output RO1 of digital I/O extension module 1 (optional, see parameter 98.03).

READY See parameter 14.01. 1

RUNNING See parameter 14.01. 2

FAULT See parameter 14.01. 3

WARNING See parameter 14.01. 4

REF 2 SEL See parameter 14.01. 5

AT SPEED See parameter 14.01. 6

PARAM 14.19 Source selected by parameter 14.19. 7

14.11 DIO MOD1 RO2 Selects the drive status indicated through relay output RO2 of digital I/O extension module 1 (optional, see parameter 98.03).

READY See parameter 14.01. 1

RUNNING See parameter 14.01. 2

FAULT See parameter 14.01. 3

WARNING See parameter 14.01. 4

REF 2 SEL See parameter 14.01. 5

AT SPEED See parameter 14.01. 6

PARAM 14.20 Source selected by parameter 14.20. 7

14.12 DIO MOD2 RO1 Selects the drive status indicated through relay output RO1 of digital I/O extension module 2 (optional, see parameter 98.04).

READY See parameter 14.01. 1

RUNNING See parameter 14.01. 2

FAULT See parameter 14.01. 3

WARNING See parameter 14.01. 4

REF 2 SEL See parameter 14.01. 5

AT SPEED See parameter 14.01. 6

PARAM 14.21 Source selected by parameter 14.21. 7

14.13 DIO MOD2 RO2 Selects the drive status indicated through relay output RO2 of digital I/O extension module 2 (optional, see parameter 98.04).

READY See parameter 14.01. 1

RUNNING See parameter 14.01. 2

FAULT See parameter 14.01. 3

WARNING See parameter 14.01. 4

REF 2 SEL See parameter 14.01. 5

AT SPEED See parameter 14.01. 6

PARAM 14.22 Source selected by parameter 14.22. 7

14.14 DIO MOD3 RO1 Selects the drive status indicated through relay output RO1 of digital I/O extension module 3 (optional, see parameter 98.05).

READY See parameter 14.01. 1

RUNNING See parameter 14.01. 2

FAULT See parameter 14.01. 3

WARNING See parameter 14.01. 4

REF 2 SEL See parameter 14.01. 5

Index Name/Selection Description FbEq

Actual signals and parameters

Page 274: VFD Documents

124

AT SPEED See parameter 14.01. 6

PARAM 14.23 Source selected by parameter 14.23. 7

14.15 DIO MOD3 RO2 Selects the drive status indicated through relay output RO2 of digital I/O extension module no. 3 (optional, see parameter 98.05).

READY See parameter 14.01. 1

RUNNING See parameter 14.01. 2

FAULT See parameter 14.01. 3

WARNING See parameter 14.01. 4

REF 2 SEL See parameter 14.01. 5

AT SPEED See parameter 14.01. 6

PARAM 14.24 Source selected by parameter 14.24. 7

14.16 RO PTR1 Defines the source or constant for value PAR 14.16 of parameter 14.01.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.17 RO PTR2 Defines the source or constant for value PAR 14.17 of parameter 14.02.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.18 RO PTR3 Defines the source or constant for value PAR 14.18 of parameter 14.03.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.19 RO PTR4 Defines the source or constant for value PAR 14.19 of parameter 14.10.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.20 RO PTR5 Defines the source or constant for value PAR 14.20 of parameter 14.11.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.21 RO PTR6 Defines the source or constant for value PAR 14.21 of parameter 14.12.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.22 RO PTR7 Defines the source or constant for value PAR 14.22 of parameter 14.13.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.23 RO PTR8 Defines the source or constant for value PAR 14.23 of parameter 14.14.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

14.24 RO PTR9 Defines the source or constant for value PAR 14.24 of parameter 14.15.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

Index Name/Selection Description FbEq

Actual signals and parameters

Page 275: VFD Documents

125

15 ANALOGUE OUTPUTS

Selection of the actual signals to be indicated through the analogue outputs. Output signal processing. See section Programmable analogue outputs on page 50.

15.01 ANALOGUE OUTPUT1

Connects a drive signal to analogue output AO1.

NOT USED Not in use 1

P SPEED Value of a user-defined process quantity derived from the motor speed. See parameter group 34 PROCESS VARIABLE for scaling and unit selection (%; m/s; rpm). The updating interval is 100 ms.

2

SPEED Motor speed (signal 01.02 SPEED). 20 mA = motor nominal speed. The updating interval is 24 ms. The value is filtered with the filter time constant defined by parameter 34.04 MOTOR SP FILT TIM.

3

FREQUENCY Output frequency. 20 mA = motor nominal frequency. The updating interval is 24 ms.

4

CURRENT Output current. 20 mA = motor nominal current. The updating interval is 24 ms. 5

TORQUE Motor torque. 20 mA = 100% of motor nominal rating. The updating interval is 24 ms.

6

POWER Motor power. 20 mA = 100% of motor nominal rating. The updating interval is 100 ms.

7

DC BUS VOLT DC bus voltage. 20 mA = 100% of the reference value. The reference value is 540 VDC. (= 1.35 · 400 V) for 380...415 VAC supply voltage rating and 675 VDC (= 1.35 · 500 V) for 380...500 VAC supply. The updating interval is 24 ms.

8

OUTPUT VOLT Motor voltage. 20 mA = motor rated voltage. The updating interval is 100 ms. 9

APPL OUTPUT The reference which is given as an output from the application. For example, if the PID Control macro is in use, this is the output of the process PID controller. The updating interval is 24 ms.

10

REFERENCE Active reference that the drive is currently following. 20 mA = 100 % of the active reference. The updating interval is 24 ms.

11

CONTROL DEV The difference between the reference and the actual value of the process PID controller. 0/4 mA = -100%, 10/12 mA = 0%, 20 mA = 100%. The updating interval is 24 ms.

12

ACTUAL 1 Value of variable ACT1 used in the process PID control. 20 mA = value of parameter 40.10. The updating interval is 24 ms.

13

ACTUAL 2 Value of variable ACT2 used in the process PID control. 20 mA = value of parameter 40.12. The updating interval is 24 ms.

14

COMM.REF4 The value is read from fieldbus reference REF4. See chapter Fieldbus control. 15

M1 TEMP MEAS Analogue output is a current source in a motor temperature measuring circuit. Depending on the sensor type, the output is 9.1 mA (Pt 100) or 1.6 mA (PTC). For more information, see parameter 35.01 and section Motor temperature measurement through the standard I/O on page 73. Note: The settings of parameters 15.02 to 15.05 are not effective.

16

PARAM 15.11 Source selected by 15.11 17

15.02 INVERT AO1 Inverts the analogue output AO1 signal. The analogue signal is at the minimum level when the indicated drive signal is at its maximum level and vice versa.

NO Inversion off 0

YES Inversion on 65535

Index Name/Selection Description FbEq

Actual signals and parameters

Page 276: VFD Documents

126

15.03 MINIMUM AO1 Defines the minimum value of the analogue output signal AO1.

0 mA Zero mA 1

4 mA Four mA 2

15.04 FILTER AO1 Defines the filtering time constant for analogue output AO1.

0.00 … 10.00 s Filter time constant

Note: Even if you select 0 s as the minimum value, the signal is still filtered with a time constant of 10 ms due to the signal interface hardware. This cannot be changed by any parameters.

0 … 1000

15.05 SCALE AO1 Scales the analogue output AO1 signal.

10 … 1000% Scaling factor. If the value is 100%, the reference value of the drive signal corresponds to 20 mA.Example: The nominal motor current is 7.5 A and the measured maximum current at maximum load 5 A. The motor current 0 to 5 A needs to be read as 0 to 20 mA analogue signal through AO1. The required settings are:1. AO1 is set to CURRENT by parameter 15.01. 2. AO1 minimum is set to 0 mA by parameter 15.03. 3. The measured maximum motor current is scaled to correspond to 20 mA analogue output signal by setting the scaling factor (k) to 150%. The value is defined as follows: The reference value of the output signal CURRENT is the motor nominal current i.e. 7.5 A (see parameter 15.01). To make the measured maximum motor current correspond to 20 mA, it should be scaled equal to the reference value before it is converted to an analogue output signal. Equation: k · 5 A = 7.5 A => k = 1.5 = 150%

100 … 10000

15.06 ANALOGUE OUTPUT2

See parameter 15.01.

NOT USED See parameter 15.01. 1

P SPEED See parameter 15.01. 2

SPEED See parameter 15.01. 3

FREQUENCY See parameter 15.01. 4

CURRENT See parameter 15.01. 5

TORQUE See parameter 15.01. 6

POWER See parameter 15.01. 7

DC BUS VOLT See parameter 15.01. 8

OUTPUT VOLT See parameter 15.01. 9

APPL OUTPUT See parameter 15.01. 10

REFERENCE See parameter 15.01. 11

CONTROL DEV See parameter 15.01. 12

ACTUAL 1 See parameter 15.01. 13

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Actual signals and parameters

Page 277: VFD Documents

127

ACTUAL 2 See parameter 15.01. 14

COMM.REF5 The value is read from fieldbus reference REF5. See chapter Fieldbus control. 15

PARAM 15.12 Source selected by 15.12 16

15.07 INVERT AO2 See parameter 15.02.

NO See parameter 15.02. 0

YES See parameter 15.02. 65535

15.08 MINIMUM AO2 See parameter 15.03.

0 mA See parameter 15.03. 1

4 mA See parameter 15.03. 2

15.09 FILTER AO2 See parameter 15.04.

0.00 … 10.00 s See parameter 15.04. 0 … 1000

15.10 SCALE AO2 See parameter 15.05.

10 … 1000% See parameter 15.05. 100 … 10000

15.11 AO1 PTR Defines the source or constant for value PAR 15.11 of parameter 15.01.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

1000 = 1 mA

15.12 AO2 PTR Defines the source or constant for value PAR 15.12 of parameter 15.06.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

1000 = 1 mA

16 SYST CTRL INPUTS Run Enable, parameter lock etc.

16.01 RUN ENABLE Sets the Run Enable signal on, or selects a source for the external Run Enable signal. If Run Enable signal is switched off, the drive will not start or stops if it is running. The stop mode is set by parameter 21.07.

YES Run Enable signal is on. 1

DI1 External signal required through digital input DI1. 1 = Run Enable. 2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

COMM.CW External signal required through the Fieldbus Control Word (bit 3). 8

DI7 See selection DI1. 9

DI8 See selection DI1. 10

DI9 See selection DI1. 11

DI10 See selection DI1. 12

DI11 See selection DI1. 13

DI12 See selection DI1. 14

PARAM 16.08 Source selected by parameter 16.08. 15

Index Name/Selection Description FbEq

Actual signals and parameters

Page 278: VFD Documents

128

16.02 PARAMETER LOCK Selects the state of the parameter lock. The lock prevents parameter changing.

OPEN The lock is open. Parameter values can be changed. 0

LOCKED Locked. Parameter values cannot be changed from the control panel. The lock can be opened by entering the valid code to parameter 16.03.

65535

16.03 PASS CODE Selects the pass code for the parameter lock (see parameter 16.02).

0 … 30000 Setting 358 opens the lock. The value reverts back to 0 automatically. 0 … 30000

16.04 FAULT RESET SEL Selects the source for the fault reset signal. The signal resets the drive after a fault trip if the cause of the fault no longer exists.

NOT SEL Fault reset only from the control panel keypad (RESET key). 1

DI1 Reset through digital input DI1 or by control panel:- If the drive is in external control mode: Reset by a rising edge of DI1.- If the drive is in local control mode: Reset by the RESET key of the control panel.

2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

COMM.CW Reset through the fieldbus Control Word (bit 7), or by the RESET key of the control panel.Note: Reset through fieldbus Control Word (bit 7) is enabled automatically and it is independent of parameter 16.04 setting if parameter 10.01 or 10.02 is set to COMM.CW.

8

ON STOP Reset along with the stop signal received through a digital input, or by the RESET key of the control panel.

9

DI7 See selection DI1. 10

DI8 See selection DI1. 11

DI9 See selection DI1. 12

DI10 See selection DI1. 13

DI11 See selection DI1. 14

DI12 See selection DI1. 15

PARAM 16.11 Source selected by parameter 16.11. 16

16.05 USER MACRO IO CHG

Enables the change of the User Macro through a digital input. See parameter 99.02. The change is only allowed when the drive is stopped. During the change, the drive will not start.Note: Always save the User Macro by parameter 99.02 after changing any parameter settings, or reperforming the motor identification. The last settings saved by the user are loaded into use whenever the power is switched off and on again or the macro is changed. Any unsaved changes will be lost.Note: The value of this parameter is not included in the User Macro. A setting once made remains despite the User Macro change. Note: Selection of User Macro 2 can be supervised via relay output RO3. See parameter 14.03 for more information.

NOT SEL User macro change is not possible through a digital input. 1

DI1 Falling edge of digital input DI1: User Macro 1 is loaded into use. Rising edge of digital input DI1: User Macro 2 is loaded into use.

2

Index Name/Selection Description FbEq

Actual signals and parameters

Page 279: VFD Documents

129

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

DI7 See selection DI1. 8

DI8 See selection DI1. 9

DI9 See selection DI1. 10

DI10 See selection DI1. 11

DI11 See selection DI1. 12

DI12 See selection DI1. 13

16.06 LOCAL LOCK Disables entering local control mode (LOC/REM key of the panel).WARNING! Before activating, ensure that the control panel is not needed for stopping the drive!

OFF Local control allowed. 0

ON Local control disabled. 65535

16.07 PARAMETER SAVE Saves the valid parameter values to the permanent memory. Note: A new parameter value of a standard macro is saved automatically when changed from the panel but not when altered through a fieldbus connection.

DONE Saving completed 0

SAVE.. Saving in progress 1

16.08 RUN ENA PTR Defines the source or constant for value PAR 16.08 of parameter 16.01

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

16.09 CTRL BOARD SUPPLY

Defines the source of the control board power supply. Note: If an external supply is used but this parameter has value INTERNAL, the drive trips on a fault at power switch off.

INTERNAL 24V Internal (default). 1

EXTERNAL 24V External. The control board is powered from an external supply. 2

16.10 ASSIST SEL Enables the Start-up Assistant.

OFF Assistant disabled. 0

ON Assistant enabled. 65535

16.11 FAULT RESET PTR Defines the source or constant for selection PARAM 16.11 of parameter 16.04.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

16.12 RESET COUNTER Resets the cooling fan running time counter or kWh counter.

NO No reset. 0

FAN ON-TIME Resets the running time counter of the drive cooling fan indicated with 01.44 FAN ON-TIME.

1

kWh kWh counter reset. See parameter 01.15 KILOWATT HOURS. 2

Index Name/Selection Description FbEq

Actual signals and parameters

Page 280: VFD Documents

130

20 LIMITS Drive operation limits. See also section Speed controller tuning on page 60.

20.01 MINIMUM SPEED Defines the allowed minimum speed. The limit cannot be set if parameter 99.04 = SCALAR.

Note: The limit is linked to the motor nominal speed setting i.e. parameter 99.08. If 99.08 is changed, the default speed limit will also change.

-18000 / (no. of pole pairs) … par. 20.02 rpm

Minimum speed limit.Note: If the value is positive, the motor cannot be run in the reverse direction.

1 = 1 rpm

20.02 MAXIMUM SPEED Defines the allowed maximum speed. The value cannot be set if parameter 99.04 = SCALAR.

Note: The limit is linked to the motor nominal speed setting i.e. parameter 99.08. If 99.08 is changed, the default speed limit will also change.

par. 20.01 … 18000 / (no. of pole pairs) rpm

Maximum speed limit 1 = 1 rpm

20.03 MAXIMUM CURRENT Defines the allowed maximum motor current.

0.0 … x.x A Current limit 0 …10·x.x

20.04 TORQ MAX LIM1 Defines the maximum torque limit 1 for the drive.

0.0 … 600.0% Value of limit in percent of motor nominal torque. 0 … 60000

20.05 OVERVOLTAGE CTRL

Activates or deactivates the overvoltage control of the intermediate DC link. Fast braking of a high inertia load causes the voltage to rise to the overvoltage control limit. To prevent the DC voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque.Note: If a brake chopper and resistor are connected to the drive, the controller must be off (selection NO) to allow chopper operation.

OFF Overvoltage control deactivated. 0

ON Overvoltage control activated. 65535

20.06 UNDERVOLTAGE CTRL

Activates or deactivates the undervoltage control of the intermediate DC link.If the DC voltage drops due to input power cut off, the undervoltage controller will automatically decrease the motor speed in order to keep the voltage above the lower limit. By decreasing the motor speed, the inertia of the load will cause regeneration back into the drive, keeping the DC link charged and preventing an undervoltage trip until the motor coasts to stop. This will act as a power-loss ride-through functionality in systems with a high inertia, such as a centrifuge or a fan.

OFF Undervoltage control deactivated. 0

ON Undervoltage control activated. 65535

20.07 MINIMUM FREQ Defines the minimum limit for the drive output frequency. The limit can be set only parameter 99.04 = SCALAR.

-300.00 … 50 Hz Minimum frequency limit. Note: If the value is positive, the motor cannot be run in the reverse direction.

-30000 … 5000

20.08 MAXIMUM FREQ Defines the maximum limit for the drive output frequency. The limit can be set only if parameter 99.04 = SCALAR

-50 … 300.00 Hz Maximum frequency limit -5000 … 30000

Index Name/Selection Description FbEq

Actual signals and parameters

Page 281: VFD Documents

131

20.11 P MOTORING LIM Defines the allowed maximum power fed by the inverter to the motor.

0 … 600% Power limit in percent of the motor nominal power 0 … 60000

20.12 P GENERATING LIM Defines the allowed maximum power fed by the motor to the inverter.

-600 … 0% Power limit in percent of the motor nominal power -60000 … 0

20.13 MIN TORQ SEL Selects the minimum torque limit for the drive. The update interval is 100 ms.

MIN LIM1 Value of parameter 20.15. 1

DI1 Digital input DI1. 0: Value of parameter 20.15. 1: Value of parameter 20.16. 2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

DI7 See selection DI1. 8

DI8 See selection DI1. 9

DI9 See selection DI1. 10

DI10 See selection DI1. 11

DI11 See selection DI1. 12

DI12 See selection DI1. 13

AI1 Analogue input AI1. See parameter 20.20 on how the signal is converted to a torque limit.

14

AI2 See selection AI1. 15

AI3 See selection AI1. 16

AI5 See selection AI1. 17

AI6 See selection AI1. 18

PARAM 20.18 Limit given by 20.18 19

NEG MAX TORQ Inverted maximum torque limit defined by parameter 20.14 20

20.14 MAX TORQ SEL Defines the maximum torque limit for the drive. The update interval is 100 ms.

MAX LIM1 Value of parameter 20.04. 1

DI1 Digital input DI1. 0: Value of parameter 20.04. 1: Value of parameter 20.17. 2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

DI7 See selection DI1. 8

DI8 See selection DI1. 9

DI9 See selection DI1. 10

DI10 See selection DI1. 11

DI11 See selection DI1. 12

DI12 See selection DI1. 13

AI1 Analogue input AI1. See parameter 20.20 on how the signal is converted to a torque limit.

14

Index Name/Selection Description FbEq

Actual signals and parameters

Page 282: VFD Documents

132

AI2 See selection AI1. 15

AI3 See selection AI1. 16

AI5 See selection AI1. 17

AI6 See selection AI1. 18

PARAM 20.19 Limit given by 20.19 19

20.15 TORQ MIN LIM1 Defines the minimum torque limit 1 for the drive.

-600.0 … 0.0% Value of limit in percent of motor nominal torque -60000 … 0

20.16 TORQ MIN LIM2 Defines the minimum torque limit 2 for the drive.

-600.0 … 0.0% Value of limit in percent of motor nominal torque -60000 … 0

20.17 TORQ MAX LIM2 Defines the maximum torque limit 2 for the drive.

0.0 … 600.0% Value of limit in percent of motor nominal torque 0 … 60000

20.18 TORQ MIN PTR Defines the source or constant for value PAR 20.18 of parameter 20.13

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. 100 = 1%

20.19 TORQ MAX PTR Defines the source or constant for value PAR 20.19 of parameter 20.14

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference. FbEq for the torque value is 100 = 1%.

100 = 1%

20.20 MIN AI SCALE Defines how an analogue signal (mA or V) is converted to a torque minimum or maximum limit (%). The figure below illustrate the converting, when analogue input AI1 has been set the source for a torque limit by parameter 20.13 or 20.14.

0.0 … 600.0% %-value that corresponds to the minimum setting of the analogue input. 100 = 1%

20.21 MAX AI SCALE See parameter 20.20.

0.0 … 600.0% %-value that corresponds to the maximum setting of the analogue input. 100 = 1%

20.22 SLS SPEED LIMIT Defines the safely-limited speed limit (SLS). When the SLS function is activated the speed limits are ramped to 20.22 SLS SPEED LIMIT. The speed of the deceleration to SLS is defined by parameter 22.11 and acceleration from SLS to the original speed is defined by parameter 22.10.Note: This parameter is available in AS7R firmware version only.

20000 = 1500 rpm

0…9000 rpm (0…4 times sync speed)

21 START/STOP Start and stop modes of the motor.

21.01 START FUNCTION Selects the motor starting method. See also section Automatic Start on page 54.

Index Name/Selection Description FbEq

20.20

20.21

13.01 13.02

13.01 Minimum setting for AI1

13.02 Maximum setting for AI1

20.20 Minimum torque

20.21 Maximum torque

Torque limit

Analogue signal

Actual signals and parameters

Page 283: VFD Documents

133

AUTO Automatic start guarantees optimal motor start in most cases. It includes the flying start function (starting to a rotating machine) and the automatic restart function (stopped motor can be restarted immediately without waiting the motor flux to die away). The drive motor control program identifies the flux as well as the mechanical state of the motor and starts the motor instantly under all conditions. Note: If parameter 99.04 = SCALAR, no flying start or automatic restart is possible by default. The flying start feature needs to be activated separately by parameter 21.08.

1

DC MAGN DC magnetising should be selected if a high break-away torque is required. The drive pre-magnetises the motor before the start. The pre-magnetising time is determined automatically, being typically 200 ms to 2 s depending on the motor size. DC MAGN guarantees the highest possible break-away torque. Note: Starting to a rotating machine is not possible when DC magnetising is selected. Note: DC magnetising cannot be selected if parameter 99.04 = SCALAR.

2

CNST DC MAGN Constant DC magnetising should be selected instead of DC magnetising if constant pre-magnetising time is required (e.g. if the motor start must be simultaneous with a mechanical brake release). This selection also guarantees the highest possible break-away torque when the pre-magnetising time is set long enough. The pre-magnetising time is defined by parameter 21.02.Note: Starting to a rotating machine is not possible when DC magnetising is selected. Note: DC magnetising cannot be selected if parameter 99.04 = SCALAR.

WARNING! The drive will start after the set magnetising time has passed although the motor magnetisation is not completed. Ensure always in applications where a full break-away torque is essential, that

the constant magnetising time is long enough to allow generation of full magnetisation and torque.

3

21.02 CONST MAGN TIME Defines the magnetising time in the constant magnetising mode. See parameter 21.01. After the start command, the drive automatically pre-magnetises the motor the set time.

30.0 … 10000.0 ms Magnetising time. To ensure full magnetising, set this value to the same value as or higher than the rotor time constant. If not known, use the rule-of-thumb value given in the table below:

30 … 10000

21.03 STOP FUNCTION Selects the motor stop function.

COAST Stop by cutting of the motor power supply. The motor coasts to a stop.WARNING! If the mechanical brake control function is on, the application program uses ramp stop in spite of the selection COAST (see parameter group 42 BRAKE CONTROL).

1

RAMP Stop along a ramp. See parameter group 22 ACCEL/DECEL. 2

Index Name/Selection Description FbEq

Motor Rated Power Constant Magnetising Time< 10 kW > 100 to 200 ms

10 to 200 kW > 200 to 1000 ms

200 to 1000 kW > 1000 to 2000 ms

Actual signals and parameters

Page 284: VFD Documents

134

21.04 DC HOLD Activates/deactivates the DC hold function. DC Hold is not possible if parameter 99.04 = SCALAR.When both the reference and the speed drop below the value of parameter 21.05, the drive will stop generating sinusoidal current and start to inject DC into the motor. The current is set by parameter 21.06. When the reference speed exceeds parameter 21.05, normal drive operation continues.

Note: DC Hold has no effect if the start signal is switched off.Note: Injecting DC current into the motor causes the motor to heat up. In applications where long DC hold times are required, externally ventilated motors should be used. If the DC hold period is long, the DC hold cannot prevent the motor shaft from rotating if a constant load is applied to the motor.See section DC Hold on page 57.

NO Inactive 0

YES Active 65535

21.05 DC HOLD SPEED Defines the DC Hold speed. See parameter 21.04.

0 … 3000 rpm Speed in rpm 0 … 3000

21.06 DC HOLD CURR Defines the DC hold current. See parameter 21.04.

0 … 100% Current in percent of the motor nominal current 0 … 100

21.07 RUN ENABLE FUNC Selects the stop mode applied when the Run Enable signal is switched off. The Run Enable signal is put into use by parameter 16.01.Note: The setting overrides the normal stop mode setting (parameter 21.03) when the Run Enable signal is switched off.

WARNING! The drive will restart after the Run Enable signal restores (if the start signal is on).

RAMP STOP The application program stops the drive along the deceleration ramp defined in group 22 ACCEL/DECEL.

1

COAST STOP The application program stops the drive by cutting off the motor power supply (the inverter IGBTs are blocked). The motor rotates freely to zero speed.

WARNING! If the brake control function is on, the application program uses ramp stop in spite of the selection COAST STOP (see parameter group 42 BRAKE CONTROL).

2

OFF2 STOP The application program stops the drive by cutting off the motor power supply (the inverter IGBTs are blocked). The motor rotates freely to zero speed. The drive will restart only when the Run Enable signal is on and the start signal is switched on (the program receives the rising edge of the start signal).

3

Index Name/Selection Description FbEq

DC HOLD SPEED

t

t

SPEEDmotor

Ref.

DC Hold

Actual signals and parameters

Page 285: VFD Documents

135

OFF3 STOP The application program stops the drive along the ramp defined by parameter 22.07. The drive will restart only when the Run Enable is on and the start signal is switched on (the program receives the rising edge of the start signal).

4

21.08 SCALAR FLY START Activates the flying start feature in the scalar control mode. See parameters 21.01 and 99.04.

NO Inactive 0

YES Active 65535

21.09 START INTRL FUNC Defines how the Start Interlock input on RMIO board affects the drive operation.

OFF2 STOP Drive running: 1 = Normal operation. 0 = Stop by coasting. Drive stopped: 1 = Start allowed. 0 = No start allowed.Restart after OFF2 STOP: Input is back to 1 and the drive receives rising edge of the Start signal.

1

OFF3 STOP Drive running: 1 = Normal operation. 0 = Stop by ramp. The ramp time is defined by parameter 22.07 EM STOP RAMP.Drive stopped: 1 = Normal start. 0 = No start allowed.Restart after OFF3 STOP: Start Interlock input = 1 and the drive receives rising edge of the Start signal.

2

21.10 ZERO SPEED DELAY Defines the delay for the zero speed delay function. The function is useful in applications where a smooth and quick restarting is essential. During the delay the drive knows accurately the rotor position.

No Zero Speed DelayThe drive receives a stop command and decelerates along a ramp. When the motor actual speed falls below an internal limit (called Zero Speed), the speed controller is switched off. The inverter modulation is stopped and the motor coasts to standstill.With Zero Speed DelayThe drive receives a stop command and decelerates along a ramp. When the actual motor speed falls below an internal limit (called Zero Speed), the zero speed delay function activates. During the delay the functions keeps the speed controller live: the inverter modulates, motor is magnetised and the drive is ready for a quick restart.

0.0 … 60.0 s Delay time 10 = 1 s

22 ACCEL/DECEL Acceleration and deceleration times. See section Acceleration and deceleration ramps on page 59.

22.01 ACC/DEC SEL Selects the active acceleration/deceleration time pair.

ACC/DEC 1 Acceleration time 1 and deceleration time 1 are used. See parameters 22.02 and 22.03.

1

Index Name/Selection Description FbEq

Speed

Time

Zero Speed

Speed

Time

Zero Speed

Delay

No Zero Speed Delay With Zero Speed Delay

Speed controller switched off: Motor coasts to stop.

Speed controller remains live. Motor is decelerated to true 0 speed.

Actual signals and parameters

Page 286: VFD Documents

136

ACC/DEC 2 Acceleration time 2 and deceleration time 2 are used. See parameters 22.04 and 22.05.

2

DI1 Acceleration/deceleration time pair selection through digital input DI1. 0 = Acceleration time 1 and deceleration time 1 are in use. 1 = Acceleration time 2 and deceleration time 2 are in use.

3

DI2 See selection DI1. 4

DI3 See selection DI1. 5

DI4 See selection DI1. 6

DI5 See selection DI1. 7

DI6 See selection DI1. 8

DI7 See selection DI1. 9

DI8 See selection DI1. 10

DI9 See selection DI1. 11

DI10 See selection DI1. 12

DI11 See selection DI1. 13

DI12 See selection DI1. 14

PAR 22.08&09 Acceleration and deceleration times given by parameters 22.08 and 22.09 15

22.02 ACCEL TIME 1 Defines the acceleration time 1 i.e. the time required for the speed to change from zero to the maximum speed. - If the speed reference increases faster than the set acceleration rate, the motor speed will follow the acceleration rate.- If the speed reference increases slower than the set acceleration rate, the motor speed will follow the reference signal.- If the acceleration time is set too short, the drive will automatically prolong the acceleration in order not to exceed the drive operating limits.

0.00 … 1800.00 s Acceleration time 0 … 18000

22.03 DECEL TIME 1 Defines the deceleration time 1 i.e. the time required for the speed to change from the maximum (see parameter 20.02) to zero.- If the speed reference decreases slower than the set deceleration rate, the motor speed will follow the reference signal.- If the reference changes faster than the set deceleration rate, the motor speed will follow the deceleration rate.- If the deceleration time is set too short, the drive will automatically prolong the deceleration in order not to exceed drive operating limits. If there is any doubt about the deceleration time being too short, ensure that the DC overvoltage control is on (parameter 20.05). Note: If a short deceleration time is needed for a high inertia application, the drive should be equipped with an electric braking option e.g. with a brake chopper and a brake resistor.

0.00 … 1800.00 s Deceleration time 0 … 18000

22.04 ACCEL TIME 2 See parameter 22.02.

0.00 … 1800.00 s See parameter 22.02. 0 … 18000

22.05 DECEL TIME 2 See parameter 22.03.

0.00 … 1800.00 s See parameter 22.03. 0 … 18000

Index Name/Selection Description FbEq

Actual signals and parameters

Page 287: VFD Documents

137

22.06 ACC/DEC RAMP SHPE

Selects the shape of the acceleration/deceleration ramp.See also section Jogging on page 81.

0.00 … 1000.00 s 0.00 s: Linear ramp. Suitable for steady acceleration or deceleration and for slow ramps.0.01 … 1000.00 s: S-curve ramp. S-curve ramps are ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing from one speed to another. The S curve consists of symmetrical curves at both ends of the ramp and a linear part in between.

0 … 100000

22.07 EM STOP RAMP TIME

Defines the time inside which the drive is stopped if- the drive receives an emergency stop command or- the Run Enable signal is switched off and the Run Enable function has value OFF3 (see parameter 21.07). The emergency stop command can be given through a fieldbus or an Emergency Stop module (optional). Consult the local ABB representative for more information on the optional module and the related settings of the Standard Control Program.

0.00 … 2000.00 s Deceleration time 0 … 200000

22.08 ACC PTR Defines the source or constant for value PAR 22.08&09 of parameter 22.01.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

100 = 1 s

22.09 DEC PTR Defines the source or constant for value PAR 22.08&09 of parameter 22.01

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

100 = 1 s

22.10 SLS ACCELER TIME Defines the time required for the speed limits to ramp up from the safely-limited speed defined by parameter 20.22 to the speed limits defined by parameters 20.01 MINIMUM SPEED and 20.02 MAXIMUM SPEED when the SLS function is deactivated.Note: This parameter is available in AS7R firmware version only.

100 = 1 s

0…1800 s Speed ramp time.

Index Name/Selection Description FbEq

Linear ramp: Par. 22.06 = 0 s

S-curve ramp: Par. 22.06 > 0 s

A rule of thumbA suitable relation between the ramp shape time and the acceleration ramp time is 1/5.

Speed

time

Max

Par. 22.02 Par. 22.06

Actual signals and parameters

Page 288: VFD Documents

138

22.11 SLS DECELER TIME Defines the time required for the speed limits to ramp down from the value defined by parameters 20.01 MINIMUM SPEED and 20.02 MAXIMUM SPEED to the safely-limited speed defined by parameter 20.22 when the SLS function is activated.If the speed is already lower than the safely-limited speed, the speed does not change.Note: This parameter is available in AS7R firmware version only.

100 = 1 s

0…1800 s Speed ramp time.

23 SPEED CTRL Speed controller variables. The parameters are not visible if parameter 99.04 = SCALAR. See section Speed controller tuning on page 60.

23.01 GAIN Defines a relative gain for the speed controller. Great gain may cause speed oscillation. The figure below shows the speed controller output after an error step when the error remains constant.

0.0 … 250.0 Gain 0 … 25000

23.02 INTEGRATION TIME Defines an integration time for the speed controller. The integration time defines the rate at which the controller output changes when the error value is constant. The shorter the integration time, the faster the continuous error value is corrected. Too short an integration time makes the control unstable. The figure below shows the speed controller output after an error step when the error remains constant.

0.01 … 999.97 s Integration time 10 … 999970

Index Name/Selection Description FbEq

Gain = Kp = 1TI = Integration time = 0TD= Derivation time = 0

Controller

Error ValueController Output

t

%

e = Error valueoutput = Kp · e

TI

Controller Output

t

%

Gain = Kp = 1TI = Integration time > 0TD= Derivation time = 0

Kp · e e = Error value

Kp · e

Actual signals and parameters

Page 289: VFD Documents

139

23.03 DERIVATION TIME Defines the derivation time for the speed controller. Derivative action boosts the controller output if the error value changes. The longer the derivation time, the more the speed controller output is boosted during the change. If the derivation time is set to zero, the controller works as a PI controller, otherwise as a PID controller. The derivation makes the control more responsive for disturbances. Note: Changing this parameter is recommended only if a pulse encoder is used.The figure below shows the speed controller output after an error step when the error remains constant.

0.0 … 9999.8 ms Derivation time value. 1 = 1 ms

23.04 ACC COMPENSATION

Defines the derivation time for acceleration/(deceleration) compensation. In order to compensate inertia during acceleration a derivative of the reference is added to the output of the speed controller. The principle of a derivative action is described for parameter 23.03. Note: As a general rule, set this parameter to the value between 50 and 100% of the sum of the mechanical time constants of the motor and the driven machine. (The speed controller Autotune Run does this automatically, see parameter 23.06.)The figure below shows the speed responses when a high inertia load is accelerated along a ramp.

0.00 … 999.98 s Derivation time 0 … 9999

Index Name/Selection Description FbEq

TI

Kp · e

Error Value

Controller Output

t

%

Gain = Kp = 1TI = Integration time > 0TD= Derivation time > 0Ts= Sample time period = 1 msΔe = Error value change between two samples

e = Error value

Kp · TD · ΔeTs Kp · e

Speed referenceActual speed

No Acceleration Compensation Acceleration Compensation

tt

% %

Actual signals and parameters

Page 290: VFD Documents

140

23.05 SLIP GAIN Defines the slip gain for the motor slip compensation control. 100% means full slip compensation; 0% means no slip compensation. The default value is 100%. Other values can be used if a static speed error is detected despite of the full slip compensation.Example: 1000 rpm constant speed reference is given to the drive. Despite of the full slip compensation (SLIP GAIN = 100%), a manual tachometer measurement from the motor axis gives a speed value of 998 rpm. The static speed error is 1000 rpm - 998 rpm = 2 rpm. To compensate the error, the slip gain should be increased. At the 106% gain value, no static speed error exists.

0.0 … 400.0% Slip gain value. 0 … 400

23.06 AUTOTUNE RUN Start automatic tuning of the speed controller. Instructions:- Run the motor at a constant speed of 20 to 40% of the rated speed.- Change the autotuning parameter 23.06 to YES.Note: The motor load must be connected to the motor.

NO No autotuning. 0

YES Activates the speed controller autotuning. Automatically reverts to NO. 65535

23.07 SP ACT FILT TIME Defines the time constant of the actual speed filter, i.e. time within the actual speed has reached 63% of the nominal speed.

0...1000000 ms Time constant 1 = 1 ms

24 TORQUE CTRL Torque control variables. Visible only if parameter 99.02 = T CNTRL and parameter 99.04 = DTC.

24.01 TORQ RAMP UP Defines the torque reference ramp up time.

0.00 … 120.00 s Time for the reference to increase from zero to the nominal motor torque. 0 … 12000

24.02 TORQ RAMP DOWN Defines the torque reference ramp down time.

0.00 … 120.00 s Time for the reference to decrease from the nominal motor torque to zero. 0 … 12000

25 CRITICAL SPEEDS Speed bands within which the drive is not allowed to operate. See section Critical speeds on page 59.

25.01 CRIT SPEED SELECT

Activates/deactivates the critical speeds function.Example: A fan has vibrations in the range of 540 to 690 rpm and 1380 to 1560 rpm. To make the drive to jump over the vibration speed ranges:- activate the critical speeds function, - set the critical speed ranges as in the figure below.

Note: If parameter 99.02 = PID CTRL, the critical speeds are not in use.

OFF Inactive 0

ON Active. 65535

Index Name/Selection Description FbEq

Drive speed reference

540690

1380

1560

Motor speed1 Par. 25.02 = 540 rpm

2 Par. 25.03 = 690 rpm

3 Par. 25.04 = 1380 rpm

4 Par. 25.05 = 1590 rpm

1 2 3 4 (rpm)

(rpm)

Actual signals and parameters

Page 291: VFD Documents

141

25.02 CRIT SPEED 1 LOW Defines the minimum limit for critical speed range 1.

0 … 18000 rpm Minimum limit. The value cannot be above the maximum (parameter 25.03).Note: If parameter 99.04 = SCALAR, the unit is Hz.

0 … 18000

25.03 CRIT SPEED 1 HIGH Defines the maximum limit for critical speed range 1.

0 … 18000 rpm Maximum limit. The value cannot be below the minimum (parameter 25.02). Note: If parameter 99.04 = SCALAR, the unit is Hz.

0 … 18000

25.04 CRIT SPEED 2 LOW See parameter 25.02.

0 … 18000 rpm See parameter 25.02. 0 … 18000

25.05 CRIT SPEED 2 HIGH See parameter 25.03.

0 … 18000 rpm See parameter 25.03. 0 … 18000

25.06 CRIT SPEED 3 LOW See parameter 25.02.

0 … 18000 rpm See parameter 25.02. 0 … 18000

25.07 CRIT SPEED 3 HIGH See parameter 25.03.

0 … 18000 rpm See parameter 25.03. 0 … 18000

26 MOTOR CONTROL26.01 FLUX OPTIMIZATION Activates/deactivates the flux optimisation function. See section Flux

Optimisation on page 58.Note: The function cannot be used if parameter 99.04 = SCALAR.

NO Inactive 0

YES Active 65535

26.02 FLUX BRAKING Activates/deactivates the flux braking function. Note: The function cannot be used if parameter 99.04 = SCALAR.See section Flux Braking on page 57.

NO Inactive 0

YES Active 65535

26.03 IR-COMPENSATION Defines the relative output voltage boost at zero speed (IR compensation). The function is useful in applications with high break-away torque, but no DTC motor control cannot be applied. The figure below illustrates the IR compensation. See section IR compensation for a scalar controlled drive on page 62. Note: The function can be used only if parameter 99.04 is SCALAR.

0 … 30% Voltage boost at zero speed in percent of the motor nominal voltage 0 … 3000

Index Name/Selection Description FbEq

U /UN(%)

f (Hz)Field weakening point

Relative output voltage. No IR compensation.

Relative output voltage. IR compensation set to 15%.

15%

100%

Actual signals and parameters

Page 292: VFD Documents

142

26.04 IR STEP-UP FREQ Defines the frequency at which the step-up IR compensation reaches the IR compensation used in scalar control (26.03 IR COMPENSATION).A voltage boost is used in step-up applications to achieve higher break-away torque. Since voltage cannot be fed to the transformer at 0 Hz, special IR compensation is used in step-up applications. Full IR compensation starts around slip frequency. The figure below illustrates the step-up IR compensation.

For more information, see the Sine Filters User’s Manual for ACS800 Drives [3AFE68389178 (English)].

100 = 1

0...50 Hz Frequency

26.05 HEX FIELD WEAKEN Selects whether motor flux is controlled along a circular or a hexagonal pattern in the field weakening area of the frequency range (above 50/60 Hz). See section Hexagonal motor flux on page 63.

OFF The rotating flux vector follows a circular pattern. Optimal selection in most applications: Minimal losses at constant load. Maximal instantaneous torque is not available in the field weakening range of the speed.

0

ON Motor flux follows a circular pattern below the field weakening point (typically 50 or 60 Hz) and a hexagonal pattern in the field weakening range. Optimal selection in the applications that require maximal instantaneous torque in the field weakening range of the speed. The losses at constant operation are higher than with the selection NO.

65535

26.06 FLUX REF PTR Selects the source for the flux reference, or sets the flux reference value.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference. The range of the flux is 25 … 140%. With constant value settings 100% = C.10000. Typically there is no need to change this value.

100 = 1%

26.07 FLYSTART CUR REF [%]

Defines the current reference used with flying start (start to a rotating motor) when no pulse encoder is used.If flying start fails (i.e. drive is unable to detect motor speed 01.02 SPEED): Monitor signals 01.02 SPEED and 01.04 CURRENT with DriveWindow PC tool and increase the reference in steps of 5% until the flying start function is successfully performed (i.e. drive is able to detect 01.02 SPEED).See also parameter 26.08 FLYSTART INIT DLY.

1 = 1%

0…100% Value in percent

Index Name/Selection Description FbEq

U / UN(%)

f (Hz)

Field weakening point (FWP)

100%

26.04 IR STEP-UP FREQ

26.03 IRCOMPENSATION

Actual signals and parameters

Page 293: VFD Documents

143

26.08 FLYSTART INIT DLY Defines together with the motor characteristics the delay before the speed value estimated at the beginning of flying start is connected to the speed reference ramp output. Increase the delay, if the motor starts to rotate in the wrong direction or if the motor starts to rotate with the wrong speed reference.See also parameter 26.07 FLYSTART CUR REF [%].

1 = 1

0…60 Delay

26.09 FS METHOD Activates the flux correction at low frequencies, < 3 Hz, when the torque exceeds 30%. Effective in the motoring and generating modes.

1 = 1

1 = ON Active

0 = OFF Inactive

27 BRAKE CHOPPER Control of the brake chopper.

27.01 BRAKE CHOPPER CTL

Activates the brake chopper control.Note: If an external chopper (e.g. NBRA-xxx) is used, parameter must be disabled.

OFF Inactive 0

ON Active. Note: Ensure the brake chopper and resistor are installed and the overvoltage control is switched off (parameter 20.05).

65535

27.02 BR OVERLOAD FUNC

Activates the overload protection of the brake resistor. The user-adjustable variables are parameters 27.04 and 27.05.

NO Inactive 0

WARNING Active. If the drive detects an overload, it generates a warning. 1

FAULT Active. If the drive detects an overload, it trips on a fault. 2

27.03 BR RESISTANCE Defines the resistance value of the brake resistor. The value is used for brake chopper protection.

0.00 … 100.00 ohm Resistance value 0 … 100

27.04 BR THERM TCONST Defines the thermal time constant of the brake resistor. The value is used in the overload protection. See parameter 27.02.With type SACE brake resistors, the parameter setting must be 200 s.With type SAFUR brake resistors, the parameter setting must be 555 s.

0.000 … 10000.000 s Time constant 1 = 1

27.05 MAX CONT BR POWER

Defines the maximum continuous braking power which will raise the resistor temperature to the maximum allowed value. The value is used in the overload protection. See parameter 27.02.

0.00 …10000 kW Power 1 = 1

27.06 BC CTRL MODE Selects the control mode of the braking chopper.

AS GENERATOR Chopper operation is allowed when the DC voltage exceeds the braking limit, the inverter bridge modulates and the motor generates power to the drive. The selection prevents the operation in case the intermediate circuit DC voltage rises due to abnormally high supply voltage level. Long time supply voltage rise would damage the chopper.

0

COMMON DC Chopper operation is allowed always when the DC voltage exceeds the braking limit. The selection is to be used in applications where several inverters are connected to the same intermediate circuit (DC bus).

WARNING! Excessive supply voltage will raise the intermediate circuit voltage above the operation limit of the chopper. If the voltage remains abnormally high for a long period, the braking chopper will be

overloaded and damaged.

65535

Index Name/Selection Description FbEq

Actual signals and parameters

Page 294: VFD Documents

144

30 FAULT FUNCTIONS Programmable protection functions

30.01 AI<MIN FUNCTION Selects how the drive reacts when an analogue input signal falls below the set minimum limit. Note: The analogue input minimum setting must be set to 0.5 V (1 mA) or above (see parameter group 13 ANALOGUE INPUTS).

FAULT The drive trips on a fault and the motor coasts to stop. 1

NO Inactive 2

CONST SP 15 The drive generates a warning AI < MIN FUNC (8110) and sets the speed to the value defined by parameter 12.16.

WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

3

LAST SPEED The drive generates a warning AI < MIN FUNC (8110) and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case the analogue input signal is lost.

4

30.02 PANEL LOSS Selects how the drive reacts to a control panel communication break.

FAULT Drive trips on a fault and the motor coasts to a stop. 1

CONST SP 15 The drive generates a warning and sets the speed to the speed defined by parameter 12.16.

WARNING! Make sure that it is safe to continue operation in case of a panel communication break.

2

LAST SPEED The drive generates a warning and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case of a panel communication break.

3

30.03 EXTERNAL FAULT Selects an interface for an external fault signal. See section External Fault on page 63.

NOT SEL Inactive 1

DI1 External fault indication is given through digital input DI1. 0: Fault trip. Motor coasts to stop. 1: No external fault.

2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

DI7 See selection DI1. 8

DI8 See selection DI1. 9

DI9 See selection DI1. 10

DI10 See selection DI1. 11

DI11 See selection DI1. 12

DI12 See selection DI1. 13

Index Name/Selection Description FbEq

Actual signals and parameters

Page 295: VFD Documents

145

30.04 MOTOR THERM PROT

Selects how the drive reacts when the motor overtemperature is detected by the function defined by parameter 30.05. See section Motor Thermal Protection on page 64.

FAULT The drive generates a warning when the temperature exceeds the warning level (95% of the allowed maximum value). The drive trips on a fault when the temperature exceeds the fault level (100% of the allowed maximum value).

1

WARNING The drive generates a warning when the temperature exceeds the warning level (95% of the allowed maximum value).

2

NO Inactive 3

30.05 MOT THERM P MODE

Selects the thermal protection mode of the motor. When overtemperature is detected, the drive reacts as defined by parameter 30.04.

DTC The protection is based on the calculated motor thermal model. The following assumptions are used in the calculation:- The motor is at the estimated temperature (value of 01.37 MOTOR TEMP EST saved at power switch off) when the power is switched on. With the first power switch on, the motor is at the ambient temperature (30°C).- The motor temperature increases if it operates in the region above the load curve.- The motor temperature decreases if it operates in the region below the curve. This applies only if the motor is overheated.- The motor thermal time constant is an approximate value for a standard self-ventilated squirrel-cage motor.It is possible to finetune the model by parameter 30.07.Note: The model cannot be used with high power motors (parameter 99.06 is higher than 800 A).

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

1

USER MODE The protection is based on the user-defined motor thermal model and the following basic assumptions:- The motor is at the estimated temperature (value of 01.37 MOTOR TEMP EST saved at power switch off) when the power is switched on. With the first power switch on, the motor is at the ambient temperature (30°C).- The motor temperature increases if it operates in the region above the motor load curve.- The motor temperature decreases if it operates in the region below the curve. This applies only if the motor is overheated.The user-defined thermal model uses the motor thermal time constant (parameter 30.06) and the motor load curve (parameters 30.07, 30.08 and 30.09). User tuning is typically needed only if the ambient temperature differs from the normal operating temperature specified for the motor.

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

2

Index Name/Selection Description FbEq

Actual signals and parameters

Page 296: VFD Documents

146

TEMP SENSOR Motor thermal protection is activated through digital input DI6. A motor thermistor, or a break contact of a thermistor relay, must be connected to digital input DI6. The drive reads the DI6 states as follows:

WARNING! According to IEC 664, the connection of the motor thermistor to the digital input requires double or reinforced insulation between motor live parts and the thermistor. Reinforced insulation

entails a clearance and creeping distance of 8 mm (400 / 500 VAC equipment). If the thermistor assembly does not fulfil the requirement, the other I/O terminals of the drive must be protected against contact, or a thermistor relay must be used to isolate the thermistor from the digital input.

WARNING! Digital input DI6 may be selected for another use. Change these settings before selecting TEMP SENSOR. In other words, ensure that digital input DI6 is not selected by any other parameter.

The figure below shows the alternative thermistor connections. At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Note: If the motor nominal current is above 800 A, the user defined motor thermal model is used instead of the calculated model and the user must define parameters 30.06, 30.07, 30.08 and 30.09.

3

Index Name/Selection Description FbEq

DI6 Status (Thermistor resistance) Temperature

1 (0 … 1.5 kohm) Normal

0 (4 kohm or higher) Overtemperature

MotorT 10 nF

MotorT

Thermistorrelay

RMIO board, X22

6 DI6

7 +24 VDC

Alternative 1

Alternative 2 RMIO board, X22

6 DI6

7 +24 VDC

Actual signals and parameters

Page 297: VFD Documents

147

30.06 MOTOR THERM TIME

Defines the thermal time constant for the user-defined thermal model (see the selection USER MODE of parameter 30.05).

256.0 … 9999.8 s Time constant 256 … 9999

30.07 MOTOR LOAD CURVE

Defines the load curve together by parameters 30.08 and 30.09. The load curve is used in the user-defined thermal model (see the selection USER MODE of parameter 30.05).

50.0 … 150.0% Allowed continuous motor load in percent of the nominal motor current. 50 … 150

30.08 ZERO SPEED LOAD Defines the load curve together with parameters 30.07 and 30.09.

25.0 … 150.0% Allowed continuous motor load at zero speed in percent of the nominal motor current

25 … 150

30.09 BREAK POINT Defines the load curve together with parameters 30.07 and 30.08.

1.0 … 300.0 Hz Drive output frequency at 100% load 100 … 30000

Index Name/Selection Description FbEq

Motor

100%Temperature

63%

Motor thermal time constant

t

t

Load

100%

50

100

150

Drive output frequency

30.07

30.09

30.08

I/IN(%)

I = Motor currentIN = Nominal motor current

Actual signals and parameters

Page 298: VFD Documents

148

30.10 STALL FUNCTION Selects how the drive reacts to a motor stall condition. The protection wakes up if:- the drive is at stall limit (defined by parameters 20.03, 20.13 and 20.14)- the output frequency is below the level set by parameter 30.11 and- the conditions above have been valid longer than the time set by parameter 30.12.Note: Stall limit is restricted by internal current limit 03.04 TORQ_INV_CUR_LIM.See section Stall Protection on page 65.

FAULT The drive trips on a fault. 1

WARNING The drive generates a warning. The indication disappears in half of the time set by parameter 30.12.

2

NO Protection is inactive. 3

30.11 STALL FREQ HI Defines the frequency limit for the stall function. See parameter 30.10.

0.5 … 50.0 Hz Stall frequency 50 … 5000

30.12 STALL TIME Defines the time for the stall function. See parameter 30.10.

10.00 … 400.00 s Stall time 10 … 400

30.13 UNDERLOAD FUNC Selects how the drive reacts to underload. The protection wakes up if:- the motor torque falls below the curve selected by parameter 30.15,- output frequency is higher than 10% of the nominal motor frequency and- the above conditions have been valid longer than the time set by parameter 30.14.See section Underload Protection on page 65.

NO Protection is inactive. 1

WARNING The drive generates a warning. 2

FAULT The drive trips on a fault. 3

30.14 UNDERLOAD TIME Time limit for the underload function. See parameter 30.13.

0 … 600 s Underload time 0 … 600

30.15 UNDERLOAD CURVE

Selects the load curve for the underload function. See parameter 30.13.

1 … 5 Number of the load curve 1 … 5

Index Name/Selection Description FbEq

100

80

60

40

20

02.4 * ƒN

3

2

1 5

4

TM/TN

70%

50%

30%

ƒN

(%)TM = Motor torqueTN= Nominal motor torqueƒN = Nominal motor frequency

Actual signals and parameters

Page 299: VFD Documents

149

30.16 MOTOR PHASE LOSS

Activates the motor phase loss supervision function.See section Motor Phase Loss on page 65.

NO Inactive 0

FAULT Active. The drive trips on a fault. 65535

30.17 EARTH FAULT Selects how the drive reacts when an earth fault is detected in the motor or the motor cable. See section Earth Fault Protection on page 66.Note: With parallel connected R8i inverter modules (ACS800 multidrive and large ACS800-07 units) only the selection FAULT is valid.

WARNING The drive generates a warning. 0

FAULT The drive trips on a fault. 65535

30.18 COMM FLT FUNC Selects how the drive reacts in a fieldbus communication break, i.e. when the drive fails to receive the Main Reference Data Set or the Auxiliary Reference Data Set. The time delays are given by parameters 30.19 and 30.21.

FAULT Protection is active. The drive trips on a fault and the motor coasts to a stop. 1

NO Protection is inactive. 2

CONST SP 15 Protection is active. The drive generates a warning and sets the speed to the value defined by parameter 12.16.

WARNING! Make sure that it is safe to continue operation in case of a communication break.

3

LAST SPEED Protection is active. The drive generates a warning and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case of a communication break.

4

30.19 MAIN REF DS T-OUT Defines the time delay for the Main Reference data set supervision. See parameter 30.18.

0.1 … 60.0 s Time delay 10 … 6000

30.20 COMM FLT RO/AO Selects the operation of the fieldbus controlled relay output and analogue output in a communication break. See groups 14 RELAY OUTPUTS and 15 ANALOGUE OUTPUTS and chapter Fieldbus control. The delay for the supervision function is given by parameter 30.21.

ZERO Relay output is de-energised. Analogue output is set to zero. 0

LAST VALUE The relay output keeps the last state before the communication loss. The analogue output gives the last value before the communication loss.

WARNING! After the communication recovers, the update of the relay and the analogue outputs starts immediately without fault message resetting.

65535

30.21 AUX DS T-OUT Defines the delay time for the Auxiliary Reference data set supervision. See parameter 30.18. The drive automatically activates the supervision 60 seconds after power switch-on if the value is other than zero. Note: The delay also applies for the function defined by parameter 30.20.

0.0 … 60.0 s Time delay. 0.0 s = The function is inactive. 0 … 6000

Index Name/Selection Description FbEq

Actual signals and parameters

Page 300: VFD Documents

150

30.22 IO CONFIG FUNC Selects how the drive reacts in case an optional input or output channel has been selected as a signal interface, but the communication to the appropriate analogue or digital I/O extension module has not been set up accordingly in parameter group 98 OPTION MODULES. Example: The supervision function wakes up if parameter 16.01 is set to DI7, but 98.03 is set to NO.

NO Inactive. 1

WARNING Active. The drive generates a warning. 2

30.23 LIMIT WARNING Activates/deactivates limit alarms INV CUR LIM, DC BUS LIM, MOT CUR LIM, MOT TORQ LIM and/or MOT POW LIM. For more information, see chapter Fault tracing.

0...255 Value in decimal. As default none of the alarms are active, i.e. parameter value is 0.bit 0 INV_CUR_LIM_INDbit 1 DC_VOLT_LIM_INDbit 2 MOT_CUR_LIM_INDbit 3 MOT_TORQ_LIM_INDbit 4 MOT_POW_LIM_INDExample: When parameter value is set to 3 (bit 0 and 1 values are 1), alarms INV CUR LIM and DC BUS LIM are active.

-

31 AUTOMATIC RESET Automatic fault reset. Automatic resets are possible only for certain fault types and when the automatic reset function is activated for that fault type.The automatic reset function is not operational if the drive is in local control (L visible on the first row of the panel display).See section Automatic resets on page 69.

31.01 NUMBER OF TRIALS Defines the number of automatic fault resets the drive performs within the time defined by parameter 31.02.

0 … 5 Number of the automatic resets 0

31.02 TRIAL TIME Defines the time for the automatic fault reset function. See parameter 31.01.

1.0 … 180.0 s Allowed resetting time 100 … 18000

31.03 DELAY TIME Defines the time that the drive will wait after a fault before attempting an automatic reset. See parameter 31.01.

0.0 … 3.0 s Resetting delay 0 … 300

31.04 OVERCURRENT Activates/deactivates the automatic reset for the overcurrent fault.

NO Inactive 0

YES Active 65535

31.05 OVERVOLTAGE Activates/deactivates the automatic reset for the intermediate link overvoltage fault.

NO Inactive 0

YES Active 65535

31.06 UNDERVOLTAGE Activates/deactivates the automatic reset for the intermediate link undervoltage fault.

NO Inactive 0

YES Active 65535

31.07 AI SIGNAL<MIN Activates/deactivates the automatic reset for the fault AI SIGNAL<MIN (analogue input signal under the allowed minimum level).

Index Name/Selection Description FbEq

Actual signals and parameters

Page 301: VFD Documents

151

NO Inactive 0

YES Active.WARNING! The drive may restart even after a long stop if the analogue input signal is restored. Ensure that the use of this feature will not cause danger.

65535

31.08 LINE CONV Activates/deactivates the automatic reset for the fault LINE CONV (FF51) (fault on line side converter).

NO Inactive 0

YES Active 65535

32 SUPERVISION Supervision limits. A relay output can be used to indicate when the value is above/below the limit. See section Supervisions on page 69.

32.01 SPEED1 FUNCTION Activates/deactivates the speed supervision function and selects the type of the supervision limit.

NO Supervision is not used. 1

LOW LIMIT Supervision wakes up if the value is below the limit. 2

HIGH LIMIT Supervision wakes up if the value is above the limit. 3

ABS LOW LIMIT Supervision wakes up if the value is below the set limit. The limit is supervised in both rotating directions. The figure below illustrates the principle.

4

32.02 SPEED1 LIMIT Defines the speed supervision limit. See parameter 32.01.

- 18000 … 18000 rpm Value of the limit - 18000 … 18000

32.03 SPEED2 FUNCTION See parameter 32.01.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

HIGH LIMIT See parameter 32.01. 3

ABS LOW LIMIT See parameter 32.01. 4

32.04 SPEED2 LIMIT See parameter 32.01.

- 18000 … 18000 rpm See parameter 32.01. - 18000 … 18000

32.05 CURRENT FUNCTION

Activates/deactivates the motor current supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

HIGH LIMIT See parameter 32.01. 3

32.06 CURRENT LIMIT Defines the limit for the motor current supervision (see parameter 32.05).

0 … 1000 A Value of the limit 0 … 1000

32.07 TORQUE 1 FUNCTION

Activates/deactivates the motor torque supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

Index Name/Selection Description FbEq

ABS LOW LIMIT

-ABS LOW LIMIT

speed/rpm

0

Actual signals and parameters

Page 302: VFD Documents

152

HIGH LIMIT See parameter 32.01. 3

32.08 TORQUE 1 LIMIT Defines the limit for the motor torque supervision (see parameter 32.07).

-600 … 600% Value of the limit in percent of the motor nominal torque -6000 … 6000

32.09 TORQUE 2 FUNCTION

Activates/deactivates the motor torque supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

HIGH LIMIT See parameter 32.01. 3

32.10 TORQUE 2 LIMIT Defines the limit for the motor torque supervision (see parameter 32.09).

-600 … 600% Value of the limit in percent of motor nominal torque -6000 … 6000

32.11 REF1 FUNCTION Activates/deactivates the external reference REF1 supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

HIGH LIMIT See parameter 32.01. 3

32.12 REF1 LIMIT Defines the limit for REF1 supervision (see parameter 32.11).

0 … 18000 rpm Value of the limit 0 … 18000

32.13 REF2 FUNCTION Activates/deactivates external reference REF2 supervision function and selects the type of the supervision limit.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

HIGH LIMIT See parameter 32.01. 3

32.14 REF2 LIMIT Defines the limit for REF2 supervision (see parameter 32.13).

0 … 600% Value of the limit 0 … 6000

32.15 ACT1 FUNCTION Activates/deactivates the supervision function for variable ACT1 of the process PID controller and selects the type of the supervision limit.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

HIGH LIMIT See parameter 32.01. 3

32.16 ACT1 LIMIT Defines the limit for ACT1 supervision (see parameter 32.15).

0 … 200% Value of the limit 0 … 2000

32.17 ACT2 FUNCTION Activates/deactivates the supervision function for variable ACT2 of the process PID controller and selects the type of the supervision limit.

NO See parameter 32.01. 1

LOW LIMIT See parameter 32.01. 2

HIGH LIMIT See parameter 32.01. 3

32.18 ACT2 LIMIT Defines the limit for ACT2 supervision (see parameter 32.17).

0 … 200% Value of the limit 0 … 2000

33 INFORMATION Program versions, test date

33.01 SOFTWARE VERSION

Displays the type and the version of the firmware package in the drive. Note: Parameter setting cannot be changed by the user.

Index Name/Selection Description FbEq

Actual signals and parameters

Page 303: VFD Documents

153

Decoding key:

33.02 APPL SW VERSION Displays the type and the version of the application program.Note: Parameter setting cannot be changed by the user.

Decoding key:

33.03 TEST DATE Displays the test date.Note: Parameter setting cannot be changed by the user.

Date value in format DDMMYY (day, month, year) -

33.04 BOARD TYPE Shows the control board type. Note: RMIO-1x boards have different type of FLASH memory chips than RMIO-0x. Only software version ASXR7300 or later will operate with the RMIO-1x boards.

34 PROCESS VARIABLE - user variable and unit- filtering for the actual signals speed and torque- reset of the run time counter

34.01 SCALE Scales the selected drive variable into a desired user-defined variable, which is stored as an actual signal 01.01. The block diagram below illustrates the use of the parameters that define actual signal 01.01.

0.00…100000.00% Scaling factor 0…100000

Index Name/Selection Description FbEq

ASxxxxyxProduct SeriesA = ACS800ProductS = ACS800 StandardFirmware Version7xyx = Version 7.xyx

ASAxxxyxProduct SeriesA = ACS800ProductS = ACS800 StandardFirmware TypeA = Application ProgramFirmware Version7xyx = Version 7.xyx

01.0134.01

NO

FPMUnit for actual signal 01.01

34.03

Select

34.02

Select

PARAMETER

00.00

99.99

TABLE

• • •

Mul.

Actual signals and parameters

Page 304: VFD Documents

154

34.02 P VAR UNIT Selects the unit for the process variable. See parameter 34.01.

NO No unit is selected. 1

rpm revolutions per minute 2

% percent 3

m/s metres per second 4

A ampere 5

V volt 6

Hz hertz 7

s second 8

h hour 9

kh kilohour 10

C celsius 11

lft pounds per foot 12

mA milliampere 13

mV millivolt 14

kW kilowatt 15

W watt 16

kWh kilowatt hour 17

F fahrenheit 18

hp horsepower 19

MWh megawatt hour 20

m3h cubic metres per hour 21

l/s litres per second 22

bar bar 23

kPa kilopascal 24

GPM gallons per minute 25

PSI pounds per square inch 26

CFM cubic feet per minute 27

ft foot 28

MGD millions of gallons per day 29

iHg inches of mercury 30

FPM feet per minute 31

lbs pound 32

34.03 SELECT P VAR Selects the drive variable scaled into a desired process variable. See parameter 34.01.

0 … 9999 Parameter index 0 … 9999

34.04 MOTOR SP FILT TIM Defines a filter time constant for actual signal 01.02 SPEED. The time constant has an effect on all functions in which signal SPEED is used. The actual speed value is used e.g. in speed supervision (parameter group 32 SUPERVISION) as an analogue output value (group 15 ANALOGUE OUTPUTS) or as an actual signal shown on the control panel display or PC screen.

Index Name/Selection Description FbEq

Actual signals and parameters

Page 305: VFD Documents

155

0 … 20000 ms Filter time constant 0 … 20000

34.05 TORQ ACT FILT TIM Defines a filter time for the actual signal torque (actual signal 01.05). Affects also on the torque supervision (parameters 32.07 and 32.09) and the torque read through an analogue output.

0 … 20000 ms Filter time constant 0 … 20000

34.06 RESET RUN TIME Resets the motor running time counter (actual signal 01.43).

NO No reset. 0

YES Reset. The counter restarts from zero. 65535

35 MOT TEMP MEAS Motor temperature measurement. For the function description see sections Motor temperature measurement through the standard I/O on page 73 and Motor temperature measurement through an analogue I/O extension on page 75.

35.01 MOT 1 TEMP AI1 SEL Activates the motor 1 temperature measurement function and selects the sensor type.Note: If an optional analogue I/O extension module RAIO is used for the temperature measurement and 35.01 MOT 1 TEMP AI1 SEL and/or 35.04 MOT 2 TEMP AI2 SEL are set to 1xPT100, analogue extension module input signal range must be set to 0...2 V (instead of 0...10 V) with DIP switches.

NOT IN USE The function is inactive. 1

1xPT100 The function is active. The temperature is measured with one Pt 100 sensor. Analogue output AO1 feeds constant current through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through analogue input AI1 and converts it to degrees centigrade.

2

2XPT100 The function is active. Temperature is measured using two Pt 100 sensors. See selection 1xPT100.

3

3XPT100 The function is active. Temperature is measured using three Pt 100 sensors. See selection 1xPT100.

4

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Actual signals and parameters

Page 306: VFD Documents

156

1...3 PTC The function is active. The temperature is supervised using one to three PTC sensors or one to three KTY84-1xx silicon temperature sensors. Analogue output AO1 feeds constant current through the sensor(s). The resistance of the sensor increases sharply as the motor temperature rises over the sensor reference temperature (Tref), as does the voltage over the resistor. The temperature measurement function reads the voltage through analogue input AI1 and converts it into ohms. The figure below shows typical PTC sensor resistance values as a function of the motor operating temperature.

5

35.02 MOT 1 TEMP ALM L Defines the alarm limit for motor 1 temperature measurement. The alarm indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

Limit in °C or ohms. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100. Ohm: parameter 35.01 is 1...3 PTC.

-10 … 5000

35.03 MOT 1 TEMP FLT L Defines the fault trip limit for motor 1 temperature measurement. The fault indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

Limit in °C or ohms. °C: parameter 35.01 is 1xPT100, 2XPT100, 3XPT100. Ohm: parameter 35.01 is 1...3 PTC.

-10 … 5000

35.04 MOT 2 TEMP AI2 SEL Activates the motor 2 temperature measurement function and selects the sensor type. Two motors can be protected only by using an optional analogue extension module. Parameter 98.12 needs to be activated.Note: If 98.12 is activated, the analogue I/O extension is also used for motor 1 temperature measurement (the standard I/O terminals are not in use). Note: If an optional analogue I/O extension module RAIO is used for the temperature measurement and 35.01 MOT 1 TEMP AI1 SEL and/or 35.04 MOT 2 TEMP AI2 SEL are set to 1xPT100, analogue extension module input signal range must be set to 0...2 V (instead of 0...10 V) with DIP switches.

NOT IN USE See 35.01. 1

1xPT100 See 35.01. 2

2XPT100 See 35.01. 3

3XPT100 See 35.01. 4

1...3 PTC See 35.01. 5

35.05 MOT 2 TEMP ALM L Defines the alarm limit for the motor 2 temperature measurement function. The alarm indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

See 35.02. -10 … 5000

Index Name/Selection Description FbEq

100

550

1330

4000

Ohm

T

Temperature ResistanceNormal 0 … 1.5 kohm

Excessive > 4 kohm

Actual signals and parameters

Page 307: VFD Documents

157

35.06 MOT 2 TEMP FLT L Defines the fault trip limit for the motor 2 temperature measurement function. The fault indication is given when the limit is exceeded.

-10 … 5000 ohm/°C (PTC/Pt100)

See 35.03. -10 … 5000

35.07 MOT MOD COMPENSAT

Selects whether measured motor 1 temperature is used in the motor model compensation.

NO The function is inactive. 1

YES The temperature is used in the motor model compensation.Note: Selection is effective only when Pt 100 sensor(s) are used.

2

YES PAR35.08 Motor temperature is brought from the automation system to the drive. 3

35.08 MOT MOD COMP PTR

The source for the motor temperature feedback when parameter 35.07 has been set to value YES PAR35.08.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value.Example: Connection pointer via 85.01 CONSTANT1:35.08 MOT MOD COMP PTR = +.085.001.00.

-

40 PID CONTROL - process PID control (99.02 = PID CTRL)- speed or torque reference trimming (99.02 is not PID CTRL)- sleep function for the process PID control (99.02 = PID CTRL)For more information, see section Process PID control on page 70.

40.01 PID GAIN Defines the gain of the process PID controller.

0.1 … 100.0 Gain value. The table below lists a few examples of the gain settings and the resulting speed changes when- a 10% or 50% error value is connected to the controller (error = process reference - process actual value).- motor maximum speed is 1500 rpm (parameter 20.02)

10 … 10000

40.02 PID INTEG TIME Defines the integration time for the process PID controller.

0.02 … 320.00 s Integration time 2 … 32000

Index Name/Selection Description FbEq

PID Gain Speed Change: 10% Error

Speed Change: 50% Error

0.5 75 rpm 375 rpm

1.0 150 rpm 750 rpm

3.0 450 rpm 1500 rpm (limited)

Error/Controller output

Titime

O I

G · I

G · I

I = controller input (error)O = controller outputG = gaint = timeTi = integration time

Actual signals and parameters

Page 308: VFD Documents

158

40.03 PID DERIV TIME Defines the derivation time of the process PID controller. The derivative component at the controller output is calculated on basis of two consecutive error values (EK-1 and EK) according to the following formula: PID DERIV TIME · (EK - EK-1)/TS, in which TS = 12 ms sample time.E = Error = Process reference - process actual value

0.00 … 10.00 s Derivation time. 0 … 1000

40.04 PID DERIV FILTER Defines the time constant of the 1-pole filter used to smooth the derivative component of the process PID controller.

0.04 … 10.00 s Filter time constant. 4 … 1000

40.05 ERROR VALUE INV Inverts the error at the process PID controller input (error = process reference - process actual value).

NO No inversion 0

YES Inversion.With sleep function, the drive operation is as follows:The drive enters the sleep mode when the motor speed is below the sleep level (02.02 < 40.21) and when the process PID control actual value is smaller than the wake-up level (01.34 < 40.23).The drive wakes up when the process PID actual value is greater than the wake-up level (01.34 > 40.23).See also section Sleep function for the process PID control on page 71.

65535

40.06 ACTUAL VALUE SEL Selects the process actual value for the process PID controller: The sources for the variable ACT1 and ACT2 are further defined by parameters 40.07 and 40.08.

ACT1 ACT1 1

ACT1-ACT2 Subtraction of ACT1 and ACT 2. 2

ACT1+ACT2 Addition of ACT1 and ACT2 3

ACT1*ACT2 Multiplication of ACT1 and ACT2 4

ACT1/ACT2 Division of ACT1 and ACT2 5

MIN(A1,A2) Selects the smaller of ACT1 and ACT2 6

MAX(A1,A2) Selects the higher of ACT1 and ACT2 7

sqrt(A1-A2) Square root of the subtraction of ACT1 and ACT2 8

sqA1+sqA2 Addition of the square root of ACT1 and the square root of ACT2 9

40.07 ACTUAL1 INPUT SEL Selects the source for the variable ACT1. See parameter 40.06.

AI1 Analogue input AI1 1

AI2 Analogue input AI2 2

AI3 Analogue input AI3 3

AI5 Analogue input AI5 4

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Actual signals and parameters

Page 309: VFD Documents

159

AI6 Analogue input AI6 5

PARAM 40.25 Source selected by parameter 40.25. 6

40.08 ACTUAL2 INPUT SEL Selects the source for the variable ACT2. See parameter 40.06.

AI1 Analogue input AI1 1

AI2 Analogue input AI2 2

AI3 Analogue input AI3 3

AI5 Analogue input AI5 4

AI6 Analogue input AI6 5

40.09 ACT1 MINIMUM Defines the minimum value for the variable ACT1 if an analogue input is selected as a source for ACT1. See parameter 40.07. The minimum and maximum (40.10) settings of ACT1 define how the voltage/current signal received from the measuring device is converted to a percentage value used by the process PID controller.

-1000 … 1000% Minimum value in percent of the set analogue input range. The equation below instructs how to calculate the value when analogue input AI1 is used as a variable ACT1.

-10000 … 10000

40.10 ACT1 MAXIMUM Defines the maximum value for the variable ACT1 if an analogue input is selected as a source for ACT1. See parameter 40.07. The minimum (40.09) and maximum settings of ACT1 define how the voltage/current signal received from the measuring device is converted to a percentage value used by the process PID controller.

-1000 … 1000% Maximum value in percent of the set analogue input signal range. The equation below instructs how to calculate the value when analogue input AI1 is used as a variable ACT1.

-10000 … 10000

40.11 ACT2 MINIMUM See parameter 40.09.

-1000 … 1000% See parameter 40.09. -10000 … 10000

Index Name/Selection Description FbEq

ACT1 MINIMUM =

AI1min The voltage value received from the measuring device when the measured process actual value is at the desired minimum level.

13.01 AI1 minimum (parameter setting)

13.02 AI1 maximum (parameter setting)

AI1min - 13.0113.02 - 13.01

· 100%

ACT1 MAXIMUM =

AI1max The voltage value received from the measuring device when the measured process actual value is at the desired maximum level.

13.01 AI1 minimum (parameter setting)

13.02 AI1 maximum (parameter setting)

AI1max - 13.0113.02 - 13.01

· 100%

Actual signals and parameters

Page 310: VFD Documents

160

40.12 ACT2 MAXIMUM See parameter 40.10.

-1000 … 1000% See parameter 40.10. -10000 … 10000

40.13 PID INTEGRATION Activates the integration of the process PID controller.

OFF Inactive 1

ON Active 2

40.14 TRIM MODE Activates the trim function and selects between the direct and proportional trimming. Using the trim it is possible to combine a corrective factor to the drive reference. See section Reference trimming on page 47.Example: A speed-controlled conveyor line where the line tension also needs to be considered: The speed reference is slightly adjusted (trimmed) depending on the value of the measured line tension.Not visible when parameter 99.02 = PID CTRL.

OFF The trim function is deactivated. 1

PROPORTIONAL The trim function is active. The trimming factor is relative to the external %-reference (REF2). See parameter 11.06.

2

DIRECT The trim function is active. The trimming factor is relative to a fixed maximum limit used in the reference control loop (maximum speed, frequency or torque).

3

40.15 TRIM REF SEL Selects the signal source for the trim reference. Not visible when parameter 99.02 = PID CTRL.

AI1 Analogue input AI1 1

AI2 Analogue input AI2 2

AI3 Analogue input AI3 3

AI5 Analogue input AI5 4

AI6 Analogue input AI5 5

PAR 40.16 Value of parameter 40.16 is used as the trim reference. 6

PAR 40.28 Value of parameter 40.28 is used as the trim reference. 7

40.16 TRIM REFERENCE Defines the trim reference value when parameter 40.15 has the value PAR 40.16 selected. Not visible when parameter 99.02 = PID CTRL.

-100.0 … 100.0% Trim reference - 10000 … 10000

Index Name/Selection Description FbEq

Trim

refe

renc

e

-minAI5 minAI5 maxAI5-maxAI5

Analogue Input Signal

sclAI5

-sclAI5

Example: AI5 as a trim reference

minAI5 = parameter 13.16

maxAI5 = parameter 13.17

sclAI5 = parameter 13.18

AI5 be used only with an optional I/O extension module.

Actual signals and parameters

Page 311: VFD Documents

161

40.17 TRIM RANGE ADJUST

Defines the multiplier for the PID controller output used as the trimming factor. Not visible when parameter 99.02 = PID CTRL.

-100.0 … 100.0% Multiplying factor - 10000 … 10000

40.18 TRIM SELECTION Selects whether the trimming is used for correcting the speed or torque reference. Not visible when parameter 99.02 = PID CTRL.

SPEED TRIM Speed reference trimming 1

TORQUE TRIM Torque reference trimming 2

DIRECT SPD T Speed reference trimming. Trim reference is added to the speed reference after ramp calculations. Trimming is not effective during ramp stop, emergency stop or at speed defined by parameter 30.18 in a fieldbus communication break.

3

40.19 ACTUAL FILT TIME Defines the time constant for the filter through which the actual signals are connected to the process PID controller.

0.04 … 10.00 s Filter time constant. 4 … 1000

40.20 SLEEP SELECTION Activates the sleep function and selects the source for the activation input. Visible only when parameter 99.02 = PID CTRL.See section Sleep function for the process PID control on page 71.

OFF Inactive 1

INTERNAL Activated and deactivated automatically as defined by parameters 40.21 and 40.23.

2

DI1 The function is activated/deactivated through digital input DI1. Activation: Digital input DI1 = 1. Deactivation: DI1 = 0.The internal sleep criteria set by parameters 40.21 and 40.23 are not effective. The sleep start and stop delays are effective (parameter 40.22 and 40.24).

3

DI2 See selection DI1. 4

DI3 See selection DI1. 5

DI4 See selection DI1. 6

DI5 See selection DI1. 7

DI6 See selection DI1. 8

DI7 See selection DI1. 9

DI8 See selection DI1. 10

DI9 See selection DI1. 11

DI10 See selection DI1. 12

DI11 See selection DI1. 13

DI12 See selection DI1. 14

Index Name/Selection Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)I = filter input (step)O = filter outputt = timeT = filter time constant

Actual signals and parameters

Page 312: VFD Documents

162

40.21 SLEEP LEVEL Defines the start limit for the sleep function. If the motor speed is below a set level (40.21) longer than the sleep delay (40.22), the drive shifts to the sleeping mode: the motor is stopped and the control panel shows the warning message “SLEEP MODE”. Visible only when parameter 99.02 = PID CTRL.

0.0 … 7200.0 rpm Sleep start level 0 … 7200

40.22 SLEEP DELAY Defines the delay for the sleep start function. See parameter 40.21. When the motor speed falls below the sleep level, the counter starts. When the motor speed exceeds the sleep level, the counter resets.Visible only when parameter 99.02 = PID CTRL.

0.0 … 3600.0 s Sleep start delay 0 … 36000

40.23 WAKE UP LEVEL Defines the wake-up limit for the sleep function. The drive wakes up if the process actual value is below a set level (40.23) longer than the wake-up delay (40.24). Visible only when parameter 99.02 = PID CTRL.

0.0 … 100.0% The wake-up level in percent of the actual process value. 0 … 10000

40.24 WAKE UP DELAY Defines the wake-up delay for the sleep function. See parameter 40.23. When the process actual value falls below the wake-up level, the wake-up counter starts. When the process actual value exceeds the wake-up level, the counter resets.Visible only when parameter 99.02 = PID CTRL.

0.0 … 3600.0 s Wake-up delay 0 …36000

40.25 ACTUAL1 PTR Defines the source or constant for value PAR 40.25 of parameter 40.07.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

100 = 1%

40.26 PID MINIMUM Defines the minimum limit for the PID controller output. Using the minimum and maximum limits, it is possible to restrict the operation to a certain speed range.Example: The process PID control is restricted to the forward rotation direction of the motor by setting the PID minimum limit to 0% and the maximum to 100%.

-100 … 100% Limit in percent of the Absolute Maximum Speed of the motor 100 = 1%

40.27 PID MAXIMUM Defines the maximum limit for the PID controller output. Using the minimum and maximum limits, it is possible to restrict the operation to a certain speed range. See parameter 40.26.

-100 … 100% Limit in percent of the Absolute Maximum Speed of the motor 100 = 1%

40.28 TRIM REF PTR Defines the trim reference value when parameter 40.15 has been set to value PAR 40.28.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.

100 = 1%

42 BRAKE CONTROL Control of a mechanical brake. The function operates on a 100 ms time level. For the function description, see section Control of a mechanical brake on page 77.

42.01 BRAKE CTRL Activates the brake control function.

OFF Inactive 1

Index Name/Selection Description FbEq

Actual signals and parameters

Page 313: VFD Documents

163

ON Active 2

42.02 BRAKE ACKNOWLEDGE

Activates the external brake on/off supervision and selects the source for the signal. The use of the external on/off supervision signal is optional.

OFF Inactive 1

DI5 Active. Digital input DI5 is the signal source. DI5 = 1: The brake is open. DI5 = 0: the brake is closed.

2

DI6 See selection DI5. 3

DI11 See selection DI5. 4

DI12 See selection DI5. 5

42.03 BRAKE OPEN DELAY Defines the brake open delay (= the delay between the internal open brake command and the release of the motor speed control). The delay counter starts when the drive has magnetised the motor and risen the motor torque to the level required at the brake release (parameters 42.07 and 42.08). Simultaneously with the counter start, the brake function energises the relay output controlling the brake and the brake starts opening.

0.0 … 5.0 s Delay time. Set the delay the same as the mechanical opening delay of the brake specified the brake manufacturer.

0 … 500

42.04 BRAKE CLOSE DELAY

Defines the brake close delay. The delay counter starts when the motor actual speed has fallen below the set level (parameter 42.05) after the drive has received the stop command. Simultaneously with the counter start, the brake control function de-energises the relay output controlling the brake and the brake starts closing. During the delay, the brake function keeps the motor live preventing the motor speed from falling below zero.

0.0 … 60.0 s Delay time. Set the delay time to the same value as the mechanical make-up time of the brake (= operating delay when closing) specified by the brake manufacturer.

0 … 6000

42.05 ABS BRAKE CLS SPD

Defines the brake close speed. See parameter 42.04.

0 … 1000 rpm Speed (an absolute value) 0 …100000

42.06 BRAKE FAULT FUNC Defines how the drive reacts in case the status of the optional external brake acknowledgement signal does not meet the status presumed by the brake control function.

FAULT The drive trips on a fault: fault indication and drive stops the motor. 1

WARNING The drive generates a warning. 2

42.07 START TORQ REF SEL

Selects the source for the motor starting torque reference applied at the brake release. The value is read in percent of the motor nominal torque.

NO No source selected. This is the default value. 1

AI1 Analogue input AI1 2

AI2 Analogue input AI2 3

AI3 Analogue input AI3 4

AI5 Analogue input AI5 5

AI6 Analogue input AI6 6

PAR 42.08 Defined by parameter 42.08. 7

MEMORY The motor torque stored at the previous brake close command. 8

42.08 START TORQ REF Defines the motor starting torque at brake release if parameter 42.07 has value PAR 40.28.

Index Name/Selection Description FbEq

Actual signals and parameters

Page 314: VFD Documents

164

-300 … 300% Torque value in percent of the motor nominal torque -30000 … 30000

42.09 EXTEND RUN T Defines an extended run time for the brake control function at stop. During the delay, the motor is kept magnetised and ready for an immediate restart.

0.0 … 60.0 s 0.0 s = Normal stop routine of the brake control function: The motor magnetisation is switched off after the brake close delay has passed.0.1 … 60.0 s = Extended stop routine of the brake control function: The motor magnetisation is switched off after the brake close delay and the extended run time have passed. During the extended run time, a zero torque reference is applied, and the motor is ready for a immediate restart.

100 = 1 s

42.10 LOW REF BRK HOLD Activates a brake hold function and defines the hold delay for it. The function stabilises the operation of the brake control application when the motor operates near zero speed and there is no measured speed feedback available (pulse encoder).

0.0 … 60.0 s 0.0 s = inactive. 0.1 s … 60.0 s = active. When the absolute value of the motor speed reference falls below the brake close speed:- The brake hold delay counter starts.- The brake is closed according to normal stop routine of the brake control function.During the delay, the function keeps the brake closed despite of the speed reference value and the value of start command. When the set delay has passed, the normal operation resumes.

100 = 1 s

45 ENERGY OPT Energy optimization settings

45.02 ENERGY TARIFF1 Price of energy per kWh. Used for reference when savings are calculated. See parameters 01.46 SAVED KWH, 01.48 SAVED AMOUNT and 01.50 SAVED CO2.

0.0000…1024.0000 Price of energy per kWh. 1 = 0.001

45.06 E TARIFF UNIT Specifies the currency used for the savings calculation.

LOCAL The currency is determined by the setting of parameter 99.01 Language. 0

EUR Euro 1

USD US dollar 2

45.08 PUMP REF POWER Pump power when connected directly to supply. Used for reference when energy savings are calculated. See parameters 01.46 SAVED KWH, 01.48 SAVED AMOUNT and 01.50 SAVED CO2.

Index Name/Selection Description FbEq

Motor magnetised

Start/Stop

t2 3

1 = brake close speed2 = brake close delay

Actual speed

3 = extended run time1

Actual signals and parameters

Page 315: VFD Documents

165

0… 950% Pump power in percent of nominal motor power. Note: The maximum value depends on the motor and is calculated in power-up or when the motor power changes.

1000 = 100%

45.09 ENERGY RESET Resets the energy counters 01.46 SAVED KWH, 01.47 SAVED GWH, 01.48 SAVED AMOUNT, 01.49 SAVED AMOUNT M, 01.50 SAVED CO2 and 01.51 SAVED CO2 KTON.

DONE Reset not requested (normal operation). 0

RESET Reset energy counters. The value reverts automatically to DONE. 1

50 ENCODER MODULE Encoder connection. Visible only when a pulse encoder module (optional) is installed and activated by parameter 98.01.The settings will remain the same even though the application macro is changed.

50.01 PULSE NR States the number of encoder pulses per one revolution.

0 … 29999 ppr Pulse number in pulses per round (ppr) 0 … 29999

50.02 SPEED MEAS MODE Defines how the encoder pulses are calculated.

A -- B DIR Channel A: positive edges calculated for speed. Channel B: direction. 0

A --- Channel A: positive and negative edges calculated for speed. Channel B: not used.

1

A --- B DIR Channel A: positive and negative edges are calculated for speed. Channel B: direction.

2

A --- B --- All edges of the signals are calculated. 3

50.03 ENCODER FAULT Defines the operation of the drive if a failure is detected in communication between the pulse encoder and the pulse encoder interface module, or between the module and the drive. Encoder supervision function activates if either of the following conditions is valid:-The difference between estimated and measured speed is greater than 20% of the motor nominal speed. - No pulses are received from the encoder within the defined time (see parameter 50.04) and the drive is simultaneously at current or torque limit.

WARNING The drive generates a warning indication. 0

FAULT The drive trips on a fault, gives a fault indication and stops the motor. 65535

50.04 ENCODER DELAY Defines the time delay for the encoder supervision function (See parameter 50.03).

0 … 50000 ms Time delay 0 … 50000

50.05 ENCODER DDCS CH Defines the fibre optic channel of the control board from which the drive program reads the signals coming from the pulse encoder interface module. The setting is valid only if the module is connected to the drive via the DDCS link (i.e. not to the option slot of the drive).

CH 1 Signals via channel 1 (CH1). The pulse encoder interface module must be connected to CH1 instead of CH2 in applications where CH2 is reserved by a Master station (e.g. a Master/Follower application). See also parameter 70.03.

1

CH 2 Signals via channel 2 (CH2). Can be used in most cases. 2

50.06 SPEED FB SEL Defines the speed feedback value used in control.

INTERNAL Calculated speed estimate 65535

ENCODER Actual speed measured with an encoder 0

Index Name/Selection Description FbEq

Actual signals and parameters

Page 316: VFD Documents

166

50.07 ENC CABLE CHECK Selects the drive operation when encoder signal is missing.Note: Monitoring is only for RTAC-03. For more information, see RTAC-03 Pulse Encoder Interface Module User’s Manual [3AFE68650500 (English)].

NO No action 0

WARNING Drive generates warning ENC CABLE. 1

FAULT Drive trips on fault ENC CABLE. 2

51 COMM MODULE DATA

The parameters are visible and need to be adjusted, only when a fieldbus adapter module (optional) is installed and activated by parameter 98.02. For details on the parameters, refer to the manual of the fieldbus module and chapter Fieldbus control. These parameter settings will remain the same even though the macro is changed.

52 STANDARD MODBUS

The settings for the Standard Modbus Link. See chapter Fieldbus control.

52.01 STATION NUMBER Defines the address of the device. Two units with the same address are not allowed on-line.

1 … 247 Address 1 = 1

52.02 BAUDRATE Defines the transfer rate of the link.

600 600 bit/s 1

1200 1200 bit/s 2

2400 2400 bit/s 3

4800 4800 bit/s 4

9600 9600 bit/s 5

19200 19200 bit/s 6

52.03 PARITY Defines the use of parity and stop bit(s). The same setting must be used in all on-line stations.

NONE1STOPBIT No parity bit, one stop bit 1

NONE2STOPBIT No parity bit, two stop bits 2

ODD Odd parity indication bit, one stop bit 3

EVEN Even parity indication bit, one stop bit 4

60 MASTER/FOLLOWER

Master/Follower application. For more information, see section Master/Follower use of several drives on page 80 and a separate Master/Follower Application Guide [3AFE64590430 (English)].

60.01 MASTER LINK MODE Defines the role of the drive on the Master/Follower link.Note: Two Master stations are not allowed on-line. If a Follower drive is changed to be a Master drive (or vice versa) by this parameter, the RMIO board must be powered up again for the M/F link to work properly.

NOT IN USE The Master/Follower link is not active. 1

MASTER Master drive 2

FOLLOWER Follower drive 3

STANDBY Follower drive which reads the control signals through a fieldbus interface, not from the Master/Follower link as usual.

4

60.02 TORQUE SELECTOR Selects the reference used in motor torque control. Typically, the value needs to be changed only in the Follower station(s). The parameter is visible only when parameter 99.02 = T CTRL.External control location 2 (EXT2) must be active to enable torque selector.

Index Name/Selection Description FbEq

Actual signals and parameters

Page 317: VFD Documents

167

ZERO This selection forces the output of the torque selector to zero. 1

SPEED The follower speed controller output is used as a reference for motor torque control. The drive is speed-controlled. SPEED can be used both in the Follower and in the Master if - the motor shafts of the Master and Follower are connected flexibly. (A slight speed difference between the Master and the Follower is possible/allowed.) - drooping is used (see parameter 60.06).

2

TORQUE The drive is torque-controlled. The selection is used in the Follower(s) when the motor shafts of the Master and Follower are coupled solidly to each other by gearing, a chain or other means of mechanical power transmission and no speed difference between the drives is allowed or possible.Note: If TORQUE is selected, the drive does not restrict the speed variation as long as the speed is within the limits defined by parameters 20.01 and 20.02. More definite speed supervision is often needed. In those cases, the selection ADD should be used instead of TORQUE.

3

MINIMUM The torque selector compares the direct torque reference and the speed controller output, and the smaller of them is used as the reference for the motor torque control. MINIMUM is selected in special cases only.

4

MAXIMUM The torque selector compares the direct torque reference and the speed controller output and the greater of them is used as the reference for the motor torque control. MAXIMUM is selected in special cases only.

5

ADD The torque selector adds the speed controller output to the direct torque reference. The drive is torque-controlled in the normal operating range. The selection ADD, together with the window control, forms a speed supervision function for a torque-controlled Follower drive. See parameter 60.03.

6

60.03 WINDOW SEL ON Activates the Window control function. The Window control, together with selection ADD at parameter 60.02, forms a speed supervision function for a torque-controlled drive. The parameter is visible only when parameter 99.02 is T CTRL. External control location 2 (EXT2) must be active to enable window control.

NO Inactive 0

YES Window control is active. Selection YES is used only when parameter 60.02 has value ADD. Window control supervises the speed error value (Speed Reference - Actual Speed). In the normal operating range, window control keeps the speed controller input at zero. The speed controller is evoked only if: - the speed error exceeds the value of parameter 60.04 or - the absolute value of the negative speed error exceeds the value of parameter 60.05. When the speed error moves outside the window, the exceeding part of the error value is connected to the speed controller. The speed controller produces a reference term relative to the input and gain of the speed controller (parameter 23.01) which the torque selector adds to the torque reference. The result is used as the internal torque reference for the drive. Example: In a load loss condition, the internal torque reference of the drive is decreased to prevent an excessive rise of the motor speed. If window control were inactivated, the motor speed would rise until a speed limit of the drive were reached.

65535

60.04 WINDOW WIDTH POS

Defines the supervision window width above the speed reference. See parameter 60.03. The parameter is visible only when parameter 99.02 is T CTRL.

0 … 1500 rpm Positive window width 0… 20000

Index Name/Selection Description FbEq

Actual signals and parameters

Page 318: VFD Documents

168

60.05 WINDOW WIDTH NEG

Defines the supervision window width below the speed reference. See parameter 60.03. The parameter is visible only when parameter 99.02 is T CTRL.

0 … 1500 rpm Negative window width 0… 20000

60.06 DROOP RATE Defines the droop rate. The parameter value needs to be changed only if both the Master and the Follower are speed-controlled: - External control location 1 (EXT1) is selected (see parameter 11.02 or - External control location 2 (EXT2) is selected (see parameter 11.02) and parameter 60.02 is set to SPEED. The droop rate needs to be set both for the Master and the Follower. The correct droop rate for a process must be found out case by case in practice.The drooping prevents a conflict between the Master and the Follower by allowing a slight speed difference between them. The drooping slightly decreases the drive speed as the drive load increases. The actual speed decrease at a certain operating point depends on the droop rate setting and the drive load ( = torque reference / speed controller output). At 100% speed controller output, drooping is at its nominal level, i.e. equal to the value of the DROOP RATE. The drooping effect decreases linearly to zero along with the decreasing load.

0 … 100% Droop rate in percent of the motor nominal speed 0 … 1000

60.07 MASTER SIGNAL 2 Selects the signal that is sent by the Master to the Follower(s) as Reference 1 (speed reference).

0000 … 9999 Parameter index 0000 … 9999

60.08 MASTER SIGNAL 3 Selects the signal that is sent by the Master to the Follower(s) as Reference 2 (torque reference).

0000 … 9999 Parameter index 0000 … 9999

70 DDCS CONTROL Settings for the fibre optic channels 0, 1 and 3.

70.01 CHANNEL 0 ADDR Defines the node address for channel 0. No two nodes on-line may have the same address. The setting needs to be changed when a master station is connected to channel 0 and it does not automatically change the address of the slave. Examples of such masters are an ABB Advant Controller or another drive.

1 … 125 Address. 1 … 125

70.02 CHANNEL 3 ADDR Node address for channel 3. No two nodes on-line may have the same address. Typically the setting needs to be changed when the drive is connected in a ring which consists of several drives and a PC with the DriveWindow program running.

Index Name/Selection Description FbEq

Motor Speed% of nominal

Drooping

No Drooping

Speed Controller100%

} Par. 60.06 DROOP RATE

Output / %

Speed Decrease = Speed Controller Output · Drooping · Nominal Speed

Example: Speed Controller output is 50%, DROOP RATE is 1%, nominal speed of the drive is 1500 rpm. Speed decrease = 0.50 · 0.01 · 1500 rpm = 7.5 rpm

Drive load

100%

Actual signals and parameters

Page 319: VFD Documents

169

1 … 254 Address. 1 … 254

70.03 CH1 BAUD RATE The communication speed of channel 1. Typically the setting needs to be changed only if the pulse encoder interface module is connected to channel 1 instead of channel 2. Then the speed must be changed to 4 Mbit/s. See also parameter 50.05.

8 Mbit/s 8 megabits per second 0

4 Mbit/s 4 megabits per second 1

2 Mbit/s 2 megabits per second 2

1 Mbit/s 1 megabits per second 3

70.04 CH0 DDCS HW CONN

Selects the topology of the channel 0 link.

RING Devices are connected in ring topology. 0

STAR Devices are connected in a star topology. 65535

70.05 CH2 HW CONNECTION

Selects the topology of the DDCS channel CH2 link. 1 = 1

0 = RING Devices are connected in a ring. Forwarding of messages is enabled.

1 = STAR Devices are connected in a star. Forwarding of messages is disabled. This selection is used with NDBU branching units.

72 USER LOAD CURVE See section User load curve on page 83.

72.01 OVERLOAD FUNC Activates the user load curve and selects how the drive reacts when the user load curve has been exceeded.

NO User load curve is inactive. 0

WARNING The drive generates a warning USER L CURVE. Drive output current is not limited.

1

FAULT The drive trips on a fault USER L CURVE. 2

LIMIT Drive output current is limited to Iuser curve. 3

LIMIT / WARN Drive output current is limited to Iuser curve and the drive generates a warning USER L CURVE.

4

72.02 LOAD CURRENT 1 Defines the first current point of the load curve at the frequency defined by par. 72.10 LOAD FREQ 1.

0...800% Value in percent of the nominal motor current 1 = 1

72.03 LOAD CURRENT 2 Defines the second current point of the load curve at the frequency defined by par. 72.11 LOAD FREQ 2.

0...800% Value in percent of the nominal motor current 1 = 1

72.04 LOAD CURRENT 3 Defines the third current point of the load curve at the frequency defined by par. 72.12 LOAD FREQ 3.

0...800% Value in percent of the nominal motor current 1 = 1

72.05 LOAD CURRENT 4 Defines the fourth current point of the load curve at the frequency defined by par. 72.13 LOAD FREQ 4.

0...800% Value in percent of the nominal motor current 1 = 1

72.06 LOAD CURRENT 5 Defines the fifth current point of the load curve at the frequency defined by par. 72.14 LOAD FREQ 5.

0...800% Value in percent of the nominal motor current 1 = 1

72.07 LOAD CURRENT 6 Defines the sixth current point of the load curve at the frequency defined by par. 72.15 LOAD FREQ 6.

0...800% Value in percent of the nominal motor current 1 = 1

Index Name/Selection Description FbEq

Actual signals and parameters

Page 320: VFD Documents

170

72.08 LOAD CURRENT 7 Defines the seventh current point of the load curve at the frequency defined by par. 72.16 LOAD FREQ 7.

0...800% Value in percent of the nominal motor current 1 = 1

72.09 LOAD CURRENT 8 Defines the eighth current point of the load curve at the frequency defined by par. 72.17 LOAD FREQ 8.

0...800% Value in percent of the nominal motor current 1 = 1

72.10 LOAD FREQ 1 Defines the first frequency point of the load curve.

0... par. 72.11 % Value in percent of the nominal motor frequency 1 = 1

72.11 LOAD FREQ 2 Defines the second frequency point of the load curve.

par. 72.10...par. 72.12 %

Value in percent of the nominal motor frequency 1 = 1

72.12 LOAD FREQ 3 Defines the third frequency point of the load curve.

par. 72.11... par. 72.13 %

Value in percent of the nominal motor frequency 1 = 1

72.13 LOAD FREQ 4 Defines the fourth frequency point of the load curve.

par. 72.12...par. 72.14 %

Value in percent of the nominal motor frequency 1 = 1

72.14 LOAD FREQ 5 Defines the fifth frequency point of the load curve.

par. 72.13...par. 72.15 %

Value in percent of the nominal motor frequency 1 = 1

72.15 LOAD FREQ 6 Defines the sixth frequency point of the load curve.

par. 72.14...par. 72.16 %

Value in percent of the nominal motor frequency 1 = 1

72.16 LOAD FREQ 7 Defines the seventh frequency point of the load curve.

par. 72.15...par. 72.17 %

Value in percent of the nominal motor frequency 1 = 1

72.17 LOAD FREQ 8 Defines the eight frequency point of the load curve.

par. 72.16...600% Value in percent of the nominal motor frequency 1 = 1

72.18 LOAD CURRENT LIMIT

Defines the overload current. Value is used by the overload integrator (∫I2dt).If the continuous motor load capacity (i.e. the defined user load curve) is not 100% at the nominal frequency, calculate the overload current using the following equation:

where Ioverload is the motor overload and Iuser curve is the current defined by the user load curve at the nominal frequency. User load curve is defined by parameters 72.02...72.17.Example: Motor overload capacity is 150% of the nominal current for10 s / 10 min and the continuous load capacity is 80% at the nominal frequency:

100...800% Value in percent of the nominal motor current (99.06 MOTOR NOM CURRENT)

10 = 1%

Index Name/Selection Description FbEq

72.18 LOAD CURRENT LIMIT Ioverload2 Iuser curve

2– 1002+=

72.18 LOAD CURRENT LIMIT 1502 802– 1002+ 162%= =

72.19 LOAD THERMAL TIME 10 s=

72.20 LOAD COOLING TIME 590 s=

Actual signals and parameters

Page 321: VFD Documents

171

72.19 LOAD THERMAL TIME

Defines the overload time. Value is used by the overload integrator (∫I2dt). See the example given for par. 72.18 LOAD CURRENT LIMIT.

10 = 1 s

0.0...9999.9 s Time. If the value is set to zero, the drive output current is limited to the user load curve defined by parameters 72.02...72.17.

72.20 LOAD COOLING TIME

Defines the cooling time. The output of the overload integrator is set to zero if the current stays continuously below the user load curve for the defined cooling time. See the example given for par. 72.18 LOAD CURRENT LIMIT.

0...9999 s Time 1 = 1 s

83 ADAPT PROG CTRL Control of the Adaptive Program execution. For more information, see the Adaptive Program Application Guide [3AFE64527274 (English)].

83.01 ADAPT PROG CMD Selects the operation mode for the Adaptive Program.

STOP Stop. The program cannot be edited. 1

RUN Run. The program cannot be edited. 2

EDIT Stop to edit mode. Program can be edited. 3

83.02 EDIT COMMAND Selects the command for the block placed in the location defined by parameter 83.03. The program must be in editing mode (see parameter 83.01).

NO Home value. The value automatically restores to NO after an editing command has been executed.

1

PUSH Shifts the block in location defined by parameter 83.03 and the following blocks one location up. A new block can be placed in the emptied location by programming the Block Parameter Set as usual.Example: A new block needs to be placed in between the current block number four (parameters 84.20 … 84.25) and five (parameters 84.25 … 84.29).In order to do this:- Shift the program to the editing mode by parameter 83.01.- Select location number five as the desired location for the new block by parameter 83.03.- Shift the block in location number 5 and the following blocks one location forward by parameter 83.02. (selection PUSH)- Program the emptied location number 5 by parameters 84.25 to 84.29 as usual.

2

DELETE Deletes the block in location defined by parameter 83.03 and shifts the following blocks one step down.

3

PROTECT Activation of the Adaptive Program protection. Activate as follows:- Ensure the Adaptive Program operation mode is START or STOP (parameter 83.01).- Set the passcode (parameter 83.05).- Change parameter 83.02 to PROTECT.When activated:- All parameters in group 84 excluding the block output parameters are hidden (read protected).- It is not possible to switch the program to the editing mode (parameter 83.01).- Parameter 83.05 is set to 0.

4

Index Name/Selection Description FbEq

Actual signals and parameters

Page 322: VFD Documents

172

UNPROTECT Inactivation of the Adaptive Program protection. Inactivate as follows:- Ensure the Adaptive Program operation mode is START or STOP (parameter 83.01).- Set the passcode (parameter 83.05).- Change parameter 83.02 to UNPROTECT.Note: If the passcode is lost, it is possible to reset the protection also by changing the application macro setting (parameter 99.02).

5

83.03 EDIT BLOCK Defines the block location number for the command selected by parameter 83.02.

1 … 15 Block location number 1 = 1

83.04 TIMELEVEL SEL Selects the execution cycle time for the Adaptive Program. The setting is valid for all blocks.

12 ms 12 milliseconds 1

100 ms 100 milliseconds 2

1000 ms 1000 milliseconds 3

83.05 PASSCODE Sets the passcode for the Adaptive Program protection. The passcode is needed at activation and inactivation of the protection. See parameter 83.02.

0 … Passcode. The setting restores to 0 after the protection is activated/inactivated. Note: When activating, write down the passcode and store it in a safe place.

84 ADAPTIVE PROGRAM

- selections of the function blocks and their input connections.- diagnosticsFor more information, see the Adaptive Program Application Guide [3AFE64527274 (English)].

84.01 STATUS Shows the value of the Adaptive Program status word. The table below shows the alternative bit states and the corresponding values on the panel display.

84.02 FAULTED PAR Points out the faulted parameter in the Adaptive Program. -

84.05 BLOCK1 Selects the function block for Block Parameter Set 1. See the Adaptive Program Application Guide [3AFE64527274 (English)].

ABS 11

ADD 10

AND 2

BITWISE 26

COMPARE 16

COUNT 21

DPOT 23

EVENT 20

Index Name/Selection Description FbEq

Bit Display Meaning0 1 Stopped1 2 Running2 4 Faulted3 8 Editing4 10 Checking5 20 Pushing6 40 Popping8 100 Initialising

Actual signals and parameters

Page 323: VFD Documents

173

FILTER 13

MASK-SET 24

MAX 17

MIN 18

MULDIV 12

NO 1

OR 3

PI 14

PI-BAL 15

PI BIPOLAR 25

RAMP 22

SR 5

SWITCH-B 7

SWITCH-I 19

TOFF 9

TON 8

TRIGG 6

XOR 4

84.06 INPUT1 Selects the source for input I1 of Block Parameter Set 1.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.Example: The state of digital input DI2 is connected to Input 1 as follows:- Set the source selection parameter (84.06) to +.01.17.01. (The application program stores the state of digital input DI2 to bit 1 of actual signal 01.17.)- If you need an inverted value, switch the sign of the pointer value (-01.17.01.).

-

84.07 INPUT2 See parameter 84.06.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

See parameter 84.06. -

84.08 INPUT3 See parameter 84.06.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

See parameter 84.06. -

84.09 OUTPUT Stores and displays the output of Block Parameter Set 1.

… …

84.79 OUTPUT Stores the output of Block Parameter Set 15. -

85 USER CONSTANTS Storage of the Adaptive Program constants and messages. For more information, see the Adaptive Program Application Guide [3AFE64527274 (English)].

85.01 CONSTANT1 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

Index Name/Selection Description FbEq

Actual signals and parameters

Page 324: VFD Documents

174

85.02 CONSTANT2 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.03 CONSTANT3 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.04 CONSTANT4 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.05 CONSTANT5 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.06 CONSTANT6 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.07 CONSTANT7 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.08 CONSTANT8 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.09 CONSTANT9 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.10 CONSTANT10 Sets a constant for the Adaptive Program.

-8388608 to 8388607 Integer value 1 = 1

85.11 STRING1 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE1 Message -

85.12 STRING2 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE2 Message -

85.13 STRING3 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE3 Message -

85.14 STRING4 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE4 Message -

85.15 STRING5 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE5 Message -

90 D SET REC ADDR - Addresses into which the received fieldbus data sets are written.- Numbers of the main and auxiliary data sets.The parameters are visible only when a fieldbus communication is activated by parameter 98.02. For more information, see chapter Fieldbus control.

90.01 AUX DS REF3 Selects the address into which the value of fieldbus reference REF3 is written.

0 … 8999 Parameter index

90.02 AUX DS REF4 Selects the address into which the value of fieldbus reference REF4 is written.

0 … 8999 Parameter index

90.03 AUX DS REF5 Selects the address into which the value of fieldbus reference REF5 is written.

0 … 8999 Parameter index

90.04 MAIN DS SOURCE Defines the data set from which the drive reads the Control Word, Reference REF1 and Reference REF2.

1 … 255 Data set number

90.05 AUX DS SOURCE Defines the data set from which the drive reads References REF3, REF4 and REF5.

Index Name/Selection Description FbEq

Actual signals and parameters

Page 325: VFD Documents

175

1 … 255 Data set number

92 D SET TR ADDR Main and Auxiliary Data Sets which the drive sends to the fieldbus master station. The parameters are visible only when a fieldbus communication is activated by parameter 98.02. For more information, see chapter Fieldbus control.

92.01 MAIN DS STATUS WORD

Stores the address from which the Main Status Word is read from. Fixed value, not visible.

302 (fixed) Parameter index

92.02 MAIN DS ACT1 Selects the address from which the Actual Signal 1 is read to the Main Data Set.

0 … 9999 Parameter index

92.03 MAIN DS ACT2 Selects the address from which the Actual Signal 2 is read to the Main Data Set.

0 … 9999 Parameter index

92.04 AUX DS ACT3 Selects the address from which the Actual Signal 3 is read to the Auxiliary Data Set.

0 … 9999 Parameter index

92.05 AUX DS ACT4 Selects the address from which the Actual Signal 4 is read to the Auxiliary Data Set.

0 … 9999 Parameter index

92.06 AUX DS ACT5 Selects the address from which the Actual Signal 5 is read to the Auxiliary Data Set.

0 … 9999 Parameter index

92.07 MSW B10 PTR Selects the address from which the 03.02 Main Status Word bit 10 is read from.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.

92.08 MSW B13 PTR Selects the address from which the 03.02 Main Status Word bit 13 is read from.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.

92.09 MSW B14 PTR Selects the address from which the 03.02 Main Status Word bit 14 is read from.

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.

95 HARDWARE SPECIF Fan speed control, sine filter application etc.

95.01 FAN SPD CTRL MODE

Selects the speed control of the optional inverter cooling fan.

CONST 50 Hz Fan is running at constant frequency of 50 Hz when powered. 0

Index Name/Selection Description FbEq

Actual signals and parameters

Page 326: VFD Documents

176

RUN/STOP Drive stopped: Fan is running at constant frequency of 10 Hz.Drive running: Fan is running at constant frequency of 50 Hz.

1

CONTROLLED The speed of the fan is determined from IGBT temperature vs. fan speed curve.

2

95.02 FUSE SWITCH CTRL Activates the inverter DC switch (switch fuse) monitoring function. The monitoring must be active when the Switch Fuse Control Board (ASFC) is in use and connected to the inverter AINT board, i.e. in all frame R8i inverters equipped with the DC switch. The function must be inactive in units that do not use the ASFC board with the DC switch, i.e. for frame R2i…R7i inverters and all single drive units where no DC switch exists. The default setting (ON or OFF) for each unit is set accordingly at the factory as default.ACS800 IGBT pulses are always blocked when the program detects that the DC switch is opened or inverter charging is ongoing (at power switch on). The application program generates alarm INV DISABLED if the DC switch is opened when the inverter is stopped. The inverter trips to fault INV DISABLED if the DC switch is opened when the inverter is running.

OFF Inactive 0

ON Active 1

95.03 INT CONFIG USER Number of parallel connected inverter modules. Activates the Reduced Run function. See section Reduced Run function on page 82.

1...12 Number of parallel connected inverter modules

95.04 EX/SIN REQUEST Activates the sine filter or Ex-motor application.

NO Inactive 1

EX Ex-motor application. Used with motors which comply with the ATEX directive. 2

SIN Sine filter application. See the Sine Filters User’s Manual for ACS800 Drives [3AFE68389178 (English)].

3

EX&SIN EX-motor and sine filter applications. See the Sine Filters User’s Manual for ACS800 Drives [3AFE68389178 (English)].Note: This selection is not supported from firmware version AS7R7363 onwards.

4

95.05 ENA INC SW FREQ Activates the minimum switching frequency limitation for Ex-motor applications. Parameter is visible if parameter 95.04 EX/SIN REQUEST is set to EX.

NO Inactive 0

YES Active. Minimum switching frequency limit is set to 2 kHz. Used with motors with an ATEX certification based on 2 kHz minimum switching frequency.

1

Index Name/Selection Description FbEq

Actual signals and parameters

Page 327: VFD Documents

177

95.06 LCU Q PW REF Defines the reference value for the line-side converter (i.e. IGBT supply unit) reactive power generation. Line-side converter can generate reactive power to the supply network. This reference is written into line-side converter unit parameter 24.02 Q POWER REF2. For more information, see IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (English)]. Example 1: When parameter 24.03 Q POWER REF2 SEL is set to PERCENT, value 10000 of parameter 24.02 Q POWER REF2 equals to value 100% of parameter 24.01 Q POWER REF (i.e. 100% of the converter nominal power given in signal 04.06 CONV NOM POWER).Example 2: When parameter 24.03 Q POWER REF2 SEL is set to kVAr, value 1000 of parameter 24.02 Q POWER REF2 equals to parameter 24.01 Q POWER REF value calculated with the following equation: 100 · (1000 kVAr divided by converter nominal power in kVAr)%.Example 3: When parameter 24.03 Q POWER REF2 SEL is set to PHI, value 3000 of parameter 24.02 POWER REF2 equals approximately to parameter 24.01 Q POWER REF value calculated with the following equation:

Parameter 24.03 values are converter to degrees by the line-side converter application program: -3000...30000 -30°...30°. Value -10000/10000 equals to -30°/30°, since the range is limited to -3000/3000.

-10000...10000 Reference value. See par. description.

95.07 LCU DC REF Defines the intermediate circuit DC voltage reference for the line-side converter (i.e. IGBT supply unit). This reference is written into line-side converter parameter 23.01 DC VOLT REF. For more information, see IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (English)].

0...1100 V Voltage 1 = 1 V

95.08 LCU PAR1 SEL Selects the line-side converter address from which the actual signal 09.12 LCU ACT SIGNAL1 is read from.

0…9999 Line-side converter parameter index. Default value 106 = line-side converter parameter 01.06 LINE CURRENT. For more information, see IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (English)].

0…9999

95.09 LCU PAR2 SEL Selects the line-side converter address from which the actual signal 09.13 LCU ACT SIGNAL2 is read from.

0…9999 Line-side converter parameter index. Default value 110 = line side converter parameter 01.10 DC VOLTAGE. For more information, see IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (English)].

0…9999

95.10 TEMP INV AMBIENT Defines the ambient temperature for the Enhanced drive temperature monitoring function. See Enhanced drive temperature monitoring for ACS800, frame sizes R7 and R8 on page 67.Note: If ambient temperature exceeds 40°C, the drive load capacity decreases. See the derating instructions in the appropriate hardware manual.

20...50°C Temperature 10 = 1°C

Index Name/Selection Description FbEq

30( )cos PS---- P

P2 Q2+------------------------==

SQ

PPositive reference 30° denotes capacitive load. Negative reference 30° denotes inductive load.

30°

P = signal 01.09 POWER value

=

Actual signals and parameters

Page 328: VFD Documents

178

95.11 SUPPLY CTRL MODE

Enables/disables the control and data transfer of line-side converter unit (LSU) by inverter unit (INU). The parameter 98.02 COMM.MODULE in LSU must have the value INU COM LIM.

NONE Line-side converter control disabled. 0

LINE CONV Limited control from the inverter RMIO board DDCS channel CH1. 65535

95.12 LCU RUN PTR Selection of run command for line-side converter. When 95.11 SUPPLY CTRL MODE is set to LINE CONV, starting of modulation can be assigned freely to a parameter or signal using bit pointer.Note: This parameter is available in AS7R firmware version only.

-255.255.31… +255.255.31 / C.-32768…C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must have value C to enable the constant setting.

-

96 EXTERNAL AO Output signal selection and processing for the analogue extension module (optional).The parameters are visible only when the module is installed and activated by parameter 98.06.

96.01 EXT AO1 Selects the signal connected to analogue output AO1 of the analogue I/O extension module.

NOT USED See parameter 15.01. 1

P SPEED See parameter 15.01. 2

SPEED See parameter 15.01. 3

FREQUENCY See parameter 15.01. 4

CURRENT See parameter 15.01. 5

TORQUE See parameter 15.01. 6

Index Name/Selection Description FbEq

+

+

24.04Dataset 122 (CH0)MSW (fixed)106 (value)110 (value)

PARAM 23.01

AI1

AI2

AI3

FIELDBUS

11.01 DC REF SELECT

23.01

Dataset 121 (CH0)MCW (fixed)Q-REF(fixed)DC REF(fixed)

98.02 COMM. MODULE = INVERTER

MCW = Main Control WordMSW = Main Status Word

Dataset 123 (CH0)106110

PARAM 24.01

AI1

AI2

AI3

PARAM 24.02

24.03 Q POWER REF2 SEL

PERCENTkVArPHICOSPHI

24.02

11.02 Q REF SELECT

24.01

Inverter RMIO board

Line converter RMIO boardQ POVER REF

DC VOLT REF

Dataset 123 (CH1)95.08 LCU PAR1 SEL95.09 LCU PAR2 SEL

Dataset 121 (CH1)MCW95.06 LCU Q PW REF95.07 LCU DC REF

Dataset 122 (CH1)MSW9.12 LCU ACT SIGNAL19.13 LCU ACT SIGNAL2

Actual signals and parameters

Page 329: VFD Documents

179

POWER See parameter 15.01. 7

DC BUS VOLT See parameter 15.01. 8

OUTPUT VOLT See parameter 15.01. 9

APPL OUTPUT See parameter 15.01. 10

REFERENCE See parameter 15.01. 11

CONTROL DEV See parameter 15.01. 12

ACTUAL 1 See parameter 15.01. 13

ACTUAL 2 See parameter 15.01. 14

COM.REF4 See parameter 15.01. 15

PARAM 96.11 Source selected by parameter 96.11. 16

96.02 INVERT EXT AO1 Activates the inversion of analogue output AO1 of the analogue I/O extension module.

NO Inactive 0

YES Active. The analogue signal is at a minimum level when the drive signal indicated is at its maximum and vice versa.

65535

96.03 MINIMUM EXT AO1 Defines the minimum value for the analogue output AO1 of the analogue I/O extension module. Note: Actually, the setting 10 mA or 12 mA does not set the AO1 minimum but fixes 10/12 mA to actual signal value zero.Example: Motor speed is read through the analogue output. - The motor nominal speed is 1000 rpm (parameter 99.08). - 96.02 is NO. - 96.05 is 100%. The analogue output value as a function of the speed is shown below.

0 mA 0 mA 1

4 mA 4 mA 2

10 mA 10 mA 3

12 mA 12 mA 4

96.04 FILTER EXT AO1 Defines the filtering time constant for analogue output AO1 of the analogue I/O extension module. See parameter 15.04.

0.00 … 10.00 s Filtering time constant 0 … 1000

96.05 SCALE EXT AO1 Defines the scaling factor for analogue output AO1 of the analogue I/O extension module. See parameter 15.05.

Index Name/Selection Description FbEq

-1000

Analogue output

1000

mA

20

0-500 500Speed/rpm

1012

4

1

2

3

4

0 mA

4 mA

10 mA

12 mA

Analogue outputsignal minimum

1

2

3

4

1

2

Actual signals and parameters

Page 330: VFD Documents

180

10 … 1000% Scaling factor 100 … 10000

96.06 EXT AO2 Selects the signal connected to analogue output AO2 of the analogue I/O extension module.

NOT USED See parameter 15.01. 1

P SPEED See parameter 15.01. 2

SPEED See parameter 15.01. 3

FREQUENCY See parameter 15.01. 4

CURRENT See parameter 15.01. 5

TORQUE See parameter 15.01. 6

POWER See parameter 15.01. 7

DC BUS VOLT See parameter 15.01. 8

OUTPUT VOLT See parameter 15.01. 9

APPL OUTPUT See parameter 15.01. 10

REFERENCE See parameter 15.01. 11

CONTROL DEV See parameter 15.01. 12

ACTUAL 1 See parameter 15.01. 13

ACTUAL 2 See parameter 15.01. 14

COM.REF5 See parameter 15.06. 15

PARAM 96.12 Source selected by parameter 96.12. 16

96.07 INVERT EXT AO2 Activates the inversion of analogue output AO2 of the analogue I/O extension module. The analogue signal is at its minimum level when the drive signal indicated is at its maximum and vice versa.

NO Inactive 0

YES Active 65535

96.08 MINIMUM EXT AO2 Defines the minimum value for analogue output AO2 of the analogue I/O extension module. See parameter 96.03.

0 mA 0 mA 1

4 mA 4 mA 2

10 mA 10 mA 3

12 mA 12 mA 4

96.09 FILTER EXT AO2 Defines the filtering time constant for analogue output AO2 of the analogue I/O extension module. See parameter 15.04.

0.00 … 10.00 s Filtering time constant 0 … 1000

96.10 SCALE EXT AO2 Defines the scaling factor for analogue output AO2 of the analogue I/O extension module. See parameter 15.05.

10 … 1000% Scaling factor 100 … 10000

96.11 EXT AO1 PTR Defines the source or constant for value PAR 96.11 of parameter 96.01. 1000 = 1 mA

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

Index Name/Selection Description FbEq

Actual signals and parameters

Page 331: VFD Documents

181

96.12 EXT AO2 PTR Defines the source or constant for value PAR 96.12 of parameter 96.06. 1000 = 1 mA

-255.255.31 … +255.255.31 / C.-32768 … C.32767

Parameter index or a constant value. See parameter 10.04 for information on the difference.

-

98 OPTION MODULES Activation of the option modules.The parameter settings will remain the same even though the application macro is changed (parameter 99.02).

98.01 ENCODER MODULE Activates the communication to the optional pulse encoder module. See also parameter group 50 ENCODER MODULE.

NTAC Communication active. Module type: NTAC module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 16. For directions, see the NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (English)].

0

NO Inactive 1

RTAC-SLOT1 Communication active. Module type: RTAC. Connection interface: Option slot 1 of the drive.

2

RTAC-SLOT2 Communication active. Module type: RTAC. Connection interface: Option slot 2 of the drive.

3

RTAC-DDCS Communication active. Module type: RTAC. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 16. For directions, see the RTAC-01 Pulse Encoder Interface User's Manual [3AFE64486853 (English)].

4

RRIA-SLOT1 Communication active. Module type: RRIA. Connection interface: option slot 1 of the drive.

5

RRIA-SLOT2 Communication active. Module type: RRIA. Connection interface: option slot 2 of the drive.

6

RRIA-DDCS Communication active. Module type: RRIA. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link.Note: Module node number must be set to 16. For directions, see RRIA-01 Resolver Interface Module User's Manual [3AFE68570760 (English)].

7

RTAC03-SLOT1 Communication active. Module type: RTAC-03. Connection interface: Option slot 1 of the drive.

RTAC03-SLOT2 Communication active. Module type: RTAC-03. Connection interface: Option slot 2 of the drive.

RTAC03-DDCS Communication active. Module type: RTAC-03. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 16. For directions, see the RTAC-03 Pulse Encoder Interface User's Manual [3AFE68650500 (English)].

98.02 COMM. MODULE LINK

Activates the external serial communication and selects the interface. See chapter Fieldbus control.

NO No communication 1

FIELDBUS The drive communicates through an Rxxx type fieldbus adapter connected to slot 1 or through an Nxxx type fieldbus adapter connected to RMIO board channel CH0. See also parameter group 51 COMM MODULE DATA.

2

Index Name/Selection Description FbEq

Actual signals and parameters

Page 332: VFD Documents

182

ADVANT The drive communicates with an ABB Advant OCS system via CH0 on the RDCO board (optional). See also parameter group 70 DDCS CONTROL.

3

STD MODBUS The drive communicates with a Modbus controller via the Modbus Adapter Module (RMBA) in option slot 1 of the drive. See also parameter 52 STANDARD MODBUS.

4

CUSTOMISED The drive communicates via a customer specified link. The control sources are defined by parameters 90.04 and 90.05.

5

98.03 DI/O EXT MODULE 1 Activates the communication to the digital I/O extension module 1 (optional) and defines the type and connection interface of the module. Module inputs: See parameter 98.09 for the use of the inputs in the drive application program.Module outputs: See parameters 14.10 and 14.11 for selecting the drive states that are indicated through the relay outputs.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 2. For directions, see the NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (English)].

1

NO Inactive 2

RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1 of the drive.

3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 2. For directions, see the RDIO Module User’s Manual [3AFE64485733 (English)].

5

98.04 DI/O EXT MODULE 2 Activates the communication to the digital I/O extension module 2 (optional) and defines the type and connection interface of the module. Module inputs: See parameter 98.10 for the use of the inputs in the drive application program.Module outputs: See parameters 14.12 and 14.13 for selecting the drive states that are indicated through the relay outputs.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 3. For directions, see the NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (English)].

1

NO Inactive 2

RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1 of the drive.

3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 3. For directions, see the RDIO Module User’s Manual [3AFE64485733 (English)].

5

Index Name/Selection Description FbEq

Actual signals and parameters

Page 333: VFD Documents

183

98.05 DI/O EXT MODULE 3 Activates the communication to the digital I/O extension module 3 (optional) and defines the type and connection interface of the module. Module inputs: See parameter 98.11 for the use of the inputs in the drive application program.Module outputs: See parameters 14.14 and 14.15 for selecting the drive states that are indicated through the relay outputs.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 4. For directions, see the NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (English)].

1

NO Inactive 2

RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1 of the drive.

3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 4. For directions, see the RDIO Module User’s Manual [3AFE64485733 (English)].

5

98.06 AI/O EXT MODULE Activates the communication to the analogue I/O extension module (optional), and defines the type and connection interface of the module. Module inputs: - Values AI5 and AI6 in the drive application program are connected to module inputs 1 and 2.- See parameters 98.13 and 98.14 for the signal type definitions.Module outputs: - See parameters 96.01 and 96.06 for selecting the drive signals that are indicated through module outputs 1 and 2.

NAIO Communication active. Module type: NAIO. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 5. For directions, see the NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (English)].

1

NO Communication inactive 2

RAIO-SLOT1 Communication active. Module type: RAIO. Connection interface: Option slot 1 of the drive.

3

RAIO-SLOT2 Communication active. Module type: RAIO. Connection interface: Option slot 2 of the drive.

4

RAIO-DDCS Communication active. Module type: RAIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 5. For directions, see the RAIO Module User’s Manual [3AFE64484567 (English)].

5

98.07 COMM PROFILE Defines the profile on which the communication with the fieldbus or another drive is based. Visible only when fieldbus communication is activated by parameter 98.02.

ABB DRIVES ABB Drives profile 1

Index Name/Selection Description FbEq

Actual signals and parameters

Page 334: VFD Documents

184

GENERIC Generic drive profile. Typically used with the fieldbus modules that have the type designation of form Rxxx (installed in the option slot of the drive).

2

CSA 2.8/3.0 Communication profile used by application program versions 2.8 and 3.0. 3

98.09 DI/O EXT1 DI FUNC Defines the naming of the inputs of digital I/O extension module 1 in the drive application program. See parameter 98.03.

DI7,8 DI1 and DI2 of the module extend the number of input channels. The module inputs are named DI7 and DI8.

1

REPL DI1,2 DI1 and DI2 of the module replace the standard input channels DI1 and DI2. The inputs are named DI1 and DI2.

2

DI7,8,9 DI1, DI2 and DI3 of the module extend the number of input channels. The module inputs are named DI7, DI8 and DI9.

3

REPL DI1,2,3 DI1, DI2 and DI3 of the module replace the standard input channels DI1, DI2 and DI3. The inputs are named DI1, DI2 and DI3.

4

98.10 DI/O EXT2 DI FUNC Defines the naming of the inputs of digital I/O extension module 2 in the drive application program. See parameter 98.04.

DI9,10 DI1 and DI2 of the module extend the number of input channels. The module inputs are named DI9 and DI10.

1

REPL DI3,4 DI1 and DI2 of the module replace the standard input channels DI3 and DI4. The inputs are named DI3 and DI4.

2

DI10,11,12 DI1, DI2 and DI3 of the module extend the number of input channels. The module inputs are named DI10, DI11 and DI12.

3

REPL DI4,5,6 DI1, DI2 and DI3 of the module replace the standard input channels DI1, DI2 and DI3. The inputs are named DI4, DI5 and DI6.

4

98.11 DI/O EXT3 DI FUNC Defines the naming of the inputs of digital I/O extension module 3 in the drive application program. See parameter 98.05.

DI11,12 DI1 and DI2 of the module extend the number of input channels. The module inputs are named DI11 and DI12.

1

REPL DI5,6 DI1 and DI2 of the module replace the standard input channels DI5 and DI6. The inputs are named DI5 and DI6.

2

Index Name/Selection Description FbEq

Actual signals and parameters

Page 335: VFD Documents

185

98.12 AI/O MOTOR TEMP Activates the communication to the analogue I/O extension module and reserves the module for the use of the motor temperature measurement function. The parameter also defines the type and connection interface of the module. For more information on the temperature measurement function, see parameter group 35 MOT TEMP MEAS and section Motor temperature measurement through an analogue I/O extension on page 75.The use of the analogue inputs (AI) and outputs (AO) of the module is shown in the table below.

Before setting the drive parameters, ensure the module hardware settings are appropriate for the motor temperature measurement:1. The module node number is 9.2. The input signal type selections are the following: - for one Pt 100 sensor measurement, set the range to 0 … 2 V. - for two to three Pt 100 sensors or one to three PTC sensors, set the range to 0 … 10 V. 3. The operation mode selection is unipolar.

NAIO Communication active. Module type: NAIO. Connection interface: Fibre optic DDCS link.Note: Make the module hardware settings as described above. For instructions, see the NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (English)].

1

NO Inactive 2

RAIO-SLOT1 Communication active. Module type: RAIO. Connection interface: Option slot 1 of the drive.Note: Make the module hardware settings as described above. The node number is not required. For directions, see the RAIO Module User’s Manual [3AFE64484567 (English)].

3

RAIO-SLOT2 Communication active. Module type: RAIO. Connection interface: Option slot 2 of the drive. Note: Make the module hardware settings as described above. The node number is not required. For directions, see the RAIO Module User’s Manual [3AFE64484567 (English)].

4

Index Name/Selection Description FbEq

Motor 1 temperature measurementAO1 Feeds a constant current to motor 1 temperature sensor. The current

value depends on the setting of parameter 35.01:- AO1 is 9.1 mA with selection 1xPT100 - AO1 is 1.6 mA with selection 1...3 PTC

AI1 Measures voltage over motor 1 temperature sensor.

Motor 2 temperature measurementAO2 Feeds a constant current to motor 2 temperature sensor. The current

value depends on the setting of parameter 35.04:- AO2 is 9.1 mA with selection 1xPT100, - AO2 is 1.6 mA with selection 1...3 PTC

AI2 Measures voltage over motor 2 temperature sensor.

Actual signals and parameters

Page 336: VFD Documents

186

RAIO-DDCS Communication active. Module type: RAIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link.Note: Set the module node number to 9. For directions, see the RAIO Module User’s Manual [3AFE64484567 (English)].

5

98.13 AI/O EXT AI1 FUNC Defines the signal type for input 1 of the analogue I/O extension module (AI5 in the drive application program). The setting must match the signal connected to the module.Note: The communication must be activated by parameter 98.06.

UNIPOLAR AI5 Unipolar 1

BIPOLAR AI5 Bipolar 2

98.14 AI/O EXT AI2 FUNC Defines the signal type for input 2 of the analogue I/O extension module (AI6 in the drive application program). The setting must match the signal connected to the module.Note: The communication must be activated by parameter 98.06.

UNIPOLAR AI6 Unipolar 1

BIPOLAR AI6 Bipolar 2

98.16 SIN FILT SUPERV Activates the communication to the digital I/O extension module and reserves the module for the use of the sine-filter temperature measurement.Parameter is visible if parameter 95.04 is set to SIN or EX&SIN. Parameter value is automatically set to NO, when parameter 95.04 value is changed.Note: This parameter is used only in special applications.

NDIO Module type: NDIO module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 8. For directions see the NTAC-0x/NDIO-0x/NAIO-0x Module Installation and Start-up Guide [3AFY58919730 (English)].

1

NO Supervision disabled. 2

RDIO-SLOT1 Module type: RDIO. Connection interface: Option slot 1 of the drive. 3

RDIO-SLOT2 Module type: RDIO. Connection interface: Option slot 2 of the drive. 4

RDIO-DDCS Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link.Note: Module node number must be set to 8. For directions, see the RDIO Module User's Manual [3AFE64485733 (English)].

5

99 START-UP DATA Language selection. Definition of motor set-up data.

99.01 LANGUAGE Selects the display language.

ENGLISH British English 0

ENGLISH AM American English. If selected, the unit of power used is HP instead of kW. 1

DEUTSCH German 2

ITALIANO Italian 3

ESPANOL Spanish 4

PORTUGUES Portuguese 5

NEDERLANDS Dutch 6

FRANCAIS French 7

DANSK Danish 8

SUOMI Finnish 9

SVENSKA Swedish 10

Index Name/Selection Description FbEq

Actual signals and parameters

Page 337: VFD Documents

187

CESKY Czech 11

POLSKI/LOC1 Polish 12

PO-RUS/LOC2 Russian 13

99.02 APPLICATION MACRO

Selects the application macro. See chapter Application macros for more information.Note: When you change the default parameter values of a macro, the new settings become valid immediately and stay valid even if the power of the drive is switched off and on. However, backup of the default parameter settings (factory settings) of each standard macro is still available. See parameter 99.03.

FACTORY Factory for basic applications 1

HAND/AUTO Two control devices are connected to the drive: - device 1 communicates through the interface defined by external control location EXT1.- device 2 communicates through the interface defined by external control location EXT2.- EXT1 or EXT2 is active at a time. Switching through a digital input.

2

PID-CTRL PID control. For application in which the drive controls a process value. E.g. pressure control by the drive running the pressure boost pump. Measured pressure and the pressure reference are connected to the drive.See sections Process PID control on page 70 and Sleep function for the process PID control on page 71.

3

T-CTRL Torque Control macro 4

SEQ CTRL Sequential Control macro. For applications that are frequently run through a pre-defined speed pattern (constant speeds and acceleration and deceleration ramps).

5

USER 1 LOAD User 1 macro loaded into use. Before loading, check that the saved parameter settings and the motor model are suitable for the application.

6

USER 1 SAVE Save User 1 macro. Stores the current parameter settings and the motor model.Note: There are parameters that are not included in the macros. See parameter 99.03.

7

USER 2 LOAD User 2 macro loaded into use. Before loading, check that the saved parameter settings and the motor model are suitable for the application.

8

USER 2 SAVE Save User 2 macro. Stores the current parameter settings and the motor model.Note: There are parameters that are not included in the macros. See parameter 99.03.

9

99.03 APPLIC RESTORE Restores the original settings of the active application macro (99.02).- If a standard macro (Factory, ... , Sequential Control) is active, the parameter values are restored to the default settings (factory settings). Exceptions: parameter settings in parameter group 99 remain unchanged. The motor model remains unchanged. - If User Macro 1 or 2 is active, the parameter values are restored to the last saved values. In addition, the last saved motor model are restored. Exceptions: Settings of parameters 16.05 and 99.02 remain unchanged. Note: The parameter settings and the motor model are restored according to the same principles when a macro is changed to another.

NO No action 0

Index Name/Selection Description FbEq

Actual signals and parameters

Page 338: VFD Documents

188

YES Restoring 65535

99.04 MOTOR CTRL MODE Selects the motor control mode.

DTC Direct Torque Control mode is suitable for most applications. 0

SCALAR Scalar control is suitable in special cases where the DTC cannot be applied. The scalar control mode is recommended:- for multimotor drives with variable number of motors - when the nominal current of the motor is less than 1/6 of the nominal output current of the drive (inverter)- the drive is used for test purposes with no motor connected. Note: The outstanding motor control accuracy of the DTC cannot be achieved in scalar control. The differences between the scalar and DTC control modes are pointed out in this manual in relevant parameter lists. There are some standard features that are disabled in the scalar control mode: Motor Identification Run (group 99 START-UP DATA), Speed Limits (group 20 LIMITS), Torque Limit (group 20 LIMITS), DC Hold (group 21 START/STOP), DC Magnetizing (group 21 START/STOP), Speed Controller Tuning (group 23 SPEED CTRL), Torque Control (group 24 TORQUE CTRL), Flux Optimization (group 26 MOTOR CONTROL), Flux Braking (group 26 MOTOR CONTROL), Underload Function (group 30 FAULT FUNCTIONS), Motor Phase Loss Protection (group 30 FAULT FUNCTIONS), Motor Stall Protection (group 30 FAULT FUNCTIONS).For more information, see section Scalar control on page 62.

65535

99.05 MOTOR NOM VOLTAGE

Defines the nominal motor voltage. Must be equal to the value on the motor rating plate.

1/2 … 2 · UN Voltage. Allowed range is 1/2 … 2 · UN of the drive.Note: The stress on the motor insulations is always dependent on the drive supply voltage. This also applies to the case where the motor voltage rating is lower than the rating of the drive and the supply of the drive.

1 = 1 V

99.06 MOTOR NOM CURRENT

Defines the nominal motor current. Must be equal to the value on the motor rating plate. If several motors are connected to the inverter, enter the total current of the motors.Note: Correct motor run requires that the magnetizing current of the motor does not exceed 90 percent of the nominal current of the inverter.

0 … 2 · I2hd Allowed range: approx. 1/6 … 2 · I2hd of ACS800 (parameter 99.04 = DTC). Allowed range: approx. 0 … 2 · I2hd of ACS800 (parameter 99.04 = SCALAR).

1 = 0.1 A

99.07 MOTOR NOM FREQ Defines the nominal motor frequency.

8 … 300 Hz Nominal frequency (50 or 60 Hz typically) 800 … 30000

99.08 MOTOR NOM SPEED Defines the nominal motor speed. Must be equal to the value on the motor rating plate. The motor synchronous speed or another approximate value must not be given instead!Note: If the value of parameter 99.08 is changed, the speed limits in parameter group 20 LIMITS change automatically as well.

1 … 18000 rpm Nominal motor speed 1 … 18000

99.09 MOTOR NOM POWER

Defines the nominal motor power. Set exactly as on the motor rating plate. If several motors are connected to the inverter, enter the total power of the motors.

0 … 9000 kW Nominal motor power 0 … 90000

Index Name/Selection Description FbEq

Actual signals and parameters

Page 339: VFD Documents

189

99.10 MOTOR ID RUN MODE

Selects the type of the motor identification. During the identification, the drive will identify the characteristics of the motor for optimum motor control. The ID Run Procedure is described in chapter Start-up and control through the I/O.Note: The ID Run (STANDARD or REDUCED) should be selected if: - The operation point is near zero speed, and/or- Operation at torque range above the motor nominal torque within a wide speed range and without any measured speed feedback is required.Note: The ID Run (STANDARD or REDUCED) cannot be performed if parameter 99.04 = SCALAR.See section Motor identification on page 53.

ID MAGN No ID Run. The motor model is calculated at first start by magnetising the motor for 20 to 60 s at zero speed. This can be selected in most applications.

1

STANDARD Standard ID Run. Guarantees the best possible control accuracy. The ID Run takes about one minute.Note: The motor must be de-coupled from the driven equipment.Note: Check the direction of rotation of the motor before starting the ID Run. During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50 … 80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

2

REDUCED Reduced ID Run. Should be selected instead of the Standard ID Run: - if mechanical losses are higher than 20% (i.e. the motor cannot be de-coupled from the driven equipment) - if flux reduction is not allowed while the motor is running (i.e. in case of a motor with an integrated brake supplied from the motor terminals).Note: Check the direction of rotation of the motor before starting the ID Run. During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50 … 80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

3

99.11 DEVICE NAME Defines the name for the drive or application. The name is visible on the control panel display in the Drive Selection Mode. Note: The name can be typed only by using a drive PC tool.

Index Name/Selection Description FbEq

Actual signals and parameters

Page 340: VFD Documents

190

Actual signals and parameters

Page 341: VFD Documents

191

Fieldbus control

Chapter overviewThe chapter describes how the drive can be controlled by external devices over a communication network.

System overviewThe drive can be connected to an external control system – usually a fieldbus controller – via an adapter module. The drive can be set to receive all of its control information through the external control interface, or the control can be distributed between the external control interface and other available sources, for example digital and analogue inputs. The following diagram shows the control interfaces and I/O connections of the drive.

Fieldbus

Otherdevices

Fieldbuscontroller

Slot 1 or 2

References

Data Flow

Status Word (SW)Actual values

Parameter R/W requests/responses

ACS800

Slot 1

RDCO comm.module

RM

IO b

oard

RMBA-01 adapterstd. Modbus link

Fieldbus adapter

Process I/O (cyclic)

Service messages (acyclic)

Rxxx

(*

(*

Control Word (CW)

(* Either an Rxxx or Nxxx, and an RMBA-01 adapter can be connected to the drive simultaneously.

CH1(DDCS)

AIMA-01 I/Oadapter module

CH0(DDCS)

(*

or

Fieldbus adapterNxxx

Advantcontroller(e.g. AC 800M, AC 80)

I/O adapterRTAC/RDIO/RAIO

Modbus

Controller

Fieldbus control

Page 342: VFD Documents

192

Redundant fieldbus controlIt is possible to connect two fieldbuses to the drive with the following adapter configuration:

• Type Rxxx fieldbus adapter module (not RMBA-01) is installed in drive slot 1.

• RMBA-01 Modbus Adapter module is installed in drive slot 2.

The control (i.e. the Main Reference data set, see section The fieldbus control interface on page 202) is activated by setting parameter 98.02 to FIELDBUS or STD MODBUS.

In case there is a communication problem with one fieldbus, the control can be switched to the other fieldbus. Switching between the buses can be controlled e.g. with adaptive programming. Parameters and signals can be read by both fieldbuses, but simultaneous cyclical writing to the same parameter is forbidden.

Slot 2

ACS800RMIO board

RMBA-01 adapterstd. Modbus link

RPBA-01 adapterPROFIBUS-DP link

Slot 1

E.g. PROFIBUS Modbus

Fieldbus control

Page 343: VFD Documents

193

Setting up communication through a fieldbus adapter moduleFieldbus adapters for several communication protocols are available (e.g. PROFIBUS® and Modbus®). Rxxx type fieldbus adapter modules are mounted in expansion slot 1 of the drive. Nxxx type fieldbus adapter modules are connected to channel CH0 of the RDCO module.

Note: For instructions on setting up an RMBA-01 module, see section Setting up communication through the Standard Modbus Link on page 195.

Before configuring the drive for fieldbus control, the adapter module must be mechanically and electrically installed according to the instructions given in the hardware manual of the drive, and the module manual.

The following table lists the parameters which need to be defined when setting up communication through a fieldbus adapter.

Parameter Alternative settings

Setting forfieldbus control

Function/Information

COMMUNICATION INITIALISATION

98.02 NOFIELDBUS ADVANT STD MODBUS CUSTOMISED

FIELDBUS Initialises communication between drive and fieldbus adapter module. Activates module set-up parameters (Group 51).

98.07 ABB DRIVESGENERIC CSA 2.8/3.0

ABB DRIVES GENERIC or CSA 2.8/3.0

Selects the communication profile used by the drive. See section Communication profiles on page 210.

ADAPTER MODULE CONFIGURATION

51.01 MODULE TYPE

– – Displays the type of the fieldbus adapter module.

51.02 (FIELDBUS PARAMETER 2)

These parameters are adapter module-specific. For more information, see the module manual. Note that not all of these parameters are necessarily visible.

• • •

51.26 (FIELDBUS PARAMETER 26)

51.27 FBA PAR REFRESH*

(0) DONE (1) REFRESH

– Validates any changed adapter module configuration parameter settings. After refreshing, the value reverts automatically to DONE.

51.28 FILE CPI FW REV*

xyz (binary coded decimal

– Displays the required CPI firmware revision of the fieldbus adapter as defined in the configuration file stored in the memory of the drive. The CPI firmware version of the fieldbus adapter (refer to par. 51.32) must contain the same or a later CPI version to be compatible. x = major revision number; y = minor revision number; z = correction number. Example: 107 = revision 1.07.

Fieldbus control

Page 344: VFD Documents

194

After the module configuration parameters in group 51 have been set, the drive control parameters (section Drive control parameters on page 199) must be checked and adjusted where necessary.

The new settings will take effect when the drive is next powered up, or when parameter 51.27 is activated.

51.29 FILE CONFIG ID*

xyz (binary coded decimal)

– Displays the fieldbus adapter module configuration file identification stored in the memory of the drive. This information is drive application program-dependent.

51.30 FILE CONFIG REV*

xyz (binary coded decimal)

– Displays the fieldbus adapter module configuration file revision stored in the memory of the drive. x = major revision number; y = minor revision number; z = correction number. Example: 1 = revision 0.01.

51.31 FBA STATUS*

(0) IDLE (1) EXEC. INIT (2) TIME OUT (3) CONFIG ERROR (4) OFF-LINE (5) ON-LINE (6) RESET

– Displays the status of the adapter module.IDLE = Adapter not configured.EXEC. INIT = Adapter initialising.TIME OUT = A timeout has occurred in the communication between the adapter and the drive.CONFIG ERROR = Adapter configuration error. The major or minor revision code of the CPI program revision in the drive is not the revision required by the module (refer to par. 51.32) or configuration file upload has failed more than five times.OFF-LINE = Adapter is off-line.ON-LINE = Adapter is on-line.RESET = Adapter performing a hardware reset.

51.32 FBA CPI FW REV*

– – Displays the CPI program revision of the module inserted in slot 1. x = major revision number; y = minor revision number; z = correction number. Example: 107 = revision 1.07.

51.33 FBA APPL FW REV*

– – Displays the application program revision of the module inserted in slot 1. x = major revision number; y = minor revision number; z = correction number. Example: 107 = revision 1.07.

*Parameters 51.27 to 51.33 are only visible when type Rxxx fieldbus adapter is installed.

Parameter Alternative settings

Setting forfieldbus control

Function/Information

Fieldbus control

Page 345: VFD Documents

195

Setting up communication through the Standard Modbus LinkAn RMBA-01 Modbus Adapter installed in slot 1 or 2 of the drive forms an interface called the Standard Modbus Link. The Standard Modbus Link can be used for external control of the drive by a Modbus controller (RTU protocol only).

Before configuring the drive for Modbus control, the adapter module must be mechanically and electrically installed according to the instructions given in the hardware manual of the drive, and the module manual.

The following table lists the parameters, which need to be defined when setting up communication through the standard Modbus link.

After the communication parameters in group 52 have been set, the drive control parameters (section Drive control parameters on page 199) must be checked and adjusted where necessary.

Parameter Alternative settings Setting for control through Standard Modbus Link

Function/Information

COMMUNICATION INITIALISATION

98.02 NOFIELDBUS ADVANTSTD MODBUS CUSTOMISED

STD MODBUS Initialises communication between drive (Standard Modbus Link) and Modbus-protocol controller. Activates communication parameters in group 52.

98.07 ABB DRIVESGENERIC CSA 2.8/3.0

ABB DRIVES Selects the communication profile used by the drive. See section Communication profiles on page 210.

COMMUNICATION PARAMETERS

52.01 1 to 247 – Specifies the station number of the drive on the Standard Modbus Link.

52.02 600120024004800960019200

– Defines the communication speed for the Standard Modbus Link.

52.03 ODDEVEN NONE1STOPBIT NONE2STOPBIT

– Selects the parity setting for the Standard Modbus Link.

Fieldbus control

Page 346: VFD Documents

196

Modbus addressing

In the Modbus controller memory, the Control Word, the Status Word, the references, and the actual values are mapped as follows:

More information on Modbus communication is available from the Modicon website http://www.modicon.com.

Data from fieldbus controller to drive Data from drive to fieldbus controller

Address Contents Address Contents

40001 Control Word 40004 Status Word

40002 Reference 1 40005 Actual 1

40003 Reference 2 40006 Actual 2

40007 Reference 3 40010 Actual 3

40008 Reference 4 40011 Actual 4

40009 Reference 5 40012 Actual 5

Fieldbus control

Page 347: VFD Documents

197

Setting up communication through Advant controllerThe Advant controller is connected via DDCS link to channel CH0 of the RDCO module.

• AC 800M Advant ControllerDriveBus connection: CI858 DriveBus Communication Interface required. See CI858 DriveBus Communication Interface User’s Manual, [3AFE 68237432 (English)].

Optical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required. See section Optical ModuleBus connection below.

For more information, see AC 800M Controller Hardware Manual [3BSE027941 (English)], AC 800M/C Communication, Protocols and Design Manual [3BSE028811 (English),] ABB Industrial Systems, Västerås, Sweden.

• AC 80 Advant ControllerOptical ModuleBus connection: TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required. See section Optical ModuleBus connection below.

• CI810A Fieldbus Communication Interface (FCI)Optical ModuleBus connection

TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required.

The TB811 Optical ModuleBus Port Interface is equipped with 5 MBd optical components and the TB810 is equipped with 10 MBd components. All optical components on a fibre optic link must be of the same type since 5 MBd components do not match with 10 MBd components. The choice between TB810 and TB811 depends on the equipment it is connected to. With RDCO Communication Option Module, the Interface is selected as follows:

If branching unit NDBU-85/95 is used with CI810A, TB810 Optical ModuleBus Port Interface must be used.

Optional ModuleBus PortInterface

DDCS Communication Option Module

RDCO-01 RDCO-02 RDCO-03

TB811 × ×

TB810 ×

Fieldbus control

Page 348: VFD Documents

198

The following table lists the parameters which need to be defined when setting up communication between the drive and Advant controller.

After the communication initialisation parameters have been set, the drive control parameters (section Drive control parameters on page 199) must be checked and adjusted where necessary.

In an Optical ModuleBus connection, channel 0 address (parameter 70.01) is calculated from the value of the POSITION terminal in the appropriate database element (for the AC 80, DRISTD) as follows:

1. Multiply the hundreds of the value of POSITION by 16.

2. Add the tens and ones of the value of POSITION to the result.

For example, if the POSITION terminal of the DRISTD database element has the value of 110 (the tenth drive on the Optical ModuleBus ring), parameter 70.01 must be set to 16 × 1 + 10 = 26.

Parameter Alternative settings Setting for control through CH0

Function/Information

COMMUNICATION INITIALISATION

98.02 NOFIELDBUSADVANTSTD MODBUS CUSTOMISED

ADVANT Initialises communication between drive (fibre optic channel CH0) and Advant controller. The transmission speed is 4 Mbit/s.

98.07 ABB DRIVESGENERICCSA 2.8/3.0

ABB DRIVES Selects the communication profile used by the drive. See section Communication profiles on page 210.

70.01 0-254 AC 800M ModuleBus 1...125AC 80 ModuleBus 17-125FCI (CI810A) 17-125

Defines the node address for DDCS channel CH0.

70.04 RINGSTAR

Selects the topology of the channel CH0 link.

Fieldbus control

Page 349: VFD Documents

199

Drive control parametersAfter the fieldbus communication has been set up, the drive control parameters listed in the table below must be checked and adjusted where necessary.

The Setting for fieldbus control column gives the value to use when the fieldbus interface is the desired source or destination for that particular signal. The Function/Information column gives a description of the parameter.

The fieldbus signal routes and message composition are explained later in section The fieldbus control interface on page 202.

Parameter Setting forfieldbus control

Function/Information

CONTROL COMMAND SOURCE SELECTION

10.01 COMM.CW Enables the fieldbus Control Word (except 03.01 Main Control Word bit 11) when EXT1 is selected as the active control location. See also par. 10.07.

10.02 COMM.CW Enables the fieldbus Control Word (except 03.01 Main Control Word bit 11) when EXT2 is selected as the active control location.

10.03 FORWARDREVERSE or REQUEST

Enables rotation direction control as defined by parameters 10.01 and 10.02. The direction control is explained in section Reference handling on page 204.

10.07 0 or 1 Setting the value to 1 overrides the setting of par. 10.01 so that the fieldbus Control Word (except 03.01 Main Control Word bit 11) is enabled when EXT1 is selected as the active control location.Note 1: Only visible with the Generic Drive communication profile selected (see par. 98.07).Note 2: Setting not saved into permanent memory.

10.08 0 or 1 Setting the value to 1 overrides the setting of par. 11.03 so that Fieldbus reference REF1 is used when EXT1 is selected as the active control location.Note 1: Only visible with the Generic Drive communication profile selected (see par. 98.07).Note 2: Setting not saved into permanent memory.

11.02 COMM.CW Enables EXT1/EXT2 selection by fieldbus Control Word bit 11 EXT CTRL LOC.

11.03 COMM.REF1 FAST COMM COM.REF1+AI1 COM.REF1+AI5 COM.REF1*AI1 or COM.REF1*AI5

Fieldbus reference REF1 is used when EXT1 is selected as the active control location. See section References on page 203 for information on the alternative settings.

11.06 COMM.REF2 FAST COMM COM.REF2+AI1 COM.REF2+AI5 COM.REF2*AI1 or COM.REF2*AI5

Fieldbus reference REF2 is used when EXT2 is selected as the active control location. See section References on page 203 for information on the alternative settings.

Fieldbus control

Page 350: VFD Documents

200

OUTPUT SIGNAL SOURCE SELECTION

14.01 COM.REF3 Enables relay output RO1 control by fieldbus reference REF3 bit 13.

14.02 COM.REF3 Enables relay output RO2 control by fieldbus reference REF3 bit 14.

14.03 COM.REF3 Enables relay output RO3 control by fieldbus reference REF3 bit 15.

15.01 COMM.REF4 Directs the contents of fieldbus reference REF4 to analogue output AO1. Scaling: 20000 = 20 mA

15.06 COMM.REF5 Directs the contents of fieldbus reference REF5 to analogue output AO2. Scaling: 20000 = 20 mA.

SYSTEM CONTROL INPUTS

16.01 COMM.CW Enables the control of the Run Enable signal through fieldbus 03.01 Main Control Word bit 3.Note: Must be set to YES when the Generic Drive communication profile is selected (see par. 98.07).

16.04 COMM.CW Enables fault reset through fieldbus 03.01 Main Control Word bit 7.Note: Reset through fieldbus Control Word (03.01 bit 7) is enabled automatically and it is independent of parameter 16.04 setting if parameter 10.01 or 10.02 is set to COMM.CW.

16.07 DONE; SAVE Saves parameter value changes (including those made through fieldbus control) to permanent memory.

COMMUNICATION FAULT FUNCTIONS

30.18 FAULTNO CONST SP15 LAST SPEED

Determines drive action in case fieldbus communication is lost.Note: The communication loss detection is based on monitoring of received Main and Auxiliary data sets (whose sources are selected with parameters 90.04 and 90.05 respectively).

30.19 0.1 … 60.0 s Defines the time between Main Reference data set loss detection and the action selected with parameter 30.18.

30.20 ZEROLAST VALUE

Determines the state in which relay outputs RO1 to RO3 and analogue outputs AO1 and AO2 are left upon loss of the Auxiliary Reference data set.

30.21 0.0 … 60.0 s Defines the time between Auxiliary Reference data set loss detection and the action selected with parameter 30.18.Note: This supervision function is disabled if this parameter, or parameters 90.01, 90.02 and 90.03 are set to 0.

FIELDBUS REFERENCE TARGET SELECTION

90.01 0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF3 is written.Format: xxyy, where xx = parameter group (10 to 89), yy = parameter Index. E.g. 3001 = parameter 30.01.

Parameter Setting forfieldbus control

Function/Information

Fieldbus control

Page 351: VFD Documents

201

90.02 0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF4 is written.Format: see parameter 90.01.

90.03 0 … 8999 Defines the drive parameter into which the value of fieldbus reference REF5 is written.Format: see parameter 90.01.

90.04 1 (Fieldbus Control) or 81 (Standard Modbus Control)

If 98.02 is set to CUSTOMISED, this parameter selects the source from which the drive reads the Main Reference data set (comprising the fieldbus Control Word, fieldbus reference REF1, and fieldbus reference REF2).

90.05 3 (Fieldbus Control) or 83 (Standard Modbus Control)

If 98.02 is set to CUSTOMISED, this parameter selects the source from which the drive reads the Auxiliary Reference data set (comprising fieldbus references REF3, REF4 and REF5).

ACTUAL SIGNAL SELECTION FOR FIELDBUS

92.01 302 (Fixed) The Status Word is transmitted to as the first word of the Main Actual Signal data set.

92.02 0 … 9999 Selects the Actual signal or parameter value to be transmitted as the second word (ACT1) of the Main Actual Signal data set.Format: (x)xyy, where (x)x = actual signal group or parameter group, yy = actual signal or parameter index. E.g. 103 = actual signal 1.03 FREQUENCY; 2202 = parameter 22.02 ACCEL TIME 1.Note: With the Generic Drive communication profile active (par. 98.07 = GENERIC), this parameter is fixed to 102 (actual signal 1.02 SPEED – in DTC motor control mode) or 103 (1.03 FREQUENCY – in Scalar mode).

92.03 0 … 9999 Selects the actual signal or parameter value to be transmitted as the third word (ACT2) of the Main Actual Signal data set.Format: see parameter 92.02.

92.04 0 … 9999 Selects the actual signal or parameter value to be transmitted as the first word (ACT3) of the Auxiliary Actual Signal data set.Format: see parameter 92.02.

92.05 0 … 9999 Selects the actual signal or parameter value to be transmitted as the second word (ACT4) of the Auxiliary Actual Signal data set.Format: see parameter 92.02.

92.06 0 … 9999 Selects the actual signal or parameter value to be transmitted as the third word (ACT5) of the Auxiliary Actual Signal data set.Format: see parameter 92.02.

92.07 -255.255.31…+255.255.31 / C.-32768 … C.32767

Selects the address from which the 03.02 Main Status Word bit 10 is read from.

92.08 -255.255.31…+255.255.31 / C.-32768 … C.32767

Selects the address from which the 03.02 Main Status Word bit 13 is read from.

92.09 -255.255.31…+255.255.31 / C.-32768 … C.32767

Selects the address from which the 03.02 Main Status Word bit 14 is read from.

Parameter Setting forfieldbus control

Function/Information

Fieldbus control

Page 352: VFD Documents

202

The fieldbus control interfaceThe communication between a fieldbus system and the drive employs data sets. One data set (abbreviated DS) consists of three 16-bit words called data words (DW). The Standard Control Program supports the use of four data sets, two in each direction.

The two data sets for controlling the drive are referred to as the Main Reference data set and the Auxiliary Reference data set. The sources from which the drive reads the Main and Auxiliary Reference data sets are defined by parameters 90.04 and 90.05 respectively. The contents of the Main Reference data set are fixed. The contents of the Auxiliary Reference data set can be selected using parameters 90.01, 90.02 and 90.03.

The two data sets containing actual information on the drive are referred to as the Main Actual Signal data set and the Auxiliary Actual Signal data set. The contents of both data sets are partly selectable with the parameters at group 92.

*The index number is required when data word allocation to process data is defined via the fieldbus parameters at group 51. This function is dependent on the type of the fieldbus adapter.

**With the Generic Drive communication profile active, Actual 1 is fixed to actual signal 01.02 SPEED (in DTC motor control mode) or 01.03 FREQUENCY (in Scalar mode).

The update time for the Main Reference and Main Actual Signal data sets is 6 milliseconds; for the Auxiliary Reference and Auxiliary Actual Signal data sets, it is 100 milliseconds.

Data from fieldbus controller to drive Data from drive to fieldbus controller

Word Contents Selector Word Contents Selector

*Index Main Reference data set DS1 *Index Main Actual Signal data set DS2

1 1st word Control Word (Fixed) 4 1st word Status Word (Fixed)

2 2nd word Reference 1 (Fixed) 5 2nd word Actual 1 **Par. 92.02

3 3rd word Reference 2 (Fixed) 6 3rd word Actual 2 Par. 92.03

*Index Auxiliary Reference data set DS3 *Index Aux. Actual Signal data set DS4

7 1st word Reference 3 Par. 90.01 10 1st word Actual 3 Par. 92.04

8 2nd word Reference 4 Par. 90.02 11 2nd word Actual 4 Par. 92.05

9 3rd word Reference 5 Par. 90.03 12 3rd word Actual 5 Par. 92.06

Fieldbus control

Page 353: VFD Documents

203

The Control Word and the Status WordThe Control Word (CW) is the principal means of controlling the drive from a fieldbus system. It is effective when the active control location (EXT1 or EXT2, see parameters 10.01 and 10.02) is set to COMM.CW, or if par. 10.07 is set to 1 (with Generic Drive communication profile only).

The Control Word is sent by the fieldbus controller to the drive. The drive switches between its states according to the bit-coded instructions of the Control Word.

The Status Word (SW) is a word containing status information, sent by the drive to the fieldbus controller.

See section Communication profiles on page 210 for information on the composition of the Control Word and the Status Word.

ReferencesReferences (REF) are 16-bit signed integers. A negative reference (indicating reversed direction of rotation) is formed by calculating the two’s complement from the corresponding positive reference value.

Fieldbus reference selection and correction

Fieldbus reference (called COM.REF in signal selection contexts) is selected by setting a Reference selection parameter – 11.03 or 11.06 – to COMM.REFx, FAST COMM, COM.REFx+AI1, COM.REFx+AI5, COM.REFx*AI1 or COM.REFx*AI5. (With Generic Drive communication profile, fieldbus reference is also selected when par. 10.08 is set to 1.) The latter four selections enable correction of the fieldbus reference using analogue inputs as shown below. (An optional RAIO-01 Analogue I/O Extension Module is required for use of Analogue input AI5).

COMM.REF1 (in 11.03) or COMM.REF2 (in 11.06)The fieldbus reference is forwarded as such without correction.

FAST COMMThe fieldbus reference is forwarded as such without correction. The reference is read every 2 milliseconds if either of the following conditions is met:

• Control location is EXT1, par. 99.04 MOTOR CTRL MODE is DTC, and par. 40.14 TRIM MODE is OFF

• Control location is EXT2, par. 99.04 MOTOR CTRL MODE is DTC, par. 40.14 TRIM MODE is OFF, and a torque reference is used.

In any other event, the fieldbus reference is read every 6 milliseconds.

Note: The FAST COMM selection disables the critical speed function.

Fieldbus control

Page 354: VFD Documents

204

COM.REF1+AI1; COM.REF1+AI5; COM.REF1*AI1; COM.REF1*AI5 (in 11.03)COM.REF2+AI1; COM.REF2+AI5; COM.REF2*AI1; COM.REF2*AI5 (in 11.06)These selections enable the correction of the fieldbus reference as follows:

Reference handlingThe control of rotation direction is configured for each control location (EXT1 and EXT2) using the parameters in group 10. Fieldbus references are bipolar, i.e. they can be negative or positive. The following diagrams illustrate how group 10 parameters and the sign of the fieldbus reference interact to produce the reference REF1/REF2.

Notes:• With the ABB Drives communication profile, 100% reference is defined by

parameters 11.05 (REF1) and 11.08 (REF2).

• With the Generic Drive communication profile, 100% reference is defined by parameter 99.08 in DTC motor control mode (REF1), or 99.07 in scalar control mode (REF1), and by parameter 11.08 (REF2).

• External reference scaling parameters 11.04 and 11.07 are also in effect.

For information on the scaling of the fieldbus reference, see section Fieldbus reference scaling on page 214 (for ABB Drives profile) or Fieldbus reference scaling on page 217 (for Generic Drive profile).

Parameter Setting Effect of AI1/AI5 Input Voltage on Fieldbus Reference

COM.REFx+AI1COM.REFx+AI5

COM.REFx*AI1COM.REFx*AI5

(100 + 0.5 × [par. 13.03])%

100%

0 AI1/AI5 Input

Fieldbus ReferenceCorrection Coefficient

(100 – 0.5 × [par. 13.03])%5 V 10 V

Voltage

100%

0 AI1/AI5 Input

Fieldbus ReferenceCorrection Coefficient

0%

50%

5 V 10 VVoltage

Fieldbus control

Page 355: VFD Documents

205

Actual ValuesActual Values (ACT) are 16-bit words containing information on selected operations of the drive. The functions to be monitored are selected with the parameters in group 92. The scaling of the integers sent to the master as Actual Values depends on the selected function; please refer to chapter Actual signals and parameters.

*Direction determined by the sign of COM.REF

Direction determined by digital command,e.g. digital input, control panel

par. 10.03 DIRECTION = FORWARD

par. 10.03 DIRECTION = REVERSE

par. 10.03 DIRECTION = REQUEST

*Direction is determined by the sign of COM.REF whenpar. 10.01/10.02 EXTx STRT/STP/DIR is set to COMM.CWORpar. 11.03/11.06 EXT REFx SELECT is set to FAST COMM.

Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus-163%

Max.Ref.

–[Max.Ref.]

-100%

100%Ref. 1/2

ResultantREF1/2

163%

Fieldbus

-163%

Max.Ref.

–[Max.Ref.]

-100% 100%Ref. 1/2

ResultantREF1/2

163%

Direction Command:FORWARD

Direction Command:REVERSE

Fieldbus control

Page 356: VFD Documents

206

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 97 98 99

DA

TA

DS

1

DS

2

DS

3

DS

4

DS

5

• • •

DS

33

• • •

MA

IN

DA

TA S

ETR

EFER

ENC

E

AU

XILI

AR

YR

EFER

ENC

E

PAR

AM

ETER

10.0

1

10.0

2

• • •

89.9

9

TAB

LE

30.2

0 C

OM

M F

LT R

O/A

O30

.21

AU

X R

EF

DS

T-O

UT

90.0

1

90.0

2

90.0

3

• • •

30.1

8 C

OM

M F

AU

LT F

UN

C

Bits

13…

15

Ana

logu

e O

utpu

tA

O1

(see

15.

01)

Anal

ogue

Out

put

AO

2 (s

ee 1

5.06

)

SET

TAB

LEN

O

FIEL

D-

AD

VA

NT

STD

CU

STO

M-

BU

S

MO

DB

US

ISE

D 98.0

2

NO

FIEL

D-

AD

VA

NT

STD

CU

STO

M-

BU

S

MO

DB

US

ISE

D 98.0

2

CW

RE

F1

RE

F2

RE

F3

RE

F4

RE

F5

DA

TA S

ET

Rel

ay O

utpu

ts(s

ee 1

4.01

…14

.03)

30.1

8 C

OM

M F

AU

LT F

UN

C30

.19

MA

IN R

EF

DS

T-O

UT

Fiel

dbus

Ada

pter

Slo

t1

Fiel

dbus

spe

cific

sel

ecto

rs

in G

roup

51*

*A

ddre

sses

for w

ords

3 …

n in

fo

rmat

xxy

yxx

Add

ress

00yy

= w

ord

no. i

n da

ta s

et

tabl

e01

99xx

= p

ar. g

roup

yy =

par

. ind

exin

par

amet

er ta

ble

PAR

DS

* Dep

ends

on

the

sele

cted

mot

or c

ontro

l mod

e (p

aram

eter

99.

04).

** S

ee th

e fie

ldbu

s ad

apte

r use

r’s m

anua

l for

mor

e in

form

atio

n.

Wor

d 1

(Con

trol w

ord)

Wor

d 2

(Spe

ed/fr

eq re

f.*)

Wor

d 3

Wor

ds 1

… n

**

Wor

d n

PAR

DS

• • •

• • •

3 n

10.0

1

DI1

• • •C

OM

M.C

W

10.0

2

• • •

11.0

6

• • •

11.0

3

• • •

CO

MM

.CW

03.0

1D

I1

11.0

2

CO

MM

.RE

F

AI1

CO

MM

.RE

F

AI1

01.1

1

01.1

2

MA

IN C

W

EX

T R

EF1

EX

T R

EF2

Blo

ck d

iagr

am: C

ontr

ol d

ata

inpu

t fro

m fi

eldb

us w

hen

a ty

pe R

xxx

field

bus

adap

ter i

s us

ed

Fieldbus control

Page 357: VFD Documents

207

AC

TUA

L SI

GN

AL/

1.01

1.02

• • •

3.99

• • •

PAR

AM

ETER

TAB

LE

10.0

1

• • •

99.9

9

92.0

1

92.0

2S

TATU

S W

OR

D*

ACT1

**A

CT2

MA

IN

DA

TA S

ETA

CTU

AL

SIG

NA

L

AC

T3A

CT4

AC

T5

AU

XILI

AR

Y

DA

TA S

ETA

CTU

AL

SIG

NA

L

DA

TA S

ET

DS

1

DS

2

DS

3

DS

4

• • •

DS

33

• • •

TAB

LE

92.0

3

92.0

4

92.0

5

92.0

6

Fiel

dbus

Adap

ter

(Slo

t 1)

* Fi

xed

to 0

3.02

MA

IN S

TATU

S W

OR

D (b

its 1

0, 1

3 an

d 14

are

pro

gram

mab

le).

** F

ixed

to 0

1.02

SP

EE

D (D

TC c

ontro

l) or

01.

03 F

RE

QU

EN

CY

(Sca

lar c

ontro

l) w

hen

Gen

eric

com

mun

icat

ion

prof

ile is

use

d.**

* See

the

field

bus

adap

ter u

ser’s

man

ual f

or m

ore

info

rmat

ion.

* **

1 2 3 4 5 6 7 8 9 10 11 12 97 98 99

Fiel

dbus

spe

cific

sel

ecto

rs

in G

roup

51

***

Add

ress

es fo

r wor

ds 3

… n

in

form

at x

xyy

xxA

ddre

ss00

yy =

wor

d no

. in

data

set

ta

ble

01 …

99

xx =

par

. gro

upyy

= p

ar. i

ndex

in p

aram

eter

tabl

e

Wor

d 1

(STA

TUS

WO

RD

)W

ord

2(A

CT1

**)

Wor

d 3

Wor

ds 1

… n

***

Wor

d n

…PA

RDS

PARDS

3 n

• • •

• • •Blo

ck d

iagr

am: A

ctua

l val

ue s

elec

tion

for f

ield

bus

whe

n a

type

Rxx

x fie

ldbu

s ad

apte

r is

used

Fieldbus control

Page 358: VFD Documents

208

Stan

dard

DA

TA

DS

1

DS

2

DS

3

DS

4

• • •

DS

81

DS

82

DS

83

DS

84

MA

IN

DA

TA S

ETR

EFER

ENC

E

PAR

AM

ETER

10.0

1

10.0

2

• • •

89.9

9

TAB

LE

Mod

bus

Link

30.2

0 C

OM

M F

LT R

O/A

O30

.21

AUX

RE

F D

S T

-OU

T

90.0

1

90.0

2

90.0

3

• • •

• • •

30.1

8 C

OM

M F

AU

LT F

UN

C

Bits

13…

15

Ana

logu

e O

utpu

tAO

1 (s

ee 1

5.01

)

Ana

logu

e O

utpu

tA

O2

(see

15.

06)

3w

ords

(6 b

ytes

)

4000

140

002

4000

3

4000

740

008

4000

9

Mod

bus

Con

trolle

r

SET

TAB

LEN

O

FIE

LD-

AD

VAN

T

STD

CU

STO

M-

BU

S

MO

DB

US

ISE

D 98.0

2

NO

FIE

LD-

AD

VAN

T

STD

CU

STO

M-

BU

S

MO

DB

US

ISE

D 98.0

2

CW

RE

F1

RE

F2

Rel

ay O

utpu

ts(s

ee 1

4.01

…14

.03)

90.0

4

1• • •

255

30.1

8 C

OM

M F

AU

LT F

UN

C30

.19

MA

IN R

EF

DS

T-O

UT

90.0

5

1• • •

255

(RM

BA

)(S

lot 1

/2)

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

Fiel

dbus

Ada

pter

(CH

0)

10.0

1

DI1

• • •C

OM

M.C

W

10.0

2

• • •

11.0

6

• • •

AU

XILI

AR

YR

EFER

ENC

E

RE

F3

RE

F4

RE

F5

DA

TA S

ET

11.0

3

• • •

CO

MM

.CW

03.0

1D

I1

11.0

2

CO

MM

.RE

F

AI1

CO

MM

.RE

F

AI1

01.1

1

01.1

2

MAI

N C

W

EX

T R

EF1

EX

T R

EF2

Blo

ck d

iagr

am: C

ontr

ol d

ata

inpu

t fro

m fi

eldb

us w

hen

a ty

pe N

xxx

field

bus

adap

ter i

s us

ed

Fieldbus control

Page 359: VFD Documents

209

AC

TUA

L SI

GN

AL/

1.01

1.02

• • •

3.99

• • •

PAR

AM

ETER

TAB

LE

10.0

1

• • •

99.9

9

92.0

1*

92.0

2S

TATU

S W

OR

D*

ACT1

**A

CT2

MA

IN

DA

TA S

ETA

CTU

AL

SIG

NA

L

AC

T3A

CT4

AC

T5

AU

XILI

AR

Y

DA

TA S

ETA

CTU

AL

SIG

NA

L

DA

TA S

ET

DS

1

DS

2

DS

3

DS

4

• • •

DS

81

DS

82

DS

83

DS

84

TAB

LE

• • •

Stan

dard

Mod

bus

Link

92.0

3

92.0

4

92.0

5

92.0

6

4000

440

005

4000

6

4001

040

011

4001

2

Mod

bus

Con

trolle

r

Fiel

dbus

Ada

pter

(CH

0)

3w

ords

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

3w

ords

(6 b

ytes

)

* Fi

xed

to 0

3.02

MA

IN S

TATU

S W

OR

D (b

its 1

0, 1

3 an

d 14

are

pro

gram

mab

le).

** F

ixed

to 0

1.02

SP

EED

(DTC

mot

or c

ontro

l) or

010

3 FR

EQ

UE

NC

Y (S

cala

r con

trol)

whe

n G

ener

ic c

omm

unic

atio

n pr

ofile

is u

sed.

(6 b

ytes

)

Blo

ck D

iagr

am: A

ctua

l val

ue s

elec

tion

for f

ield

bus

whe

n a

type

Nxx

x fie

ldbu

s ad

apte

r is

used

Fieldbus control

Page 360: VFD Documents

210

Communication profilesThe ACS800 supports three communication profiles:

• ABB Drives communication profile

• Generic Drive communication profile.

• CSA 2.8/3.0 communication profile.

The ABB Drives communication profile should be selected with type Nxxx fieldbus adapter modules, and when the manufacturer-specific mode is selected (via the PLC) with type Rxxx fieldbus adapter modules.

The Generic Drive profile is supported by type Rxxx fieldbus adapter modules only.

The CSA 2.8/3.0 communication profile can be selected for backward compatibility with Application Program versions 2.8 and 3.0. This eliminates the need for reprogramming the PLC when drives with the above-mentioned program versions are replaced.

ABB Drives communication profileThe ABB Drives communication profile is active when parameter 98.07 is set to ABB DRIVES. The Control Word, Status Word, and reference scaling for the profile are described below.

The ABB Drives communication profile can be used through both EXT1 and EXT2. The Control Word commands are in effect when par. 10.01 or 10.02 (whichever control location is active) is set to COMM.CW.

Fieldbus control

Page 361: VFD Documents

211

03.01 MAIN CONTROL WORD

The upper case boldface text refers to the states shown in Figure 1.

Bit Name Value Enter STATE/Description0 OFF1 CONTROL 1 Enter READY TO OPERATE.

0 Stop along currently active deceleration ramp (22.03/22.05). Enter OFF1 ACTIVE; proceed to READY TO SWITCH ON unless other interlocks (OFF2, OFF3) are active.

1 OFF2 CONTROL 1 Continue operation (OFF2 inactive).

0 Emergency OFF, coast to stop.Enter OFF2 ACTIVE; proceed to SWITCH-ON INHIBITED.

2 OFF3 CONTROL 1 Continue operation (OFF3 inactive).

0 Emergency stop, stop within time defined by par. 22.07. Enter OFF3 ACTIVE; proceed to SWITCH-ON INHIBITED.Warning: Ensure motor and driven machine can be stopped using this stop mode.

3 INHIBIT_ OPERATION

1 Enter OPERATION ENABLED. (Note: The Run Enable signal must be active; see parameter 16.01. If par. 16.01 is set to COMM.CW, this bit also activates the Run Enable signal.)

0 Inhibit operation. Enter OPERATION INHIBITED.4 RAMP_OUT_

ZERO1 Normal operation.

Enter RAMP FUNCTION GENERATOR: OUTPUT ENABLED.0 Force Ramp Function Generator output to zero.

Drive ramps to stop (current and DC voltage limits in force).

5 RAMP_HOLD 1 Enable ramp function.Enter RAMP FUNCTION GENERATOR: ACCELERATOR ENABLED.

0 Halt ramping (Ramp Function Generator output held).

6 RAMP_IN_ZERO

1 Normal operation. Enter OPERATING.0 Force Ramp Function Generator input to zero.

7 RESET 0 ⇒ 1 Fault reset if an active fault exists. Enter SWITCH-ON INHIBITED.0 Continue normal operation.

8 INCHING_1 1 Not in use.

1 ⇒ 0 Not in use.

9 INCHING_2 1 Not in use.

1 ⇒ 0 Not in use.

10 REMOTE_CMD 1 Fieldbus control enabled.

0 Control Word <> 0 or Reference <> 0: Retain last Control Word and Reference.Control Word = 0 and Reference = 0: Fieldbus control enabled.Reference and deceleration/acceleration ramp are locked.

11 EXT CTRL LOC 1 Select External Control Location EXT2. Effective if par. 11.02 is set to COMM.CW.

0 Select External Control Location EXT1. Effective if par. 11.02 is set to COMM.CW.

12 … 15

Reserved

Fieldbus control

Page 362: VFD Documents

212

03.02 MAIN STATUS WORD

The upper case boldface text refers to the states shown in Figure 1.

Bit Name Value STATE/Description0 RDY_ON 1 READY TO SWITCH ON.

0 NOT READY TO SWITCH ON.1 RDY_RUN 1 READY TO OPERATE.

0 OFF1 ACTIVE.2 RDY_REF 1 OPERATION ENABLED.

0 OPERATION INHIBITED.3 TRIPPED 1 FAULT.

0 No fault.

4 OFF_2_STA 1 OFF2 inactive.

0 OFF2 ACTIVE.5 OFF_3_STA 1 OFF3 inactive.

0 OFF3 ACTIVE.6 SWC_ON_INHIB 1 SWITCH-ON INHIBITED.

0

7 ALARM 1 Warning/Alarm.

0 No Warning/Alarm.

8 AT_SETPOINT 1 OPERATING. Actual value equals reference value (= is within tolerance limits i.e in speed control the speed error is less than or equal to 10% of the nominal motor speed).

0 Actual value differs from reference value (= is outside tolerance limits).

9 REMOTE 1 Drive control location: REMOTE (EXT1 or EXT2).

0 Drive control location: LOCAL.

10 ABOVE_LIMIT 1 Bit is read from the address defined by parameter 92.07 MSW B10 PTR. The default value is signal 03.14 bit 9 ABOVE_LIMIT: Actual frequency or speed value equals or exceeds the supervision limit (par. 32.02).

0 Actual frequency or speed value is within supervision limit.

11 EXT CTRL LOC 1 External Control Location EXT2 selected.

0 External Control Location EXT1 selected.

12 EXT RUN ENABLE 1 External Run Enable signal received.

0 No External Run Enable received.

13 Bit is read from the address defined by parameter 92.08 MSW B13 PTR. By default no address has been selected.

14 Bit is read from the address defined by parameter 92.09 MSW B14 PTR. By default no address has been selected.

15 1 Communication error detected by fieldbus adapter module (on fibre optic channel CH0).

0 Fieldbus adapter (CH0) communication OK.

Fieldbus control

Page 363: VFD Documents

213

Figure 1 State Machine for the ABB Drives communication profile.

MAINS OFF

Power ON (CW Bit0=0)

SWITCH-ONINHIBITED (SW Bit6=1)

NOT READYTO SWITCH ON (SW Bit0=0)

READY TOSWITCH ON

from any state

(CW=xxxx x1xx xxxx x110)

ABB DrivesCommunication

Profile

READY TOOPERATE (SW Bit1=1)

n(f)=0 / I=0

OPERATIONINHIBITED (SW Bit2=0)

A B C D

(CW Bit3=0)

operationinhibited

OFF1 (CW Bit0=0)

OFF1ACTIVE (SW Bit1=0)

(SW Bit0=1)

(CW Bit3=1and

SW Bit12=1)

C D

(CW Bit5=0)

OPERATIONENABLED (SW Bit2=1)

(SW Bit5=0)

from any state from any state

Emergency StopOFF3 (CW Bit2=0)

n(f)=0 / I=0

OFF3ACTIVE

Emergency OFFOFF2 (CW Bit1=0)

(SW Bit4=0)OFF2

ACTIVE

RFG: OUTPUTENABLED

RFG: ACCELERATORENABLED

OPERATING

B

B C D

(CW Bit4=0)

(CW=xxxx x1xx xxx1 1111)

(CW=xxxx x1xx xx11 1111)

D

(CW Bit6=0)

A

C(CW=xxxx x1xx x111 1111)

CW = Control WordSW = Status Wordn = SpeedI = Input Current

(SW Bit8=1)

RFG = Ramp Function Generatorf = Frequency

D

from any state

Fault

(SW Bit3=1)FAULT

(CW Bit7=1)

(CW=xxxx x1xx xxxx x111)

(CW=xxxx x1xx xxxx 1111and SW Bit12=1)

Fieldbus control

Page 364: VFD Documents

214

Fieldbus reference scaling

With the ABB Drives communication profile active, fieldbus references REF1 and REF2 are scaled as shown in the table below.

Note: Any correction of the reference is applied before scaling. See section References on page 203.

Ref. No.

Application Macro used (par. 99.02)

Range Reference type Scaling Notes

REF1 (any) -32768 ... 32767

Speed or Frequency (not with FAST COMM)

-20000 = -[par. 11.05]-1 = -[par. 11.04]0 = [par. 11.04]20000 = [par. 11.05]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

Speed or Frequency with FAST COMM

-20000 = -[par. 11.05]0 = 020000 = [par. 11.05]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

REF2 FACTORY, HAND/AUTO, or SEQ CTRL

-32768 ... 32767

Speed or Freq. (not with FAST COMM)

-20000 = -[par. 11.08]-1 = -[par. 11.07]0 = [par. 11.07]20000 = [par. 11.08]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

Speed or Freq. with FAST COMM

-20000 = -[par. 11.08]0 = 020000 = [par. 11.08]

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency].

T CTRL orM/F (optional)

-32768 ... 32767

Torque (not with FAST COMM)

-10000 = -[par. 11.08]-1 = -[par. 11.07]0 = [par. 11.07]10000 = [par. 11.08]

Final reference limited by par. 20.04.

Torque with FAST COMM

-10000 = -[par. 11.08]0 = 010000 = [par. 11.08]

Final reference limited by par. 20.04.

PID CTRL -32768 ... 32767

PID Reference (not with FAST COMM)

-10000 = -[par. 11.08]-1 = -[par. 11.07]0 = [par. 11.07]10000 = [par. 11.08]

PID Reference with FAST COMM

-10000 = -[par. 11.08]0 = 010000 = [par. 11.08]

Fieldbus control

Page 365: VFD Documents

215

Generic Drive communication profileThe Generic Drive communication profile is active when parameter 98.07 is set to GENERIC. The Generic Drive profile realises the device profile for drives – speed control only – as defined by specific fieldbus standards such as PROFIDRIVE for PROFIBUS, AC/DC Drive for DeviceNet™, Drives and Motion Control for CANopen®, etc. Each device profile specifies its Control and Status Words, Reference and Actual value scaling. The profiles also define Mandatory services which are transferred to the application interface of the drive in a standardised way.

The Generic Drive communication profile can be used through both EXT1 and EXT2*. The proper functioning of the Generic Drive profile requires that Control Word commands are enabled by setting parameter 10.01 or 10.02 (whichever control location is active) to COMM.CW (or par. 10.07 to 1) and by setting parameter 16.01 to YES.

*For vendor specific support of EXT2 reference, see appropriate fieldbus manual.

Note: The Generic Drive profile is only available with type Rxxx fieldbus adapter modules.

Fieldbus control

Page 366: VFD Documents

216

Drive commands supported by the Generic Drive communication profile

Name DescriptionSTOP The drive decelerates the motor to zero speed according to the active deceleration ramp

(parameter 22.03 or 22.05).

START The drive accelerates to the set reference value according to the active acceleration ramp (par. 22.02 or 22.04). The direction of rotation is determined by the sign of the reference value and the setting of par. 10.03.

COAST STOP The drive coasts to stop, i.e. the drive stops modulating. However, this command can be overridden by the Brake Control function, which forces the drive to decelerate to zero speed by the active deceleration ramp. When the Brake Control function is active, Coast stop and Emergency coast stop (OFF2) commands given after the Emergency ramp stop (OFF3) coast the drive to a stop.

QUICK STOP The drive decelerates the motor to zero speed within the emergency stop deceleration time defined by par. 22.07.

CURRENT LIMIT STOP (CLS)

The drive decelerates the motor to zero speed according to the set current limit (par. 20.03) or torque limit (20.04), whichever is first reached. The same procedure is valid in case of a Voltage Limit Stop (VLS).

INCHING1 With this command active, the drive accelerates the motor to Constant Speed 12 (defined by par. 12.13). After the command is removed, the drive decelerates the motor to zero speed.Note: The speed reference ramps are not effective. The speed change rate is only limited by the current (or torque) limit of the drive.Note: Inching 1 takes priority over Inching 2.Note: Not effective in Scalar control mode.

INCHING2 With this command active, the drive accelerates the motor to Constant Speed 13 (defined by par. 12.14). After the command is removed, the drive decelerates the motor to zero speed.Note: The speed reference ramps are not effective. The speed change rate is only limited by the current (or torque) limit of the drive.Note: Inching 1 takes priority over Inching 2.Note: Not effective in Scalar control mode.

RAMP OUT ZERO When active, forces the output of the reference function generator to zero.

RAMP HOLD When active, freezes the reference function generator output.

FORCED TRIP Trips the drive. The drive will indicate fault FORCED TRIP.

RESET Resets an active fault.

Fieldbus control

Page 367: VFD Documents

217

Fieldbus reference scaling

With the Generic Drive communication profile active, the speed reference value received from the fieldbus and the actual speed value received from the drive are scaled as shown in the table below.

Note: Any correction of the reference (see section References on page 203) is applied before scaling.

Ref. No.

Application Macro used (par. 99.02)

Range Reference type

Speed reference scaling

Actual speed scaling*

Notes

REF1 (any) -32768... 32767

Speed or Frequency

0 = 020000 =[par. 99.08 (DTC) / 99.07 (scalar)]**

0 = 020000 = [par. 99.08 (DTC) / 99.07 (scalar)]**

REF2 FACTORY, HAND/AUT or SEQ CTRL

-32768... 32767

Speed or Freq. (not with FAST COMM)

-20000 = -[par. 11.08]-1 = -[par. 11.07]0 = [par. 11.07]20000 = [par. 11.08]

0 = 020000 = [par. 99.08 (DTC) / 99.07 (scalar)]**

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency]

Speed or Freq. with FAST COMM

-20000 = -[par. 11.08]0 = 020000 = [par. 11.08]

0 = 020000 = [par. 99.08 (DTC) / 99.07 (scalar)]**

Final reference limited by 20.01/20.02 [speed] or 20.07/20.08 [frequency]

T CTRL orM/F (optional)

-32768... 32767

Torque (not with FAST COMM)

-10000 = -[par. 11.08]-1 = -[par. 11.07]0 = [par. 11.07]10000 = [par. 11.08]

0 = 020000 = [par. 99.08 (DTC) / 99.07 (scalar)]**

Final reference limited by par. 20.04

Torque with FAST COMM

-10000 = -[par. 11.08]0 = 010000 = [par. 11.08]

0 = 020000 = [par. 99.08 (DTC) / 99.07 (scalar)]**

Final reference limited by par. 20.04

PID CTRL -32768... 32767

PID Reference (not with FAST COMM)

-10000 = -[par. 11.08]-1 = -[par. 11.07]0 = [par. 11.07]10000 = [par. 11.08]

0 = 020000 = [par. 99.08 (DTC) / 99.07 (scalar)]**

PID Reference with FAST COMM

-10000 = -[par. 11.08]0 = 010000 = [par. 11.08]

0 = 020000 = [par. 99.08 (DTC) / 99.07 (scalar)]**

* With DTC the filter time of the actual speed value can be adjusted using parameter 34.04.** Note: The maximum reference value is 163% (i.e. 163% = 1.63 · value of parameter 99.08/99.07 value).

Fieldbus control

Page 368: VFD Documents

218

CSA 2.8/3.0 communication profileThe CSA 2.8/3.0 communication profile is active when parameter 98.07 is set to CSA 2.8/3.0. The Control Word and Status Word for the profile are described below.

CONTROL WORD for the CSA 2.8/3.0 communication profile

STATUS WORD for the CSA 2.8/3.0 communication profile

The reference and actual scaling is equal to that of the ABB Drives profile.

Bit Name Value Description0 Reserved

1 ENABLE 1 Enabled.

0 Coast to stop.

2 Reserved

3 START/STOP 0 ⇒ 1 Start.

0 Stop according to parameter 21.03 STOP FUNCTION.

4 Reserved

5 CNTRL_MODE 1 Select control mode 2.

0 Select control mode 1.

6 Reserved

7 Reserved

8 RESET_FAULT 0 ⇒ 1 Reset drive fault.

9 … 15 Reserved

Bit Name Value Description0 READY 1 Ready to start.

0 Initialising, or initialising error.

1 ENABLE 1 Enabled.

0 Coast to stop.

2 Reserved

3 RUNNING 1 Running with selected reference.

0 Stopped.

4 Reserved

5 REMOTE 1 Drive in Remote mode

0 Drive in Local mode

6 Reserved

7 AT_SETPOINT 1 Drive at reference

0 Drive not at reference

8 FAULTED 1 A fault is active.

0 No active faults

9 WARNING 1 A warning is active.

0 No active warnings

10 LIMIT 1 Drive at a limit

0 Drive at no limit

11 … 15 Reserved

Fieldbus control

Page 369: VFD Documents

219

Diverse status, fault, alarm and limit words03.03 AUXILIARY STATUS WORD

Bit Name Description

0 Reserved

1 OUT OF WINDOW Speed difference is out of the window (in speed control)*.

2 Reserved

3 MAGNETIZED Flux has been formed in the motor.

4 Reserved

5 SYNC RDY Position counter synchronised.

6 1 START NOT DONE

Drive has not been started after changing the motor parameters in group 99.

7 IDENTIF RUN DONE

Motor ID Run successfully completed.

8 START INHIBITION Safe torque off function or Prevention of unexpected start-up is active.

9 LIMITING Control at a limit. See actual signal 3.04 LIMIT WORD 1 below.

10 TORQ CONTROL Torque reference is followed*.

11 ZERO SPEED Absolute value of motor actual speed is below zero speed limit (4% of synchronous speed).

12 INTERNAL SPEED FB

Internal speed feedback followed.

13 M/F COMM ERR Master/Follower link (on CH2) communication error*.

14 … 15 Reserved

*See the Master/Follower Application Guide [3AFY58962180 (English)].

Fieldbus control

Page 370: VFD Documents

220

03.04 LIMIT WORD 1

03.05 FAULT WORD 1

Bit Name Active Limit

0 TORQ MOTOR LIM Pull-out limit

1 SPD_TOR_MIN_LIM Speed control torque min. limit

2 SPD_TOR_MAX_LIM Speed control torque max. limit

3 TORQ_USER_CUR_LIM User-defined current limit

4 TORQ_INV_CUR_LIM Internal current limit

5 TORQ_MIN_LIM Any torque min. limit

6 TORQ_MAX_LIM Any torque max. limit

7 TREF_TORQ_MIN_LIM Torque reference min. limit

8 TREF_TORQ_MAX_LIM Torque reference max. limit

9 FLUX_MIN_LIM Flux reference min. limit

10 FREQ_MIN_LIMIT Speed/Frequency min. limit

11 FREQ_MAX_LIMIT Speed/Frequency max. limit

12 DC_UNDERVOLT DC undervoltage limit

13 DC_OVERVOLT DC overvoltage limit

14 TORQUE LIMIT Any torque limit

15 FREQ_LIMIT Any speed/frequency limit

Bit Name Description

0 SHORT CIRC For the possible causes and remedies, see chapter Fault tracing.

1 OVERCURRENT

2 DC OVERVOLT

3 ACS800 TEMP

4 EARTH FAULT

5 THERMISTOR

6 MOTOR TEMP

7 SYSTEM_FAULT A fault is indicated by the System Fault Word (Actual Signal 3.07).

8 UNDERLOAD For the possible causes and remedies, see chapter Fault tracing.

9 OVERFREQ

10 … 15 Reserved

Fieldbus control

Page 371: VFD Documents

221

03.06 FAULT WORD 2

Bit Name Description

0 SUPPLY PHASE For the possible causes and remedies, see chapter Fault tracing.

1 NO MOT DATA

2 DC UNDERVOLT

3 Reserved

4 RUN ENABLE For the possible causes and remedies, see chapter Fault tracing.

5 ENCODER ERR

6 I/O COMM

7 CTRL B TEMP

8 EXTERNAL FLT

9 OVER SWFREQ

10 AI < MIN FUNC

11 PPCC LINK

12 COMM MODULE

13 PANEL LOSS

14 MOTOR STALL

15 MOTOR PHASE

Fieldbus control

Page 372: VFD Documents

222

03.07 SYSTEM FAULT WORD

03.08 ALARM WORD 1

Bit Name Description

0 FLT (F1_7) Factory default parameter file error

1 USER MACRO User Macro file error

2 FLT (F1_4) FPROM operating error

3 FLT (F1_5) FPROM data error

4 FLT (F2_12) Internal time level 2 overflow

5 FLT (F2_13) Internal time level 3 overflow

6 FLT (F2_14) Internal time level 4 overflow

7 FLT (F2_15) Internal time level 5 overflow

8 FLT (F2_16) State machine overflow

9 FLT (F2_17) Application program execution error

10 FLT (F2_18) Application program execution error

11 FLT (F2_19) Illegal instruction

12 FLT (F2_3) Register stack overflow

13 FLT (F2_1) System stack overflow

14 FLT (F2_0) System stack underflow

15 Reserved

Bit Name Description

0 START INHIBIT For the possible causes and remedies, see chapter Fault tracing.

1 Reserved

2 THERMISTOR For the possible causes and remedies, see chapter Fault tracing.

3 MOTOR TEMP

4 ACS800 TEMP

5 ENCODER ERR

6 T MEAS ALM

7 … 11 Reserved

12 COMM MODULE For the possible causes and remedies, see chapter Fault tracing.

13 Reserved

14 EARTH FAULT For the possible causes and remedies, see chapter Fault tracing.

15 Reserved

Fieldbus control

Page 373: VFD Documents

223

03.09 ALARM WORD 2

03.13 AUXILIARY STATUS WORD 3

Bit Name Description

0 Reserved

1 UNDERLOAD For the possible causes and remedies, see chapter Fault tracing.

2, 3 Reserved

4 ENCODER For the possible causes and remedies, see chapter Fault tracing.

5, 6 Reserved

7 POWFAIL FILE (FFA0) Error in restoring POWERFAIL.DDF

8 ALM (OS_17) Error in restoring POWERDOWN.DDF

9 MOTOR STALL For the possible causes and remedies, see chapter Fault tracing.

10 AI < MIN FUNC

11, 12 Reserved

13 PANEL LOSS For the possible causes and remedies, see chapter Fault tracing.

14, 15 Reserved

Bit Name Description

0 REVERSED Motor rotates in reverse direction.

1 EXT CTRL External control is selected.

2 REF 2 SEL Reference 2 is selected.

3 CONST SPEED A Constant Speed (1…15) is selected.

4 STARTED The drive has received a Start command.

5 USER 2 SEL User Macro 2 has been loaded.

6 OPEN BRAKE The Open Brake command is ON. See group 42 BRAKE CONTROL.

7 LOSS OF REF The reference has been lost.

8 STOP DI STATUS The state of the interlock input on the RMIO board.

9 READY Ready to function: Run enable signal on, no fault

10 DATASET STATUS Data set has not been updated.

11 MACRO CHG Macro is changing or is being saved.

12…15 Reserved

Fieldbus control

Page 374: VFD Documents

224

03.14 AUXILIARY STATUS WORD 4

03.15 FAULT WORD 4

Bit Name Description

0 SPEED 1 LIM Output speed has exceeded or fallen below supervision limit 1. See group 32 SUPERVISION.

1 SPEED 2 LIM Output speed has exceeded or fallen below supervision limit 2. See group 32 SUPERVISION.

2 CURRENT LIM Motor current has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

3 REF 1 LIM Reference 1 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

4 REF 2 LIM Reference 2 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

5 TORQUE 1 LIM The motor torque has exceeded or fallen below the TORQUE1 supervision limit. See group 32 SUPERVISION.

6 TORQUE 2 LIM The motor torque has exceeded or fallen below the TORQUE2 supervision limit. See group 32 SUPERVISION.

7 ACT 1 LIM PID controller actual value 1 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

8 ACT 2 LIM PID controller actual value 2 has exceeded or fallen below the set supervision limit. See group 32 SUPERVISION.

9 ABOVE_LIMIT 1 = Actual frequency or speed value equals or exceeds the supervision limit (par. 32.02).0 = Actual frequency or speed value is within supervision limit.

10 … 15

Reserved

Bit Name Description

0 CHOKE OTEMP Step-up module fault

1 MOTOR 1 TEMP For the possible causes and remedies, see chapter Fault tracing.

2 MOTOR 2 TEMP

3 BRAKE ACKN

4 … 15 Reserved

Fieldbus control

Page 375: VFD Documents

225

03.16 ALARM WORD 4

03.17 FAULT WORD 5

Bit Name Description

0 FAN OTEMP Step-up module fan overtemperature alarm

1 MOTOR 1 TEMP For the possible causes and remedies, see chapter Fault tracing.

2 MOTOR 2 TEMP

3 BRAKE ACKN

4 SLEEP MODE

5 MACRO CHANGING User or Application macro is being saved or loaded

6 … 15 Reserved

Bit Name Description

0 BR BROKEN For the possible causes and remedies, see chapter Fault tracing.

1 BR WIRING

2 BC SHORT CIR

3 BR OVERHEAT

4 BC OVERHEAT

5 IN CHOKE TEMP

6 PP OVERLOAD

7 INV DISABLED

8 TEMP DIF

9 POWERF INV xx/ POWERFAIL

10 INT CONFIG

11 USER L CURVE

12 Reserved

13 INV OVERTEMP For the possible causes and remedies, see chapter Fault tracing.

14...15 Reserved

Fieldbus control

Page 376: VFD Documents

226

03.18 ALARM WORD 5

03.19 INT INIT FAULT

Bit Name Description

0 REPLACE FAN For the possible causes and remedies, see chapter Fault tracing.

1 SYNCRO SPEED

2 BR OVERHEAT

3 BC OVERHEAT

4 IN CHOKE TEMP

5 PP OVERLOAD

6 INV DISABLED

7 CUR UNBAL

8 INV CUR LIM

9 DC BUS LIM

10 MOT CUR LIM

11 MOT TORQ LIM

12 MOT POW LIM

13 USER L CURVE

14 Reserved

15 BATT FAILURE For the possible causes and remedies, see chapter Fault tracing.

Bit Name Description

0 AINT FAULT Wrong EPLD version

1 AINT FAULT Wrong AINT board revision

2 AINT FAULT Du/dt limitation hardware failure

3 AINT FAULT Current measurement scaling error

4 AINT FAULT Voltage measurement scaling error

5 … 15 Reserved

This signal is active with AINT board.

Fieldbus control

Page 377: VFD Documents

227

03.30 LIMIT WORD INV

The LIMIT WORD INV Word includes faults and warnings, which occur when the output current limit of the drive is exceeded. The current limit protects the drive in various cases, e.g. integrator overload, high IGBT temperature etc.

03.31 ALARM WORD 6

Bit Name Description

0 INTEGRAT 200 Current limit at 200% integrator overload. Temperature model is not active.*

1 INTEGRAT 150 Current limit at 150% integrator overload. Temperature model is not active.*

2 INT LOW FREQ Current limit at high IGBT temperature with low output frequency (<10 Hz). Temperature model is not active.*

3 INTG PP TEMP Current limit at high IGBT temperature. Temperature model is not active.*

4 PP OVER TEMP Current limit at high IGBT temperature. Temperature model is active.

5 PP OVERLOAD Current limit at high IGBT junction to case temperature. Temperature model is active.If the IGBT junction to case temperature continues to rise in spite of the current limitation, PP OVERLOAD alarm or fault occurs. See chapter Fault tracing

6 INV POW LIM Current limit at inverter output power limit

7 INV TRIP CUR Current limit at inverter overcurrent trip limit

8 OVERLOAD CUR Maximum inverter overload current limit. See par. 20.03.

9 CONT DC CUR Continuous dc-current limit

10 CONT OUT CUR Continuous output current limit (Icont.max)

11...15 Reserved

*Not active with ACS800 Factory macro default settings.

Bit Name Description

0 INV OVERTEMP For the possible causes and remedies, see chapter Fault tracing.

1...2 Reserved

3 ENC CABLE For the possible causes and remedies, see chapter Fault tracing.

4…15 Reserved

Fieldbus control

Page 378: VFD Documents

228

03.32 EXT IO STATUS

03.33 FAULT WORD 6

Bit Name Description

0 EMSTOP MODULE ERROR

Emergency stop module is not communicating with the drive software.

1 EMSTOP OFF2 CMD DI1 of emergency stop module. See 03.01 MAIN CONTROL WORD bit1 OFF2 CONTROL.

2 EMSTOP OFF3 CMD DI2 of emergency stop module. See 03.01 MAIN CONTROL WORD bit2 OFF3 CONTROL.

3 FREE DI3 of emergency stop module.

4 EMSTOP OFF3 STATUS RO1 of emergency stop module. See 03.02 MAIN STATUS WORD bit5 OFF_3_STA. Bit inverted.

5 EMSTOP TRIP STATUS RO2 of emergency stop module. See 03.02 MAIN STATUS WORD bit3 TRIPPED.

6 STEPUP MODULE ERROR

Step up module is not communicating with the drive software.

7 STEPUP CHOKE FLT CMD

DI1 of Step-Up module. For the possible causes and remedies, see chapter Fault tracing: CHOKE OTEMP (FF82).

8 STEPUP FAN ALM CMD DI2 of Step-Up module. For possible causes and remedies, see chapter Fault tracing: FAN OTEMP (FF83).

9 FREE DI3 of Step-Up module.

10 STEPUP MODULATING STATUS

RO1 of Step-Up module. Drive is modulating.

11 STEPUP TRIP STATUS RO2 of Step-Up module. See 03.02 MAIN STATUS WORD bit3 TRIPPED.

12-15 Reserved

Bit Name Description

0…1 Reserved

2 ENC CABLE For possible causes and remedies, see chapter Fault tracing.

3…15 Reserved

Fieldbus control

Page 379: VFD Documents

229

04.01 FAULTED INT INFO

The FAULTED INT INFO Word includes information on the location of faults PPCC LINK, OVERCURRENT, EARTH FAULT, SHORT CIRCUIT, ACS800 TEMP, TEMP DIF and POWERF INV (see 03.05 FAULT WORD 1, 03.06 FAULT WORD 2, 03.17 FAULT WORD 5 and chapter Fault tracing).

Used only with parallel connected inverters.

Bit Name Description

0 INT 1 FLT INT 1 board fault

1 INT 2 FLT INT 2 board fault

2 INT 3 FLT INT 3 board fault

3 INT 4 FLT INT 4 board fault

4 INT 5 FLT INT 5 board fault

5 INT 6 FLT INT 6 board fault

6 INT 7 FLT INT 7 board fault

7 INT 8 FLT INT 8 board fault

8 INT 9 FLT INT 9 board fault

9 INT 10 FLT INT 10 board fault

10 INT 11 FLT INT 11 board fault

11 INT 12 FLT INT 12 board fault

12...14 Reserved

15 PBU FLT PBU board fault

Fieldbus control

Page 380: VFD Documents

230

04.02 INT SC INFO

The INT SC INFO Word includes information on the location of the SHORT CIRCUIT fault (see 03.05 FAULT WORD 1 and chapter Fault tracing).

Bit Name Description

0 U-PH SC U Phase U upper-leg IGBT(s) short circuit

1 U-PH SC L Phase U lower-leg IGBT(s) short circuit

2 V-PH SC U Phase V upper-leg IGBT(s) short circuit

3 V-PH SC L Phase V lower-leg IGBT(s) short circuit

4 W-PH SC U Phase W upper-leg IGBT(s) short circuit

5 W-PH SC L Phase W lower-leg IGBT(s) short circuit

6...15 Reserved

U V W

INT

Upper-leg IGBTs

Lower-leg IGBTs

Inverter Block Diagram

U V W

INT

U V W

INT

U V W

INT

...

PBU

1 2 3

Inverter Unit Block Diagram (2 to 12 parallel inverters)

INT1 INT2INT3

RMIO Motor Control and I/O Board

INT Main Circuit Interface Board

PBU PPCS Link Branching UnitRMIO

RMIO

Fieldbus control

Page 381: VFD Documents

231

Fault tracing

Chapter overviewThe chapter lists all warning and fault messages including the possible cause and corrective actions.

Safety

WARNING! Only qualified electricians are allowed to maintain the drive. The Safety Instructions on the first pages of the appropriate hardware manual must be read before you start working with the drive.

Warning and fault indicationsA warning or fault message on the panel display indicates abnormal drive status. Most warning and fault causes can be identified and corrected using this information. If not, an ABB representative should be contacted.

If the drive is operated with the control panel detached, the red LED in the panel mounting platform indicates the fault condition. (Note: Some drive types are not fitted with the LEDs as standard).

The four digit code number in brackets after the message is for the fieldbus communication. (See chapter Fieldbus control.)

How to resetThe drive can be reset either by pressing the keypad RESET key, by digital input or fieldbus, or switching the supply voltage off for a while. When the fault has been removed, the motor can be restarted.

Fault historyWhen a fault is detected, it is stored in the Fault History. The latest faults and warnings are stored together with the time stamp at which the event was detected.

The fault logger collects 64 of the latest faults. When the drive power is switched off, 16 of the latest faults are stored.

See chapter Control panel for more information.

Fault tracing

Page 382: VFD Documents

232

Warning messages generated by the driveWARNING CAUSE WHAT TO DO

ACS800 TEMP(4210)3.08 AW 1 bit 4

Drive IGBT temperature is excessive. Fault trip limit is 100%.

Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

AI < MIN FUNC(8110)3.09 AW 2 bit 10(programmableFault Function 30.01)

Analogue control signal is below minimum allowed value due to incorrect signal level or failure in control wiring.

Check for proper analogue control signal levels.Check control wiring.Check Fault Function parameters.

AD [message] Message generated by an EVENT block in the Adaptive Program.

Consult the documentation or author of the Adaptive Program.

BACKUP USED(FFA3)

PC stored backup of drive parameters is downloaded into use.

Wait until download is completed.

BATT FAILURE(5581)3.18 AW 5 bit 15

APBU branching unit memory backup battery error caused by- incorrect APBU switch S3 setting- too low battery voltage.

With parallel connected inverters, enable backup battery by setting actuator 6 of switch S3 to ON.Replace backup battery.

BC OVERHEAT(7114)3.18 AW 5 bit 3

Brake chopper overload Stop drive. Let chopper cool down.Check parameter settings of resistor overload protection function (see parameter group 27 BRAKE CHOPPER).Check that braking cycle meets allowed limits.Check that drive supply AC voltage is not excessive.

BRAKE ACKN(FF74)3.16 AW 4 bit 3

Unexpected state of brake acknowledge signal See parameter group 42 BRAKE CONTROL.Check connection of brake acknowledgement signal.

BR OVERHEAT(7112)3.18 AW 5 bit 2

Brake resistor overload Stop drive. Let resistor cool down. Check parameter settings of resistor overload protection function (see parameter group 27 BRAKE CHOPPER).Check that braking cycle meets allowed limits.

CALIBRA DONE(FF37)

Calibration of output current transformers is completed.

Continue normal operation.

CALIBRA REQ(FF36)

Calibration of output current transformers is required. Displayed at start if drive is in scalar control (parameter 99.04) and scalar fly start feature is on (parameter 21.08).

Calibration starts automatically. Wait for a while.

Fault tracing

Page 383: VFD Documents

233

COMM MODULE(7510)3.08 AW 1 bit 12(programmableFault Function 30.18, 30.19)

Cyclical communication between drive and master is lost.

Check status of fieldbus communication. See chapter Fieldbus control, or appropriate fieldbus adapter manual.Check parameter settings:- group 51 COMM MODULE DATA (for fieldbus adapter)- group 52 STANDARD MODBUS (for Standard Modbus Link).Check Fault Function parameters.Check cable connections. Check if master can communicate.

DC BUS LIM(3211)3.18 AW5 bit 9(programmable Fault Function 30.23)

Drive limits torque due to too high or too low intermediate circuit DC voltage.

Informative alarmCheck Fault Function parameters.

EARTH FAULT(2330)3.08 AW 1 bit 14(programmable Fault Function 30.17)

Drive has detected load unbalance typically due to earth fault in motor or motor cable.

Check there are no power factor correction capacitors or surge absorbers in motor cable.Check that there is no earth fault in motor or motor cables:- measure insulation resistances of motor and motor cable.If no earth fault can be detected, contact your local ABB representative.

ENC CABLE(7310)3.31 AW 6 bit 3(programmable Fault Function 50.07)

Pulse encoder phase signal is missing. Check pulse encoder and its wiring.Check pulse encoder interface module and its wiring.

ENCODER A<>B(7302)3.09 AW 2 bit 4

Pulse encoder phasing is wrong: Phase A is connected to terminal of phase B and vice versa.

Interchange connection of pulse encoder phases A and B.

ENCODER ERR(7301)3.08 AW 1 bit 5

Communication fault between pulse encoder and pulse encoder interface module and between module and drive

Check pulse encoder and its wiring, pulse encoder interface module and its wiring, parameter group 50 ENCODER MODULE settings.

FAN OTEMP(FF83)3.16 AW 4 bit 0

Excessive temperature of drive output filter fan. Supervision is in use in step-up drives.

Stop drive. Let it cool down. Check ambient temperature. Check fan rotates in correct direction and air flows freely.

HW RECONF RQ(FF38)

Inverter type (e.g. sr0025_3) has been changed. Inverter type is usually changed at factory or during drive implementation.

Wait until alarm POWEROFF! activates and switch control board power off to validate inverter type change.

WARNING CAUSE WHAT TO DO

Fault tracing

Page 384: VFD Documents

234

ID DONE(FF32)

Drive has performed motor identification magnetisation and is ready for operation. This warning belongs to normal start-up procedure.

Continue drive operation.

ID MAGN(FF31)

Motor identification magnetisation is on. This warning belongs to normal start-up procedure.

Wait until drive indicates that motor identification is completed.

ID MAGN REQ(FF30)

Motor identification is required. This warning belongs to normal start-up procedure. Drive expects user to select how motor identification should be performed: By Identification Magnetisation or by ID Run.

Start Identification Magnetisation by pressing Start key, or select ID Run and start (see parameter 99.10).

ID N CHANGED(FF68)

Drive ID number has been changed from 1. Change ID number back to 1. See chapter Control panel.

ID RUN(FF35)

Motor identification Run is on. Wait until drive indicates that motor identification Run is completed.

ID RUN SEL(FF33)

Motor Identification Run is selected, and drive is ready to start ID Run. This warning belongs to ID Run procedure.

Press Start key to start Identification Run.

IN CHOKE TEMP(FF81)3.18 AW 5 bit 4

Excessive input choke temperature Stop drive. Let it cool down.Check ambient temperature. Check that fan rotates in correct direction and air flows freely.

INV CUR LIM(2212)3.18 AW 5 bit 8(programmable Fault Function 30.23)

Internal inverter current or power limit has been exceeded.

Reduce load or increase ramp time.Limit inverter actual power or decrease line-side converter reactive power generation reference value (parameter 95.06 LCU Q PW REF).Check Fault Function parameters.

INV DISABLED(3200)3.18 AW 5 bit 6

Optional DC switch has opened while unit was stopped.

Close DC switch.Check AFSC-0x Fuse Switch Controller unit.

WARNING CAUSE WHAT TO DO

Fault tracing

Page 385: VFD Documents

235

INV OVERTEMP(4290)3.31 AW 6 bit 0

Converter module temperature is excessive. Check ambient temperature. If it exceeds 40°C, ensure that load current does not exceed derated load capacity of drive. See appropriate hardware manual.Check that ambient temperature setting is correct (parameter 95.10).Check converter module cooling air flow and fan operation.Cabinet installation: Check cabinet air inlet filters. Change when necessary. See appropriate hardware manual.Modules installed in cabinet by user: Check that cooling air circulation in cabinet has been prevented with air baffles. See module installation instructions.Check inside of cabinet and heatsink of converter module for dust pick-up. Clean when necessary.

IO CONFIG(FF8B)(programmable Fault Function 30.22)

Input or output of optional I/O extension or fieldbus module has been selected as signal interface in application program but communication to appropriate I/O extension module has not been set accordingly.

Check Fault Function parameters.Check parameter group 98 OPTION MODULES.

MACRO CHANGE(FF69)

Macro is restoring or User macro is being saved.

Wait until drive has finished task.

MOD BOARD T(FF88)09.11 AW 3 bit 14

Overtemperature in AINT board of inverter module.

Check inverter fan.Check ambient temperature.

MOD CHOKE T(FF89)09.11 AW 3 bit 13

Overtemperature in choke of liquid cooled R8i inverter module.

Check inverter fan.Check ambient temperature.Check liquid cooling system.

MOT CUR LIM(2300)3.18 AW 5 bit 10(programmable Fault Function 30.23)

Drive limits motor current according to current limit defined by parameter 20.03 MAXIMUM CURRENT.

Reduce load or increase ramp time.Increase parameter 20.03 MAXIMUM CURRENT value.Check Fault Function parameters.

MOTOR STALL(7121)3.09 AW 2 bit 9(programmable Fault Function 30.10)

Motor is operating in stall region due to e.g. excessive load or insufficient motor power.

Check motor load and drive ratings.Check Fault Function parameters.

MOTOR STARTS(FF34)

Motor Identification Run starts. This warning belongs to ID Run procedure.

Wait until drive indicates that motor identification is completed.

WARNING CAUSE WHAT TO DO

Fault tracing

Page 386: VFD Documents

236

MOTOR TEMP(4310)3.08 AW 1 bit 3(programmable Fault Function 30.04…30.09)

Motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

Check motor ratings, load and cooling.Check start-up data.Check Fault Function parameters.

MOTOR 1 TEMP(4312)3.16 AW 4 bit 1

Measured motor temperature has exceeded alarm limit set by parameter 35.02.

Check value of alarm limit.Check that actual number of sensors corresponds to value set by parameter. Let motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

MOTOR 2 TEMP(4313)3.16 AW 4 bit 2

Measured motor temperature has exceeded alarm limit set by parameter 35.05.

Check value of alarm limit.Check that actual number of sensors corresponds to value set by parameter.Let motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

MOT POW LIM(FF86)3.18 AW 5 bit 12(programmable Fault Function 30.23)

Drive limits motor power according to limits defined by parameters 20.11 and 20.12.

Informative alarmCheck parameter 20.11 P MOTORING LIM and 20.12 P GENERATING LIM settings.Check Fault Function parameters.

MOT TORQ LIM(FF85)3.18 AW 5 bit 11(programmable Fault Function 30.23)

Drive limits motor torque according to calculated motor pull-out torque limit and minimum and maximum torque limits defined by parameters 20.13 and 20.14.

Informative alarmCheck parameter 20.13 MIN TORQ SEL and 20.14 MAX TORQ SEL settings.Check Fault Function parameters.If LIMIT WORD 1 bit 0 TORQ MOTOR LIM is 1,- check motor parameter settings (parameter group 99 START-UP DATA)- ensure that ID run has been completed successfully.

PANEL LOSS(5300)3.09 AW 2 bit 13(programmableFault Function 30.02)

Control panel selected as active control location for drive has ceased communicating.

Check panel connection (see appropriate hardware manual).Check control panel connector.Replace control panel in mounting platform.Check Fault Function parameters.

POINTER ERROR(FFD0)

Source selection (pointer) parameter points to non existing parameter index.

Check source selection (pointer) parameter settings.

->POWEROFF!(FF39)

Inverter type (e.g. sr0025_3) has been changed. Inverter type is usually changed at factory or during drive implementation.

Switch control board power off to validate inverter type change.

WARNING CAUSE WHAT TO DO

Fault tracing

Page 387: VFD Documents

237

PPCC LINK(5210)3.06 FW 2 bit 11

Fibre optic link to INT board is faulty. Check fibre optic cables or galvanic link. With frame sizes R2-R6 link is galvanic.If RMIO is powered from external supply, ensure that supply is on. See parameter 16.09 CTRL BOARD SUPPLY.Check signal 03.19. Contact ABB representative if any of faults in signal 3.19 are active.

PPCC LINK xx(5210)3.06 FW 2 bit 11 and 4.01

INT board fibre optic connection fault in inverter unit of several parallel connected inverter modules. xx refers to inverter module number.

Check connection from inverter module Main Circuit Interface Board, INT to PPCC Branching Unit, PBU. (Inverter module 1 is connected to PBU INT1 etc.)Check signal 03.19. Contact ABB representative if any of faults in signal 3.19 are active.

PP OVERLOAD(5482)3.18 AW 5 bit 5

Excessive IGBT junction to case temperature. This can be caused by excessive load at low frequencies (e.g. fast direction change with excessive load and inertia).

Increase ramp time.Reduce load.

REPLACE FAN(4280)3.18 AW 5 bit 0

Running time of inverter cooling fan has exceeded its estimated life time.

Replace fan. Reset fan run time counter 01.44.

RUN ENABLE(FF8E)3.06 FW 2 bit 4

No Run enable signal received. Check setting of parameter 16.01. Switch on signal or check wiring of selected source.

SLEEP MODE(FF8C)3.16 AW 4 bit 4

Sleep function has entered sleeping mode. See parameter group 40 PID CONTROL.

START INHIBI(FF7A)AW 1 bit 0

Safe torque off function has been activated while drive was stopped.Or: Optional start inhibit hardware logic is activated.

Close Safe torque off function switch. If switch is closed and warning is still active, check power supply at ASTO board input terminals. Replace ASTO board.Or: Check start inhibit circuit (AGPS board).

START INTERL(FF8D)

No Start Interlock signal received. Check circuit connected to Start Interlock input on RMIO board.

SYNCRO SPEED(FF87)3.18 AW 5 bit 1

Value of motor nominal speed set to parameter 99.08 is not correct: Value is too near synchronous speed of motor. Tolerance is 0.1%. This warning is active only in DTC mode.

Check nominal speed from motor rating plate and set parameter 99.08 exactly accordingly.

WARNING CAUSE WHAT TO DO

Fault tracing

Page 388: VFD Documents

238

TEMP DIF xx y(4380)4.01 FAULTED INT INFO

Excessive temperature difference between several parallel connected inverter modules. xx (1...12) refers to inverter module number and y refers to phase (U, V, W).

Alarm is indicated when temperature difference is 15°C. Fault is indicated when temperature difference is 20°C.

Excessive temperature can be caused e.g. by unequal current sharing between parallelconnected inverters.

Check cooling fan.Replace fan.Check air filters.

THERMISTOR(4311)3.08 AW 1 bit 2(programmableFault Function 30.04…30.05)

Motor temperature is excessive. Motor thermal protection mode selection is TEMP SENSOR.

Check motor ratings and load.Check start-up data.Check thermistor connections to digital input DI6.

T MEAS ALM(FF91)3.08 AW 1 bit 6

Motor temperature measurement is out of acceptable range.

Check connections of motor temperature measurement circuit. See chapter Program features for circuit diagram.

UNDERLOAD(FF6A)3.09 AW 2 bit 1(programmable Fault Function 30.13)

Motor load is too low due to e.g. release mechanism in driven equipment.

Check for problem in driven equipment.Check Fault Function parameters.

USER L CURVE(2312)3.18 AW 5 bit 13

Integrated motor current has exceeded load curve defined by parameters in group 72 USER LOAD CURVE.

Check parameter group 72 USER LOAD CURVE settings.Reduce load.

WARNING CAUSE WHAT TO DO

Fault tracing

Page 389: VFD Documents

239

Warning messages generated by the control panelWARNING CAUSE WHAT TO DO

DOWNLOADING FAILED

Download function of panel has failed. No data has been copied from panel to drive.

Make sure panel is in local mode.Retry (there might be interference on link).Contact ABB representative.

DRIVE IS RUNNING DOWNLOADING NOT POSSIBLE

Downloading is not possible while motor is running.

Stop motor. Perform downloading.

NO COMMUNICATION (X)

Cabling problem or hardware malfunction on Panel Link

Check Panel Link connections.Press RESET key. Panel reset may take up to half a minute, please wait.

(4) = Panel type not compatible with drive application program version

Check panel type and drive application program version. Panel type is printed on panel cover. Application program version is stored in parameter 33.02.

NO FREE ID NUMBERS ID NUMBER SETTING NOT POSSIBLE

Panel Link already includes 31 stations. Disconnect another station from link to free ID number.

NOT UPLOADED DOWNLOADING NOT POSSIBLE

No upload function has been performed. Perform upload function before downloading. See chapter Control panel.

UPLOADING FAILED

Upload function of panel has failed. No data has been copied from drive to panel.

Retry (there might be interference on link).Contact ABB representative.

WRITE ACCESS DENIED PARAMETER SETTING NOT POSSIBLE

Certain parameters do not allow changes while motor is running. If tried, no change is accepted, and warning is displayed.

Stop motor, then change parameter value.

Parameter lock is on. Open parameter lock (see parameter 16.02).

Fault tracing

Page 390: VFD Documents

240

Fault messages generated by the driveFAULT CAUSE WHAT TO DO

ACS800 TEMP(4210)3.05 FW 1 bit 3

Drive IGBT temperature is excessive. Fault trip limit is 100%.

Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

ACS TEMP xx y(4210)3.05 FW 1 bit 3 and 4.01

Excessive internal temperature in inverter unit of several parallel connected inverter modules. xx (1...12) refers to inverter module number and y refers to phase (U, V, W).

Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

AI < MIN FUNC(8110)3.06 FW 2 bit 10(programmableFault Function 30.01)

Analogue control signal is below minimum allowed value due to incorrect signal level or failure in control wiring.

Check for proper analogue control signal levels.Check control wiring.Check Fault Function parameters.

AD [message] Message generated by an EVENT block in the Adaptive Program.

Consult the documentation or author of the Adaptive Program.

BACKUP ERROR(FFA2)

Failure when restoring PC stored backup of drive parameters.

Retry.Check connections. Check that parameters are compatible with drive.

BC OVERHEAT(7114)3.17 FW 5 bit 4

Brake chopper overload Let chopper cool down. Check parameter settings of resistor overload protection function (see parameter group 27 BRAKE CHOPPER).Check that braking cycle meets allowed limits.Check that drive supply AC voltage is not excessive.

BC SHORT CIR(7113)3.17 FW 5 bit 2

Short circuit in brake chopper IGBT(s) Replace brake chopper.Ensure brake resistor is connected and not damaged.

BRAKE ACKN(FF74)3.15 FW 4 bit 3

Unexpected state of brake acknowledge signal See parameter group 42 BRAKE CONTROL.Check connection of brake acknowledgement signal.

BR BROKEN(7110)3.17 FW 5 bit 0

Brake resistor is not connected or it is damaged.Resistance rating of brake resistor is too high.

Check resistor and resistor connection.Check that resistance rating meets specifications. See appropriate drive hardware manual.

Fault tracing

Page 391: VFD Documents

241

BR OVERHEAT(7112)3.17 FW 5 bit 3

Brake resistor overload Let resistor cool down. Check parameter settings of resistor overload protection function (see parameter group 27 BRAKE CHOPPER).Check that braking cycle meets allowed limits.Check that drive supply AC voltage is not excessive.

BR WIRING(7111)3.17 FW 5 bit 1

Wrong connection of brake resistor Check resistor connection.Ensure brake resistor is not damaged.

CHOKE OTEMP(FF82)

Excessive temperature of drive output filter. Supervision is in use in step-up drives.

Let drive cool down. Check ambient temperature.Check filter fan rotates in correct direction and air flows freely.

COMM MODULE(7510)3.06 FW 2 bit 12(programmableFault Function 30.18, 30.19)

Cyclical communication between drive and master is lost.

Check status of fieldbus communication. See chapter Fieldbus control, or appropriate fieldbus adapter manual.Check parameter settings:- group 51 COMM MODULE DATA (for fieldbus adapter), or- group 52 STANDARD MODBUS (for Standard Modbus Link).Check Fault Function parameters.Check cable connections. Check if master can communicate.

CTRL B TEMP(4110)3.06 FW 2 bit 7

Control board temperature is above 88°C. Check ambient conditions.Check air flow.Check main and additional cooling fans.

CURR MEAS(2211)

Current transformer failure in output current measurement circuit

Check current transformer connections to Main Circuit Interface Board, INT.

CUR UNBAL xx(2330)3.05 FW 1 bit 4 and 4.01(programmable Fault Function 30.17)

Drive has detected excessive output current unbalance in inverter unit of several parallel connected inverter modules. This can be caused by external fault (earth fault, motor, motor cabling, etc.) or internal fault (damaged inverter component). xx (1...12) refers to inverter module number.

Check there are no power factor correction capacitors or surge absorbers in motor cable.Check that there is no earth fault in motor or motor cables:- measure insulation resistances of motor and motor cable.If no earth fault can be detected, contact your local ABB representative.

DC HIGH RUSH(FF80)

Drive supply voltage is excessive. When supply voltage is over 124% of unit voltage rating (415, 500 or 690 V), motor speed rushes to trip level (40% of nominal speed).

Check supply voltage level, drive rated voltage and allowed voltage range of drive.

FAULT CAUSE WHAT TO DO

Fault tracing

Page 392: VFD Documents

242

DC OVERVOLT(3210)3.05 FW 1 bit 2

Excessive intermediate circuit DC voltage. DC overvoltage trip limit is 1.3 × 1.35 × U1max, where U1max is maximum value of supply voltage range. For 400 V units, U1max is 415 V. For 500 V units, U1max is 500 V. For 690 V units, U1max is 690 V. Actual voltage in intermediate circuit corresponding to the supply voltage trip level is 728 V DC for 400 V units, 877 V DC for 500 V units, and 1210 V DC for 690 V units.

Check that overvoltage controller is on (parameter 20.05).Check supply voltage for static or transient overvoltage.Check brake chopper and resistor (if used).Check deceleration time.Use coast-to-stop function (if applicable).Retrofit frequency converter with brake chopper and brake resistor.

DC UNDERVOLT(3220)3.06 FW 2 bit 2

Intermediate circuit DC voltage is not sufficient due to missing supply voltage phase, blown fuse or rectifier bridge internal fault.DC undervoltage trip limit is 0.6 × 1.35 × U1min, where U1min is minimum value of supply voltage range. For 400 V and 500 V units, U1min is 380 V. For 690 V units, U1min is 525 V. Actual voltage in intermediate circuit corresponding to supply voltage trip level is 307 V DC for 400 V and 500 V units, and 425 V DC for 690 V units.

Check main supply and fuses.

EARTH FAULT(2330)3.05 FW 1 bit 4(programmable Fault Function 30.17)

Drive has detected load unbalance typically due to earth fault in motor or motor cable.

Check there are no power factor correction capacitors or surge absorbers in motor cable.Check that there is no earth fault in motor or motor cables:- measure insulation resistances of motor and motor cable.If no earth fault can be detected, contact your local ABB representative.

ENC CABLE(7310)3.33 FW 6 bit 2

(programmable Fault Function 50.07)

Pulse encoder phase signal is missing. Check pulse encoder and its wiring.Check pulse encoder interface module and its wiring.

ENCODER A<>B(7302)

Pulse encoder phasing is wrong: Phase A is connected to terminal of phase B and vice versa.

Interchange connection of pulse encoder phases A and B.

ENCODER ERR(7301)3.06 FW 2 bit 5

Communication fault between pulse encoder and pulse encoder interface module and between module and drive

Check pulse encoder and its wiring, pulse encoder interface module and its wiring and parameter group 50 ENCODER MODULE settings.

EXTERNAL FLT(9000)3.06 FW 2 bit 8(programmableFault Function 30.03)

Fault in external device. (This information is configured through one of programmable digital inputs.)

Check external devices for faults.Check parameter 30.03 EXTERNAL FAULT.

FAULT CAUSE WHAT TO DO

Fault tracing

Page 393: VFD Documents

243

FORCED TRIP(FF8F)

Generic Drive Communication Profile trip command

See appropriate communication module manual.

GD DISABLED(FF53)

AGPS power supply of parallel connected R8i inverter module has been switched off during run. X (1…12) refers to inverter module number.

Check Prevention of Unexpected Start-up circuit.Replace AGPS board of R8i inverter module.

ID RUN FAIL(FF84)

Motor ID Run is not completed successfully. Check maximum speed (parameter 20.02). It should be at least 80% of motor nominal speed (parameter 99.08).

IN CHOKE TEMP(FF81)3.17 FW 5 bit 5

Excessive input choke temperature Stop drive. Let it cool down.Check ambient temperature. Check that fan rotates in correct direction and air flows freely.

INT CONFIG(5410)03.17 FW 5 bit 10

Number of inverter modules is not equal to original number of inverters.

Check status of inverters. See signal 04.01 FAULTED INT INFO.Check fibre optic cables between APBU and inverter modules.If Reduced Run function is used, remove faulted inverter module from main circuit and write number of remaining inverter modules into parameter 95.03 INT CONFIG USER. Reset drive.

INV DISABLED03.17 FW 5 bit 7(3200)

Optional DC switch has opened while unit was running or start command was given.

Close DC switch.Check AFSC-0x Fuse Switch Controller unit.

INV OVERTEMP(4290)3.17 FW 5 bit 13

Converter module temperature is excessive. Check ambient temperature. If it exceeds 40°C, ensure that load current does not exceed derated load capacity of drive. See appropriate hardware manual.Check that ambient temperature setting is correct (parameter 95.10).Check converter module cooling air flow and fan operation.Cabinet installation: Check cabinet air inlet filters. Change when necessary. See appropriate hardware manual.Modules installed in cabinet by user: Check that cooling air circulation in cabinet has been prevented with air baffles. See module installation instructions.Check inside of cabinet and heatsink of converter module for dust pick-up. Clean when necessary.Reset and restart after problem is solved and let converter module cool down.

FAULT CAUSE WHAT TO DO

Fault tracing

Page 394: VFD Documents

244

I/O COMM ERR(7000)3.06 FW 2 bit 6

Communication error on control board, channel CH1Electromagnetic interference

Check connections of fibre optic cables on channel CH1.Check all I/O modules (if present) connected to channel CH1.Check for proper earthing of equipment. Check for highly emissive components nearby.

LINE CONV(FF51)

Fault on line side converter Shift panel from motor side converter control board to line side converter control board. See line side converter manual for fault description.

MOD BOARD T(FF88)

Overtemperature in AINT board of inverter module.

Check inverter fan.Check ambient temperature.

MOD CHOKE T(FF89)

Overtemperature in choke of liquid cooled R8i inverter module.

Check inverter fan.Check ambient temperature.Check liquid cooling system.

MOTOR PHASE(FF56)3.06 FW 2 bit 15(programmable Fault Function 30.16)

One of motor phases is lost due to fault in motor, motor cable, thermal relay (if used) or internal fault.

Check motor and motor cable.Check thermal relay (if used).Check Fault Function parameters. Disable this protection.

MOTOR STALL(7121)3.06 FW 2 bit 14(programmable Fault Function 30.10…30.12)

Motor is operating in stall region due to e.g. excessive load or insufficient motor power.

Check motor load and drive ratings.Check Fault Function parameters.

MOTOR TEMP(4310)3.05 FW 1 bit 6(programmableFault Function 30.04…30.09)

Motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

Check motor ratings and load.Check start-up data.Check Fault Function parameters.

MOTOR 1 TEMP (4312)3.15 FW 4 bit 1

Measured motor temperature has exceeded fault limit set by parameter 35.03.

Check value of fault limit. Let motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

MOTOR 2 TEMP(4313)3.15 FW 4 bit 2

Measured motor temperature has exceeded fault limit set by parameter 35.06.

Check value of fault limit. Let motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

NO MOT DATA(FF52)3.06 FW 2 bit 1

Motor data is not given or motor data does not match with inverter data.

Check motor data parameters 99.04…99.09.

FAULT CAUSE WHAT TO DO

Fault tracing

Page 395: VFD Documents

245

OVERCURR xx(2310)3.05 FW 1 bit 1 and 4.01

Overcurrent fault in inverter unit of several parallel connected inverter modules. xx (1...12) refers to inverter module number.

Check motor load.Check acceleration time.Check motor and motor cable (including phasing).Check encoder cable (including phasing).Check motor nominal values from group 99 START-UP DATA to confirm that motor model is correct.Check that there are no power factor correction or surge absorbers in motor cable.

OVERCURRENT(2310)3.05 FW 1 bit 1

Output current exceeds trip limit. Check motor load.Check acceleration time.Check motor and motor cable (including phasing).Check that there are no power factor correction capacitors or surge absorbers in motor cable.Check encoder cable (including phasing).

OVERFREQ(7123)3.05 FW 1 bit 9

Motor is turning faster than highest allowed speed due to incorrectly set minimum/maximum speed, insufficient braking torque or changes in load when using torque reference.

Trip level is 50 Hz over operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active). Operating range limits are set by parameters 20.01 and 20.02 (DTC mode active) or 20.07 and 20.08 (Scalar Control active).

Check minimum/maximum speed settings.Check adequacy of motor braking torque.Check applicability of torque control.Check need for brake chopper and resistor(s).

OVER SWFREQ(FF55)3.06 FW 2 bit 9

Switching frequency is too high. Check motor parameter settings (parameter group 99 START-UP DATA)Ensure that ID run has been completed successfully.

PANEL LOSS(5300)3.06 FW 2 bit 13(programmableFault Function 30.02)

Control panel or DriveWindow selected as active control location for drive has ceased communicating.

Check panel connection (see appropriate hardware manual).Check control panel connector.Replace control panel in mounting platform.Check Fault Function parameters.Check DriveWindow connection.

PARAM CRC(6320)

CRC (Cyclic Redundancy Check) error Switch control board power off and on again.Reload firmware to control board.Replace control board.

POWERFAIL(3381)3.17 FW 5 bit 9

INT board powerfail in several inverter units of parallel connected inverter modules.

Check that INT board power cable is connected.Check that POW board is working correctly.Replace INT board.

FAULT CAUSE WHAT TO DO

Fault tracing

Page 396: VFD Documents

246

POWERF INV xx(3381)3.17 FW 5 bit 9 and 4.01

INT board powerfail in inverter unit of several parallel connected inverter modules. xx (1...12) refers to inverter module number.

Check that INT board power cable is connected.Check that POW board is working correctly.Replace INT board.

PPCC LINK(5210)3.06 FW 2 bit 11

Fibre optic link to INT board is faulty. Check fibre optic cables or galvanic link. With frame sizes R2-R6 link is galvanic.If RMIO is powered from external supply, ensure that supply is on. See parameter 16.09 CTRL BOARD SUPPLY.Check signal 03.19. Contact ABB representative if any of faults in signal 3.19 are active.

PPCC LINK xx(5210)3.06 FW 2 bit 11 and 4.01

INT board fibre optic connection fault in inverter unit of several parallel connected inverter modules. xx refers to inverter module number.

Check connection from inverter module Main Circuit Interface Board, INT to PPCC Branching Unit, PBU. (Inverter module 1 is connected to PBU INT1 etc.)Check signal 03.19. Contact ABB representative if any of faults in signal 3.19 are active.

PP OVERLOAD(5482)3.17 FW 5 bit 6

Excessive IGBT junction to case temperature. This fault protects IGBT(s) and it can be activated by short circuit at output of long motor cables.

Check motor cables.

SC INV xx y(2340)

3.05 FW 1 bit 0, 4.01 and 4.02

Short circuit in inverter unit of several parallel connected inverter modules. xx (1...12) refers to inverter module number and y refers to phase (U, V, W).

Check motor and motor cable.Check power semiconductors (IGBTs) of inverter module.

SHORT CIRC(2340)3.05 FW 1 bit 0 and 4.02

Short-circuit in motor cable(s) or motor Check motor and motor cable.Check there are no power factor correction capacitors or surge absorbers in motor cable.

Output bridge of converter unit is faulty. Contact ABB representative.

SLOT OVERLAP(FF8A)

Two option modules have same connection interface selection.

Check connection interface selections in group 98 OPTION MODULES.

START INHIBI(FF7A)3.03 bit 8

Safe torque off has been activated during motor run or motor start command has been given when Safe torque off is active.Or: Optional start inhibit hardware logic is activated.

Close Safe torque off switch. If switch is closed and fault is still active, check power supply at ASTO board input terminals. Replace ASTO board.Or: Check start inhibit circuit (AGPS board).

SUPPLY PHASE(3130)3.06 FW 2 bit 0

Intermediate circuit DC voltage is oscillating due to missing supply voltage phase, blown fuse or rectifier bridge internal fault.Trip occurs when DC voltage ripple is 13% of DC voltage.

Check main supply fuses.Check for main supply imbalance.

FAULT CAUSE WHAT TO DO

Fault tracing

Page 397: VFD Documents

247

TEMP DIF xx y(4380)3.17 FW 5 bit 8 and 4.01

Excessive temperature difference between several parallel connected inverter modules. xx (1...12) refers to inverter module number and y refers to phase (U, V, W).

Alarm is indicated when temperature difference is 15°C. Fault is indicated when temperature difference is 20°C

Excessive temperature can be caused e.g. by unequal current sharing between parallel connected inverters.

Check cooling fan.Replace fan.Check air filters.

THERMAL MODE(FF50)

Motor thermal protection mode is set to DTC for high-power motor.

See parameter 30.05.

THERMISTOR(4311)3.05 FW 1 bit 5(programmableFault Function 30.04…30.05)

Motor temperature is excessive. Motor thermal protection mode selection is TEMP SENSOR.

Check motor ratings and load.Check start-up data.Check thermistor connections to digital input DI6.

UNDERLOAD(FF6A)3.05 FW 1 bit 8(programmable Fault Function 30.13…30.15)

Motor load is too low due to e.g. release mechanism in driven equipment.

Check for problem in driven equipment.Check Fault Function parameters.

USER L CURVE(2312)3.17 FW 5 bit 11

Integrated motor current has exceeded load curve defined by parameter group 72 USER LOAD CURVE.

Check parameter group 72 USER LOAD CURVE settings. After motor cooling time specified by parameter 72.20 LOAD COOLING TIME has elapsed, fault can be reset.

USER MACRO(FFA1)3.07 SFW bit 1

No User Macro saved or file is defective. Create User Macro.

FAULT CAUSE WHAT TO DO

Fault tracing

Page 398: VFD Documents

248

Fault tracing

Page 399: VFD Documents

249

Analogue Extension Module

Chapter overviewThe chapter describes the use of analogue extension module RAIO as an speed reference interface of ACS800 equipped with Standard Control Program.

Speed control through the analogue extension moduleTwo variants are described:• Bipolar Input in Basic Speed Control• Bipolar Input in Joystick ModeOnly the use of a bipolar input (± signal range) is covered here. The use of unipolar input corresponds to that of a standard unipolar input when:• the settings described below are done, and• the communication between the module and the drive is activated by parameter

98.06.

Basic checksEnsure the drive is:• installed and commissioned, and• the external start and stop signals are connected.Ensure the extension module:• settings are adjusted. (See below.)• is installed and reference signal is connected to AI1.• is connected to the drive.

Settings of the analogue extension module and the drive• Set the module node address to 5 (not required if installed to the option slot of the

drive).• Select the signal type for the module input AI1 (switch).• Select the operation mode (unipolar/bipolar) of the module input (switch). • Ensure the drive parameter settings correspond to the mode of the module inputs

(parameter 98.13 and 98.14).• Set the drive parameters (see the appropriate section on the following pages).

Analogue Extension Module

Page 400: VFD Documents

250

Parameter settings: bipolar input in basic speed controlThe table below lists the parameters that affect the handling of the speed reference received through the extension module bipolar input AI1 (AI5 of the drive).

The figure below presents the speed reference corresponding to bipolar input AI1 of the extension module.

1) For the negative speed range, the drive must receive a separate reverse command.2) Set if supervision of living zero is used.

Parameter Setting98.06 AI/O EXT MODULE RAIO-SLOT198.13 AI/O EXT AI1 FUNC BIPO AI510.03 DIRECTION FORWARD; REVERSE; REQUEST(1

11.02 EXT1/EXT2 SELECT EXT111.03 EXT REF1 SELECT AI511.04 EXT REF1 MINIMUM minREF111.05 EXT REF1 MAXIMUM maxREF113.16 MINIMUM AI5 minAI513.17 MAXIMUM AI5 maxAI513.18 SCALE AI5 100%13.20 INVERT AI5 NO30.01 AI<MIN FUNCTION (2

Spe

ed R

efer

ence

scaled

minREF1

-minAI5 minAI5 maxAI5-maxAI5

-minREF1

-scaled

10.03 DIRECTION =FORWARD orREQUEST1)

Analogue Input Signal

Operation Range

minAI5 = 13.16 MINIMUM AI5 maxAI5 = 13.17 MAXIMUM AI5scaled maxREF1 = 13.18 SCALE AI5 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM

maxREF1

maxREF1

10.03 DIRECTION =REVERSE orREQUEST1)

Analogue Extension Module

Page 401: VFD Documents

251

Parameter settings: bipolar input in joystick mode The table below lists the parameters that affect the handling of the speed and direction reference received through the extension module bipolar input AI1 (AI5 of the drive).

The figure below presents the speed reference corresponding to bipolar input AI1 of the extension module in joystick mode.

1) Enables the use of both positive and negative speed range.2) Set if supervision of living zero is used.

Parameter Setting98.06 AI/O EXT MODULE RAIO-SLOT198.13 AI/O EXT AI1 FUNC BIPO AI510.03 DIRECTION FORWARD; REVERSE; REQUEST(1

11.02 EXT1/EXT2 SELECT EXT111.03 EXT REF1 SELECT AI5/JOYST11.04 EXT REF1 MINIMUM minREF111.05 EXT REF1 MAXIMUM maxREF113.16 MINIMUM AI5 minAI513.17 MAXIMUM AI5 maxAI513.18 SCALE AI5 100%13.20 INVERT AI5 NO30.01 AI<MIN FUNCTION (2

Spe

ed R

efer

ence

minAI5 = 13.15 MINIMUM AI5maxAI5 = 13.17 MAXIMUM AI5scaled maxREF1 = 13.18 SCALE AI5 x 11.05 EXT REF1 MAXIMUM minREF1 = 11.04 EXT REF1 MINIMUM

scaled

minREF1

-minAI5 minAI5 maxAI5-maxAI5

-minREF1

-scaled

Analogue Input Signal

Operation RangemaxREF1

maxREF1

10.03 DIRECTION =FORWARD orREQUEST1)

10.03 DIRECTION =REVERSE orREQUEST1)

Analogue Extension Module

Page 402: VFD Documents

252

Analogue Extension Module

Page 403: VFD Documents

253

Additional data: actual signals and parameters

Chapter overviewThis chapter lists the actual signal and parameter lists with some additional data. For the descriptions, see chapter Actual signals and parameters.

Terms and abbreviations

Fieldbus addresses

Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.) See the appropriate fieldbus adapter module User’s Manual.

Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.)NPBA-12 Profibus Adapter

All versions

• see column PB in the tables below.

Version 1.5 or later

• see NPBA-12 PROFIBUS Adapter Installation and Start-Up Guide [3BFE64341588 (English)].

Reading or writing a drive parameter can be done also by converting the parameter group (PNU) and the parameter index (subindex) into hexadecimal.

Example: drive parameter 12.07:12 = 0C(hex)07 = 07(hex) => 0C07.

Request label for request parameter value is 6. Request label for change parameter value is 7. Note: Not every parameter has Profibus equivalent value (PB).

Term Definition

PB Profibus equivalent for drive parameters communicating through the NPBA-12 Profibus Adapter.

FbEq Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Absolute Maximum Frequency Value of 20.08, or 20.07 if the absolute value of the minimum limit is greater than the maximum limit.

Absolute Maximum Speed Value of parameter 20.02, or 20.01 if the absolute value of the minimum limit is higher than the maximum limit.

W Write access is not allowed when the motor is running.

Additional data: actual signals and parameters

Page 404: VFD Documents

254

NIBA-01 InterBus-S Adapter

• xxyy · 100 + 12288 converted into hexadecimal, where xxyy = drive parameter numberExample: The index number for drive parameter 13.09 is 1309 + 12288 = 13597 (dec) = 351D (hex)

NMBP-01 ModbusPlus® Adapter and NMBA-01 Modbus Adapter

• 4xxyy, where xxyy = drive parameter number

Additional data: actual signals and parameters

Page 405: VFD Documents

255

Actual signalsIndex Name Short name FbEq Unit Range PB01 ACTUAL SIGNALS01.01 PROCESS VARIABLE PROC VAR 1 = 1 According to

parameter 34.021

01.02 SPEED SPEED -20000 = -100% 20000 = 100% of motor absolute max. speed

rpm 2

01.03 FREQUENCY FREQ -100 = -1 Hz 100 = 1 Hz

Hz 3

01.04 CURRENT CURRENT 10 = 1 A A 401.05 TORQUE TORQUE -10000 = -100%

10000 = 100% of motor nominal torque

% 5

01.06 POWER POWER -1000 = -100% 1000 = 100% of motor nominal power

% 6

01.07 DC BUS VOLTAGE V DC BUS V 1 = 1 V V 701.08 MAINS VOLTAGE MAINS V 1 = 1 V V 801.09 OUTPUT VOLTAGE OUT VOLT 1 = 1 V V 901.10 ACS800 TEMP ACS TEMP 10 = 1% % 1001.11 EXTERNAL REF 1 EXT REF1 1 = 1 rpm rpm 1101.12 EXTERNAL REF 2 EXT REF2 0 = 0% 10000 =

100% 1)% 12

01.13 CTRL LOCATION CTRL LOC (1,2) LOCAL; (3) EXT1; (4) EXT2

LOCAL; EXT1; EXT2

13

01.14 OP HOUR COUNTER OP HOURS 1 = 1 h h 1401.15 KILOWATT HOURS KW HOURS 1 = 100 kWh kWh 1501.16 APPL BLOCK OUTPUT APPL OUT 0 = 0% 10000 =

100%% 16

01.17 DI6-1 STATUS DI6-1 1 = 1 1701.18 AI1 [V] AI1 [V] 1 = 0.001 V V 1801.19 AI2 [mA] AI2 [mA] 1 = 0.001 mA mA 1901.20 AI3 [mA] AI3 [mA] 1 = 0.001 mA mA 2001.21 RO3-1 STATUS RO3-1 1 = 1 2101.22 AO1 [mA] AO1 [mA] 1 =0.001 mA mA 2201.23 AO2 [mA] AO2 [mA] 1 = 0.001 mA mA 2301.24 ACTUAL VALUE 1 ACT VAL1 0 = 0% 10000 =

100%% 24

01.25 ACTUAL VALUE 2 ACT VAL2 0 = 0% 10000 = 100%

% 25

01.26 CONTROL DEVIATION CONT DEV -10000 = -100% 10000 = 100%

% 26

01.27 APPLICATION MACRO MACRO 1 … 7 According to parameter 99.02

27

01.28 EXT AO1 [mA] EXT AO1 1 = 0.001 mA mA 2801.29 EXT AO2 [mA] EXT AO2 1 = 0.001 mA mA 2901.30 PP 1 TEMP PP 1 TEM 1 = 1°C °C 3001.31 PP 2 TEMP PP 2 TEM 1 = 1°C °C 3101.32 PP 3 TEMP PP 3 TEM 1 = 1°C °C 3201.33 PP 4 TEMP PP 4 TEM 1 = 1°C °C 3301.34 ACTUAL VALUE ACT V 0 = 0% 10000 =

100%% 34

01.35 MOTOR 1 TEMP M 1 TEMP 1 = 1°C/ohm °C 3501.36 MOTOR 2 TEMP M 2 TEMP 1 = 1°C/ohm °C 3601.37 MOTOR TEMP EST MOTOR TE 1 = 1°C °C 3701.38 AI5 [mA] AI5 [mA] 1 = 0.001 mA mA 38

Additional data: actual signals and parameters

Page 406: VFD Documents

256

01.39 AI6 [mA] AI6 [mA] 1 = 0.001 mA mA 3901.40 DI7-12 STATUS DI7...12 1 = 1 4001.41 EXT RO STATUS EXT RO 1 = 1 4101.42 PROCESS SPEED REL P SPEED 1 = 1 % 4201.43 MOTOR RUN TIME MOTOR RUN TIME 1 = 10 h h 4301.44 FAN ON-TIME FAN TIME 10 h = 1 h 4401.45 CTRL BOARD TEMP CTRL B T 1 = 1 °C 4501.46 SAVED KWH SAV KWH 1 = 100 kWh kWh 0…999 999 4601.47 SAVED GWH SAV GWH 1 = 1 GWh GWh 1…8388607 4701.48 SAVED AMOUNT SAV AM 1 = 100 cur local; EUR; USD 0…999 999 4801.49 SAVED AMOUNT M SAV AM M 1 = 1 Mcur local; EUR; USD 1…8388607 4901.50 SAVED CO2 SAV CO2 1 = 100 kg kg 0…999 999 5001.51 SAVED CO2 KTON SAV CO2K 1 = 1 kton kton 1…8388607 -02 ACTUAL SIGNALS02.01 SPEED REF 2 S REF 2 0 = 0% 20000 =

100% of motor absolute max. speed

rpm 5102.02 SPEED REF 3 S REF 3 rpm 52

02.09 TORQUE REF 2 T REF 2 0 = 0% 10000 = 100% of motor nominal torque

% 5902.10 TORQUE REF 3 T REF 3 % 6002.13 TORQ USED REF T USED R % 6302.14 FLUX REF FLUX REF 0 = 0% 10000 =

100%% 64

02.17 SPEED ESTIMATED SPEED ES 0 = 0% 20000 = 100% of motor absolute max. speed

rpm 6702.18 SPEED MEASURED SPEED ME rpm 68

02.19 MOTOR ACCELERATIO

MOTOR AC 1 = 1 rpm/s. rpm/s 69

02.20 USER CURRENT USER CUR 10 = 1% % 7003 ACTUAL SIGNALS 2)03.01 MAIN CTRL WORD MAIN CW 0...65535

(Decimal)76

03.02 MAIN STATUS WORD MAIN SW 0...65535 (Decimal)

77

03.03 AUX STATUS WORD AUX SW 0...65535 (Decimal)

78

03.04 LIMIT WORD 1 LIMIT W1 0...65535 (Decimal)

79

03.05 FAULT WORD 1 FAULT W1 0...65535 (Decimal)

80

03.06 FAULT WORD 2 FAULT W2 0...65535 (Decimal)

81

03.07 SYSTEM FAULT SYS FLT 0...65535 (Decimal)

82

03.08 ALARM WORD 1 ALARM W1 0...65535 (Decimal)

83

03.09 ALARM WORD 2 ALARM W2 0...65535 (Decimal)

84

03.11 FOLLOWER MCW FOLL MCW 0...65535 (Decimal)

86

03.13 AUX STATUS WORD 3 AUX SW 3 0...65535 (Decimal)

88

03.14 AUX STATUS WORD 4 AUX SW 4 0...65535 (Decimal)

89

03.15 FAULT WORD 4 FAULT W4 0...65535 (Decimal)

90

03.16 ALARM WORD 4 ALARM W4 0...65535 (Decimal)

91

Index Name Short name FbEq Unit Range PB

Additional data: actual signals and parameters

Page 407: VFD Documents

257

03.17 FAULT WORD 5 FAULT W5 0...65535 (Decimal)

92

03.18 ALARM WORD 5 ALARM W5 0...65535 (Decimal)

93

03.19 INT INIT FAULT INT INIT 0...65535 (Decimal)

94

03.20 LATEST FAULT LAST FLT 0...65535 (Decimal)

95

03.21 2.LATEST FAULT 2.FAULT 0...65535 (Decimal)

96

03.22 3.LATEST FAULT 3.FAULT 0...65535 (Decimal)

97

03.23 4.LATEST FAULT 4.FAULT 0...65535 (Decimal)

98

03.24 5.LATEST FAULT 5.FAULT 0...65535 (Decimal)

99

03.25 LATEST WARNING LAST WRN 0...65535 (Decimal)

100

03.26 2.LATEST WARNING 2.WARN 0...65535 (Decimal)

03.27 3.LATEST WARNING 3.WARN 0...65535 (Decimal)

03.28 4.LATEST WARNING 4.WARN 0...65535 (Decimal)

03.29 5.LATEST WARNING 5.WARN 0...65535 (Decimal)

03.30 LIMIT WORD INV LIMIT WO 0...65535 (Decimal)

-

03.31 ALARM WORD 6 ALARM W6 0...65535 (Decimal)

-

03.32 EXT IO STATUS E IO ST - - 0…65535 (Decimal)

-

03.33 FAULT WORD 6 FAULT W6 0…65535 (Decimal)

04 ACTUAL SIGNALS04.01 FAULTED INT INFO FLTD INT 0...65535

(Decimal)04.02 INT SC INFO INT SC 0...65535

(Decimal)09 ACTUAL SIGNALS09.01 AI1 SCALED AI1 SCAL 20000 = 10 V 0…20000 -09.02 AI2 SCALED AI2 SCAL 20000 = 20 mA 0…20000 -09.03 AI3 SCALED AI3 SCAL 20000 = 20 mA 0…20000 -09.04 AI5 SCALED AI5 SCAL 20000 = 20 mA 0…20000 -09.05 AI6 SCALED AI6 SCAL 20000 = 20 mA 0…20000 -09.06 DS MCW DS MCW 0...65535 (Decimal) 0...65535

(Decimal)-

09.07 MASTER REF1 M REF1 -32768…32767 -32768…32767 -09.08 MASTER REF2 M REF2 -32768…32767 -32768…32767 -09.09 AUX DS VAL1 AUX DSV1 -32768…32767 -32768…32767 -09.10 AUX DS VAL2 AUX DSV2 -32768…32767 -32768…32767 -09.11 AUX DS VAL3 AUX DSV3 -32768…32767 -32768…32767 -09.12 LCU ACT SIGNAL1 LCU ACT1 1 = 1 - -09.13 LCU ACT SIGNAL2 LCU ACT2 1 = 1 - -1) Percent of motor max. speed / nominal torque / max. process reference (depending on the ACS800 macro selected).2) The contents of these data words are detailed in chapter Fieldbus control. For the contents of Actual Signal 3.11, see the Master/Follower Application Guide [3AFE64590430 (English)].

Index Name Short name FbEq Unit Range PB

Additional data: actual signals and parameters

Page 408: VFD Documents

258

ParametersIndex Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W10 START/STOP/DIR10.01 EXT1 STRT/STP/DIR DI1,2 (US:

DI1P,2P,3)DI1,2 DI1 DI1,2 DI1,2 101 W

10.02 EXT2 STRT/STP/DIR NOT SEL DI6,5 DI6 DI1,2 NOT SEL 102 W10.03 REF DIRECTION FORWARD REQUEST FORWARD REQUEST REQUEST 103 W10.04 EXT 1 STRT PTR 0 0 0 0 104 W10.05 EXT 2 STRT PTR 0 0 0 0 0 105 W10.06 JOG SPEED SELECT NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 106 W10.07 NET CONTROL 0 0 0 0 0 10710.08 NET REFERENCE 0 0 0 0 0 10810.09 SLS ACTIVE NO NO NO NO NO 10911 REFERENCE SELECT11.01 KEYPAD REF SEL REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm) REF1 (rpm) 12611.02 EXT1/EXT2 SELECT EXT1 DI3 DI3 DI3 EXT1 127 W11.03 EXT REF1 SELECT AI1 AI1 AI1 AI1 AI1 128 W11.04 EXT REF 1 MINIMUM 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 12911.05 EXT REF 1 MAXIMUM 1500 rpm 1500 rpm 1500 rpm 1500 rpm 1500 rpm 13011.06 EXT REF2 SELECT KEYPAD AI2 AI1 AI2 AI1 131 W11.07 EXT REF 2 MINIMUM 0% 0% 0% 0% 0% 13211.08 EXT REF 2 MAXIMUM 100% 100% 100% 100% 100% 13311.09 EXT 1/2 SEL PTR 0 0 0 0 0 13411.10 EXT 1 REF PTR 0 0 0 0 0 13511.11 EXT 2 REF PTR 0 0 0 0 0 13612 CONSTANT SPEEDS12.01 CONST SPEED SEL DI5,6 DI4(SPEED4) DI4(SPEED4) DI4(SPEED4) DI4,5,6 151 W12.02 CONST SPEED 1 300 rpm 300 rpm 300 rpm 300 rpm 300 rpm 15212.03 CONST SPEED 2 600 rpm 600 rpm 600 rpm 600 rpm 600 rpm 15312.04 CONST SPEED 3 900 rpm 900 rpm 900 rpm 900 rpm 900 rpm 15412.05 CONST SPEED 4 300 rpm 300 rpm 300 rpm 300 rpm 1200 rpm 15512.06 CONST SPEED 5 0 rpm 0 rpm 0 rpm 0 rpm 1500 rpm 15612.07 CONST SPEED 6 0 rpm 0 rpm 0 rpm 0 rpm 2400 rpm 15712.08 CONST SPEED 7 0 rpm 0 rpm 0 rpm 0 rpm 3000 rpm 15812.09 CONST SPEED 8 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 15912.10 CONST SPEED 9 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16012.11 CONST SPEED 10 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16112.12 CONST SPEED 11 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16212.13 CONST SPEED 12 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16312.14 CONST SPEED 13 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16412.15 CONST SPEED 14 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16512.16 CONST SPEED 15 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 16613 ANALOGUE INPUTS13.01 MINIMUM AI1 0 V 0 V 0 V 0 V 0 V 17613.02 MAXIMUM AI1 10 V 10 V 10 V 10 V 10 V 17713.03 SCALE AI1 100% 100% 100% 100% 100% 17813.04 FILTER AI1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 17913.05 INVERT AI1 NO NO NO NO NO 18013.06 MINIMUM AI2 0 mA 0 mA 0 mA 0 mA 0 mA 18113.07 MAXIMUM AI2 20 mA 20 mA 20 mA 20 mA 20 mA 18213.08 SCALE AI2 100% 100% 100% 100% 100% 18313.09 FILTER AI2 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 18413.10 INVERT AI2 NO NO NO NO NO 18513.11 MINIMUM AI3 0 mA 0 mA 0 mA 0 mA 0 mA 18613.12 MAXIMUM AI3 20 mA 20 mA 20 mA 20 mA 20 mA 18713.13 SCALE AI3 100% 100% 100% 100% 100% 18813.14 FILTER AI3 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 18913.15 INVERT AI3 NO NO NO NO NO 190

Additional data: actual signals and parameters

Page 409: VFD Documents

259

13.16 MINIMUM AI5 0 mA 0 mA 0 mA 0 mA 0 mA 19113.17 MAXIMUM AI5 20 mA 20 mA 20 mA 20 mA 20 mA 19213.18 SCALE AI5 100% 100% 100% 100% 100% 19313.19 FILTER AI5 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 19413.20 INVERT AI5 NO NO NO NO NO 19513.21 MINIMUM AI6 0 mA 0 mA 0 mA 0 mA 0 mA 19613.22 MAXIMUM AI6 20 mA 20 mA 20 mA 20 mA 20 mA 19713.23 SCALE AI6 100% 100% 100% 100% 100% 19813.24 FILTER AI6 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 19913.25 INVERT AI6 NO NO NO NO NO 20014 RELAY OUTPUTS14.01 RELAY RO1 OUTPUT READY READY READY READY READY 201 W14.02 RELAY RO2 OUTPUT RUNNING RUNNING RUNNING RUNNING RUNNING 202 W14.03 RELAY RO3 OUTPUT FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1) FAULT(-1) 203 W14.04 RO1 TON DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 204 W14.05 RO1 TOFF DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 205 W14.06 RO2 TON DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 206 W14.07 RO2 TOFF DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 207 W14.08 RO3 TON DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 208 W14.09 RO3 TOFF DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 209 W14.10 DIO MOD1 RO1 READY READY READY READY READY 210 W14.11 DIO MOD1 RO2 RUNNING RUNNING RUNNING RUNNING RUNNING 211 W14.12 DIO MOD2 RO1 FAULT FAULT FAULT FAULT FAULT 212 W14.13 DIO MOD2 RO2 WARNING WARNING WARNING WARNING WARNING 213 W14.14 DIO MOD3 RO1 REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL REF 2 SEL 214 W14.15 DIO MOD3 RO2 AT SPEED AT SPEED AT SPEED AT SPEED AT SPEED 215 W14.16 RO PTR1 0 0 0 0 0 216 W14.17 RO PTR2 0 0 0 0 0 217 W14.18 RO PTR3 0 0 0 0 0 218 W14.19 RO PTR4 0 0 0 0 0 219 W14.20 RO PTR5 0 0 0 0 0 220 W14.21 RO PTR6 0 0 0 0 0 221 W14.22 RO PTR7 0 0 0 0 0 222 W14.23 RO PTR8 0 0 0 0 0 223 W14.24 RO PTR9 0 0 0 0 0 224 W15 ANALOGUE OUTPUTS15.01 ANALOGUE OUTPUT1 SPEED SPEED SPEED SPEED SPEED 226 W15.02 INVERT AO1 NO NO NO NO NO 22715.03 MINIMUM AO1 0 mA 0 mA 0 mA 0 mA 0 mA 22815.04 FILTER AO1 0.10 s 0.10 s 0.10 s 0.10 s 0.10 s 22915.05 SCALE AO1 100% 100% 100% 100% 100% 23015.06 ANALOGUE OUTPUT2 CURRENT CURRENT CURRENT CURRENT CURRENT 231 W15.07 INVERT AO2 NO NO NO NO NO 23215.08 MINIMUM AO2 0 mA 0 mA 0 mA 0 mA 0 mA 23315.09 FILTER AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s 23415.10 SCALE AO2 100% 100% 100% 100% 100% 23515.11 AO1 PTR 0 0 0 0 0 23615.12 AO2 PTR 0 0 0 0 0 23716 SYS CTRL INPUTS16.01 RUN ENABLE YES YES DI5 DI6 YES 251 W16.02 PARAMETER LOCK OPEN OPEN OPEN OPEN OPEN 25216.03 PASS CODE 0 0 0 0 0 25316.04 FAULT RESET SEL NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 254 W16.05 USER MACRO IO CHG NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 255 W16.06 LOCAL LOCK OFF OFF OFF OFF OFF 25616.07 PARAMETER SAVE DONE DONE DONE DONE DONE 25716.08 RUN ENA PTR 0 0 0 0 0 258

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 410: VFD Documents

260

16.09 CTRL BOARD SUPPLY INTERNAL 24V

INTERNAL 24V

INTERNAL 24V

INTERNAL 24V

INTERNAL 24V

259

16.10 ASSIST SEL ON ON ON ON ON 26016.11 FAULT RESET PTR 0 0 0 0 0 26116.12 RESET COUNTER NO NO NO NO NO 26220 LIMITS20.01 MINIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated) 35120.02 MAXIMUM SPEED (calculated) (calculated) (calculated) (calculated) (calculated) 35220.03 MAXIMUM CURRENT type specific type specific type specific type specific type specific 35320.04 TORQ MAX LIM1 300% 300% 300% 300% 300% 35420.05 OVERVOLTAGE CTRL ON ON ON ON ON 35520.06 UNDERVOLTAGE CTRL ON ON ON ON ON 35620.07 MINIMUM FREQ - 50 Hz - 50 Hz - 50 Hz - 50 Hz - 50 Hz 35720.08 MAXIMUM FREQ 50 Hz 50 Hz 50 Hz 50 Hz 50 Hz 35820.11 P MOTORING LIM 300% 300% 300% 300% 300% 36120.12 P GENERATING LIM -300% -300% -300% -300% -300% 36220.13 MIN TORQ SEL NEG MAX

TORQNEG MAX TORQ

NEG MAX TORQ

NEG MAX TORQ

NEG MAX TORQ

363

20.14 MAX TORQ SEL MAX LIM1 MAX LIM1 MAX LIM1 MAX LIM1 MAX LIM1 36420.15 TORQ MIN LIM1 0.0% 0.0% 0.0% 0.0% 0.0% 36520.16 TORQ MIN LIM2 0.0% 0.0% 0.0% 0.0% 0.0% 36620.17 TORQ MAX LIM2 300.0% 300.0% 300.0% 300.0% 300.0% 36720.18 TORQ MIN PTR 0 0 0 0 0 36820.19 TORQ MAX PTR 0 0 0 0 0 36920.20 MIN AI SCALE 0% 0% 0% 0% 0% 37020.21 MAX AI SCALE 300% 300% 300% 300% 300% 37120.22 SLS SPEED LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 372 W21 START/STOP21.01 START FUNCTION AUTO AUTO AUTO AUTO AUTO 376 W21.02 CONST MAGN TIME 500.0 ms 500.0 ms 500.0 ms 500.0 ms 500.0 ms 377 W21.03 STOP FUNCTION COAST COAST COAST COAST RAMP 37821.04 DC HOLD NO NO NO NO NO 37921.05 DC HOLD SPEED 5 rpm 5 rpm 5 rpm 5 rpm 5 rpm 380 W21.06 DC HOLD CURR 30% 30% 30% 30% 30% 381 W21.07 RUN ENABLE FUNC COAST STOP COAST STOP COAST STOP COAST STOP COAST STOP 38221.08 SCALAR FLY START NO NO NO NO NO 38321.09 START INTRL FUNC OFF2 STOP OFF2 STOP OFF2 STOP OFF2 STOP OFF2 STOP 38421.10 ZERO SPEED DELAY 0.5 s 0.5 s 0.5 s 0.5 s 0.5 s 38522 ACCEL/DECEL22.01 ACC/DEC SEL DI4 ACC/DEC 1 ACC/DEC 1 DI5 DI3 401 W22.02 ACCEL TIME 1 20 s 20 s 20 s 20 s 20 s 40222.03 DECEL TIME 1 20 s 20 s 20 s 20 s 20 s 40322.04 ACCEL TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 40422.05 DECEL TIME 2 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 40522.06 ACC/DEC RAMP SHPE 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s 40622.07 EM STOP RAMP TIME 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 40722.08 ACC PTR 0 0 0 0 0 40822.09 DEC PTR 0 0 0 0 0 40922.10 SLS ACCELER TIME 20 s 20 s 20 s 20 s 20 s 410 W22.11 SLS DECELER TIME 20 s 20 s 20 s 20 s 20 s 411 W23 SPEED CTRL23.01 GAIN 10 10 10 10 10 42623.02 INTEGRATION TIME 2.50 s 2.50 s 2.50 s 2.50 s 2.50 s 42723.03 DERIVATION TIME 0.0 ms 0.0 ms 0.0 ms 0.0 ms 0.0 ms 42823.04 ACC COMPENSATION 0.00 s 0.00 s 0.00 s 0.00 s 0.12 s 42923.05 SLIP GAIN 100.0% 100.0% 100.0% 100.0% 100.0% 43023.06 AUTOTUNE RUN NO NO NO NO NO 43123.07 SP ACT FILT TIME 8 ms 8 ms 8 ms 8 ms 8 ms 432

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 411: VFD Documents

261

24 TORQUE CTRL24.01 TORQ RAMP UP 0.00 s 45124.02 TORQ RAMP DOWN 0.00 s 45225 CRITICAL SPEEDS25.01 CRIT SPEED SELECT OFF OFF OFF OFF OFF 47625.02 CRIT SPEED 1 LOW 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 47725.03 CRIT SPEED 1 HIGH 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 47825.04 CRIT SPEED 2 LOW 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 47925.05 CRIT SPEED 2 HIGH 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 48025.06 CRIT SPEED 3 LOW 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 48125.07 CRIT SPEED 3 HIGH 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 48226 MOTOR CONTROL26.01 FLUX OPTIMIZATION NO NO NO NO NO 501 W26.02 FLUX BRAKING YES YES YES YES YES 502 W26.03 IR-COMPENSATION 0% 0% 0% 0% 0% 503 W26.04 IR STEP-UP FREQ 0 0 0 0 0 504 W26.05 HEX FIELD WEAKEN NO NO NO NO NO 505 W26.06 FLUX REF PTR C.10000 C.10000 C.10000 C.10000 C.10000 506 W26.07 FLYSTART CUR REF [%] 60% 60% 60% 60% 60% 507 W26.08 FLYSTART INIT DLY 25 25 25 25 25 508 W26.09 FS METHOD OFF OFF OFF OFF OFF 509 W27 BRAKE CHOPPER27.01 BRAKE CHOPPER CTL OFF OFF OFF OFF OFF 526 W27.02 BR OVERLOAD FUNC NO NO NO NO NO 52727.03 BR RESISTANCE 52827.04 BR THERM TCONST 0 s 0 s 0 s 0 s 0 s 52927.05 MAX CONT BR POWER 0 kW 0 kW 0 kW 0 kW 0 kW 53027.06 BC CTRL MODE COMMON DC COMMON DC COMMON DC COMMON DC COMMON DC 53130 FAULT FUNCTIONS30.01 AI<MIN FUNCTION FAULT FAULT FAULT FAULT FAULT 60130.02 PANEL LOSS FAULT FAULT FAULT FAULT FAULT 60230.03 EXTERNAL FAULT NOT SEL NOT SEL NOT SEL NOT SEL NOT SEL 60330.04 MOTOR THERM PROT NO NO NO NO NO 60430.05 MOT THERM P MODE DTC/USER

MODEDTC/USER MODE

DTC/USER MODE

DTC/USER MODE

DTC/USER MODE

605

30.06 MOTOR THERM TIME (calculated) (calculated) (calculated) (calculated) (calculated) 60630.07 MOTOR LOAD CURVE 100.0% 100.0% 100.0% 100.0% 100.0% 60730.08 ZERO SPEED LOAD 74.0% 74.0% 74.0% 74.0% 74.0% 60830.09 BREAK POINT 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz 45.0 Hz 60930.10 STALL FUNCTION FAULT FAULT FAULT FAULT FAULT 61030.11 STALL FREQ HI 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz 20.0 Hz 61130.12 STALL TIME 20.00 s 20.00 s 20.00 s 20.00 s 20.00 s 61230.13 UNDERLOAD FUNC NO NO NO NO NO 61330.14 UNDERLOAD TIME 600.0 s 600.0 s 600.0 s 600.0 s 600.0 s 61430.15 UNDERLOAD CURVE 1 1 1 1 1 61530.16 MOTOR PHASE LOSS NO NO NO NO NO 61630.17 EARTH FAULT FAULT FAULT FAULT FAULT FAULT 61730.18 COMM FLT FUNC FAULT FAULT FAULT FAULT FAULT 61830.19 MAIN REF DS T-OUT 3.00 s 3.00 s 3.00 s 3.00 s 3.00 s 61930.20 COMM FLT RO/AO ZERO ZERO ZERO ZERO ZERO 62030.21 AUX DS T-OUT 3.0 s 3.0 s 3.0 s 3.0 s 3.0 s 62130.22 IO CONFIG FUNC WARNING WARNING WARNING WARNING WARNING 62230.23 LIMIT WARNING 0 0 0 0 0 62331 AUTOMATIC RESET31.01 NUMBER OF TRIALS 0 0 0 0 0 62631.02 TRIAL TIME 30.0 s 30.0 s 30.0 s 30.0 s 30.0 s 62731.03 DELAY TIME 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 62831.04 OVERCURRENT NO NO NO NO NO 629

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 412: VFD Documents

262

31.05 OVERVOLTAGE NO NO NO NO NO 63031.06 UNDERVOLTAGE NO NO NO NO 63131.07 AI SIGNAL<MIN NO NO NO NO NO 63231.08 LINE CONV NO NO NO NO NO 63332 SUPERVISION32.01 SPEED1 FUNCTION NO NO NO NO NO 65132.02 SPEED1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 65232.03 SPEED2 FUNCTION NO NO NO NO NO 65332.04 SPEED2 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 65432.05 CURRENT FUNCTION NO NO NO NO NO 65532.06 CURRENT LIMIT 0 0 0 0 0 65632.07 TORQUE 1 FUNCTION NO NO NO NO NO 65732.08 TORQUE 1 LIMIT 0% 0% 0% 0% 0% 65832.09 TORQUE 2 FUNCTION NO NO NO NO NO 65932.10 TORQUE 2 LIMIT 0% 0% 0% 0% 0% 66032.11 REF1 FUNCTION NO NO NO NO NO 66132.12 REF1 LIMIT 0 rpm 0 rpm 0 rpm 0 rpm 0 rpm 66232.13 REF2 FUNCTION NO NO NO NO NO 66332.14 REF2 LIMIT 0% 0% 0% 0% 0% 66432.15 ACT1 FUNCTION NO NO NO NO NO 66532.16 ACT1 LIMIT 0% 0% 0% 0% 0% 66632.17 ACT2 FUNCTION NO NO NO NO NO 66732.18 ACT2 LIMIT 0% 0% 0% 0% 0% 66833 INFORMATION33.01 SOFTWARE VERSION (Version) (Version) (Version) (Version) (Version) 67633.02 APPL SW VERSION (Version) (Version) (Version) (Version) (Version) 67733.03 TEST DATE (Date) (Date) (Date) (Date) (Date) 67833.04 BOARD TYPE (Control board

type)(Control board type)

(Control board type)

(Control board type)

(Control board type)

679

34 PROCESS VARIABLE34.01 SCALE 100 100 100 100 100 70134.02 P VAR UNIT % % % % % 70234.03 SELECT P VAR 142 142 142 142 142 70334.04 MOTOR SP FILT TIM 500 ms 500 ms 500 ms 500 ms 500 ms 70434.05 TORQ ACT FILT TIM 100 ms 100 ms 100 ms 100 ms 100 ms 70534.06 RESET RUN TIME NO NO NO NO NO 70635 MOT TEMP MEAS35.01 MOT 1 TEMP AI1 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 72635.02 MOT 1 TEMP ALM L 110 110 110 110 110 72735.03 MOT 1 TEMP FLT L 130 130 130 130 130 72835.04 MOT 2 TEMP AI2 SEL NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 72935.05 MOT 2 TEMP ALM L 110 110 110 110 110 73035.06 MOT 2 TEMP FLT L 130 130 130 130 130 73135.07 MOT MOD COMPENSAT YES YES YES YES YES 73235.08 MOT MOD COMP PTR 0 0 0 0 0 73340 PID CONTROL40.01 PID GAIN 1 1 1 1 1 85140.02 PID INTEG TIME 60.00 s 60.00 s 60.00 s 60.00 s 60.00 s 85240.03 PID DERIV TIME 0.00 s 0.00 s 0.00 s 0.00 s 0.00 s 85340.04 PID DERIV FILTER 1.00 s 1.00 s 1.00 s 1.00 s 1.00 s 85440.05 ERROR VALUE INV NO NO NO NO NO 85540.06 ACTUAL VALUE SEL ACT1 ACT1 ACT1 ACT1 ACT1 85640.07 ACTUAL1 INPUT SEL AI2 AI2 AI2 AI2 AI2 85740.08 ACTUAL2 INPUT SEL AI2 AI2 AI2 AI2 AI2 85840.09 ACT1 MINIMUM 0 0 0 0 0 85940.10 ACT1 MAXIMUM 100% 100% 100% 100% 100% 86040.11 ACT2 MINIMUM 0% 0% 0% 0% 0% 86140.12 ACT2 MAXIMUM 100% 100% 100% 100% 100% 862

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 413: VFD Documents

263

40.13 PID INTEGRATION ON ON ON ON ON 86340.14 TRIM MODE OFF OFF OFF OFF 86440.15 TRIM REF SEL AI1 AI1 AI1 AI1 86540.16 TRIM REFERENCE 0.0% 0.0% 0.0% 0.0% 0.0% 86640.17 TRIM RANGE ADJUST 100.0% 100.0% 100.0% 100.0% 100.0% 86740.18 TRIM SELECTION SPEED TRIM 86840.19 ACTUAL FILT TIME 0.04 s 0.04 s 0.04 s 0.04 s 0.04 s 86940.20 SLEEP SELECTION not visible not visible OFF not visible not visible 87040.21 SLEEP LEVEL not visible not visible 0.0 rpm not visible not visible 87140.22 SLEEP DELAY not visible not visible 0.0 s not visible not visible 87240.23 WAKE UP LEVEL not visible not visible 0% not visible not visible 87340.24 WAKE UP DELAY not visible not visible 0.0 s not visible not visible 87440.25 ACTUAL1 PTR 0 0 0 0 0 87540.26 PID MINIMUM -100.0% -100.0% -100.0% -100.0% -100.0% -40.27 PID MAXIMUM 100.0% 100.0% 100.0% 100.0% 100.0% -40.28 TRIM REF PTR 0 0 0 0 0 -42 BRAKE CONTROL42.01 BRAKE CTRL OFF OFF OFF OFF OFF -42.02 BRAKE ACKNOWLEDGE OFF OFF OFF OFF OFF -42.03 BRAKE OPEN DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -42.04 BRAKE CLOSE DELAY 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -42.05 ABS BRAKE CLS SPD 10 rpm 10 rpm 10 rpm 10 rpm 10 rpm -42.06 BRAKE FAULT FUNC FAULT FAULT FAULT FAULT FAULT -42.07 START TORQ REF SEL NO NO NO NO NO -42.08 START TORQ REF 0% 0% 0% 0% 0% -42.09 EXTEND RUN T 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -42.10 LOW REF BRK HOLD 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s -45 ENERGY OPT45.02 ENERGY TARIFF1 0 c/E 0 c/E 0 c/E 0 c/E 0 c/E -45.06 E TARIFF UNIT EUR EUR EUR EUR EUR -45.08 PUMP REF POWER 100% 100% 100% 100% 100% -45.09 ENERGY RESET DONE DONE DONE DONE DONE -50 ENCODER MODULE50.01 PULSE NR 2048 2048 2048 2048 2048 100150.02 SPEED MEAS MODE A --- B --- A --- B --- A --- B --- A --- B --- A --- B --- 100250.03 ENCODER FAULT WARNING WARNING WARNING WARNING WARNING 100350.04 ENCODER DELAY 1000 1000 1000 1000 1000 100450.05 ENCODER DDCS CH CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 1 100550.06 SPEED FB SEL INTERNAL INTERNAL INTERNAL INTERNAL INTERNAL 100650.07 ENC CABLE CHECK NO NO NO NO NO 100751 COMM MOD DATA 1026

...52 STANDARD MODBUS52.01 STATION NUMBER 1 1 1 1 1 105152.02 BAUDRATE 9600 9600 9600 9600 9600 105252.03 PARITY ODD ODD ODD ODD ODD 105360 MASTER/FOLLOWER60.01 MASTER LINK MODE NOT IN USE NOT IN USE NOT IN USE NOT IN USE NOT IN USE 119560.02 TORQUE SELECTOR not visible not visible not visible TORQUE not visible 119660.03 WINDOW SEL ON not visible not visible not visible NO not visible 116760.04 WINDOW WIDTH POS not visible not visible not visible 0 not visible 119860.05 WINDOW WIDTH NEG not visible not visible not visible 0 not visible 119960.06 DROOP RATE 0 0 0 0 0 120060.07 MASTER SIGNAL 2 202 202 202 202 202 120160.08 MASTER SIGNAL 3 213 213 213 213 213 120270 DDCS CONTROL70.01 CHANNEL 0 ADDR 1 1 1 1 1 137570.02 CHANNEL 3 ADDR 1 1 1 1 1 1376

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 414: VFD Documents

264

70.03 CH1 BAUDRATE 4 Mbit/s 4 Mbit/s 4 Mbit/s 4 Mbit/s 4 Mbit/s 137770.04 CH0 DDCS HW CONN RING RING RING RING RING 137870.05 CH2 HW CONNECTION RING RING RING RING RING72 USER LOAD CURVE72.01 OVERLOAD FUNC NO NO NO NO NO 141172.02 LOAD CURRENT 1 500 500 500 500 500 141272.03 LOAD CURRENT 2 500 500 500 500 500 141372.04 LOAD CURRENT 3 500 500 500 500 500 141472.05 LOAD CURRENT 4 500 500 500 500 500 141572.06 LOAD CURRENT 5 500 500 500 500 500 141672.07 LOAD CURRENT 6 500 500 500 500 500 141772.08 LOAD CURRENT 7 500 500 500 500 500 141872.09 LOAD CURRENT 8 500 500 500 500 500 141972.10 LOAD FREQ 1 0 0 0 0 0 142072.11 LOAD FREQ 2 0 0 0 0 0 142172.12 LOAD FREQ 3 0 0 0 0 0 142272.13 LOAD FREQ 4 0 0 0 0 0 142372.14 LOAD FREQ 5 0 0 0 0 0 142472.15 LOAD FREQ 6 0 0 0 0 0 142572.16 LOAD FREQ 7 0 0 0 0 0 142672.17 LOAD FREQ 8 0 0 0 0 0 142772.18 LOAD CURRENT LIMIT 800 800 800 800 800 142872.19 LOAD THERMAL TIME 0.0 0.0 0.0 0.0 0.072.20 LOAD COOLING TIME 0 0 0 0 083 ADAPT PROG CTRL83.01 ADAPT PROG CMD EDIT EDIT EDIT EDIT EDIT 1609 W83.02 EDIT COMMAND NO NO NO NO NO 161083.03 EDIT BLOCK 0 0 0 0 0 161183.04 TIMELEVEL SEL 100ms 100ms 100ms 100ms 100ms 161283.05 PASSCODE 0 0 0 0 0 161384 ADAPTIVE PROGRAM84.01 STATUS 162884.02 FAULTED PAR 162984.05 BLOCK1 NO NO NO NO NO 163084.06 INPUT1 0 0 0 0 0 163184.07 INPUT2 0 0 0 0 0 163284.08 INPUT3 0 0 0 0 0 163384.09 OUTPUT 0 0 0 0 0 1634… … …

164484.79 OUTPUT 0 0 0 0 0 -85 USER CONSTANTS85.01 CONSTANT1 0 0 0 0 0 164585.02 CONSTANT2 0 0 0 0 0 164685.03 CONSTANT3 0 0 0 0 0 164785.04 CONSTANT4 0 0 0 0 0 164885.05 CONSTANT5 0 0 0 0 0 164985.06 CONSTANT6 0 0 0 0 0 165085.07 CONSTANT7 0 0 0 0 0 165185.08 CONSTANT8 0 0 0 0 0 165285.09 CONSTANT9 0 0 0 0 0 165385.10 CONSTANT10 0 0 0 0 0 165485.11 STRING1 MESSAGE1 MESSAGE1 MESSAGE1 MESSAGE1 MESSAGE1 165585.12 STRING2 MESSAGE2 MESSAGE2 MESSAGE2 MESSAGE2 MESSAGE2 165685.13 STRING3 MESSAGE3 MESSAGE3 MESSAGE3 MESSAGE3 MESSAGE3 165785.14 STRING4 MESSAGE4 MESSAGE4 MESSAGE4 MESSAGE4 MESSAGE4 165885.15 STRING5 MESSAGE5 MESSAGE5 MESSAGE5 MESSAGE5 MESSAGE5 1659

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 415: VFD Documents

265

90 D SET REC ADDR90.01 AUX DS REF3 0 0 0 0 0 173590.02 AUX DS REF4 0 0 0 0 0 173690.03 AUX DS REF5 0 0 0 0 0 173790.04 MAIN DS SOURCE 1 1 1 1 1 173890.05 AUX DS SOURCE 3 3 3 3 3 173992 D SET TR ADDR92.01 MAIN DS STATUS WORD 302 302 302 302 302 177192.02 MAIN DS ACT1 102 102 102 102 102 177292.03 MAIN DS ACT2 105 105 105 105 105 177392.04 AUX DS ACT3 305 305 305 305 305 177492.05 AUX DS ACT4 308 308 308 308 308 177592.06 AUX DS ACT5 306 306 306 306 306 177692.07 MSW B10 PTR 3.014.09 3.014.09 3.014.09 3.014.09 3.014.09 177792.08 MSW B13 PTR 0 0 0 0 0 177892.09 MSW B14 PTR 0 0 0 0 0 177995 HARDWARE SPECIF95.01 FAN SPD CTRL MODE CONTROLLED 182595.02 FUSE SWITCH CTRL Inverter type dependent 182695.03 INT CONFIG USER 0 0 0 0 0 182795.04 EX/SIN REQUEST 1 1 1 1 1 182895.05 ENA INC SW FREQ 0 0 0 0 0 182995.06 LCU Q PW REF 0 0 0 0 0 183095.07 LCU DC REF 0 0 0 0 0 183195.08 LCU PAR1 SEL 106 106 106 106 106 183295.09 LCU PAR2 SEL 110 110 110 110 110 183395.10 TEMP INV AMBIENT 40°C 40°C 40°C 40°C 40°C 183495.11 SUPPLY CTRL MODE type specific type specific type specific type specific type specific 183595.12 LCU RUN PTR C.00000 C.00000 C.00000 C.00000 C.00000 183696 EXTERNAL AO96.01 EXT AO1 SPEED SPEED SPEED SPEED SPEED 184396.02 INVERT EXT AO1 NO NO NO NO NO 184496.03 MINIMUM EXT AO1 0 mA 0 mA 0 mA 0 mA 0 mA 184596.04 FILTER EXT AO1 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s 184696.05 SCALE EXT AO1 100% 100% 100% 100% 100% 184796.06 EXT AO2 CURRENT CURRENT CURRENT CURRENT CURRENT 184896.07 INVERT EXT AO2 NO NO NO NO NO 184996.08 MINIMUM EXT AO2 0 mA 0 mA 0 mA 0 mA 0 mA 185096.09 FILTER EXT AO2 2.00 s 2.00 s 2.00 s 2.00 s 2.00 s 185196.10 SCALE EXT AO2 100% 100% 100% 100% 100% 185296.11 EXT AO1 PTR 0 0 0 0 0 185396.12 EXT AO2 PTR 0 0 0 0 0 185498 OPTION MODULES98.01 ENCODER MODULE NO NO NO NO NO 190198.02 COMM. MODULE LINK NO NO NO NO NO 190298.03 DI/O EXT MODULE 1 NO NO NO NO NO 190398.04 DI/O EXT MODULE 2 NO NO NO NO NO 190498.05 DI/O EXT MODULE 3 NO NO NO NO NO 190598.06 AI/O EXT MODULE NO NO NO NO NO 190698.07 COMM PROFILE ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES ABB DRIVES 190798.09 DI/O EXT1 DI FUNC DI7,8,9 DI7,8,9 DI7,8,9 DI7,8,9 DI7,8,9 190998.10 DI/O EXT2 DI FUNC DI10,11,12 DI10,11,12 DI10,11,12 DI10,11,12 DI10,11,12 191098.11 DI/O EXT3 DI FUNC DI11,12 DI11,12 DI11,12 DI11,12 DI11,12 191198.12 AI/O MOTOR TEMP NO NO NO NO NO 191298.13 AI/O EXT AI1 FUNC UNIPOLAR

AI5UNIPOLAR AI5

UNIPOLAR AI5

UNIPOLAR AI5

UNIPOLAR AI5

1913

98.14 AI/O EXT AI2 FUNC UNIPOLAR AI6

UNIPOLAR AI6

UNIPOLAR AI6

UNIPOLAR AI6

UNIPOLAR AI6

1914

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 416: VFD Documents

266

98.16 SIN FILT SUPERV NO NO NO NO NO 191599 START-UP DATA99.01 LANGUAGE ENGLISH ENGLISH ENGLISH ENGLISH ENGLISH 192699.02 APPLICATION MACRO FACTORY HAND/AUTO PID-CTRL T CTRL SEQ CTRL 1927 W99.03 APPLIC RESTORE NO NO NO NO NO 1928 W99.04 MOTOR CTRL MODE DTC DTC DTC DTC DTC 192999.05 MOTOR NOM VOLTAGE 0 V 0 V 0 V 0 V 0 V 1930 W99.06 MOTOR NOM CURRENT 0.0 A 0.0 A 0.0 A 0.0 A 0.0 A 1931 W99.07 MOTOR NOM FREQ 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz 50.0 Hz 1932 W99.08 MOTOR NOM SPEED 2900 rpm 2900 rpm 2900 rpm 2900 rpm 2900 rpm 1933 W99.09 MOTOR NOM POWER 0.0 kW 0.0 kW 0.0 kW 0.0 kW 0.0 kW 1934 W99.10 MOTOR ID RUN MODE ID MAGN ID MAGN ID MAGN ID MAGN ID MAGN 1935 W99.11 DEVICE NAME 1936

Index Name/Selection FACTORY HAND/AUTO PID-CTRL T-CTRL SEQ CTRL PB W

Additional data: actual signals and parameters

Page 417: VFD Documents

267

Control block diagrams

Chapter overviewDiagram Related

diagrams

Reference control chain, sheet 1Valid when FACTORY, HAND/AUTO, SEQ CTRL or T CTRL macro is active (see parameter 99.02).

Continued on sheet 2

Reference control chain, sheet 1Valid when PID CTRL macro is active (see parameter 99.02).

Continued on sheet 2

Reference control chain, sheet 2Valid with all macros (see parameter 99.02).

Continued from sheet 1

Handling of Start, Stop, Run Enable Start InterlockValid with all macros (see parameter 99.02).

-

Handling of Reset and On/OffValid with all macros (see parameter 99.02).

-

Control block diagrams

Page 418: VFD Documents

268

Reference control chain, sheet 1: FACTORY, HAND/AUTO, SEQ CTRL and T CTRL macros (continued on the next page …)

a

b

c

d

Control block diagrams

Page 419: VFD Documents

269

… continued from the previous page

a

b

c

d

Control block diagrams

Page 420: VFD Documents

270

Reference control chain sheet 1: PID CTRL macro (continued on the next page …)

a

b

c

Control block diagrams

Page 421: VFD Documents

271

… continued from the previous page

a

b

c

Control block diagrams

Page 422: VFD Documents

272

Reference control chain sheet 2: All macros (continued on the next page …)

a

b

c

d

Control block diagrams

Page 423: VFD Documents

273

… continued from the previous page

a

b

c

d

Control block diagrams

Page 424: VFD Documents

274

Handling of Start, Stop, Run Enable and Start Interlock

Control block diagrams

Page 425: VFD Documents

275

Handling of Reset and On/OffThe diagram below is a detail to the previous diagram (Handling of Start, Stop, Run Enable and Start Interlock).

ANDAND

AND

AND

OR

OR

RESET FROM PANEL

RESET FROM FIELDBUS

IN LOCAL MODE

MAIN CW / B7 (RESET)

MAIN CW / B0 (ON/OFF)

NOT READY TO SWITCH ON

SWITCH ON INHIBITED

FIELDBUS CW / B0

16.04

31

EXT RESET

AUTORESET

Control block diagrams

Page 426: VFD Documents

276

Control block diagrams

Page 427: VFD Documents

277

Index

AABB drives communication profile 210Absolute maximum frequency 99, 253Absolute maximum speed 99, 253ACCEL TIME 1 136ACCEL/DECEL 135Acceleration

compensation 139motor 102ramps 59settings 59speed reference ramps 46times 20times, setting 42

Actual signals 53, 255–257defined 99diagnostics 44, 52, 53display mode 29displaying the full names 30parameters 52, 53PID control 71settings 52, 53speed controller 60speed controller tuning 60user-defined variables 69

Actual values 53actual signals 52, 53analogue outputs 50defined 205digital inputs 51relay outputs 52

Adapter module, fieldbus 192Advent controller 197–198AI 63ALARM WORD 1 222ALARM WORD 2 223ALARM WORD 4 225ALARM WORD 5 226ALARM WORD 6 227Analogue extension module 249Analogue inputs

optional, supervising 66Analogue outputs

diagnostics 50optional, supervising 66parameters 50settings 50

APPLICATION MACRO 101, 187

Application macros 85factory 85, 87hand/auto 85, 89PID control 85, 91

reference control chain diagram 270sequential control 85, 95torque control 85, 93user 85, 97

Application, selection for start-up assistant 41Automatic resets 69Automatic start 54AUXILIARY STATUS WORD 3 223AUXILIARY STATUS WORD 4 224

BBoolean values 40

CCable connection, monitoring 65Clearing

fault history 30Communication

fault protection 66profiles 210–218using a fieldbus adapter module 193

Communication profiles 210–218ABB drives 210generic drive 215

Constant speeds 59Control block diagrams 267–275Control board temperature fault 68Control panel

basic keys 35display mode 29downloading drive data 37drive control 27–28overview 25–26setting the display contrast 38upload drive data 36

Control word 203CSA 2.8/3.0 communication profile 218

Critical speeds 59

DDC

hold 57

Index

Page 428: VFD Documents

278

intermediate circuit protection 69magnetising 57overvoltage fault 66undervoltage fault 67

DECEL TIME 1 136Deceleration

compensation 139ramps 59settings 59

Default tasks, start-up assistant 41Diagnostics

actual signals 44, 52, 53analogue outputs 50digital inputs 51relay outputs 52speed controller 60supervision of user-defined variables 69

Digital inputsdiagnostics 51optional, supervising 66parameters 51settings 51

Digital outputsoptional, supervising 66

Display contrast, setting 38Displaying

actual signal full names 30fault history 30

Drivechanging panel link ID number 39data, downloading to the control panel 37data, uploading to the control panel 36IR compensation for scalar controlled 62reference types and processing 46start-up 15temperature fault 67

Drive controlparameters 199–201using I/O interface 21

EEarth fault protection 65Energy optimizing 101, 164EXT IO STATUS 228External control 44

diagnostics 44reference source diagram 45stop, start, direction diagram 45

External fault 63

FFactory macros 85–87

Fault historyclearing 30viewing and resetting 30

FAULT WORD 1 220FAULT WORD 2 221FAULT WORD 4 224FAULT WORD 5 225FAULT WORD 6 228FAULTED INT INFO 229Faults

communication, protection 66DC overvoltage 66earth, protection 65external, settings 63overcurrent 66preprogrammed 66

control board temperature 68DC undervoltage 67drive temperature 67Enhanced drive temperature monitoring 67input phase loss 68internal fault 68overfrequency 68short circuit 68

Features of the program 41–84Fieldbus adapter

communication parameters 193–194module 192

Fieldbus addresses 253Fieldbus control 191–230

connecting two fieldbuses to a drive 192control word, status word 203interface 202–209References 203

Fieldbus reference scalingABB drives communication profile 214CSA 2.8/3.0 communication profile 218generic drive 217

Fieldbus, equivalent, defined 99Flux braking 57, 58Flux optimisation 58

GGeneric drive communication profile 215

HHand/auto macro 85, 89Hexagonal motor flux 63

IID run procedure 22–23Input bridge protection 69

Index

Page 429: VFD Documents

279

Input phase loss fault 68INT INIT FAULT 226INT SC INFO 230Integer scaling 67Internal fault 68

KKeys on the control panel 35

LLIMIT WORD 1 220LIMIT WORD INV 227Limits, adjustable 68Local control 44

MMacros

factory 85, 87hand/auto 85, 89overview 85PID control 85, 91

reference control chain diagram 270sequential control 95

defined 85torque control 85, 93user 97

defined 85Modbus

adapter module 192addressing 196link, communication parameters 195–196

Motoridentification 53phase loss 65stall protection 65temperature measurement using standard I/O

72, 73temperature thermal model 64thermal protection 64underload protection 65

OOperation limits 68Overcurrent fault 66Overfrequency fault 68

PPanel link ID number, changing 39Panel loss 63Parameter lock 69

Parameter settings, bipolar input in joystick mode251Parameters

actual signals 52, 53Advent controller 197–198AI 63analogue outputs 50automatic reset 69communication fault protection 66data tables 258defined 99digital inputs 51drive control 199–201earth fault protection 65external fault 63fieldbus adapter 193–194hexagonal motor flux 63IR compensation 62motor phase loss 65motor stall protection 65motor temperature 64motor underload protection 65operation limits 68optional analogue inputs and outputs 66parameter lock 69reference trimming 47relay outputs 52scalar control 62selecting and changing values 32speed controller tuning 60standard modbus link 195–196start-up assistant 41supervision 69

PB, defined 253Performance figures

speed controller 60torque control 60

PID controlblock diagrams 70macro 85, 91macro, reference control diagram 270parameters 71settings 71sleep function 71

Power limit 69Power loss ride-through 54Preprogrammed faults 66

control board temperature 68DC undervoltage 67drive temperature 67Enhanced drive temperature monitoring 67input phase loss 68internal fault 68overfrequency 68

Index

Page 430: VFD Documents

280

short circuit 68Prevention of unexpected start-up (POUS) 55Program features 41–84Programmable

analogue outputs 50digital inputs 51relay outputs 52

Protection functions 63

RRamps

acceleration 59deceleration 59

Referencecontrol chain diagrams 270handling 204source

EXT 1 45types and processing 46

trimming 47Relay outputs

diagnostics 52parameters 52settings 52

Resets, automatic 69Resetting

fault history 30

SSafe torque off (STO) 55Safely-limited speed (SLS) 56Scalar control 62Sequential control macro 95

defined 85Setting, acceleration times 42Settings

acceleration 59actual signals 52, 53AI 63analogue outputs 50automatic reset 69automatic start 54communication fault protection 66constant speed 59critical speeds 59DC hold 57DC magnetising 57deceleration 59digital inputs 51earth fault protection 65external control 44external fault 63

flux braking 58flux optimisation 58hexagonal motor flux 63IR compensation 62limits 68local control 44motor phase loss 65motor stall protection 65motor temperature 64motor underload protection 65optional analogue inputs 66optional analogue outputs 66optional digital inputs 66optional digital outputs 66parameter lock 69PID control 71reference trimming 47relay outputs 52scalar control 62speed controller 60supervision 69

Short circuit fault 68Sleep function 71

example 72Speed controller tuning 60Speed reference

acceleration/deceleration ramps 46parameters 250

Stall protection 65Start-up 15

automatic start 54basic settings 17–20guided 15–16

Start-up assistantapplication selection 41default tasks 41tasks and parameters 41

Status word 203auxiliary 219CSA 2.8/3.0 communication profile 218

Supervising user-selectable variables 69SYSTEM FAULT WORD 222System overview 191

TTemperature

calculation method 64measurement using standard I/O 72, 73

Torque controlmacro 85, 93performance figures 60

Tuning the speed controller 60

Index

Page 431: VFD Documents

281

UUnderload protection 65User macros 97

defined 85user-defined, supervising 69

VVariables 69Viewing fault history 30

Index

Page 432: VFD Documents

282

Index

Page 433: VFD Documents
Page 434: VFD Documents

3AFE

6452

7592

RE

V L

/ E

NE

FFE

CTI

VE

: 201

1-08

-25

ABB OyDrivesP.O. Box 184FI-00381 HELSINKIFINLANDTelephone +358 10 22 211Telefax +358 10 22 22681Internet www.abb.com/drives

ABB Inc.Automation TechnologiesDrives & Motors16250 West Glendale DriveNew Berlin, WI 53151USATelephone 262 785-3200

1-800-HELP-365Fax 262 780-5135

ABB Beijing Drive Systems Co. Ltd.No. 1, Block D, A-10 Jiuxianqiao BeiluChaoyang DistrictBeijing, P.R. China, 100015Telephone +86 10 5821 7788Fax +86 10 5821 7618Internet www.abb.com/drives

Page 435: VFD Documents

ACS800

Firmware ManualPCP and ESP Control Program

Page 436: VFD Documents
Page 437: VFD Documents

PCP and ESPControl Program

Firmware Manual

© 2008 ABB Inc. All Rights R

3AUA0000005224 / 3AFE68609259REV B / EN

EFFECTIVE: 04/14/2008SUPERSEDES: 01/20/2004

eserved.

Page 438: VFD Documents
Page 439: VFD Documents

i

Table of Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Introduction to the manual

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Start-up

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3How to start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3How to perform the ID Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ID Run Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Control panel

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Overview of the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Panel operation mode keys and displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Status row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Drive control with the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11How to start, stop and change direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11How to set speed reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Actual signal display mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13How to select actual signals to the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13How to display the full name of the actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14How to view and reset the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14How to display and reset an active fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15About the fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Parameter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16How to select a parameter and change the value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16How to adjust a source selection (pointer) parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Function mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18How to copy data from a drive to the panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18How to download data from the panel to a drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19How to set the display contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Drive selection mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20How to select a drive and change its panel link ID number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Reading and entering packed boolean values on the display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table of Contents

Page 440: VFD Documents

ii

Program features

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Local control vs. external control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Local control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23External control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Block diagram: start, stop, direction source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Block diagram: reference source for EXT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Reference types and processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Programmable analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Update cycles in the Standard Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Programmable analog outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Update cycles in the Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Programmable digital inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Update cycles in the Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Programmable relay outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Update cycles in the Control Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Motor identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Power loss ride-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Automatic Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33DC Magnetizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33DC Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Flux Braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Flux Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Acceleration and deceleration ramps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Constant speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Speed controller tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table of Contents

Page 441: VFD Documents

iii

Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Speed control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Torque control performance figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Scalar Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38IR compensation for a scalar controlled drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Programmable protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Motor Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Motor temperature thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Use of the motor thermistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Stall Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Motor Phase Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Ground Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Communication Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Preprogrammed Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41DC overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41DC undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Drive temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Enhanced drive temperature monitoring for ACS800-U2, -U4 and -U7, frame sizes R7 and R8 41

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Short circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Input phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Ambient temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Overfrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Internal fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Operation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Power limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Automatic Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Parameter lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Motor temperature measurement through the standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Adaptive Programming using the function blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45DriveAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Application macros

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table of Contents

Page 442: VFD Documents

iv

Overview of macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Factory Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47PCP Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Input and Output Signal Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Possible Input and Output Signal Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ESP Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Shutdown Definition for PCP & ESP Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5101 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5202 ACTUAL SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5304 INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5305 PUMP ACTUALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5306 FIELDBUS INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5407 AI SCALED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5408 STATUS WORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5409 FAULT WORDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5410 START/STOP/DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5411 REFERENCE SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5612 CONSTANT SPEEDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5813 ANALOG INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5914 RELAY OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6115 ANALOG OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6116 SYSTEM CTR INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6217 DC HOLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6320 LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6421 START/STOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6422 ACCEL/DECEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6623 SPEED REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6724 SPEED CTRL TUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6727 FLUX CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7129 SCALAR CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7230 FAULT FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7234 AUTO FLT RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7850 PULSE ENCODER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7951 MASTER ADAPTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8052 STANDARD MODBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8070 DDCS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8071 PUMP CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8172 PUMP SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8473 PUMP SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8983 ADAPT PROG CTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9184 ADAPTIVE PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9385 USER CONSTANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9492 FIELDBUS OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9595 HARDWARE SPECIFIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table of Contents

Page 443: VFD Documents

v

98 OPTION MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9799 START-UP DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Fieldbus control

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Redundant fieldbus control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Setting up communication through a fieldbus adapter module . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Setting up communication through the Standard Modbus Link . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Modbus addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Setting up communication through Advant controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

AC 800M Advant Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109DriveBus connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Optical ModuleBus connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

AC 80 Advant Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Optical ModuleBus connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

CI810A Fieldbus Communication Interface (FCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Optical ModuleBus connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 1, Setting up communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110The fieldbus control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table 2, Default connections for the cyclical fieldbus communication. . . . . . . . . . . . . . . 111The Control Word and the Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Reference handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Actual Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Communication profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Table 3, DataSet 1 Word 1 - Command Word (Actual Signal 06.01) . . . . . . . . . . . . . . . 113Table 4, DataSet 3 Word 1 - Pump Command (Actual Signal 06.04) . . . . . . . . . . . . . . 113Table 5, Main Status Word (Actual Signal 08.01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Table 6, Pump Status Word 4 (Actual Signal 08.02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Table 7, Fault Word 1 (Actual Signal 09.01). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Table 8, Fault Word 2 (Actual Signal 09.02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Table 9, Alarm Word 1 (Actual Signal 09.03). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117Table 10, Limit Word (Actual Signal 09.04). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Fault tracing

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Warning and fault indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119How to reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Fault history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Warning messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Warning messages generated by the control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125Fault messages generated by the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table of Contents

Page 444: VFD Documents

vi

Additional data: actual signals and parameters

Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Terms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Fieldbus addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Actual signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Appendix A: Software One-Line Diagrams

Figure A-1, SPD/TQ Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Table of Contents

Page 445: VFD Documents

1

Introduction to the manual

Chapter overviewThe chapter includes a description of the contents of the manual. In addition it contains information about the compatibility, safety, intended audience, and related publications.

CompatibilityThe manual is compatible with ACS 800 PCP and ESP Control Program (Version BZXR631G and above). See 04.01 SW PACKAGE VERSION.

Safety instructionsFollow all safety instructions delivered with the drive.

� Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are given at the beginning of the Hardware Manual.

� Read the software function specific warnings and notes before changing the default settings of the function. For each function, the warnings and notes are given in this manual in the subsection describing the related user-adjustable parameters.

ReaderThe reader of the manual is expected to know the standard electrical wiring practices, electronic components, and electrical schematic symbols.

ContentsThe manual consists of the following chapters:

� Start-up instructs in performing an ID Run.

� Control panel gives instructions for using the panel.

� Program features contains the feature descriptions and the reference lists of the user settings and diagnostic signals.

� Application macros contains a short description of each macro.

� Actual signals and parameters describes the actual signals and parameters of the drive.

� Fieldbus control describes the communication through the serial communication links.

Introduction to the manual

Page 446: VFD Documents

2

� Fault tracing lists the warning and fault messages with the possible causes and remedies.

� Additional data: actual signals and parameters contains more information on the actual signals and parameters.

� Appendix A: Software One-Line Diagrams diagrams the signal flow for the speed and torque chains.

Product and service inquiriesAddress any inquiries about the product to your local ABB representative, quoting the type code and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/drives and selecting Drives - Sales, Support and Service network on the right pane.

Product trainingFor information on ABB product training, navigate to www.abb.com/drives and selectDrives - Training courses on the right pane.

Providing feedback on ABB Drives manualsYour comments on our manuals are welcome. Go to www.abb.com/drives, then select successively Drives - Document Library - Manuals feedback form (LV AC drives) on the right pane.

Introduction to the manual

Page 447: VFD Documents

3

Start-up

Chapter overviewThe chapter instructs how to:

� complete the initial start-up.

� perform an identification run (ID Run) for the drive.

How to start-upSAFETY

The start-up may only be carried out by a qualified electrician.The safety instructions must be followed during the start-up procedure. See the appropriate hardware manual for safety instructions.

Check the installation. See the installation checklist in the appropriate hardware/installation manual.

Check that the starting of the motor does not cause any danger. De-couple the driven machine if:- There is a risk of damage in case of incorrect direction of rotation, or - A Standard ID Run needs to be performed during the drive setup (see section How to perform the ID Run on page 7).

POWER-UP

Apply mains power. The control panel first shows the panel identification data�

CDP312 PANELVx.xx.......

�then the Identification Display of the drive � ACS 800 xx kWID NUMBER 1

�and after a few seconds the panel enters the Actual Signal Display.The drive is now ready for the start-up.

1 -> 0.0 rpm OFREQ 0.00 HzSPD FILT 0.00 rpmTORQ FILT 0.00 %

Start-up

Page 448: VFD Documents

4

START-UP DATA ENTERING (parameter group 99)

Select the language. The general parameter setting procedure is described below.The general parameter setting procedure:- Press PAR to select the Parameter Mode of the panel.- Press the double-arrow keys ( or ) to scroll the parameter groups.- Press the arrow keys ( or ) to scroll parameters within a group.- Select the value you would like to modify by pressing ENTER.- Change the value using the arrow keys ( or ), fast change using the

double-arrow keys ( or ).- Press ENTER to accept the new value (brackets disappear).

1 -> 0.0 rpm O99 START-UP DATA 01 LANGUAGEENGLISH

1 -> 0.0 rpm O99 START-UP DATA01 LANGUAGE[ENGLISH]

Select the Application Macro. The general parameter setting procedure is given above.

1 -> 0.0 rpm O99 START-UP DATA02 APPLICATION MACRO[ ]

Enter the motor data from the motor nameplate: Note: Set the motor data to exactly the same value as on the motor nameplate. For example, if the motor nominal speed is 1440 rpm on the nameplate, setting the value of parameter 99.08 MOTOR NOM SPEED to 1500 rpm will result in incorrect operation of the drive.

- motor nominal voltageAllowed range: 1/2 · UN�2 · UN of ACS800. (UN refers to the highest voltage in each of the nominal voltage ranges: 415 VAC for 400 VAC units, 500 VAC for 500 VAC units and 690 VAC for 600 VAC units.)

1 -> 0.0 rpm O99 START-UP DATA05 MOTOR NOM VOLTAGE[ ]

- motor nominal currentAllowed range: 1/6 · I2hd� 2 · I2hd of ACS800

1 -> 0.0 rpm O99 START-UP DATA06 MOTOR NOM CURRENT[ ]

- motor nominal frequencyRange: 8�300 Hz

1 -> 0.0 rpm O99 START-UP DATA07 MOTOR NOM FREQ[ ]

- motor nominal speedRange: 1�18000 rpm

1 -> 0.0 rpm O99 START-UP DATA08 MOTOR NOM SPEED[ ]

M2AA 200 MLA 4

147514751470147014751770

32.55634595459

0.830.830.830.830.830.83

3GAA 202 001 - ADA

180

IEC 34-1

6210/C36312/C3

Cat. no 35 30 30 30 30 3050

5050505060

690 Y400 D660 Y380 D415 D440 D

V Hz kW r/min A cos IA/IN tE/sIns.cl. F IP 55

NoIEC 200 M/L 55

3 motor

ABB Motors

380 Vmainsvoltage

Start-up

Page 449: VFD Documents

5

- motor nominal powerRange: 0�9000 kW

1 -> 0.0 rpm O99 START-UP DATA09 MOTOR NOM POWER[ ]

When the motor data has been entered, a warning appears. It indicates that the motor parameters have been set, and the drive is ready to start the motor identification (ID magnetization or ID Run).

1 -> 0.0 rpm O** WARNING **ID MAGN REQ

Select the motor identification.The ID Run (STANDARD) should be selected.For more information, see section How to perform the ID Run on page 7.

1 -> 0.0 rpm O99 START-UP DATA10 MOTOR ID RUN[STANDARD]

DIRECTION OF ROTATION OF THE MOTOR

Check the direction of rotation of the motor.- Press ACT to get the status row visible. - Increase the speed reference from zero to a small value by

pressing REF and then the arrow keys ( , , or ).- Press to start the motor. - Check that the motor is running in the desired direction.- Stop the motor by pressing .

1 L->[xxx] rpm IFREQ xxx HzCURRENT xx APOWER xx %

To change the direction of rotation of the motor:- Disconnect input power from the drive and wait 5 minutes for the

intermediate circuit capacitors to discharge. Measure the voltagebetween each input terminal (U1, V1 and W1) and ground with amultimeter to ensure that the frequency converter is discharged.

- Exchange the position of two motor cable phase conductors at themotor terminals or at the motor connection box.

- Verify your work by applying mains power and repeating thecheck as described above.

forward direction

reverse direction

Start-up

Page 450: VFD Documents

6

SPEED LIMITS AND ACCELERATION/DECELERATION TIMES

Set the minimum speed. 1 L-> 0.0 rpm O20 LIMITS01 MINIMUM SPEED[ ]

Set the maximum speed. 1 L-> 0.0 rpm O20 LIMITS02 MAXIMUM SPEED[ ]

Set the acceleration time 1. 1 L-> 0.0 rpm O22 ACCEL/DECEL02 ACCELER TIME 1[ ]

Set the deceleration time 1. 1 L-> 0.0 rpm O22 ACCEL/DECEL03 DECELER TIME 1[ ]

The drive is now ready for use.

Start-up

Page 451: VFD Documents

7

How to perform the ID RunFor a PCP application, the Standard ID Run must be performed.

Uncouple the motor if possible.

Note: 10.04 RUN ENABLE must be set to �Yes� or the digital input made and 10.05 EMERG STOP INPUT must be set to �Not Select� or the digital input made in order to perform the ID Run.

ID Run Procedure

Note: If parameter values (Group 10 to 98) are changed before the ID Run, check that the new settings meet the following conditions:

� 20.01 MINIMUM SPEED < 0 rpm

� 20.02 MAXIMUM SPEED > 80% of motor rated speed

� 20.05 MAXIMUM TORQUE > 50%

� 22.02 ACCEL TIME 1 < 1 s

� Ensure that the panel is in the local control mode (L displayed on the status row). Press the LOC/REM key to switch between modes.

� Change the selection to STANDARD.

� Press ENTER to verify selection. The following message will be displayed:

� To start the ID Run, press the key.

Warning when the ID Run is started Warning after a successfully completed ID Run

1 L -> 1242.0 rpm IACS 800 55 kW**WARNING**MOTOR STARTS

1 L -> 1242.0 rpm IACS 800 55 kW**WARNING**ID DONE

99 START-UP DATA10 MOTOR ID RUN[STANDARD]

1 L ->1242.0 rpm O

1 L ->1242.0 rpm OACS 800 55 kW**WARNING**ID RUN SEL

Start-up

Page 452: VFD Documents

8

In general it is recommended not to press any control panel keys during the ID run.However:

� The Motor ID Run can be stopped at any time by pressing the control panel stop key ( ).

� After the ID Run is started with the start key ( ), it is possible to monitor the actual values by first pressing the ACT key and then a double-arrow key ( ).

Start-up

Page 453: VFD Documents

9

Control panel

Chapter overviewThe chapter describes how to control, monitor and change the settings of the drive using the control panel CDP 312R.

The same control panel is used with all ACS800 series drives, so the instructions given apply to all ACS800 types. The display examples shown are based on the Standard Control Program; displays produced by other control programs may differ slightly.

Overview of the panelThe LCD type display has 4 lines of 20 characters.The language is selected at start-up by parameter 99.01.The control panel has four operation modes: - Actual Signal Display Mode (ACT key)- Parameter Mode (PAR key)- Function Mode (FUNC key)- Drive Selection Mode (DRIVE key)The use of single arrow keys, double arrow keys, and ENTER depend on the operation mode of the panel.The drive control keys:

No. Use

1 Start

2 Stop

3 Activate reference setting

4 Forward direction of rotation

5 Reverse direction of rotation

6 Fault reset

7 Change between Local / Remote (external) control

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR FUNC DRIVE

ENTER

LOC RESET REF

REM

I 0

1

2

3

4 5

67

Control panel

Page 454: VFD Documents

10

Panel operation mode keys and displays

The figure below shows the mode selection keys of the panel, and the basic operations and displays in each mode.

Status row

The figure below describes the status row digits.

Parameter Mode

Function Mode

Drive Selection Mode

Act. signal /

Enter selection modeAccept new signal

Group selection

Parameter selection

Enter change modeAccept new value

Fast value change

Slow value change

Function start

Drive selection

Enter change modeAccept new value

Actual Signal Display Mode

ENTER

ENTER

ENTER

ENTER

Fault history selection

ID number change

Status row

Status row

ACT

PAR

FUNC

DRIVE

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

1 L -> 1242.0 rpm I10 START/STOP01 EXT1 STRT/STP/DIR DI1,2

1 L -> 1242.0 rpm IUPLOAD <=<=DOWNLOAD =>=>CONTRAST 7

ACS 801 75 kW

ASAA5000 ID NUMBER 1

Act. signal / Fault message scrolling

Actual signal names and values

Parameter groupParameterParameter value

Status row

List of functions

Device type

Application name, version and ID number

Row selection

xxxxx

Drive ID number

Drive control statusL = Local controlR = Remote control � � = External control

Drive statusI = RunningO = Stopped� � = Run disabled

1 L -> 1242.0 rpm I

Direction of rotation-> = Forward<- = Reverse

Drive reference

Control panel

Page 455: VFD Documents

11

Drive control with the panelThe user can control the drive with the panel as follows:

� start, stop, and change direction of the motor

� give the motor speed reference or torque reference

� reset the fault and warning messages

� change between local and external drive control.

The panel can be used for drive control when the drive is under local control and the status row is visible on the display.

How to start, stop and change direction

Step Action Press Key Display

1. To display the status row. 1 ->1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To switch to local control.(only if the drive is not under local control, i.e. there is no L on the first row of the display.)

1 L ->1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To stop 1 L ->1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

4. To start 1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

5. To change the direction to reverse. 1 L <-1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

6. To change the direction to forward. 1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR

FUNC

LOC

REM

0

I

Control panel

Page 456: VFD Documents

12

How to set speed reference

Step Action Press Key Display

1. To show the status row. 1 ->1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To switch to local control.(Only if the drive is not under local control, i.e. there is no L on the first row of the display.)

1 L ->1242.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To enter the Reference Setting function. 1 L ->[1242.0 rpm]IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

4. To change the reference.(slow change)

(fast change)

1 L ->[1325.0 rpm]I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

5. To save the reference.(The value is stored in the permanent memory; it is restored automatically after power switch-off.)

1 L -> 1325.0 rpm I FREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT PAR

FUNC

LOC

REM

REF

ENTER

Control panel

Page 457: VFD Documents

13

Actual signal display modeIn the Actual Signal Display Mode, the user can:

� show three actual signals on the display at a time

� select the actual signals to display

� view the fault history

� reset the fault history.

The panel enters the Actual Signal Display Mode when the user presses the ACT key, or does not press any key within one minute.

How to select actual signals to the display

Step Action Press Key Display

1. To enter the Actual Signal Display Mode.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To select a row (a blinking cursor indicates the selected row).

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. To enter the actual signal selection function.

1 L -> 1242.0 rpm I1 ACTUAL SIGNALS04 CURRENT 80.00 A

4. To select an actual signal.

To change the actual signal group.

1 L -> 1242.0 rpm I1 ACTUAL SIGNALS05 TORQUE 70.00 %

5.a To accept the selection and return to the Actual Signal Display Mode.

1 L -> 1242.0 rpm IFREQ 45.00 HzTORQUE 70.00 %POWER 75.00 %

5.b To cancel the selection and keep the original selection.

The selected keypad mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Control panel

Page 458: VFD Documents

14

How to display the full name of the actual signals

How to view and reset the fault history

Note: The fault history cannot be reset if there are active faults or warnings.

Step Action Press Key Display

1. To display the full name of the three actual signals.

Hold 1 L -> 1242.0 rpm IFREQUENCYCURRENTPOWER

2. To return to the Actual Signal Display Mode.

Release 1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

Step Action Press Key Display

1. To enter the Actual Signal Display Mode.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

2. To enter the Fault History Display. 1 L -> 1242.0 rpm I1 LAST FAULT+OVERCURRENT 6451 H 21 MIN 23 S

3. To select the previous (UP) or the next fault/warning (DOWN).

1 L -> 1242.0 rpm I2 LAST FAULT+OVERVOLTAGE 1121 H 1 MIN 23 S

To clear the Fault History. 1 L -> 1242.0 rpm I2 LAST FAULTH MIN S

4. To return to the Actual Signal Display Mode.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

ACT

ACT

ACT

RESET

Control panel

Page 459: VFD Documents

15

How to display and reset an active fault

The table below includes the step-by-step instructions.

WARNING! If an external source for start command is selected and it is ON, the drive will start immediately after fault reset. If the cause of the fault has not been removed, the drive will trip again.

About the fault history

The fault history reports information on the latest events (faults, warnings and resets) logged by the drive. The table below shows how these events are stored in the fault history.

Step Action Press Key Display

1. To display an active fault. 1 L -> 1242.0 rpmACS 801 75 kW** FAULT **ACS 800 TEMP

2. To reset the fault. 1 L -> 1242.0 rpm OFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

Event Information on Display

Drive detects a fault and generates a fault message.

Sequential number of the event.Name of the fault and a �+� sign in front of the name.Total power-on time.

User resets the fault message. Sequential number of the event.-RESET FAULT text.Total power-on time.

Drive generates a warning message. Sequential number of the event.Name of the warning and a �+� sign in front of the name.Total power-on time.

Drive deactivates the warning message. Sequential number of the event.Name of the warning and a �-� sign in front of the name.Total power-on time.

ACT

RESET

1 L -> 1242.0 rpm I2 LAST FAULT+OVERVOLTAGE 1121 H 1 MIN 23 S

A Fault History View

Name

Power-on time

Sequential number (1 is the most recent event)

Sign

Control panel

Page 460: VFD Documents

16

Parameter modeIn the Parameter Mode, the user can:

� view the parameter values

� change the parameter settings.

The panel enters the Parameter Mode when the user presses the PAR key.

How to select a parameter and change the value

Step Action Press Key Display

1. To enter the Parameter Mode. 1 L -> 1242.0 rpm O10 START/STOP/DIR01 EXT1 STRT/STP/DIR DI1,2

2. To select a different group. 1 L -> 1242.0 rpm O11 REFERENCE SELECT01 KEYPAD REF SEL REF1 (rpm)

3. To select a parameter. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI1

4. To enter the parameter setting function. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT[AI1]

5. To change the parameter value.- (slow change for numbers and text)

- (fast change for numbers only)

1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT[AI2]

6a. To save the new value. 1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI2

6b. To cancel the new setting and keep the original value, press any of the mode selection keys.The selected mode is entered.

1 L -> 1242.0 rpm O11 REFERENCE SELECT03 EXT REF1 SELECT AI1

PAR

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Control panel

Page 461: VFD Documents

17

How to adjust a source selection (pointer) parameter

Most parameters define values that are used directly in the drive applicationprogram. Source selection (pointer) parameters are exceptions: They point to thevalue of another parameter. The parameter setting procedure differs somewhat from that of the other parameters.

Note: Instead of pointing to another parameter, it is also possible to define aconstant by the source selection parameter. Proceed as follows: - Change the inversion field to C. The appearance of the row changes. The rest of the line is now a constant setting field. - Give the constant value to the constant setting field. - Press Enter to accept.

Step Action Press Key Display

1. See the table above to:- enter the Parameter Mode- select the correct parameter group

and parameter- enter the parameter setting mode

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.000.00]

2. To scroll between the inversion, group, index and bit fields.

1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.000.00]

3. To adjust the value of a field. 1 L ->1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[±000.018.00]

4. To accept the value.

PAR

ENTER

ENTER

Inversion field inverts the selected parameter value.Plus sign (+): no inversion

Bit field selects the bit number (relevant only if theparameter value is a packed boolean word).Index field selects the parameter index.Group field selects the parameter group.

Minus (-) sign: inversion.

1 L -> 1242.0 rpm O84 ADAPTIVE PROGRAM06 INPUT1[ 001.018.00]

Inversion fieldGroup fieldIndex field

Bit field

Control panel

Page 462: VFD Documents

18

Function modeIn the Function Mode, the user can:

� copy the drive parameter values and motor data from the drive to the panel.

� copy group 1 to 97 parameter values from the panel to the drive. 1)

� adjust the contrast of the display.

The panel enters the Function Mode when the user presses the FUNC key.

How to copy data from a drive to the panel

Note:

� Uploading must be completed before downloading.

� The uploading and downloading are possible only if the program versions of the destination drive are the same as the versions of the source drive, see 04.01 SW PACKAGE VER and 04.07 APPL SW VERSION.

� The drive must be stopped during the downloading.

Step Action Press Key Display

1. Set-up the drives. In each drive, activate the communication to the optional equipment. See parameter group 98 OPTION MODULES.

2. In one drive, set the parameters in groups 10 to 97 as preferred.

3. Enter the Function Mode. 1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

4. Select the upload function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

5. Enter the upload function. 1 L -> 1242.0 rpm OUPLOAD <=<=

6. Switch to external control.(No L on the first row of the display.)

1 -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

7. Disconnect the panel and reconnect it to the drive into which the data will be downloaded.

1) The parameter groups 98, 99 and the results of the motor identification are not included as default. The restriction prevents downloading of unfit motor data. In special cases it is, however, possible to download all. For more information, please contact your local ABB representative.

FUNC

ENTER

LOC

REM

Control panel

Page 463: VFD Documents

19

How to download data from the panel to a drive

Consider the notes in section How to copy data from a drive to the panel above.

How to set the display contrast

Step Action Press Key Display

1. Connect the panel containing the uploaded data to the drive.

2. Ensure the drive is in local control (L shown on the first row of the display). If necessary, press the LOC/REM key to change to local control.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

3. Enter the Function Mode. 1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

4. Select the download function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

5. Start the download. 1 L -> 1242.0 rpm ODOWNLOAD =>=>

Step Action Press Key Display

1. Enter the Function Mode. 1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

2. Select a function (a flashing cursor indicates the selected function).

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

3. Enter the contrast setting function. 1 L -> 1242.0 rpm OCONTRAST [4]

4. Adjust the contrast. 1 L -> 1242.0 rpm CONTRAST [6]

5.a Accept the selected value. 1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 6

5.b Cancel the new setting and retain the original value, press any of the mode selection keys.The selected mode is entered.

1 L -> 1242.0 rpm OUPLOAD <=<=DOWNLOAD =>=>CONTRAST 4

LOC

REM

FUNC

ENTER

FUNC

ENTER

ENTER

ACT

FUNC DRIVE

PAR

Control panel

Page 464: VFD Documents

20

Drive selection modeIn normal use the features available in the Drive Selection Mode are not needed; the features are reserved for applications where several drives are connected to one panel link. (For more information, see the Installation and Start-up Guide for the Panel Bus Connection Interface Module, NBCI, Code: 3AFY58919748).

In the Drive Selection Mode, the user can:

� Select the drive with which the panel communicates through the panel link.

� Change the identification number of a drive or panel connected to the panel link.

� View the status of the drives connected on the panel link.

The panel enters the Drive Selection Mode when the user presses the DRIVE key. Each on-line station must have an individual identification number (ID). By default, the ID number of the drive is 1.

Note: The default ID number setting of the drive should not be changed unless the drive is to be connected to the panel link with other drives on-line.

How to select a drive and change its panel link ID number

Step Action Press Key Display

1. To enter the Drive Selection Mode. ACS 800 75 kW

ASAAA5000 xxxxxxID NUMBER 1

2. To select the next drive/view. The ID number of the station is changed by first pressing ENTER (the brackets round the ID number appear) and then adjusting the value with double-arrow buttons. The new value is accepted with ENTER. The power of the drive must be switched off to validate its new ID number setting.

ACS 800 75 kW

ASAAA5000 xxxxxxID NUMBER 1

The status display of all devices connected to the Panel Link is shown after the last individual station. If all stations do not fit on the display at once, press the double-arrow up to view the rest of them.

Status Display Symbols: = Drive stopped,

direction forward= Drive running,

direction reverseF = Drive tripped on a fault

3. To connect to the last displayed drive and to enter another mode, press one of the mode selection keys.The selected mode is entered.

1 L -> 1242.0 rpm IFREQ 45.00 HzCURRENT 80.00 APOWER 75.00 %

DRIVE

1o

o

PAR

FUNC

ACT

Control panel

Page 465: VFD Documents

21

Reading and entering packed boolean values on the displaySome actual values and parameters are packed boolean, i.e. each individual bit has a defined meaning (explained at the corresponding signal or parameter). On the control panel, packed boolean values are read and entered in hexadecimal format.

In this example, bits 1, 3 and 4 of the packed boolean value are ON:

Boolean 0000 0000 0001 1010Hex 0 0 1 A

Bit 15 Bit 0

Control panel

Page 466: VFD Documents

22

Control panel

Page 467: VFD Documents

23

Program features

Chapter overviewThe chapter describes program features. For each feature, there is a list of related user settings, actual signals, and fault and warning messages.

Local control vs. external controlThe drive can receive start, stop and direction commands and reference values from the control panel or through digital and analog inputs. An optional fieldbus adapter enables control over an open fieldbus link. A PC equipped with DriveWindow can also control the drive.

Local control

The control commands are given from the control panel keypad when the drive is in local control. L indicates local control on the panel display.

The control panel always overrides the external control signal sources when used in local mode.

Slot 1Fieldbus

ACS800

RDCOBoard

Control panel

DriveWindow

External ControlLocal Control

Standard I/O

Slot 1 or Slot 2RTAC/RDIO/RAIO

Adapter

module

CH3(DDCS)

Fieldbus Adapter

Advant controller

AIMA-01 I/O RTAC/RDIO/RAIOmoduleadapter module

(e.g. AC 80, AC 800 M)

NxxxCH0(DDCS)

CH1(DDCS)

1 L ->1242 rpm I

Program features

Page 468: VFD Documents

24

External control

When the drive is in external control, the commands are given through the control terminal block on the standard I/O board (digital and analog inputs), optional I/O extension modules and/or CH0 Fieldbus Adapter. In addition, it is also possible to set the control panel as the source for the external control.

External control is indicated by a blank on the panel display or with an R in those special cases when the panel is defined as a source for external control.

Settings

Panel key Additional Information

LOC/REM Selection between local and external control.

Parameter

10.01 Start and stop source for EXT1.

10.02 Direction source for EXT1.

11.01 Selection between EXT1 and EXT2.

11.02 Reference source for EXT1.

11.05 Reference source for EXT2.

Group 98 OPTION MODULES Activation of the optional I/O and serial communication.

External Control through the Input/Output terminals, or through the fieldbus interfaces

1 R ->1242 rpm I 1 ->1242 rpm I

External Control by control panel

Program features

Page 469: VFD Documents

25

Block diagram: start, stop, direction source for EXT1

The figure below shows the parameters that select the interface for start, stop, and direction for external control location EXT1.

Block diagram: reference source for EXT1

The figure below shows the parameters that select the interface for the speed reference of external control location EXT1.

CH0 / RDCO board

KEYPAD

EXT1 XT DI1

COMM. MODULE

Control panel

Start/stop

DI1 / Std IO = Digital input DI1 on the standard I/O terminal blockDI1 / DIO ext 1 = Digital input DI1 on the Digital I/O Extension Module 1 (XT DI1 in Parameters)

10.01

Select

Fieldbus Adapter Slot1

DI1 / Std IO

DI6 / Std IO

DI1 / DIO EXT 1

DI1�DI6�

I/O ExtensionsSee parameter group 98 OPTION MODULES

Fb. selection See chapter Fieldbus control

EXT1

AI1 / Std IO

AI1 / AIO ext 11.03

Select

CH0 / RDCO board

KEYPAD

COMM. MODULE

Control panel

AI2 / Std IOAI3 / Std IO

AI1, AI2, AI3

XT AI1

REF1 (rpm)Reference

AI1 / Std IO = analog input AI1 on the standard I/O terminal blockAI1 / AIO ext = analog input AI1 on the Analog I/O Extension Module (AI5 in Parameters)

I/O ExtensionsSee parameter group 98 OPTION MODULES

Fb. selectionSee chapter Fieldbus control

Program features

Page 470: VFD Documents

26

Reference types and processingIt is possible to scale the external reference so that the signal maximum value corresponds to a speed other than the maximum speed limit.

Settings

Diagnostics

Parameter Additional Information

Group 11 REFERENCE SELECT External reference source, type and scaling.

Group 20 LIMITS Operating limits.

Group 22 ACCEL/DECEL Speed reference acceleration and deceleration ramps.

Actual Signal Additional Information

Group 02 ACTUAL SIGNALS The reference values in different stages of the reference processing chain.

Parameter

Group 14 RELAY OUTPUTS Active reference / reference loss through a relay output.

Group 15 ANALOG OUTPUTS Reference value.

Program features

Page 471: VFD Documents

27

Programmable analog inputs The drive has three programmable analog inputs: one voltage input (0/2 to 10 V) and two current inputs (0/4 to 20 mA). Two extra inputs are available if an optional Analog I/O Extension Module is used. Each input can be inverted and filtered, and the maximum and minimum values can be adjusted.

Update cycles in the Standard Control Program

Settings

Diagnostics

Input Cycle

AI / standard 10 ms

AI / extension 10 ms

Parameter Additional Information

Group 11 REFERENCE SELECT Reference source.

Group 13 ANALOG INPUTS Processing of the standard inputs.

Group 71 PUMP CONTROLS Sleep AI.

Group 72 PUMP SETUP Discharge pressure and fluid level sources.

Group 73 PUMP SETUP Pt100 source.

Group 98 OPTION MODULES Activation of optional analog inputs.

Actual Value Additional Information

01.20�01.22 Standard inputs

01.27, 01.28 Optional inputs

Program features

Page 472: VFD Documents

28

Programmable analog outputsTwo programmable current outputs are available as standard, and two outputs can be added by using an optional Analog I/O Extension Module. Analog output signals can be inverted and filtered.

The analog output signals can be proportional to motor speed, process speed (scaled motor speed), output frequency, output current, motor torque, motor power, etc.

It is possible to write a value to an analog output through a serial communication link.

Update cycles in the Control Program

Settings

Diagnostics

Output Cycle

AO / standard 50 ms

AO / extension 50 ms

Parameter Additional information

Group 15 ANALOG OUTPUTS Value selection and processing (standard outputs).

Group 98 OPTION MODULES Activation of optional I/O.

Actual value Additional information

01.23, 01.24 Values of the standard outputs.

01.29, 01.30 Values of the optional outputs.

Program features

Page 473: VFD Documents

29

Programmable digital inputs The drive has six programmable digital inputs as a standard. Six extra inputs are available if the optional Digital I/O Extension Modules are used.

Update cycles in the Control Program

Settings

Diagnostics

Input Cycle

DI / standard 50 ms

DI / extension 50 ms

Parameter Additional Information

Group 10 START/STOP/DIR Start, stop, direction source.

Group 11 REFERENCE SELECT Reference selection, reference source.

Group 12 CONSTANT SPEEDS Constant speed selection.

Group 16 SYSTEM CTR INPUTS External run enable, fault reset, user macro change

Group 71 PUMP CONTROLS Pump enable, pump resets source.

Group 72 PUMP SETUP High pressure, level control selection source.

Group 73 PUMP SETUP Klixon selection source.

98.03�98.04 Activation of the optional Digital I/O Extension Modules.

Actual Value Additional Information

01.18 Standard digital inputs

01.25 Optional digital inputs

Program features

Page 474: VFD Documents

30

Programmable relay outputsOn the standard I/O board there are three programmable relay outputs. Six outputs can be added by using the optional Digital I/O Extension Modules. With parameter setting it is possible to choose which information to indicate through the relay output: ready, running, fault, warning, motor stall, etc.

It is possible to write a value to a relay output through a serial communication link.

Update cycles in the Control Program

Settings

Diagnostics

Output Cycle

RO / standard 50 ms

RO / extension 50 ms

Parameter Additional Information

Group 14 RELAY OUTPUTS Value selections and operation times

Group 98 OPTION MODULES Activation of optional relay outputs

Actual Value Additional Information

01.19 Standard relay output states

01.26 Optional relays output states

Program features

Page 475: VFD Documents

31

Actual signalsSeveral actual signals are available:

� Drive output frequency, current, voltage and power

� Motor speed and torque

� Supply voltage and intermediate circuit DC voltage

� Reference values

� Drive temperature

� Operating time counter (h), kWh counter

� Digital I/O and analog I/O status

� PID controller actual values

Three signals can be shown simultaneously on the control panel display. It is also possible to read the values through the serial communication link or through the analog outputs.

Settings

Diagnostics

Parameter Additional Information

Group 15 ANALOG OUTPUTS Selection of an actual signal to an analog output

Group 92 FIELDBUS OUTPUT Selection of an actual signal to a dataset (serial communication)

Actual Value Additional Information

Group 01 ACTUAL SIGNALS�09 FAULT WORDS

Lists of actual signals

Program features

Page 476: VFD Documents

32

Motor identificationThe performance of Direct Torque Control is based on an accurate motor model determined during the motor start-up.

A motor identification magnetization is automatically done the first time the start command is given. During this first start-up, the motor is magnetized at zero speed for several seconds to allow the motor model to be created. This identification method is suitable for most applications. However, as previously stated, for PCP applications, a separate identification run should be performed.

Settings

Parameter 99.10.

Power loss ride-through If the incoming supply voltage is cut off, the drive will continue to operate by utilizing the kinetic energy of the rotating motor. The drive will be fully operational as long as the motor rotates and generates energy to the drive. The drive can continue the operation after the break if the main contactor remained closed.

Note: Cabinet assembled units equipped with main contactor option have a �hold circuit� that keeps the contactor control circuit closed during a short supply break. The allowed duration of the break is adjustable. The factory setting is five seconds.

130

260

390

520

1.6 4.8 8 11.2 14.4t (s)

UDC

fout

TM

UDC = Intermediate circuit voltage of the drive, fout = output frequency of the drive, TM = Motor torqueLoss of supply voltage at nominal load (fout = 40 Hz). The intermediate circuit DC voltage drops to the minimum limit. The controller keeps the voltage steady as long as the supply is switched off. The drive runs the motor in generator mode. The motor speed falls but the drive is operational as long as the motor has enough kinetic energy.

Umains

20

40

60

80

40

80

120

160

TM(Nm)

fout(Hz)

UDC(V d.c.)

Program features

Page 477: VFD Documents

33

Automatic StartSince the drive can detect the state of the motor within a few milliseconds, starting is immediate under all conditions. There is no restart delay, e.g. the starting of turbining pumps or windmilling fans is easy.

Settings

Parameter 21.01.

DC Magnetizing When DC Magnetizing is activated, the drive automatically magnetizes the motor before the start. This feature guarantees the highest possible breakaway torque, up to 200% of motor nominal torque. By adjusting the premagnetizing time, it is possible to synchronize the motor start and e.g. a mechanical brake release. The Automatic Start and DC Magnetizing features cannot be activated at the same time.

Settings

Parameters 21.01 and 21.02.

DC HoldBy activating the motor DC Hold feature it is possible to lock the rotor at zero speed. When both the reference and the motor speed fall below the preset DC hold speed, the drive stops the motor and starts to inject DC into the motor. When the reference speed again exceeds the DC hold speed, the normal drive operation resumes.

Settings

Parameters 17.01�17.03.

DC hold t

Motor

DC Hold

speed

DC hold speed

t

Speed

ReferenceSpeed

Program features

Page 478: VFD Documents

34

Flux BrakingThe drive can provide greater deceleration by raising the level of magnetization in the motor. By increasing the motor flux, the energy generated by the motor during braking can be converted to motor thermal energy. This feature is useful in motor power ranges below 15 kW.

The drive monitors the motor status continuously, also during the Flux Braking. Therefore, Flux Braking can be used both for stopping the motor and for changing the speed. The other benefits of Flux Braking are:

� The braking starts immediately after a stop command is given. The function does not need to wait for the flux reduction before it commences braking.

� The cooling of the motor is efficient. The stator current of the motor increases during the Flux Braking, not the rotor current. The stator cools much more efficiently than the rotor.

Settings

Parameter 27.02.

Flux Braking

No Flux Braking

t (s)

Motor

Flux Braking

No Flux Brakingf (Hz)

TBrTN

20

40

60

(%)

TN = 100 NmTBr = Braking Torque

Speed

50 HZ/60 Hz

120

80

40

05 10 20 30 40 50

1

2345

120

80

40

05 10 20 30 40 50

1

2

3

45

f (Hz)

Braking Torque (%)

f (Hz)

Flux Braking

No Flux Braking

1

2

3

4

5

2.2 kW15 kW37 kW75 kW250 kW

Rated Motor Power

Program features

Page 479: VFD Documents

35

Flux OptimizationFlux Optimization reduces the total energy consumption and motor noise level when the drive operates below the nominal load. The total efficiency (motor and the drive) can be improved by 1% to 10%, depending on the load torque and speed.

Settings

Parameter 27.01.

Acceleration and deceleration rampsIt is possible to adjust the acceleration/deceleration times and the ramp shape.

The available ramp shape alternatives are Linear and S-curve.

Linear: Suitable for drives requiring steady or slow acceleration/deceleration.

S-curve: Ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing the speed.

Settings

Parameter group 22 ACCEL/DECEL.

Constant speeds It is possible to predefine constant speeds. Constant speeds are selected with digital inputs. Constant speed activation overrides the external speed reference.

Settings

Parameter group 12 CONSTANT SPEEDS.

Linear

t (s)

Motor

2

speed

S-curve

Program features

Page 480: VFD Documents

36

Speed controller tuning During the motor identification, the drive speed controller is automatically tuned. It is, however, possible to manually adjust the controller gain, integration time and derivation time, or let the drive perform a separate speed controller Autotune Run. In Autotune Run, the speed controller is tuned based on the load and inertia of the motor and the machine. The figure below shows speed responses at a speed reference step (typically, 1 to 20%).

The figure below is a simplified block diagram of the speed controller. The controller output is the reference for the torque controller.

Settings

Parameter groups 24 SPEED CTRL TUNE and 20 LIMITS.

Diagnostics

Actual signal 01.01.

A: UndercompensatedB: Normally tuned (autotuning)C: Normally tuned (manually). Better dynamic performance than with BD: Overcompensated speed controller

%

t

n

CB D

nN

A

Derivative

Proportional,integral

Derivativeaccelerationcompensation

Torquereference

Speedreference

Calculated actual speed

Errorvalue-

+ +++

Program features

Page 481: VFD Documents

37

Speed control performance figuresThe table below shows typical performance figures for speed control when Direct Torque Control is used.

Torque control performance figuresThe drive can perform precise torque control without any speed feedback from the motor shaft. The table below shows typical performance figures for torque control, when Direct Torque Control is used.

100

t (s)

TTN

(%)

Tload

nact-nrefnN

0.1 - 0.4% s

TN = rated motor torquenN = rated motor speednact = actual speednref = speed reference

*Dynamic speed error depends on speed controller tuning.

Speed Control No Pulse Encoder

With Pulse Encoder

Static speed error, % of nN

+ 0.1 to 0.5%(10% of nominal slip)

+ 0.01%

Dynamic speed error

0.4% sec.* 0.1% sec.*

*When operated around zero frequency, the error may be greater.

Torque Control No Pulse Encoder

With Pulse Encoder

Linearity error + 4%* + 3%

Repeatability error

+ 3%* + 1%

Torque rise time 1 to 5 ms 1 to 5 ms

100

t (s)

TTN

< 5 ms

90

10

(%)

Tref

Tact

TN = rated motor torqueTref = torque referenceTact = actual torque

Program features

Page 482: VFD Documents

38

Scalar Control

Note: DTC is the only control mode for the Factory or PCP macros. Scalar Control is the only control mode available for the ESP macro.

In the Scalar Control mode, the drive is controlled with a frequency reference. The outstanding performance of the default motor control method, Direct Torque Control, is not achieved with Scalar Control.

It is recommended to activate Scalar Control mode in the following special applications:

� In multi-motor drives: 1) if the load is not equally shared between the motors, 2) if the motors are of different sizes, or 3) if the motors are going to be changed after motor identification.

� If the nominal current of the motor is less than 1/6 of the nominal output current of the drive.

� If the drive is used without a motor connected (e.g. for test purposes)

� The drive runs a medium voltage motor via a step-up transformer

In the Scalar Control mode, some standard features are not available.

Setting

Parameter 99.04.

IR compensation for a scalar controlled driveIR Compensation is active only when the motor control mode is Scalar (see section Scalar Control above). When IR Compensation is activated, the drive gives an extra voltage boost to the motor at low speeds. IR Compensation is useful in applications that require high breakaway torque. In Direct Torque Control mode, no IR Compensation is possible/needed.

Setting

Parameter 29.04.

No compensation

IR compensation

Motor Voltage

f (Hz)

Program features

Page 483: VFD Documents

39

Programmable protection functions

Motor Thermal Protection

The motor can be protected against overheating by activating the Motor Thermal Protection function and by selecting one of the motor thermal protection modes available.

The Motor Thermal Protection modes are based either on a motor temperature thermal model or on an overtemperature indication from a motor thermistor.

Motor temperature thermal model

The drive calculates the temperature of the motor on the basis of the following assumptions:

� The motor is at the estimated temperature (value at 01.17 MOTOR TEMP EST saved at power switch off) when power is applied to the drive. When power is applied for the first time, the motor is in the ambient temperature of 86 °F (30 °C).

� Motor temperature is calculated using either the user-adjustable or automatically calculated motor thermal time and motor load curve (see the figures below). The load curve should be adjusted at case the ambient temperature exceeds 80 °F (30 °C).

Use of the motor thermistor

It is possible to detect motor overtemperature by connecting a motor thermistor (PTC) between the +24 VDC voltage supply offered by the drive and digital input DI6. In normal motor operation temperature, the thermistor resistance should be less than 1.5 kOhm (current 5 mA). The drive stops the motor and gives a fault indication if the thermistor resistance exceeds 4 kOhm. The installation must meet the regulations for protecting against contact.

Settings

Parameters 30.02�30.12.

Note: It is also possible to use the motor temperature measurement function. See the section Motor temperature measurement through the standard I/O on page 44.

Motor

100%

Temp.

63%

Motor thermal time

t

t

100%

50

100

150

Zero speed load

Motor load curve

Break pointMotor

Speed

Load Current(%)

Rise

Program features

Page 484: VFD Documents

40

Stall Protection

The drive protects the motor in a stall situation. It is possible to adjust the supervision limits (frequency, time) and choose how the drive reacts to a motor stall condition (warning indication / fault indication and stop the drive / no reaction).

Settings

Parameters 30.13�30.15.

Motor Phase Loss

The Phase Loss function monitors the status of the motor cable connection. The function is useful especially during the motor start: the drive prevents the motor from starting if it detects a missing motor phase. The Phase Loss function also supervises the motor connection status during normal operation.

Settings

Parameter 30.19.

Ground Fault Protection

The Ground Fault Protection detects ground faults in the motor or motor cable.The protection is based on sum current measurement.

� A ground fault in the line supply does not activate the protection.

� In a grounded supply, the protection activates in 200 microseconds. � In floating supply networks, the line supply capacitance should be 1 microF or

more.� The capacitive currents due to screened copper motor cables up to 1,000 feet

(300 meters) do not activate the protection.� Ground fault protection is deactivated when the drive is stopped.

Note: With parallel connected inverter modules, the ground fault indication isCUR UNBAL xx. See chapter Fault tracing.

Settings

Parameter 30.20.

Communication Fault

The Communication Fault function supervises the communication between the drive and an external control device (e.g. a fieldbus adapter module).

Settings

Parameters 70.03�70.04.

Program features

Page 485: VFD Documents

41

Preprogrammed Faults

Overcurrent

The overcurrent trip limit for the drive is 3.5 × I2hd (rated output current, heavy-duty use rating.

DC overvoltage

The DC overvoltage trip limit is 1.3 ·U1max, where U1max is the maximum value of the supply voltage range. For:

400 V units, U1max is 415 V500 V units, U1max is 500 V690 V units, U1max is 690 V.

The actual voltage in the intermediate circuit corresponding to the supply voltage trip level is:

728 VDC for 400 V units, 877 VDC for 500 V units, and 1210 VDC for 690 V units.

DC undervoltage

The DC undervoltage trip limit is 0.6 · U1min, where U1min is the minimum value of the supply voltage range. For:

400 V and 500 V units, U1min is 380 V690 V units, U1min is 525 V.

The actual voltage in the intermediate circuit corresponding to the supply voltage trip level is:

307 VDC for 400 V and 500 V units, and 425 VDC for 690 V units.

Drive temperature

The drive supervises the inverter module temperature. If the inverter module temperature exceeds 240 °F (115 °C), a warning is given. The temperature trip level is 260 °F (125 °C).

Enhanced drive temperature monitoring for ACS800-U2, -U4 and -U7, frame sizes R7 and R8

Traditionally, drive temperature monitoring is based on the power semiconductor (IGBT) temperature measurement, which is compared with a fixed maximum IGBT temperature limit. However, certain abnormal conditions, such as cooling fan failure, insufficient cooling air flow, or excessive ambient temperature might cause overheating inside the converter module, which the traditional temperature monitoring alone does not detect. The Enhanced drive temperature monitoring improves the protection in these situations.

The function monitors the converter module temperature by checking cyclically that the measured IGBT temperature is not excessive considering the load current, ambient temperature, and other factors that affect the temperature rise inside the converter module. The calculation uses an experimentally defined equation that

Program features

Page 486: VFD Documents

42

simulates the normal temperature changes in the module depending on the load. The drive generates a warning when the temperature exceeds the limit, and trips when the temperature exceeds the limit by 6 oC.

Note: The monitoring is available only for ACS800-U2, -U4 and -U7, frame size R7 and R8 with Standard Control Program version BZXR631G (and later versions).

Types to which the enhanced drive temperature monitoring is available:ACS800-Ux-0080-

-0100-2-0120-2-0140-2/3/7-0170-2/3/5/7-0210-2/3/5/7-0230-2-0260-2/3/5/7-0270-5-0300-2/5-0320-3/5/7-0400-3/5/7-0440-3/5/7-0490-3/5/7-0550-5/7-0610-5/7

Settings

Diagnostics

Short circuit

There are separate protection circuits for supervising the motor cable and the inverter short circuits. If a short circuit occurs, the drive will not start and a fault indication is given.

Input phase loss

Input phase loss protection circuits supervise the supply cable connection status by detecting intermediate circuit ripple. If a phase is lost, the ripple increases. The drive is stopped and a fault indication is given if the ripple exceeds 13%.

Parameter Additional Information

95.10 Ambient temperature

Warning/Fault

INV OVERTEMP Excessive converter module temperature

Program features

Page 487: VFD Documents

43

Ambient temperature

The drive will not start if the ambient temperature is below 23 °F (-5 °C) to 32 °F (0 °C) or above 163 °F (73 °C) to180 °F (82 °C) (the exact limits vary within the given ranges depending on drive type).

Overfrequency

If the drive output frequency exceeds the preset level, the drive is stopped and a fault indication is given. The preset level is 50 Hz over the operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active).

Internal fault

If the drive detects an internal fault the drive is stopped and a fault indication is given.

Operation limitsACS800 has adjustable limits for speed, current (maximum), torque (maximum) and DC voltage.

Settings

Parameter group 20 LIMITS.

Power limitPower limitation is used to protect the input bridge and the DC intermediate circuit. If the maximum allowed power is exceeded, the drive torque is automatically limited. Maximum overload and continuous power limits depend on the hardware. For specific values refer to the appropriate hardware manual.

Automatic ResetsThe drive can automatically reset itself after overvoltage, undervoltage, rod torque, AI < min. and underload faults. The Auto Flt Resets must be activated by the user.

Settings

Parameter group 34 AUTO FLT RESET.

Parameter lockThe user can prevent parameter adjustment by activating the parameter lock.

Settings

Parameters 16.02 and 16.03.

Program features

Page 488: VFD Documents

44

Motor temperature measurement through the standard I/OThe figure below shows the temperature measurement options of one motor when the RMIO is used as the connection interface.

WARNING! According to IEC 664, the connection of the motor temperature sensor to the RMIO, requires double or reinforced insulation between motor live parts and the sensor. Reinforced insulation entails a clearance and creeping distance of 0.315� (8mm) (400 / 500 VAC equipment). If the assembly does not fulfil the requirement:

� The RMIO board terminals must be protected against contact and they may not be connected to other equipment.

Or

� The temperature sensor must be isolated from the RMIO board terminals.

See also the section Motor Thermal Protection on page 39.

Settings

Parameter Additional Information

15.01 Analog output in a motor 1 temperature measurement

30.03�30.05 Motor 1 temperature measurement settings

Other

Parameters 13.01�13.05 (AI1 processing) and 15.01�15.05 (AO1 processing) are not effective.

At the motor end the cable shield should be grounded through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

Motor

10 nF(>630 VAC)

RMIO boardOne sensor

Three sensors

Motor

10 nF(>630 VAC)

RMIO board

T

AI1+

AI1-

AO1+

AO1-

T T T

AI1+

AI1-

AO1+

AO1-

The minimum voltageof the capacitor

must be 630 VAC

Program features

Page 489: VFD Documents

45

Diagnostics

Adaptive Programming using the function blocksConventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make the programming easy, but the choices are limited. The user cannot customize the operation any further. The Adaptive Program makes freer customizing possible without the need of a special programming tool or language:

� The program is built of standard function blocks included in the drive control program.

� The control panel is the programming tool.

� The user can document the program by drawing it on block diagram template sheets.

The maximum size of the Adaptive Program is 15 function blocks. The program may consist of several separate functions.

For more information, see Application Guide for Adaptive Program (code: 3AFE64527274 [English]).

DriveAP

DriveAP is a Windows based tool for Adaptive Programming. With DriveAP it ispossible to upload the Adaptive Program from the drive and edit it on a PC.

For more information, see the DriveAP User�s Manual [3AFE64540998 (English)].

Actual values Additional Information

01.15 Temperature value

09.03 Warning bit state

09.01 Fault bit states

Warnings

MOTOR 1 TEMP Chapter Fault tracing and parameter 09.03

T MEAS ALM Chapter Fault tracing and parameter 09.03

Faults

MOTOR 1 TEMP Chapter Fault tracing and parameter 09.01

Program features

Page 490: VFD Documents

46

Program features

Page 491: VFD Documents

47

Application macros

Chapter overviewThis chapter describes the intended use, operation and the default control connections of the standard application macros.

Overview of macrosApplication macros are preprogrammed parameter sets. While starting up the drive, the user can select one of the macros with parameter 99.02.

There are three standard macros.

Factory MacroSimilar functionality to the standard software.

Note: Parameters will vary from the standard software, and DTC is the only possible motor control mode.

PCP MacroPCP macro allows for controls to come from 4 possible locations:

� Local Mode - Commands come from the keypad in local mode.

� Keypad Remote - Commands come from the keypad in remote mode.

� External 1 - Commands come from remote digital signals.

� External 2 - Commands come from a second remote location for digital signals.

The speed reference can also be selected from the 4 locations listed above. The only motor control mode is DTC, and the speed reference is always given in rpm. The speed reference has bump-less transfer from one location to the next while switching during a run situation. When commanding the speed reference from the keypad while in remote mode, the reference will be memorized on power loss. As long as the run command is still present, the drive will restart and run at the memorized reference on power-up.

The drive is speed controlled at all times, even during shutdown sequences. The drive application allows for backspin control of the pump rods during pump fault occurrence, loss of enable signal, and normal stop commands. Individual pump faults will be discussed in later sections.

Application macros

Page 492: VFD Documents

48

Input and Output Signal Defaults

Possible Input and Output Signal Configuration

Input Signals Output Signals

Start/Stop (DI1) Ready Run (RO1)

External Speed Reference 1 (AI1) Ready Ref (RO2)

Tripped (RO3)

Motor Current (AO1)

Motor Speed Filt (AO2)

Input Signals Output Signals

Start/Stop 1 (DI1) Ready Run (RO1)

Run Enable (DI2) At Speed (RO2)

Pump Enable (DI3) Tripped (RO3)

Level Ctrl Enable (DI4) Enabled (XT RO1)

Pump Fault Reset (DI5) DC Overvoltage Limit (XT RO2)

Start/Stop 2 (DI6) Constant Output for Motor Pt100/PTC (AO1)

High Pressure Sel (XT DI1) Constant Output for Pump Pt100 (AO2)

Ext1 / Ext2 Sel (XT DI2) Rod Speed (XT AO1)

External Fault (XT DI3) Rod Torque (XT AO2)

Runtime Reset (XT DI4)

Motor Pt100 or PTC (AI1)

External Speed Reference 1 (AI2)

External Speed Reference 2 (AI3)

Pump Pt100 AI Signal (XT AI1)

Fluid Level Signal (XT AI2)

Discharge Pressure Signal (XT AI3)

Unused (XT AI4)

Application macros

Page 493: VFD Documents

49

ESP MacroThe ESP macro is like the PCP macro only the motor control mode is SCALAR and the speed reference is always given in Hz.

Shutdown Definition for PCP & ESP MacrosWhen the PCP or ESP macro is active and the pump is enabled, the drive is allowed to perform a specialized shutdown sequence to control the backspin of the rods in the well or back flow of fluid through the pump. The controlled shutdown can be performed under any normal stop command: Loss of Run, Stall Condition, High Torque, High Pressure, Underload, and High Pump Temperature.

The sequence of events during a controlled shutdown is as follows:

1. Shutdown is activated.

2. Speed reference is ramped to zero by the decel time specified in 22.02 DECEL TIME. While the speed reference is being ramped, the drive remains in speed control so that the speed regulator is always active.

3. When zero speed is reached, the drive will begin ramping to the backspin speed reference with an accel time specified in 71.05 BACKSPIN ACCEL TIME. If the torque in the pump is driving the motor in the reverse direction then the actual backspin speed will be equal to the backspin speed reference. However, if torque in the pump is not driving the motor in reverse, the actual speed will not equal the backspin speed reference.

4. The backspin speed reference is based upon the actual torque of the system.

Backspin Speed Ref =Backspin Limit - [(Actual Torque Filtered / Max Torque) * Backspin Limit *Backspin Speed Range]

5. As the torque in the system decreases, the backspin speed reference will slowly increase due to the formula listed above. 71.05 BACKSPIN ACCEL TIME is required because as the drive enters into the regenerative quadrant of control, the tighter the speed is controlled the less of a chance for entering into a high DC bus condition which limits the amount of torque the drive can produce. The DC bus will not rise as long as speed is controlled in the negative direction at a very low reference when 100% torque is required. As the torque required decreases, the backspin speed reference is allowed to increase in the negative direction while still retaining control of the load. Thus, the drive is able to control the load through the entire shutdown sequence. Once the entire torque of the system (rod torque and any back flow through the pump) has been released the motor will come to a complete stop, even though the drive has a negative speed reference command. This is possible because 20.06 MINIMUM TORQUE is commanded to zero, which will not allow the drive to rotate the motor in the negative direction (not active in factory macro). After a few seconds at zero speed the drive will drop the run command, thus releasing the flux in the motor.

Application macros

Page 494: VFD Documents

50

Note: As 71.06 BACKSPIN SPEED RANGE increases, the backspin speed reference will decrease (if torque is held constant) as shown in the formula above.

Note: If backspin control is not desired, then set 71.06 BACKSPIN SPEED RANGE to �100%.�

Note: When the ESP macro is active, the backspin speed reference is displayed in Hz. However, 71.03 BACKSPIN LIMIT is displayed in rpm. Calculate the Hz for backspin limit by using the following formula.

This calculation is performed internally to the drive before the backspin limit is used for calculating the backspin speed reference (Hz) while in ESP macro.

Backspin Limit (Hz) =Backspin Limit (RPM)

Maximum Speed (RPM)X Maximum Frequency

Application macros

Page 495: VFD Documents

51

Actual signals and parameters

Chapter overviewThe chapter describes the actual signals and parameters. The fieldbus equivalent value is given for each signal/parameter. More data is given in chapter Additional data: actual signals and parameters.

Terms and abbreviationsThe table defines the terms and abbreviations used in the parameter and actual signal tables.

Term Definition

Absolute Maximum Frequency

Value of 29.02 MAXIMUM FREQ, or 29.03 MINIMUM FREQ if the absolute value of the minimum limit is greater than the maximum limit.

Absolute Maximum Speed

Value of 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if the absolute value of the minimum limit is higher than the maximum limit.

Actual signal Signal measured or calculated by the drive. Can be monitored by the user. No user setting possible.

FbEq Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Parameter A user-adjustable operation instruction of the drive.

Actual signals and parameters

Page 496: VFD Documents

52

No. Name/Value Description FbEq

01 ACTUAL SIGNALS Basic signals for monitoring of the drive.

01.01 MOTOR SPEED FILT Filtered calculated motor speed in rpm. 100% corresponds to 11.04 EXT1 REF MAXIMUM or 11.07 EXT2 REF MAXIMUM.

200 = 1%

01.02 MOTOR SPEED FILT Calculated motor speed in rpm. 100% corresponds to 11.04 EXT1 REF MAXIMUM or 11.07 EXT2 REF MAXIMUM.

200 = 1%

01.03 SPEED MEASURED Measured actual speed from the pulse encoder. 100% corresponds to 11.03 EXT1 REF MAXIMUM or 11.07 EXT2 REF MAXIMUM.

200 = 1%

01.04 ACTUAL MTR FLUX Absolute value of actual motor flux. 10 = 1%

01.05 FREQUENCY Calculated output frequency. 100 = 1 Hz

01.06 MOTOR CURRENT Measured motor current. 10 = 1 A

01.07 MOTOR TORQUE FILT Filtered, calculated motor torque. 100% is the nominal motor torque. 100 = 1%

01.08 MOTOR TORQUE Calculated motor torque. 100% is the nominal motor torque. 100 = 1%

01.09 POWER Motor power. 100% is the nominal motor power. 10 = 1%

01.10 DC BUS VOLTAGE Measured intermediate circuit voltage. 1 = 1 VDC

01.11 MOTOR VOLTAGE Calculated motor voltage. 1 = 1 VAC

01.12 ACS800 TEMP Temperature of the heat sink plate. 1 = 1 °C

01.13 OP HOUR COUNTER Elapsed time counter. Runs when the control board is powered. 1 = 1 h

01.14 KILOWATT HOURS kWh counter. 1 = 100 kWh

01.15 MOTOR 1 TEMP Measured temperature of motor 1. See 30.03 MOT1 TEMP AI1 SEL. 10 = 1 °C

01.16 MOTOR 2 TEMP Value of analog input 2 displayed in °C, when Pt100 temperature measured is selected.

10 = 1 °C

01.17 MOTOR TEMP EST Calculated motor temperature based upon DTC motor thermal model.See 30.01 MOT THERM P MODE, 30.09 OTOR THERM TIME, and 30.10 MOTOR LOAD CURVE for thermal model settings.

1 = 1 °C

01.18 DI6-1 STATUS Status of digital inputs. Example: 000001 = DI1 is ON, DI2 to DI6 are OFF.

1 = 1

01.19 RO3-1 STATUS Status of relay outputs. Example: 001 = RO1 is energized, RO2 and RO3 are de-energized.

1 = 1

01.20 AI1 [V] Value of analog input AI1. 1000 = 1

01.21 AI2 [mA] Value of analog input AI2. 1000 = 1 mA

01.22 AI3 [mA] Value of analog input AI3. 1000 = 1 mA

01.23 AO1 [mA] Value of analog output AO1. 1000 = 1 mA

01.24 AO2 [mA] Value of analog output AO2. 1000 = 1 mA

01.25 XT DI6-1 STATUS Status of digital inputs of the Digital I/O Extension modules (optional). 1 = 1

01.26 XT RO6-1 STATUS Status of digital outputs of the Digital I/O Extension modules (optional).

1 = 1

01.27 XT AI1 [V] Value of input 1 of the Analog I/O Extension module (optional). 1000 = 1 V

01.28 XT AI2 [V] Value of input 2 of the Analog I/O Extension module (optional). 1000 = 1 V

01.29 XT AO1 [mA] Value of output 1 of the Analog I/O Extension module (optional). 1000 = 1 mA

01.30 XT AO2 [mA] Value of output 2 of the Analog I/O Extension module (optional). 1000 = 1 mA

01.31 CTRL LOCATION Control location. See 11.01EXT1/EXT2 SEL for EXT CTRL configuration.

0 = Ext11 = Ext2

Actual signals and parameters

Page 497: VFD Documents

53

02 ACTUAL SIGNALS Speed and torque reference monitoring signals and control program values.

02.01 SPEED REF 2 Limited speed reference. 100% corresponds to 11.03 EXT1 REF MAXIMUM or 11.07 EXT2 REF MAXIMUM.

200 = 1%

02.02 SPEED REF 3 Ramped and shaped speed reference. 100% corresponds to 11.03 EXT1 REF MAXIMUM or 11.07 EXT2 REF MAXIMUM.

200 = 1%

02.03 SPEED REF 4 Sum of 02.02 SPEED REF 3 and SPEED CORRECTION (zero in this application). 100% corresponds to 11.03 EXT1 REF MAXIMUM or 11.07 EXT2 REF MAXIMUM.

200 = 1%

02.04 TORQ REF 1 Limited sum of M/F torque reference and external torque reference. 100% corresponds to the motor nominal torque.

100 = 1%

02.05 TORQ REF 2 Speed controller output. 100% corresponds to the motor nominal torque.

100 = 1%

02.06 TORQ REF 3 Internal torque reference; after the torque reference selector. 100% corresponds to the motor nominal torque.

100 = 1%

02.07 TORQ REF 4 Sum of 02.06 TORQ REF 3 and LOAD COMPENSATION (zero in this application). 100% corresponds to the motor nominal torque.

100 = 1%

02.08 TORQ REF 5 Sum of 02.07 TORQ REF 4 and TORQ TRIM (zero in this application). 100% corresponds to the motor nominal torque.

100 = 1%

02.09 TORQ USED REF Final torque reference for the internal torque controller. 100% corresponds to the motor nominal torque.

100 = 1%

02.10 SPEED USED REF Final speed reference for the internal speed controller. 100% corresponds to 11.03 EXT1 REF MAXIMUM or 11.07 EXT2 REF MAXIMUM.

200 = 1%

04 INFORMATION Information on the application loaded.

04.01 SW PACKAGE VER Name and version identification of the complete software package. -

04.07 APPL SW VERSION Control program name. -

04.09 APPL RELEASE DATE Control program release date. -

04.10 BOARD TYPE Shows the control board type. Note: RMIO-Ix boards have different type of FLASH memory chips than RMIO-0x. Only software version BZXR631G or later will operate with RMIO-1x boards.

-

05 PUMP ACTUALS Application signals for monitoring pump control functions.

05.01 MOTOR TORQUE 01.08 MOTOR TORQUE scaled to engineering units. 1 = 1 Nm1 = 1 lbft

05.02 MAX MOTOR TORQUE Maximum allowed motor torque displayed from 71.01 MAX MOTOR TORQUE.

1 = 1 Nm1 = 1 lbft

05.03 POWER 01.09 POWER scaled to engineering units. 1 = 1 kW1 = 1 Hp

05.04 ROD TORQUE Actual rod torque equals 05.01 MOTOR TORQUE * 71.07 REDUCTION RATIO.

1 = 1 Nm1 = 1 lbft

05.05 ROD SPEED Actual rod speed equals 01.02 MOTOR SPEED FILT / 71.07 REDUCTION RATIO.

1 = 1 rpm

05.06 RUNTIME HOURS Actual time that the drive was enabled and running. Updates once every hour. Value is retained on power loss.

1 = 1 h

05.07 BACKSPIN SPD REF Reference generated to the speed controller when the drive enters into the shutdown process. See section Shutdown Definition for PCP & ESP Macros on page 49.

1 = 1 rpm

No. Name/Value Description FbEq

Actual signals and parameters

Page 498: VFD Documents

54

05.08 BACKSPIN OPERATION Identification if the shutdown process is operating or disabled due to normal running conditions.

0 = NOT ACTIVE1 = ACTIVE

05.09 WELL FLUID LEVEL Actual fluid level feedback signal. 10 = 1 m10 = 1 JNTS

05.10 DISCHARGE PRESSURE Actual discharge pressure feedback signal. 1 = 1 KPa1 = 1 psi

05.11 MEASURED TEMP Actual measured temperature from a Pt100 for thermal protection of the pump.

1 = 1 °C

05.12 ROD SPD REF Actual rod speed reference in pump rpm. 10 = 1 Prpm

06 FIELDBUS INPUTS Words for monitoring data received from fieldbus.

06.01 COMMAND WORD A 16-bit data word. See Table 3 on page 113. 1 = 1

06.02 SPEED REF1 A 16-bit data word. If 71.19 SPEED REFERENCE is Motor Speed then the fieldbus integer speed range is defined by 11.04 EXT1 REF MAX - 11.03 EXT1 REF MIN. If 71.19 SPEED REFERENCE is Rod Pump Speed then the fieldbus integer speed range scaling is 10:1.

20000 = 100% of speed range

06.03 SPEED REF2 A 16-bit data word. If 71.19 SPEED REFERENCE is Motor Speed then the fieldbus integer speed range is defined by 11.07 EXT2 REF MAX - 11.06 EXT2 REF MIN. If 71.19 SPEED REFERENCE is Rod Pump Speed then the fieldbus integer speed range scaling is 10:1.

20000 = 100% of speed range

06.04 PUMP COMMAND A 16-bit data word. See Table 4 on page 113. 1 = 1

07 AI SCALED Signals for the Adaptive Program

07.01 AI1 SCALED Value of analog input AI1 scaled to an integer value. 2000 = 1 V

07.02 AI2 SCALED Value of analog input AI2 scaled to an integer value. 1000 = 1 mA

07.03 AI3 SCALED Value of analog input AI3 scaled to an integer value. 1000 = 1 mA

07.04 AI5 SCALED Value of analog input AI5 scaled to an integer value. 1000 = 1 mA

07.05 AI6 SCALED Value of analog input AI6 scaled to an integer value. 1000 = 1 mA

07.06 LCU ACT SIGNAL1 A 16-bit data word. Line-side converter signal selected by 95.08 LCU PAR1 SEL.

1 = 1

07.07 LCU ACT SIGNAL2 A 16-bit data word. Line-side converter signal selected by 95.09 LCU PAR1 SEL.

1 = 1

08 STATUS WORDS Status signals for monitoring of the drive.

08.01 MAIN STATUS WORD A 16-bit data word. See Table 5 on page 114. 1 = 1

08.02 PUMP STATUS WORD A 16-bit data word. See Table 6 on page 115. 1 = 1

09 FAULT WORDS Fault and alarm signals for monitoring the drive.

09.01 FAULT WORD 1 A 16-bit data word. See Table 7 on page 116. 1 = 1

09.02 FAULT WORD 2 A 16-bit data word. Table 8 on page 116. 1 = 1

09.03 ALARM WORD 1 A 16-bit data word. Table 9 on page 117. 1 = 1

09.04 LIMIT WORD A 16-bit data word. Table 10 on page 118. 1 = 1

10 START/STOP/DIR The sources for external start, stop, direction and run enable control.

10.01 START / STOP 1 Defines the connections and the source of the start and stop commands for external control location 1.

NOT SEL This function is not selected. 1

No. Name/Value Description FbEq

Actual signals and parameters

Page 499: VFD Documents

55

DI1 Start and stop through digital input DI1. 0 = stop; 1 = start.WARNING! After a fault reset, the drive will start if DI1 = 1.

2

DI1P-2P Pulse start through DI1. Transition from 0 to 1 = start.Pulse stop through DI2. Transition from 1 to 0 = stop.

3

DI6 See selection DI1. 4

KEYPAD Start and stop through the control panel.See chapter Control panel for additional details.

5

FIELDBUS See selection DI1. Instead of a digital input, the command comes from 06.01 COMMAND WORD bit 03. See chapter Fieldbus control.

6

XT DI1 See selection DI1. 7

KEYPADorFBUS Start and stop through DI1, FIELDBUS or KEYPAD. See selections DI1, FIELDBUS or KEYPAD for more information. Note: DI1 must equal 1 in order to control through the fieldbus or keypad. DI1 will start and stop the drive. If DI1 is equal to 1 and the drive has been stopped (either through the fieldbus or keypad), it can be restarted through the fieldbus or keypad. All start inputs are pulsed, as are the fieldbus and keypad stop inputs.

8

PARAM 10.06 Source selected by 10.06 STRT/STP 1 PTR. 9

10.02 START / STOP 2 Defines the connections and the source of the start and stop commands for external control location 2.

NOT SEL This function is not selected. 1

DI1 See 10.01 START / STOP 1. 2

DI1P-2P See 10.01 START / STOP 1. 3

DI6 See 10.01 START / STOP 1. 4

KEYPAD See 10.01 START / STOP 1. 5

FIELDBUS See 10.01 START / STOP 1. 6

XT DI1 See 10.01 START / STOP 1. 7

KEYPADorFBUS See 10.01 START / STOP 1. 8

PARAM 10.07 Source selected by 10.07 STRT/STP 2 PTR. 9

10.03 DIRECTION Enables the control of direction of rotation of the motor, or fixes the direction.

FORWARD Fixed to forward. 1

DI2 If digital input DI2 = 1, the direction is reverse. 2

DI3 See selection DI2. 3

DI4 See selection DI2. 4

XT DI2 See selection DI2. 5

XT DI3 See selection DI2. 6

XT AI1 Direction will reverse if the speed reference is negative; 11.02 EXT REF1 SELECT or 11.05 EXT REF2 SELECT must be �XT AI1�.

7

FIELDBUS See selection DI2. Instead of a digital input, the command comes from 06.01 COMMAND WORD bit 04. See chapter Fieldbus control.

8

KEYPAD Selected by control panel. 9

KEYPADorFBUS Direction is selected through FIELDBUS or KEYPAD. See selections FIELDBUS and KEYPAD for more information.

10

No. Name/Value Description FbEq

Actual signals and parameters

Page 500: VFD Documents

56

10.04 RUN ENABLE Sets the run enable signal on, or selects a source for the external run enable signal. If no run enable signal is on, the drive will not start, or stops if it is running.

YES Run enable signal is ON. 1

DI1 External signal required through digital input DI1. 1 = run enable. 2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

FIELDBUS See selection DI1. Instead of a digital input, the command comes from 06.01 COMMAND WORD bit 00. See chapter Fieldbus control.

8

PARAM 10.08 Source selected by 10.08 RUN ENABLE PTR 9

10.05 EMERG STOP INPUT Disables E-stop functionality or selects a source for the hardwired signal.

DI2 Hardwired E-stop signal required through digital input DI2. 0 = stop by 21.05 EME STOP MODE.

1

DI3 See selection DI2. 2

DI4 See selection DI2. 3

DI5 See selection DI2. 4

XT DI2 See selection DI2. 5

NOT SELECT There is no hardwired E-stop signal. 6

PARAM 10.09 Source selected by 10.09 E-STOP PTR. 7

10.06 STRT/STP 1 PTR Defines the source or constant for selection PARAM 10.06 of 10.01 START / STOP 1.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit

number effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must

have value C to enable the constant setting.

-

10.07 STRT/STP 2 PTR Defines the source or constant for selection PARAM 10.07 of 10.02 START / STOP 2.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

10.08 RUN ENABLE PTR Defines the source or constant for selection PARAM 10.08 of 10.04 RUN ENABLE.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

10.09 E-STOP PTR Defines the source or constant for selection PARAM 10.09 of 10.05 EMERG STOP INPUT

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

11 REFERENCE SELECT External control location selection and external pump speed reference sources and limits.

11.01 EXT1/EXT2 SEL Specifies the source from which the drive reads the signal that selects between the two external control locations, EXT1 or EXT2.

No. Name/Value Description FbEq

Actual signals and parameters

Page 501: VFD Documents

57

NOT SELECT EXT1 is active, EXT2 is disabled. The control signal sources are defined by 10.01 START / STOP 1 and 11.02 EXT REF1 SELECT.

1

DI2 External signal required through digital input DI2; 0=EXT1, 1=EXT2. 2

DI3 See selection DI2. 3

DI4 See selection DI2. 4

DI5 See selection DI2. 5

DI6 See selection DI2. 6

XT DI1 See selection DI2. 7

XT DI2 See selection DI2. 8

FIELDBUS See selection DI2. Instead of a digital input, the command comes from 06.04 PUMP COMMAND bit 00. See chapter Fieldbus control.

9

PARAM 11.08 Source selected by 11.08 EXT1/EXT2 PTR 10

11.02 EXT REF1 SELECT Selects the source for EXT1 speed reference input. The analog input should be scaled such that the 100% input level = maximum speed reference. The 100% input level can be either voltage (10v) or current (20mA) depending upon the channel selected.

AI1 Analog input AI1 (voltage). 1

AI2 Analog input AI2 (current). 2

AI3 Analog input AI3 (current). 3

XT AI1 Analog input XT AI1 (voltage/current selected by hardware switch). 4

FIELDBUS 06.02 SPEED REF1. See chapter Fieldbus control. 5

KEYPAD Control panel. The first line in the display shows the reference value. 6

KEYPADorFBUS Reference comes from either FIELDBUS or KEYPAD. The keypad reference tracks the fieldbus reference when the fieldbus reference changes. See selections FIELDBUS or KEYPAD for more information.

7

PARAM 11.09 Source selected by 11.09 EXT REF1 PTR 8

11.03 EXT REF1 MINIMUM Defines the minimum value for external reference 1 (absolute value). Corresponds to the minimum setting of the used source signal.

Example: Analog input AI1 is selected as the reference source (value of 11.02 EXT REF1 SELECT is AI1). The reference minimum and maximum correspond the AI minimum and maximum settings as above.

0.0�18000.0 rpm Setting range in rpm. (Hz if 99.04 MOTOR CTRL MODE is SCALAR). 1 = 1 rpm

No. Name/Value Description FbEq

1 13.01 MINIMUM AI12 13.02 SCALE AI11� 11.03 EXT REF1 MINIMUM2� 11.04 EXT REF1 MAXIMUM

1 2

1�

2�

Nmotor

Nshaft

AI1 Range

EXT REF1 Range

Actual signals and parameters

Page 502: VFD Documents

58

11.04 EXT REF1 MAXIMUM Defines the maximum value for external reference 1 (absolute value). Corresponds to the maximum setting of the used source signal. Note: When PCP or ESP macros are active with the Fluid Level Regulator enabled, the reference generated by the level regulator is scaled by the active external reference limits (REF1 or REF2).

0.0�18000.0 rpm Setting range in rpm. (Hz if 99.04 MOTOR CTRL MODE is SCALAR). 1 = 1 rpm

11.05 EXT REF2 SELECT Selects the source for EXT2 speed reference input. The analog input should be scaled such that the 100% input level = maximum speed reference. The 100% input level can be either voltage (10v) or current (20mA) depending upon the channel selected.

AI1 See 11.02 EXT REF1 SELECT. 1

AI2 See 11.02 EXT REF1 SELECT. 2

AI3 See 11.02 EXT REF1 SELECT. 3

XT AI1 See 11.02 EXT REF1 SELECT. 4

FIELDBUS 06.03 SPEED REF2. See chapter Fieldbus control. 5

KEYPAD See 11.02 EXT REF1 SELECT. 6

KEYPADorFBUS See 11.02 EXT REF1 SELECT. 7

PARAM 11.10 Source selected by 11.10 EXT REF2 PTR 8

11.06 EXT REF2 MINIMUM Defines the minimum value for external reference 2 (absolute value). Corresponds to the maximum setting of the used source signal.

0.0�18000.0 rpm Setting range in rpm. (Hz if 99.04 MOTOR CTRL MODE is SCALAR). 1 = 1 rpm

11.07 EXT REF2 MAXIMUM Defines the maximum value for external reference 2 (absolute value). Corresponds to the maximum setting of the used source signal.Note: When PCP or ESP macros are active with the Fluid Level Regulator enabled, the reference generated by the level regulator is scaled by the active external reference limits (REF1 or REF2).

0.0�18000.0 rpm Setting range in rpm. (Hz if 99.04 MOTOR CTRL MODE is SCALAR). 1 = 1 rpm

11.08 EXT1/EXT2 PTR Defines the source or constant for selection PARAM 11.08 of 11.01 EXT1/EXT2 SEL.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

11.09 EXT REF1 PTR Defines the source or constant for selection PARAM 11.09 of 11.02 EXT REF1 SELECT.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

11.10 EXT REF2 PTR Defines the source or constant for selection PARAM 11.10 of 11.05 EXT REF2 SELECT.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

12 CONSTANT SPEEDS Constant speed selection and values.An active constant speed overrides the drive speed reference (unless otherwise indicated).

12.01 RAMPED SPEED SEL Selects the activation signal source for the ramped constant speeds.

NOT SELECT This function is not selected. 1

DI5 Digital input DI5 = 1 selects RAMPED SPD1. 2

No. Name/Value Description FbEq

Actual signals and parameters

Page 503: VFD Documents

59

DI5-DI6 Digital input DI5 = 1 selects RAMPED SPD1. Digital input DI6 = 1 selects RAMPED SPD2.Note: If both digital inputs = 1, the speed reference is set to zero.

3

XT DI3 See selection DI5. 4

XT DI3-XT DI4 See selection DI5-DI6. 5

FIELDBUS See selection DI5-DI6. Instead of digital inputs, the selection comes from 06.01 COMMAND WORD bits 05 and 06. See chapter Fieldbus control.

6

12.02 RAMPED SPD 1 Defines the ramped speed 1.

-1800.0�1800.0 rpm Setting range. 1 = 1 rpm

12.03 RAMPED SPD 2 Defines the ramped speed 2.

-1800.0�1800.0 rpm Setting range. 1 = 1 rpm

13 ANALOG INPUTS The analog input signal processing

13.01 MINIMUM AI1 Defines the minimum value for analog input AI1. When used as a reference, the value corresponds to the reference minimum setting.Example: If AI1 is selected as the source for external reference 1, this value corresponds to the value of 11.03 EXT REF1 MINIMUM.

0 V Zero Volts. Note: The program cannot detect a loss of analog input signal.

1

2 V Two Volts. 2

TUNED VALUE The value measured by the tuning function. See the selection TUNE. 3

TUNE The value measurement triggering. Procedure:- Connect the minimum signal to input. - Set the parameter to TUNE.Note: The readable range in tuning is 0 V to 10 V.

4

13.02 SCALE AI1 Scales analog input AI1.Example: The effect on speed reference REF1 when: - 11.04 EXT REF1 MAXIMUM = 1500 rpm.- Actual AI1 value = 4 V (40% of the full

scale value).- 13.02 SCALE AI1 = 100%.

50�500% Scaling range. 1 = 1%

No. Name/Value Description FbEq

40%

1500 rpm 10 V

0 V

600 rpm

AI1

Actual signals and parameters

Page 504: VFD Documents

60

13.03 FILTER AI1 ms Defines the filter time constant for analog input AI1.

Note: The signal is also filtered due to the signal interface hardware (10 ms time constant). This cannot be changed by any parameter.

1�5000 ms Filter time constant. 1 = 1 ms

13.04 MINIMUM AI2 Defines the minimum value for analog input AI2. When used as a reference, the value corresponds to the reference minimum setting.

0 mA Zero milliAmps. Note: The program cannot detect a loss of analog input signal.

1

4 mA Four milliAmps. 2

TUNED VALUE The value measured by the tuning function. See selection TUNE. 3

TUNE The value measurement triggering. Procedure: 1. Connect the minimum signal to input.2. Set the parameter to TUNE. Note: The readable range in tuning is 0 mA to 20 mA.

4

13.05 SCALE AI2 See 13.02 SCALE AI1 1 = 1%

13.06 FILTER AI2 ms See 13.03 FILTER AI1 ms 1 = 1 ms

13.07 MINIMUM AI3 See 13.04 MINIMUM AI2 1�4

13.08 SCALE AI3 See 13.02 SCALE AI1 1 = 1%

13.09 FILTER AI3 ms See 13.03 FILTER AI1 ms 1 = 1 ms

13.10 ZERO XT AI1 Defines the minimum value for analog input XT AI1. When used as a reference, the value corresponds to the reference minimum setting.Example: If XT AI1 is selected as the source for external reference 1, this value corresponds to the value of 11.03 EXT REF1 MINIMUM.

0 V Zero Volts. Note: The program cannot detect a loss of analog input signal.

1

TUNED VALUE The value measured by the tuning function. See selection TUNE. 2

TUNE The value measurement triggering. Procedure: 1. Connect the minimum signal to input.2. Set the parameter to TUNE. Note: The readable range in tuning is 0 V to 10 V.

3

13.11 SCALE XT AI1 See 13.02 SCALE AI1 1 = 1%

13.12 FILTER XT AI1 ms See 13.03 FILTER AI1 ms 1 = 1 ms

13.13 ZERO XT AI2 See 13.10 ZERO XT AI1. 1�3

13.14 SCALE XT AI2 See 13.02 SCALE AI1 1 = 1%

13.15 FILTER XT AI2 ms See 13.03 FILTER AI1 ms 1 = 1 ms

13.16 SCALE XT AI3 See 13.02 SCALE AI1 1 = 1%

13.17 SCALE XT AI4 See 13.02 SCALE AI1 1 = 1%

No. Name/Value Description FbEq

63

%

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Actual signals and parameters

Page 505: VFD Documents

61

14 RELAY OUTPUTS Status information indicated through relay outputs.

14.01 RO1 POINTER The relay output is controlled by use of �pointers�. This parameter selects the word that the desired bit is packed in. Example: +.002.026.01 = Main Status Word bit 1 (RDY_RUN).

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

14.03 RO1 TON DELAY Defines the operation delay for the relay output RO1.The figure below illustrates the operation and release delays for relay output RO1.

0.01�9999.00 s Setting range. 1 = 1 s

14.04 RO1 TOFF DELAY Defines the release delay for the relay output RO1.

0.01�9999.00 s Setting range. 1 = 1 s

14.05 RO2 POINTER See 14.01 RO1 POINTER. -

14.07 RO2 TON DELAY See 14.03 RO1 TON DELAY. 1 = 1 s

14.08 RO2 TOFF DELAY See 14.04 RO1 TOFF DELAY. 1 = 1 s

14.09 RO3 POINTER See 14.01 RO1 POINTER. -

14.11 RO3 TON DELAY See 14.03 RO1 TON DELAY. 1 = 1 s

14.12 RO3 TOFF DELAY See 14.04 RO1 TOFF DELAY. 1 = 1 s

14.13 XT RO1 POINTER See 14.01 RO1 POINTER. -

14.15 XT RO2 POINTER See 14.01 RO1 POINTER. -

14.17 XT RO3 POINTER See 14.01 RO1 POINTER. -

14.19 XT RO4 POINTER See 14.01 RO1 POINTER. -

15 ANALOG OUTPUTS The analog output signal processing

15.01 ANALOG OUTPUT1 The analog output is controlled by use of �pointers�. This parameter selects the word that is the desired output. Example: +.001.002.00 = MOTOR SPEED FILT.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value. See 10.06 STRT/STP 1 PTR for information on the difference.

-

15.03 MINIMUM AO1 Defines the minimum value of the analog output signal AO1.

0 mA Zero mA. 1

4 mA Four mA. 2

10 mA Ten mA. 50% offset on 0 to 20 mA for testing or indication of direction. 3

No. Name/Value Description FbEq

1

01

0

ttOn tOff tOn tOff

tOn 14.03

tOff 14.04

Drive status

RO1 status

Actual signals and parameters

Page 506: VFD Documents

62

15.04 FILTER AO1 ms Defines the filtering time constant for analog output AO1.

Note: Even if you select 0 s as the minimum value, the signal is still filtered with a time constant of 10 ms due to the signal interface hardware. This cannot be changed by any parameters.

0�10000 ms Filter time constant. 1 = 1 ms

15.05 SCALE AO1 When the value of the signal selected in 15.01 ANALOG OUTPUT 1 equals this parameter, the output = 20 mA.

0�65535 Setting range. 10 = 1

15.06 ANALOG OUTPUT2 See 15.01 ANALOG OUTPUT1. -

15.08 MINIMUM AO2 See 15.03 MINIMUM AO1. 1�3

15.09 FILTER AO2 ms See 15.04 FILTER AO1 ms. 1 = 1 ms

15.10 SCALE AO2 See 15.05 SCALE AO1. 10 = 1

15.11 XT ANALOG OUTPUT1 See 15.01 ANALOG OUTPUT1. -

15.13 MINIMUM XT AO1 See 15.03 MINIMUM AO1. 1�3

15.14 FILTER XT AO1 See 15.04 FILTER AO1 ms. 1 = 1 ms

15.15 SCALE XT AO1 See 15.05 SCALE AO1. 10 = 1

15.16 XT ANALOG OUTPUT 2 See 15.01 ANALOG OUTPUT1. -

15.18 MINIMUM XT AO2 See 15.03 MINIMUM AO1. 1�3

15.19 FILTER XT AO2 See 15.04 FILTER AO1 ms. 1 = 1 ms

15.20 SCALE XT AO2 See 15.05 SCALE AO1. 10 = 1

16 SYSTEM CTR INPUTS Fault reset, parameter lock, etc.

16.01 FAULT RESET SEL Selects the source for the fault reset signal. The signal resets the drive after a fault trip if the cause of the fault no longer exists.

NOT SELECT Fault reset only from the control panel keypad (RESET key). 1

DI2 Reset through digital input DI2 or by control panel:- If the drive is in external control mode: Reset by a rising edge of DI2- If the drive is in local control mode: Reset by the RESET key of the

control panel.

2

DI3 See selection DI2. 3

DI4 See selection DI2. 4

DI5 See selection DI2. 5

DI6 See selection DI2. 6

FIELDBUS See selection DI2. Instead of a digital input, the selection comes from 06.01 COMMAND WORD bit 07. See chapter Fieldbus control.

7

16.02 PARAMETER LOCK Selects the state of the parameter lock. The lock prevents parameter changing.

OPEN The lock is open. Parameter values can be changed. 0

No. Name/Value Description FbEq

63

%

100

Tt

Filtered Signal

Unfiltered Signal O = I · (1 - e-t/T)

I = filter input (step)O = filter outputt = timeT = filter time constant

Actual signals and parameters

Page 507: VFD Documents

63

LOCKED Locked. Parameter values cannot be changed from the control panel. The lock can be opened by entering the valid Pass Code.

65535

16.03 PASS CODE Selects the pass code for the parameter lock.

0�32767 Setting 358 opens the lock. The value reverts back to 0 automatically. 1 = 1

16.04 LOCAL LOCK Disables entering to local control mode (LOC/REM key of the panel).WARNING! Before activating, ensure that the control panel is not needed for stopping the drive!

OFF Local control allowed. 0

ON Local control disabled. 65535

16.05 PARAMETER SAVE Saves the valid parameter values to the permanent memory. Note: A new parameter value of a standard macro is saved automatically when changed from the panel but not when altered through a fieldbus connection.

DONE Saving started. 0

SAVE� Saving is done. 1

17 DC HOLD DC hold settings.Note: This group is not visible if 99.04 is SCALAR.

17.01 DC HOLD ACTIVE Activates/deactivates the DC hold function. DC Hold is not possible if 99.04 MOTOR CTRL MODE is SCALAR.When both the reference and the speed drop below 17.02 DC HOLD SPEED, the drive will stop generating sinusoidal current and start to inject DC into the motor. The current is set by 17.03 DC HOLD CURRENT. When the reference speed exceeds 17.02 DC HOLD SPEED, normal drive operation continues.

Note: DC Hold has no effect if the start signal is switched off.Note: Injecting DC current into the motor causes the motor to heat up. In applications where long DC hold times are required, externally ventilated motors should be used. If the DC hold period is long, the DC hold cannot prevent the motor shaft from rotating if a constant load is applied to the motor.See section DC Hold on page 33.

NO Function inactive. 0

YES Function active. 65535

17.02 DC HOLD SPEED Defines the DC Hold speed. See 17.01 DC HOLD ACTIVE.

0�3600 rpm Speed in rpm. 1 = 1 rpm

17.03 DC HOLD CURR Defines the DC hold current. See 17.01 DC HOLD ACTIVE.

0�100.0% Current in percent of the motor nominal current. 1 = 1%

No. Name/Value Description FbEq

DC HOLD SPEED

t

t

SPEEDmotor

Ref.

DC Hold

Actual signals and parameters

Page 508: VFD Documents

64

20 LIMITS Drive operation limits.

20.01 MINIMUM SPEED Defines the allowed minimum speed. The value cannot be set if 99.04 MOTOR CTRL MODE is SCALAR.

WARNING! The limit is linked to the motor nominal speed setting i.e. 99.08 MOTOR NOM SPEED. If 99.08 MOTOR NOM SPEED is changed, the default speed limit will also change.

-18000 / (no. of pole pairs)�MAXIMUM SPEED

Minimum speed limit 20000 = 11.04 EXT REF1 MAX

20.02 MAXIMUM SPEED Defines the allowed minimum speed. The value cannot be set if 99.04 MOTOR CTRL MODE is SCALAR.

WARNING! The limit is linked to the motor nominal speed setting i.e. 99.08 MOTOR NOM SPEED. If 99.08 MOTOR NOM SPEED is changed, the default speed limit will also change.

MINIMUM SPEED�18000 / (no. of pole pairs)

Maximum speed limit. 20000 = 11.04 EXT1 REF MAX

22.03 EM STOP RAMP TIME Defines the time inside which the drive is stopped if the drive receives an emergency stop command.

200 = 1%

20.04 MAXIMUM CURRENT Defines the allowed maximum motor current in percent of the rated heavy-duty use output current (I2hd).

0.0�x.xA Current limit 10 = 1 A

20.05 SPC TORQMAX Maximum torque limit of the speed regulator output.

0�600.0% Setting range. 100 = 1%

20.06 SPC TORQMIN Minimum torque limit of the speed regulator output.

-600.0�0% Setting range. 100 = 1%

20.07 FREQ TRIP MARGIN Defines the allowable overspeed limit, in frequency units, for the overspeed protection function. This value is added to 20.02 MAXIMUM SPEED (if 99.04 MOTOR CTRL MODE = DTC) or 29.02 MAXIMUM FREQ (if 99.04 MOTOR CTRL MODE = SCALAR) to define the overspeed limit. If the motor speed exceeds the sum of 20.02 MAXIMUM SPEED + 20.07 FREQ TRIP MARGIN, the trip OVERSPEED FAULT is activated. Example:

99.07 MOTOR NOM FREQ = 60 Hz99.08 MOTOR NOM SPEED = 1140 rpm20.02 MAXIMUM SPEED = 1140 rpm 20.07 FREQ TRIP MARGIN = 30 Hz

For this example, the MAXIMUM SPEED = MOTOR NOM SPEED and the FREQ TRIP MARGIN = [0.5 x MOTOR NOM FREQ], therefore the drive will trip at 1.5 x the Nominal Speed (Freq) or 1710 rpm (90 Hz).

0�500 Hz Setting range. 100 = 1 Hz

21 START/STOP Start and stop modes of the motor.

21.01 START FUNCTION Selects the motor starting method. See also section Automatic Start on page 33.

No. Name/Value Description FbEq

Actual signals and parameters

Page 509: VFD Documents

65

AUTO Automatic start guarantees optimal motor start in most cases. It includes the flying start function (starting to a rotating machine) and the automatic restart function (stopped motor can be restarted immediately without waiting the motor flux to die away). The drive motor control program identifies the flux as well as the mechanical state of the motor and starts the motor instantly under all conditions. Note: In scalar control mode (99.04 MOTOR CTRL MODE is SCALAR), no flying start or automatic restart is possible by default.

1

DC MAGN DC magnetizing should be selected if a high break-away torque is required. The drive pre-magnetizes the motor before the start. The pre-magnetizing time is determined automatically, being typically 200 ms to 2 s depending on the motor size. DC MAGN guarantees the highest possible break-away torque. Note: Starting to a rotating machine is not possible when DC magnetizing is selected. Note: DC magnetizing cannot be selected in scalar control mode (99.04 MOTOR CTRL MODE is SCALAR).

2

CNST DCMAGN Constant DC magnetizing should be selected instead of DC magnetizing if constant pre-magnetizing time is required (e.g. if the motor start must be simultaneous with a mechanical brake release). This selection also guarantees the highest possible break-away torque when the pre-magnetizing time is set long enough. The pre-magnetizing time is defined by 21.02 CONST MAGN TIME.Note: Starting to a rotating machine is not possible when DC magnetizing is selected. Note: DC magnetizing cannot be selected in scalar control mode (99.04 MOTOR CTRL MODE is SCALAR).

WARNING! The drive will start after the set magnetizing time has passed although the motor magnetization is not completed. Ensure always in applications where a full break-away torque is

essential, that the constant magnetizing time is long enough to allow generation of full magnetization and torque.

3

21.02 CONST MAGN TIME Defines the magnetizing time in the constant magnetizing mode. See 21.01 START FUNCTION. After the start command, ACS800 automatically pre-magnetizes the motor the set time.

30.0�10000.0 ms Magnetizing time. To ensure full magnetizing, set this value to the same value as or higher than the rotor time constant. If not known, use the rule-of-thumb value given in the table below:

1 = 1 ms

No. Name/Value Description FbEq

Motor Rated Power Constant Magnetizing Time< 10 kW > 100 to 200 ms

10 to 200 kW > 200 to 1000 ms

200 to 1000 kW > 1000 to 2000 ms

Actual signals and parameters

Page 510: VFD Documents

66

21.03 FREE DIRECT MAGN When FREE DIRECT MAGN is set to ON and 21.01 START FUNCTION is set to CNST DC MAGN, the drive will memorize the rotor�s last position (angle of flux). When the drive is restarted, the flux will be applied in the last position when stopped.CAUTION! If the machine moves after the drive has stopped controlling the motor, the memorized flux position may not be correct for the rotor position since the rotor has moved. This may cause the motor to rotate to the last memorized position. This should be less than half a rotation.

OFF FREE DIRECT MAGN deactivated. 0

ON FREE DIRECT MAGN activated. 65535

21.04 STOP FUNCTION Selects the motor stop function.

RAMP STOP Stop along a ramp defined by the active deceleration time. See group 22 ACCEL/DECEL.

0

COAST STOP Stop by cutting off the motor power supply. The motor coasts to a stop.

65535

21.05 EME STOP MODE The drive stopping method when an E-Stop command has been received.

STOP RAMPING The drive ramps to zero speed in the time set by 22.03 EM STOP RAMP TIME. When the drive reaches zero speed, it will turn off (remove RUN).

1

STOP TORQUE The drive decelerates to zero speed at the torque limits. When the drive reaches zero speed it will turn off (remove RUN).

2

COAST STOP The drive coasts to a stop (immediate removal of RUN). 3

21.06 ESTOP COAST DELAY Time allowed for the drive to stop, after an E-stop command is received, before an internal coast stop is commanded.

0�100 s Setting range. 1 = 1 s

22 ACCEL/DECEL Acceleration and deceleration times. See section Acceleration and deceleration ramps on page 35.

22.01 ACCEL TIME 1 Defines the acceleration time, i.e. the time required for the speed to change from zero to the maximum speed. - If the speed reference increases faster than the set acceleration

rate, the motor speed will follow the acceleration rate.- If the speed reference increases slower than the set acceleration

rate, the motor speed will follow the reference signal.- If the acceleration time is set too short, the drive will automatically

prolong the acceleration in order not to exceed the drive operating limits.

0.00�1000.00 s Acceleration time. 100 = 1 s

No. Name/Value Description FbEq

Actual signals and parameters

Page 511: VFD Documents

67

22.02 DECEL TIME 1 Defines the deceleration time, i.e. the time required for the speed to change from the maximum to zero.- If the speed reference decreases slower than the set deceleration

rate, the motor speed will follow the reference signal.- If the reference changes faster than the set deceleration rate, the

motor speed will follow the deceleration rate.- If the deceleration time is set too short, the drive will automatically

prolong the deceleration in order not to exceed drive operating limits. If there is any doubt about the deceleration time being too short, ensure that the DC overvoltage control is on.

Note: If a short deceleration time is needed for a high inertia application, the drive should be equipped with an electric braking option e.g. with a braking chopper and a braking resistor.

0.00�1800.00 s Deceleration time 100 = 1 s

22.03 EM STOP RAMP TIME Defines the time inside which the drive is stopped if the drive receives an emergency stop command.

0.0�1000.0 s E-stop deceleration time. 10 = 1 s

22.04 RAMP SHAPE TIME 0.0 s: Linear Ramp. Suitable for steady acceleration or deceleration and for slow ramps.0.01 to 1000.0 s: S-curve Ramp. S-curve ramps are ideal for conveyors carrying fragile loads, or other applications where a smooth transition is required when changing from one speed to another. The S-curve consists of symmetrical curves at both ends of the ramp and a linear section in between.A rule of thumb.A suitable relation between the ramp shape time and the acceleration ramp is 1/5.

0.00�1000.00 s Acceleration time. 100 = 1 s

23 SPEED REFERENCES Speed controller variables.Note: These values are READ ONLY.

23.01 SPEED REF Initial speed reference from keypad or remote source. 20000 = EXT REF MAX

24 SPEED CTRL TUNE Speed controller variables.See section Speed controller tuning on page 36.

24.01 PI TUNE Start automatic tuning of the speed controller. Instructions:- Run the motor at a constant speed of 20 to 40% of the rated speed.- Change the parameter to ON.Note: The motor load must be connected to the motor.

OFF No autotuning. 0

No. Name/Value Description FbEq

Linear Ramp: 22.04 = 0 s

S-curve Ramp:22.04 > 0 s

22.01 22.04

Speed

t

Actual signals and parameters

Page 512: VFD Documents

68

ON Activates the speed controller autotuning. Automatically reverts to NO. 65535

24.02 DAMPENING COEF Coefficient of dampening for PI TUNE. A lower value yields an increased dynamic response.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

0.00�8.00 Setting range. 10 = 1

24.03 P-GAIN Defines a relative gain for the speed controller. Great gain may cause speed oscillation. The figure below shows the speed controller output after an error step when the error remains constant.

0.0�250.0 Gain. 100 = 1

24.04 P-GAIN MIN The proportional gain setting when the speed controller output is zero.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

0�100 Setting range. 1 = 1

24.05 P-GAIN WEAKPOINT The output level of the speed controller where the gain is set to GAIN.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

0�Max Torque% Setting range. 1 = 1%

24.06 P-GAIN WP FILT This can soften the rate of change for the proportional gain. Note: Visible only after entering proper passcode in 16.03 PASS CODE.

0�99999 ms Filter time constant. 1 = 1 ms

No. Name/Value Description FbEq

Gain = Kp = 1TI = Integration time = 0TD= Derivation time = 0

Controller

Error ValueController Output

t

%

e = Error valueoutput = Kp · e

Actual signals and parameters

Page 513: VFD Documents

69

24.09 INTEGRATION TIME Defines an integration time for the speed controller. The integration time defines the rate at which the controller output changes when the error value is constant. The shorter the integration time, the faster the continuous error value is corrected. Too short an integration time makes the control unstable. The figure below shows the speed controller output after an error step when the error remains constant.

0.01�999.97 s Integration time. 1000 = 1 s

24.10 INTEG INIT VALUE Initial value of the integrator.

-300.00�300.00% Setting range. 100 = 1%

24.11 DROOP RATE Defines the droop rate. The parameter value needs to be changed only if both the Master and the Follower are speed-controlled.The droop rate needs to be set both for the Master and the Follower. The correct droop rate for a process must be found out case by case in practice.The drooping prevents a conflict between the Master and the Follower by allowing a slight speed difference between them. The drooping slightly decreases the drive speed as the drive load increases. The actual speed decrease at a certain operating point depends on the droop rate setting and the drive load ( = torque reference / speed controller output). At 100% speed controller output, drooping is at its nominal level, i.e. equal to the value of the DROOP RATE. The drooping effect decreases linearly to zero along with the decreasing load.

0.0�100.0% Setting range. 10 = 1%

No. Name/Value Description FbEq

TI

Controller Output

t

%Gain = Kp = 1TI = Integration time > 0TD= Derivation time = 0

Kp · e e = Error value

Kp · e

Drooping

No Drooping

Speed Controller

100%

} DROOP RATE

Output %

Example: Speed Controller output is 50%, DROOP RATE is 1%, maximum speed of the drive is 1500 rpm. Speed decrease = 0.50 · 0.01 · 1500 rpm = 7.5 rpm

Drive load

100%

Motor Speed% of nominal

Speed Decrease = Speed Controller Output · Drooping · Max. Speed

Actual signals and parameters

Page 514: VFD Documents

70

24.12 DERIVATION TIME Defines the derivation time for the speed controller. Derivative action boosts the controller output if the error value changes. The longer the derivation time, the more the speed controller output is boosted during the change. If the derivation time is set to zero, the controller works as a PI controller, otherwise as a PID controller. The derivation makes the control more responsive for disturbances. Note: Changing this parameter is recommended only if a pulse encoder is used.The figure below shows the speed controller output after an error step when the error remains constant.

0.0�9999.8 ms Derivation time value. 1 = 1 ms

24.13 DERIV FILT TIME Derivation time for the speed controller.

0.0�10000.0 ms Setting range. 1 = 1 ms

24.14 ACC COMP DERV Defines the derivation time for acceleration compensation. In order to compensate inertia during acceleration a derivative of the reference is added to the output of the speed controller. The principle of a derivative action is described in 24.12 DERIVATION TIME. Note: As a general rule, set this parameter to the value between 50 and 100% of the sum of the mechanical time constants of the motor and the driven machine. (The speed controller autotuning does this automatically, see 24.01 PI TUNE.)The figure below shows the speed responses when a high inertia load is accelerated along a ramp.

0.00�999.98 s Derivation time. 10 = 1 s

24.15 ACC COMP FILT Acceleration compensation term filter coefficient.

No. Name/Value Description FbEq

TI

Kp · e

Error Value

Controller Output

t

%

Gain = Kp = 1TI = Integration time > 0TD= Derivation time > 0Ts= Sample time period = 2 msΔe = Error value change between two samples

e = Error value

Kp · TD · ΔeTs Kp · e

Speed referenceActual speed

No Acceleration Compensation Acceleration Compensation

tt

% %

Actual signals and parameters

Page 515: VFD Documents

71

0.00�999999.00 ms Setting range. 1 = 1 ms

24.16 SLIP GAIN Defines the slip gain for the motor slip compensation control. 100% means full slip compensation; 0% means no slip compensation. The default value is 100%. Other values can be used if a static speed error is detected despite of the full slip compensation.Example: 1000 rpm constant speed reference is given to the drive. Despite of the full slip compensation (SLIP GAIN = 100%), a manual tachometer measurement from the motor axis gives a speed value of 998 rpm. The static speed error is 1000 rpm - 998 rpm = 2 rpm. To compensate the error, the slip gain should be increased. At the 106% gain value, no static speed error exists.

0.0�400.0% Slip gain value. 1 = 1%

24.17 KPS TIS MIN FREQ The minimum frequency limit above which the relative gain and integral time is defined by KPS VAL MIN FREQ and TIS VAL MIN FREQ.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

0�200 Hz Setting range. 1 = 1 Hz

24.18 KPS TIS MAX FREQ The frequency point which relative KPS and TIS equal 100%.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

0�200 Hz Setting range. 1 = 1 Hz

24.19 KPS VAL MIN FREQ The relative gain percentage of the KPS value at the speed defined by KPS TIS MIN FREQ.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

100�500% Setting range. 1 = 1%

24.20 TIS VAL MIN FREQ The relative gain percentage of the TIS value at the speed defined by KPS TIS MIN FREQ.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

100�500% Setting range. 1 = 1%

24.21 SPEED FDBK FILT The time constant of the first order actual speed filter.Note: Visible only after entering proper passcode in 16.03 PASS CODE.

0.0�999999.0 ms Setting range. 1 = 1 ms

27 FLUX CONTROL Flux control variables. Improves the stability of a system by decreasing the amount of electrical motor flux when low torque requirements are present.

27.01 FLUX OPTIMIZATION Activates/deactivates the flux optimization function.Note: The function cannot be used if 99.04 MOTOR CTRL MODE is SCALAR.See section Flux Optimization on page 35.

NO Inactive. 0

YES Active. 65535

No. Name/Value Description FbEq

Actual signals and parameters

Page 516: VFD Documents

72

27.02 FLUX BRAKING Activates/deactivates the flux braking function.Note: The function cannot be used if 99.04 MOTOR CTRL MODE is SCALAR.See section Flux Braking on page 34.

NO Inactive. 0

YES Active. 65535

27.03 FLUX REFERENCE Maximum flux reference. Used if 27.01 FLUX OPTIMAZATION is NO or if the required motor torque is > 30%.

25�140% Setting range. 10 = 1%

27.04 FS METHOD Activates the flux correction at low frequencies, < 3 Hz, when the torque exceeds 30%. Effective in the motoring and generating modes.

OFF Inactive. 0

ON Active. 65535

29 SCALAR CONTROL Frequency reference variables.Note: This group is not visible if 99.04 MOTOR CTRL MODE = DTC.

29.01 FREQUENCY REF Initial frequency reference from the keypad or remote source.Note: This parameter is READ ONLY.

100 = 1 Hz

29.02 MAXIMUM FREQ Defines the maximum limit for drive output frequency.

MINIMUM FREQ� 300.00 Hz

Maximum frequency limit. 100 = 1 Hz

29.03 MINIMUM FREQ Defines the minimum limit for drive output frequency.

-300.00 Hz�MAXIMUM FREQ

Minimum frequency limit. 100 = 1 Hz

29.04 IR-COMPENSATION Defines the relative output voltage boost at zero speed (IR compensation). The function is useful in applications with high break-away torque, but no DTC motor control cannot be applied. The figure below illustrates the IR compensation. Note: The function can be used only if 99.04 MOTOR CTRL MODE is SCALAR.

0�30% Setting range. 100 = 1% (UN)

30 FAULT FUNCTIONS Programmable protection functions

30.01 MOT THERM P MODE Selects the thermal protection mode of the motor. When overtemperature is detected, the drive reacts as defined by 30.02 MOTOR THERM PROT.

No. Name/Value Description FbEq

U /UN(%)

f (Hz)Field weakening point

Relative output voltage. No IR compensation.

Relative output voltage. IR compensation set to 15%.

15%

100%

Actual signals and parameters

Page 517: VFD Documents

73

DTC The protection is based on the calculated motor thermal model. The following assumptions are used in the calculation:- The motor is at the estimated temperature (value of 01.17 MOTOR

TEMP EST saved at power switch off) when the power is switched on. With the first power switch on, the motor is at the ambient temperature 86 °F (30 °C).

- The motor temperature increases if it operates in the region above the load curve and decreases if it operates below the curve.

- The motor thermal time constant is an approximate value for a standard self-ventilated squirrel-cage motor.

It is possible to fine tune the model by 30.10 MOTOR LOAD CURVE.Note: The model cannot be used with high power motors (99.06 MOTOR NOM CURRENT is higher than 800 A).

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

1

USER MODE The protection is based on the user-defined motor thermal model and the following basic assumptions:- The motor is at the estimated temperature (value of 01.17 MOTOR

TEMP EST saved at power switch off) when the power is switched on. With the first power switch on, the motor is at the ambient temperature 86 °F (30 °C).

- The motor temperature increases if it operates in the region above the motor load curve and decreases if it operates below the curve.

The user-defined thermal model uses 30.09 MOTOR THEM TIME and the motor load curve (set by 30.10, 30.11 and 30.12). User tuning is typically needed only if the ambient temperature differs from the normal operating temperature specified for the motor.

WARNING! The model does not protect the motor if it does not cool properly due to dust and dirt.

2

No. Name/Value Description FbEq

Actual signals and parameters

Page 518: VFD Documents

74

THERMISTOR Motor thermal protection is activated through digital input DI6. A motor thermistor, or a break contact of a thermistor relay, must be connected to digital input DI6. The drive reads the DI6 states as follows:

WARNING! According to IEC 664, the connection of the motor thermistor to the digital input requires double or reinforced insulation between motor live parts and the thermistor.

Reinforced insulation entails a clearance and creeping distance of 8 mm (400 / 500 VAC equipment). If the thermistor assembly does not fulfil the requirement, the other I/O terminals of the drive must be protected against contact, or a thermistor relay must be used to isolate the thermistor from the digital input.

WARNING! Digital input DI6 may be selected for another use. Change these settings before selecting THERMISTOR. In other words, ensure that digital input DI6 is not selected by any other parameter.

The figure below shows the alternative thermistor connections. At the motor end the cable shield should be earthed through a 10 nF capacitor. If this is not possible, the shield is to be left unconnected.

3

KLIXON Temperature switch in the motor windings. Uses digital input DI6. 4

30.02 MOTOR THERM PROT Selects how the drive reacts when the motor overtemperature is detected by the function defined by 30.01 MOT THERM P MODE. See section Motor Thermal Protection on page 39.

NO Inactive 1

WARNING The drive generates a warning when the temperature exceeds the warning level (95% of the nominal value).

2

No. Name/Value Description FbEq

DI6 Status (Thermistor Resistance) Temperature

1 (0�1.5 kOhm) Normal

0 (4 kOhm or higher) Overtemperature

MotorT 10 nF

MotorT

Thermistorrelay

RMIO I/O Board

6 18 DI6

7 19 +24 VDC

Alternative 1

Alternative 2RMIO I/O Board

6 18 DI6

7 19 +24 VDC

Actual signals and parameters

Page 519: VFD Documents

75

FAULT The drive generates a warning when the temperature exceeds the warning level (95% of the allowed maximum value). The drive trips on a fault when the temperature exceeds the fault level (100% of the allowed maximum value).

3

30.03 MOT1 TEMP AI1 SEL Activates the motor 1 temperature measurement function and selects the sensor type.

NOT IN USE The function is inactive. 1

1xPT100 The function is active. The temperature is measured with one Pt100 sensor. Analog output AO1 feeds constant current through the sensor. The sensor resistance increases as the motor temperature rises, as does the voltage over the sensor. The temperature measurement function reads the voltage through analog input AI1 and converts it to degrees centigrade.

2

2xPT100 The function is active. Temperature is measured using two Pt100 sensors. See selection 1xPT100.

3

3xPT100 The function is active. Temperature is measured using three Pt 100 sensors. See selection 1xPT100.

4

1�3 PTC The function is active. The temperature is supervised using one to three PTC sensors. Analog output AO1 feeds constant current through the sensor(s). The resistance of the sensor increases sharply as the motor temperature rises over the PTC reference temperature (Tref), as does the voltage over the resistor. The temperature measurement function reads the voltage through analog input AI1 and converts it into Ohms. The figure below shows typical PTC sensor resistance values as a function of the motor operating temperature.

5

30.04 MOT1 TEMP ALM Defines the alarm limit for motor 1 temperature measurement. The alarm indication is given when the limit is exceeded.

-10�10000 Ohm/°C (PTC/Pt100)

Limit in °C or Ohms. °C: 30.03 MOT1 TEMP AI1 SEL is 1xPT100, 2XPT100, 3XPT100.Ohm: 30.03 MOT1 TEMP AI1 SEL is 1�3 PTC.

1 = 1 °C

30.05 MOT1 TEMP FLT Defines the fault trip limit for motor 1 temperature measurement. The fault indication is given when the limit is exceeded.

-10�10000 Ohm/°C (PTC/Pt100)

Limit in °C or Ohms. °C: 30.03 MOT1 TEMP AI1 SEL is 1xPT100, 2XPT100, 3XPT100.Ohm: 30.03 MOT1 TEMP AI1 SEL is 1�3 PTC.

1 = 1 °C

No. Name/Value Description FbEq

100

550

1330

4000Ohm

t

Temperature ResistanceNormal 0�1.5 kOhm

Excessive > 4 kOhm

Actual signals and parameters

Page 520: VFD Documents

76

30.09 MOTOR THERM TIME Defines the thermal time constant for the user-defined thermal model (see selection USER MODE of 30.01 MOTOR THERM P MODE).

256.0�9999.8 s Time constant 1 = 1 s

30.10 MOTOR LOAD CURVE Defines the load curve together with 30.11 ZERO SPEED LOAD and 30.12 BREAK POINT. The load curve is used in the user-defined thermal model (see selection USER MODE of 30.01 MOTOR THERM P MODE).

50.0�150.0% Allowed continuous motor load in percent of the nominal motor current.

1 = 1%

30.11 ZERO SPEED LOAD Defines the load curve together with 30.10 MOTOR LOAD CURVE and 30.12 BREAK POINT.

25.0�150.0% Allowed continuous motor load at zero speed in percent of the nominal motor current

1 = 1%

30.12 BREAK POINT Defines the load curve together with 30.10 MOTOR LOAD CURVE and 30.11 ZERO SPEED LOAD.

1.0�300.0 Hz Drive output frequency at 100% load 100 = 1 Hz

30.13 STALL FUNCTION Selects how the drive reacts to a motor stall condition. The protection wakes up if:- the motor torque is at the internal stall torque limit (not user-

adjustable). - the output frequency is below the level set by 30.14 STALL FREQ HI

and- the conditions above have been valid longer than 30.15 STALL

TIME. See section Stall Protection on page 40.

No. Name/Value Description FbEq

Motor

100%Temperature

63%

Motor thermal time constant

t

t

Load

100%

50

100

Drive output frequency

30.10

30.12

30.11

I/IN(%)

I = Motor currentIN = Nominal motor current

Actual signals and parameters

Page 521: VFD Documents

77

NO Protection is invalid. 1

WARNING The drive generates a warning. The indication disappears in half of the time set by 30.15 STALL TIME.

2

FAULT The drive trips on a fault. 3

30.14 STALL FREQ HI Defines the frequency limit for the stall function. See 30.13 STALL FUNCTION.

0.5�50.0 Hz Stall frequency. 100 = 1 Hz

30.15 STALL TIME Defines the time for the stall function. See 30.13 STALL FUNCTION.

10.00�400.00 s Stall time. 1 = 1 s

30.19 MOTOR PHASE LOSS Activates the motor phase loss supervision function. See section Motor Phase Loss on page 40.

NO Inactive. 0

FAULT Active. The drive trips on a fault. 65535

30.20 GROUND FAULT Selects how the drive reacts when an ground fault is detected in the motor or the motor cable. See section Ground Fault Protection on page 40.

NO Inactive. 0

FAULT Active. The drive trips on a fault. 65535

30.21 UNDERVOLTAGE Activates or deactivates the undervoltage control of the intermediate DC link.If the DC voltage drops due to input power cut off, the undervoltage controller will automatically decrease the motor speed in order to keep the voltage above the lower limit. By decreasing the motor speed, the inertia of the load will cause regeneration back into the drive, keeping the DC link charged and preventing an undervoltage trip until the motor coasts to stop. This will act as a power-loss ride-through functionality in systems with a high inertia, such as a centrifuge or a fan.

OFF Undervoltage control deactivated. 0

ON Undervoltage control activated. 65535

30.22 OVERVOLTAGE Activates or deactivates the overvoltage control of the intermediate DC link. Fast braking of a high inertia load causes the voltage to rise to the overvoltage control limit. To prevent the DC voltage from exceeding the limit, the overvoltage controller automatically decreases the braking torque.Note: If a braking chopper and resistor are connected to the drive, the controller must be off (selection NO) to allow chopper operation.

OFF Overvoltage control deactivated. 0

ON Overvoltage control activated. 65535

30.23 AI<MIN FUNC Selects how the drive reacts when an analog input signal falls below the set minimum limit. Only active if 11.02 EXT REF1 SELECT or 11.05 EXT REF2 SELECT is using an AI.Note: The analog input minimum setting must be set to 0.5 V (1 mA) or above (see group 13 ANALOG INPUTS).

NO Inactive. 1

No. Name/Value Description FbEq

Actual signals and parameters

Page 522: VFD Documents

78

WARNING The drive generates a warning AI < MIN FUNC and continues to run.WARNING! Make sure that it is safe to continue operation in case the analog input signal is lost.

2

FAULT The drive trips on fault and shuts down. 3

LAST SPEED The drive generates a warning and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case the analog signal is lost.

4

30.24 KEYPAD LOSS FUNC Selects how the drive reacts to a control panel communication break. Note: Only active if 11.02 EXT REF1 SELECT or 11.05 EXT REF2 SELECT is using KEYPAD.

FAULT The drive trips on a fault and shuts down. 1

LAST SPEED The drive generates a warning and freezes the speed to the level the drive was operating at. The speed is determined by the average speed over the previous 10 seconds.

WARNING! Make sure that it is safe to continue operation in case the analog input is lost.

2

30.25 EXTERNAL FAULT Selects an interface for an external fault signal.

NOT SELECT Inactive. 1

DI2 External fault indication is given through digital input DI2. 0 = Fault trip; drive will shutdown. 1 = No external fault.

2

DI3 See selection DI2. 3

DI4 See selection DI2. 4

DI5 See selection DI2. 5

DI6 See selection DI2. 6

XT DI2 See selection DI2. 7

XT DI3 See selection DI2. 8

34 AUTO FLT RESET Automatic fault reset. Automatic resets are possible only for certain fault types and when the automatic reset function is activated for that fault type.The automatic reset function is not operational if the drive is in local control (�L� visible on the first row of the panel display).

34.01 OVERVOLTAGE CTRL Activates/deactivates the automatic reset for the intermediate link overvoltage fault.

OFF Inactive. 0

ON Active. 65535

34.02 UNDERVOLTAGE CTRL Activates/deactivates the automatic reset for the intermediate link undervoltage fault.

OFF Inactive. 0

ON Active. 65535

34.03 ROD TORQ CTRL Activates/deactivates the automatic reset for the high torque limit fault.

OFF Inactive. 0

ON Active. 65535

No. Name/Value Description FbEq

Actual signals and parameters

Page 523: VFD Documents

79

34.04 AI<MIN CTRL Activates/deactivates the automatic reset for the intermediate linkAI < min fault.

OFF Inactive. 0

ON Active. 65535

34.05 UNDERLOAD CTRL Activates/deactivates the automatic reset for the underload fault.

OFF Inactive. 0

ON Active. 65535

34.06 NUMBER OF TRIALS Defines the number of automatic fault resets the drive performs within the time defined by 34.08 TRIAL TIME.

0�10 Number of the automatic resets. 1 = 1

34.07 OFF DELAY TIME Defines the time that the drive will wait after a fault before attempting an automatic reset. See 34.06 NUMBER OF TRIALS.

0.0�100000.0 s Resetting delay. 1 = 1 s

34.08 TRIAL TIME Defines the time for the automatic fault reset function. See 34.06 NUMBER OF TRIALS.

0.0�100000.0 s Allowed resetting time. 1 = 1 s

34.09 PRESS SWITCH CTRL Activates/deactivates the automatic reset for the high pressure switch fault.

OFF Inactive. 0

ON Active. 65535

34.10 LINE CONV CTRL Activates/deactivates the automatic reset for the line converter fault (fault on line side converter).

OFF Inactive. 0

ON Active. 65535

50 PULSE ENCODER Encoder connection. Visible only when a pulse encoder module (optional) is installed and activated by 98.01 ENCODER MODULE.The settings will remain the same even though the application macro is changed.

50.01 ENCODER PULSE NR States the number of encoder pulses per one revolution.

0�29999 ppr Pulse number in pulses per round (ppr). 1 = 1 ppr

50.02 SPEED MEAS MODE Defines how the encoder pulses are calculated.

A_- B DIR Channel A: positive edges calculated for speed. Channel B: direction. 1

A_-_ Channel A: positive and negative edges calculated for speed. Channel B: not used.

2

A_-_ B DIR Channel A: positive and negative edges are calculated for speed. Channel B: direction.

3

A_-_ B_-_ All edges of the signals are calculated. (Recommended Setting.) 4

50.03 SPEED FDBK SEL Defines how the encoder pulses are calculated.

INTERNAL Calculated speed estimate. 1

ENCODER Actual speed measured with an encoder. 2

No. Name/Value Description FbEq

Actual signals and parameters

Page 524: VFD Documents

80

50.04 ENCODER FAULT Defines the operation of the drive if a failure is detected in communication between the pulse encoder and the Pulse Encoder Interface Module or in between the module and the drive. Encoder supervision function activates if either of the following conditions is valid:- There is a 20% difference between the estimated speed and the

measured speed received from the encoder. - No pulses are received from the encoder within the defined time and

the motor torque is at the allowed maximum value.

ALARM The drive generates a warning indication. 0

FAULT The drive trips on a fault, gives a fault indication and stops the motor. 65535

50.05 NTAC FILTER Medium filter time for the speed measurement in the NTAC module.

0�20 ms Setting range. 1 = 1 ms

51 MASTER ADAPTER The parameters are visible and need to be adjusted only when a fieldbus adapter module (optional) is installed and activated by 98.02 COMM MODULE. For details on the parameters, refer to the manual for the fieldbus module.These parameter settings will remain the same even if the macro is changed.

52 STANDARD MODBUS The setting for the standard modbus link.This group will be visible only when Standard Modbus is selected by 98.02 COMM MODULE.

52.01 STATION NUMBER Defines the address of the device. Two units with the same address are not allowed on-line.

1�247 Address 1 = 1

52.02 BAUDRATE Defines the transfer rate of the link.

600 600 bit/s. 1

1200 1200 bit/s. 2

2400 2400 bit/s. 3

4800 4800 bit/s. 4

9600 9600 bit/s. 5

19200 19200 bits/s. 6

52.03 PARITY Defines the use of parity and stop bit(s). The same setting must be used in all on-line stations.

NONE1STOPBIT No parity bit, one stop bit. 1

NONE2STOPBIT No parity bit, two stop bits. 2

ODD Odd parity indication bit, one stopbit. 3

EVEN Even parity indication bit, one stopbit. 4

70 DDCS CONTROL Settings for the fiber optic channels.

70.01 CH0 NODE ADDR Defines the node address for channel 0. No two nodes on-line may have the same address. The setting needs to be changed when a master station is connected to channel 0 and it does not automatically change the address of the slave. Examples of such masters are an ABB Advant Controller or another drive.

0�254 Address. 1 = 1

70.02 CH0 BAUD RATE The communication speed of channel 0.

8 Mbit/s 8 megabits per second. 0

No. Name/Value Description FbEq

Actual signals and parameters

Page 525: VFD Documents

81

4 Mbit/s 4 megabits per second. 1

2 Mbit/s 2 megabits per second. 2

1 Mbit/s 1 megabits per second. 3

70.03 CH0 TIMEOUT The delay time before a CH0 COMM LOSS is declared.

0�60000 ms Setting range. 1 = 1 ms

70.04 CH0 COM LOSS CTRL Action the drive will take when a CH0 COMM LOSS is detected.

NO ERR CHK CH0 communication loss is not checked. 1

WARNING COMM LOSS warning will be displayed on keypad. 2

FAULT The drive will remove the run command and coast to a stop. If the PCP or ESP macro is active and the pump is enabled (71.02 PUMP ENABLE), the drive will enter a shutdown sequence where it controls the backspin of the motor until zero speed is reached.

3

70.12 CHANNEL 3 ADDR Node address for channel 3. No two nodes on-line may have the same address. Typically the setting needs to be changed when the drive is connected in a ring which consists of several drives and a PC with the DriveWindow® program running.

1�254 Address. 1 = 1

71 PUMP CONTROLS Pump setup and control functions (only available in PCP & ESP macros).

71.01 MAX MOTOR TORQUE Maximum torque limit of the motor in lbft. This parameter is converted to percent of 99.11 CALC MOTOR TORQUE and written to 20.05 MAXIMUM TORQUE. This parameter does not take any gear reduction in the system into consideration.

0.0�10000.0 Nm0.0�10000.0 lbft

Setting range. 1 = 1 Nm1 = 1 lbft

71.02 PUMP ENABLE Selection for activating the backspin control during shutdown. This parameter is also used for enabling the fault operation of the shutdown functions listed in Groups 72 and 73 (i.e. pressure, discharge pressure, rod torque limits, fluid level, stall, underload, and thermal functions).

DISABLE Pump controlled shutdown feature is inactive. If one of the fault functions listed above is tripped, the display will only show a warning message and will not shutdown.

1

ENABLE Pump controlled shutdown feature is active. If one of the fault functions listed above is tripped, the display will show a warning during the shutdown process and will change to a fault at zero rod speed and torque.

2

DI2 If digital input DI2 = 1, pump controlled shutdown feature is active, otherwise, it is inactive.

3

DI3 See selection DI2. 4

DI4 See selection DI2. 5

DI5 See selection DI2. 6

DI6 See selection DI2. 7

FIELDBUS See selection DI2. Instead of a digital input, the selection comes from 06.04 PUMP COMMAND bit 01. See chapter Fieldbus control.

8

No. Name/Value Description FbEq

Actual signals and parameters

Page 526: VFD Documents

82

71.03 BACKSPIN LIMIT Sets the maximum limit to the backspin speed reference used during the controlled shutdown. If backspin control is not desired then set this value to zero. (See 71.06 BACKSPN SPD RANGE). For optimum performance, set equal to or slightly greater than the motor�s rpm slip.

-500.00�0.00 rpm Setting range. 1 = 1 rpm

71.04 ROD TORQ STOP LIM When 05.04 ROD TORQUE decreases to a value less than this parameter setting, the drive will discontinue the shutdown process and initiate a coast to stop command. This setting is used to eliminate excessive shut down times.

0.0�10000.0 Nm0.0�10000.0 lbft

Setting range. 1 = 1 Nm1 = 1 lbft

71.05 BACKSPN ACCEL TIME Defines the time to accel from 0 to 71.03 BACKSPIN LIMIT during a shutdown. During a controlled shutdown, pump will decelerate from the current running speed by following the ramp of the speed reference (22.02 DECEL TIME) until zero speed is reached. At this point the pump begins to accelerate in the negative speed direction following the backspin acceleration time specified in this parameter. Excessive time will cause instability during the shutdown process (i.e. Default = 3 seconds is recommended in most cases).

0.00�3600.00 s Setting range. 1 = 1 s

71.06 BACKSPN SPD RANGE Sets the percent of 71.03 BACKSPIN LIMIT used for calculating the backspin speed reference during shutdown, when the load torque requirement equals 100% of 20.05 MAXIMUM TORQUE (see formula). Excessive speed range will cause instability during shutdown process. Keep this value at a very small number (i.e. Default = 0% is recommended in most cases). Example:

71.03 = 100 rpm71.06 = 50%1.07 = 100%20.05 = 100%71.02 = EnableBackspin Speed Ref = 50 rpm

0.00�100.00% Setting range. 1 = 1%

71.07 REDUCTION RATIO Defines the entire gear reduction within the mechanical system of the pumps between the motor shaft and the pump rods. This parameter is used in calculating 05.05 ROD SPEED and 05.04 ROD TORQUE for the application.

1.00�10000.00:1 Setting range. 1 = 1

71.08 PUMP FLT RST SEL Defines the command source used to reset faults associated with the pump (i.e. High Pressure, High Rod Torque, Underload, etc.) and drive faults (i.e. Overvoltage, Undervoltage, Overcurrent, etc.). 16.01 FAULT RESET SEL will also reset both pump and drive faults.

No. Name/Value Description FbEq

BackspinSpeed Ref

Filt/

*--

01.07 CALC TORQUEFILT TIME = 2 s20.05 MAX TORQUE

71.06 BACKSPIN SPD RANGE71.03 BACKSPN LIMIT

Actual signals and parameters

Page 527: VFD Documents

83

PANEL RESET Control keypad reset button is used to reset faults. 1

DI1 Reset through digital input DI1 or by control panel:- If the drive is in external control mode: Reset by a rising edge of DI1.- If the drive is in local control mode: Reset by the RESET key of the

control panel.

2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

XT DI3 See selection DI1. 8

XT DI4 See selection DI1. 9

FIELDBUS See selection DI1. Instead of a digital input, the selection comes from 06.04 PUMP COMMAND bit 03. See chapter Fieldbus control.

10

71.09 RUNTIME RESET Defines the command source used to reset 05.06 RUNTIME HOURS.

NOT SELECT Runtime counter reset feature is disabled. 1

DI1 The runtime counter is reset by digital input DI1 = 1. 2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

XT DI3 See selection DI1. 8

XT DI4 See selection DI1. 9

FIELDBUS See selection DI1. Instead of a digital input, the selection comes from 06.04 PUMP COMMAND bit 02. See chapter Fieldbus control.

10

71.10 SLEEP FUNCTION Activates the sleep function for PCP and ESP macros.Note: 71.02 PUMP ENABLE must be active before sleep function will shutdown the drive.

NOT SELECT Sleep function is disabled. 1

LOW LIMIT Sleep function is activated when 71.11 SLEEP AI SELECT is less than or equal to 71.13 SLEEP LEVEL.When sleep function is activated, the message SLEEP MODE will be displayed on the control keypad and the drive will shut down. Sleep function will stay active until 71.11 SLEEP AI SELECT increases to a level greater than or equal to 71.14 WAKE-UP LEVEL.

2

HIGH LIMIT Sleep function is activated when 71.11 SLEEP AI SELECT is greater than or equal to 71.13 SLEEP LEVEL.When sleep function is activated, the message SLEEP MODE will be displayed on the control keypad and the drive will shut down. Sleep function will stay active until 71.11 SLEEP AI SELECT decreases to a level less than or equal to 71.14 WAKE-UP LEVEL.

3

71.11 SLEEP AI SELECT Selects the analog input source used to compare to 71.13 SLEEP LEVEL and 71.14 WAKE-UP LEVEL for sleep functionality.

AI1 Analog input AI1 will be scaled to represent 0 to 100%. 1

AI2 See selection AI1. 2

No. Name/Value Description FbEq

Actual signals and parameters

Page 528: VFD Documents

84

AI3 See selection AI1. 3

XT AI1 See selection AI1. 4

XT AI2 See selection AI1. 5

XT AI3 See selection AI1. 6

XT AI4 See selection AI1. 7

AI2 - AI3 The difference between AI3 and AI2 will be scaled to represent 0 to 100%.

8

71.12 SLEEP DELAY TIME Defines the delay for the sleep start function. See 71.13 and 71.14. When the input meets the sleep function criteria, the counter starts. When the input exceeds the criteria, the counter resets.

0.00�10000.00 s Setting range. 1 = 1 s

71.13 SLEEP LEVEL Percentage setpoint that triggers the sleep function to be activated after 71.12 SLEEP DELAY TIME has expired.

0.00�100.00% Setting range. 1 = 1%

71.14 WAKE-UP LEVEL Percentage setpoint that terminates the active sleep function.

0.00�100.00% Setting range. 1 = 1%

71.15 TORQUE UNITS Selects the unit of display for all torque display values on the keypad.

LBFT Pound-feet will be used. 0

Nm Newton-meters will be used. 65535

71.16 PRESSURE UNITS Selects the unit of display for all pressure display values on the keypad.

PSI Pounds per square inch will be used. 0

KPa KiloPascals will be used. 65535

71.17 DEPTH UNITS Selects the unit of display for all depth display values on the keypad.

JOINTS Joints will be used. 0

METERS Meters will be used. 65535

71.18 POWER UNITS Selects the unit of display for all power display values on the keypad.

KW Kilowatts will be used. 0

HP Horsepower will be used. 65535

71.19 SPEED REFERENCE Selects whether speed reference is in motor rpm or pump rpm (which is motor rpm/reduction ratio).

MOTOR SPEED Ref is motor rpm. 0

ROD PMP SPD Ref is pump rpm. 65535

72 PUMP SETUP Pump setup functions (only available in PCP nd ESP macro).

72.01 HIGH PRESSURE SEL Source selection for the high pressure input. A warning will be displayed during the shutdown process; once rod speed and rod torque reach zero, the fault message �HIGH PRESS� will be displayed. Note: 71.02 PUMP ENABLE must be active before a high pressure fault will shutdown the drive.

NOT SELECT Function is inactive. 1

DI1 If digital input DI1 = 0, a high pressure condition is indicated. 2

DI2 See selection DI1. 3

DI3 See selection DI1. 4

No. Name/Value Description FbEq

Actual signals and parameters

Page 529: VFD Documents

85

DI4 See selection DI1. 5

DI5 See selection DI1. 6

DI6 See selection DI1. 7

XT DI1 See selection DI1. 8

XT DI4 See selection DI1. 9

72.02 PRESSURE LATCH Selects the function of the fault condition for both 72.01 HIGH PRESSURE SEL and 72.05 DISCHRG PRESS SEL.

LATCHING Once high pressure or high discharge pressure occurs, the fault stays active until a fault reset is triggered after the drive completes the shutdown process.

1

NONLATCHING Once high pressure or high discharge pressure occurs, the warning message will be displayed as long as the tripped condition is still active. Once the high pressure or high discharge pressure condition is removed, the drive will regain a normal run condition. If the shutdown process finishes and the drive shuts off and the high pressure or high discharge pressure condition is removed, the drive will automatically start if a valid run command is still present.

2

LATCH 0 SPD Once high pressure or high discharge pressure occurs, the warning message will be displayed as long as the tripped condition is still active. Once the high pressure or high discharge pressure condition is removed, the drive will regain a normal run condition. If the shutdown process finishes and the drive shuts off and the high pressure or high discharge pressure condition is removed, the drive will NOT automatically start if a valid run command is still present. A fault message will be displayed once rod speed and rod torque reach zero and stays active until a fault reset is triggered after the drive completes the shutdown process.

3

72.03 DISCHRG FLT ENA Enables the discharge pressure function. A warning will be displayed during the shutdown process; once rod speed and rod torque reach zero, the fault message �DISCHRG FLT� will be displayed.Note: 71.02 PUMP ENABLE must be active before a high pressure fault will shutdown the drive.

DISABLED Function is inactive. 0

ENABLED Function is active. 65535

72.04 MAX DISCHRG PRESS Maximum pressure that will be present in the mechanical system. This parameter is used to scale 72.05 DISCHARGE PRESS SEL.

0.00�10000.00 KPa /0.00�10000.00 PSI

Setting range. 1 = 1 KPa /1 = 1 psi

72.05 DISCHRG PRESS SEL Selects the analog input source for the discharge pressure signal.

NOT SELECT Discharge pressure function is inactive. 1

AI1 Analog input AI1 will be scaled to represent 0 to 72.04 MAX DISCHRG PRESS.

2

AI2 See selection AI1. 3

AI3 See selection AI1. 4

XT AI1 See selection AI1. 5

XT AI2 See selection AI1. 6

XT AI3 See selection AI1. 7

XT AI4 See selection AI1. 8

No. Name/Value Description FbEq

Actual signals and parameters

Page 530: VFD Documents

86

72.06 HIGH DISCHRG TIME On delay time at which a high discharge condition must be present before the drive will enter the shutdown process.

1.00�1000000.00 s Setting range. 1 = 1 s

72.07 ROD TORQ TIME ENA Enables 72.08 ROD TORQUE 1 FUNC.Note: 71.02 PUMP ENABLE must be active before a high pressure fault will shutdown the drive.

DISABLED Function is inactive. 0

ENABLED Function is active. 65535

72.08 ROD TORQ 1 FUNC Selects the function of the fault condition for 72.09 ROD TORQ 1 LIMIT.A warning will be displayed during the shutdown process, once rod speed and rod torque reach zero, the fault message �ROD TORQ LIM� will be displayed.

NO Function is inactive. 1

LOW LIMIT Rod torque 1 function is tripped if 05.04 ROD TORQUE is less than or equal to 72.09 ROD TORQUE 1 LIM and 05.05 ROD SPEED is less than or equal to 72.10 ROD TORQ1 SPD LIM for a period of time greater than 72.11 ROD TORQUE 1 TIME. A hysteresis (of ROD TORQUE * 5%) is present in the comparator which means, once the condition is set, it will latch until the ROD TORQUE increases to a value of [ROD TORQ 1 LIM + (ROD TORQUE * .05)].

2

HIGH LIMIT Rod torque 1 function is tripped if 05.04 ROD TORQUE is greater than or equal to 72.09 ROD TORQUE 1 LIMIT and 05.05 ROD SPEED is less than or equal to 72.10 ROD TORQ1 SPD LIM for a period of time greater than 72.11 ROD TORQUE 1 TIME. A hysteresis (of ROD TORQUE * 5%) is present in the comparator which means, once the condition is set, it will latch until the ROD TORQUE decreases to a value of [ROD TORQ 1 LIM - (ROD TORQUE * .05)].

3

72.09 ROD TORQ 1 LIM The rod torque limit used for the 72.08 ROD TORQ1 FUNC.

0.00�10000.00 Nm0.00�10000.00 lbft

Setting range. 1 = 1 Nm1 = 1 lbft

72.10 ROD TORQ1 SPD LIM The rod speed limit used for the 72.08 ROD TORQ1 FUNC.

0�10000 rpm Setting range. 1 = 1 rpm

72.11 ROD TORQ1 TIME On delay time at which the rod torque 1 limit condition must be set before the drive will enter the shutdown process. See 72.08 ROD TORQ1 FUNC.

0.00�10000.00 s Setting range. 1 = 1 s

72.12 ROD TORQ2 SPD ENA Enables 72.13 ROD TORQ2 FUNCTION. Note: 71.02 PUMP ENABLE must be active before rod torque 2 limit will shut down the drive.

DISABLED Function is inactive. 0

ENABLED Function is active. 65535

No. Name/Value Description FbEq

Actual signals and parameters

Page 531: VFD Documents

87

72.13 ROD TORQ2 FUNC Selects the function of the fault condition for 72.14 ROD TORQ2 LIM.The warning �TORQ 2 SPD� will be displayed during the rod torque 2 speed adjustment, and will not cause the drive to enter the shutdown process. If the rod torque 2 speed is triggered more than the 72.18 ROD TQ2 LIM COUNT in a 7200 second time period, the drive will enter the shutdown process and display a warning �TORQ 2 LIM.� Once rod torque and rod speed reach zero, the fault message �TORQ 2 LIM� will be displayed.

NO Function is inactive. 1

LOW LIMIT Rod torque 2 function is tripped if 05.04 ROD TORQUE is less than or equal to 72.14 ROD TORQ2 LIM for a period of time greater than 72.15 ROD TORQ2 TIME. A hysteresis (of ROD TORQUE * 5%) is present in the comparator which means, once the condition is set, it will latch until the ROD TORQUE increases to a value of [ROD TORQ2 LIMIT + (ROD TORQUE * .05)].

2

HIGH LIMIT Rod torque 2 function is tripped if 05.04 ROD TORQUE is greater than or equal to 72.14 ROD TORQ2 LIM for a period of time greater than 72.15 ROD TORQ2 TIME. A hysteresis (of ROD TORQUE * 5%) is present in the comparator which means, once the condition is set, it will latch until the ROD TORQUE decreases to a value of [ROD TORQ2 LIMIT - (ROD TORQUE * .05)].

3

72.14 ROD TORQ2 LIMIT The limit used for 72.13 ROD TORQ2 FUNC.

0.00�10000.00 Nm0.00�10000.00 lbft

Setting range. 1 = 1 Nm1 = 1 lbft

72.15 ROD TORQ2 TIME On delay time at which the rod torque 2 limit condition must be set before the drive will enter the adjustment process.

0.00�100000.00 s Setting range. 1 = 1 s

72.16 ROD TORQ2 SPEED Added to the speed reference once the rod torque 2 limit function has been triggered.

-3600.00�3600.00 rpm Setting range. 1 = 1 rpm

72.17 ROD TQ2 SPD TIME Time at which the 72.16 ROD TORQ2 SPEED will stay in effect after the rod torque has decreased to a value that deactivates the rod torque 2 function.

1.00�100000.00 s Setting range. 1 = 1 s

72.18 ROD TQ2 LIM COUNT Maximum number of times that the rod torque 2 function can be triggered in a 7200 second time period before the drive will enter into the shutdown process. If the 7200 second time period expires before the limit count is reached, the internal counter for the number of rod torque 2 triggers is reset. If a continuous reset is desired with no limitation, then set the value to �0�.

0�100 Setting range. 1 = 1

72.19 LEVEL CTRL ENABLE Selection for activating fluid level PI regulator to generate the speed reference for the drive. The fluid level PI regulator overrides the external reference 1 and 2 selection of Group 11. However, constant speeds and local keypad control overrides the fluid level PI regulator reference.

DISABLE Function is inactive. 1

ENABLE Function is active. 2

DI2 Digital input DI2 = 1 enables the fluid level regulator. 3

DI3 See selection DI2. 4

No. Name/Value Description FbEq

Actual signals and parameters

Page 532: VFD Documents

88

DI4 See selection DI2. 5

DI5 See selection DI2. 6

DI6 See selection DI2. 7

XT DI1 See selection DI2. 8

XT DI2 See selection DI2. 9

FIELDBUS See selection DI2. Instead of a digital input, the selection comes from 06.04 PUMP COMMAND bit 04. See chapter Fieldbus control.

10

72.20 FLUID LEVEL MAX Maximum fluid level depth that will be present in the mechanical system. Used to scale 72.22 FLUID LEVEL SEL.

0.00�100000.00 m /0.00�100000.00 JNTS

Setting range. 1 = 1 m /1 = 1 JNTS

72.21 FLUID LEVEL SET Fluid level PI regulator setpoint that determines the depth (or fluid level) to try and regulate.

0.00�100000.00 m /0.00�100000.00 JNTS

Setting range. 1 = 1 m /1 = 1 JNTS

72.22 FLUID LEVEL SEL Analog input source for 05.09 WELL FLUID LEVEL.Note: No alarm is associated with this analog signal for high fluid level indication.

NOT SELECT No analog signal has been selected to represent the fluid level feedback. NOTE: This selection does not deactivate the fluid level PI regulator.

1

AI1 Analog inputs to AI1 will be scaled to represent 0 to 72.20 FLUID LEVEL MAX.

2

AI2 See selection AI1. 3

AI3 See selection AI1. 4

AI2 - AI3 The difference between AI3 and AI2 will be scaled to represent 0 to 72.20 FLUID LEVEL MAX.Note: This selection is used when both downhole pressure and tubing pressure are used as the fluid level feedback signal.

5

XT AI2 See selection AI1. 6

XT AI3 See selection AI1. 7

XT AI4 See selection AI1. 8

72.23 FLUID LVL P-GAIN Sets the immediate reaction step of the PI regulator.This value should be kept low to avoid unwanted oscillation from the drive speed reference causing the pump to cycle up and down in rpm.

0.00�5.00 Setting range. 1 = 1

72.24 LVL INTEG TIME Integration time of the PI regulator. This value should be kept at a fairly large value to avoid unwanted oscillation from the drive speed reference causing the pump to cycle up and down in rpm.

1.00�3600.00 s Setting range. 1 = 1 s

72.25 LEVEL CTRL INVERT Selects the reaction characteristics of the fluid level PI regulator.

NORMAL PI The PI regulator output will increase, causing the speed reference to increase, if the feedback signal selected by 72.22 FLUID LEVEL SEL is less than 72.21 FLUID LEVEL SET.

0

No. Name/Value Description FbEq

Actual signals and parameters

Page 533: VFD Documents

89

INVERT PI The PI regulator output will increase, causing the speed reference to increase, if the feedback signal selected by 72.22 FLUID LEVEL SEL is greater than 72.21 FLUID LEVEL SET.

65535

72.26 DSCH PRS TRIP LVL Used to trip the drive for a DISCHRG FLT. When 05.10 DISCHARGE PRESSURE is equal to or greater than this value for 72.06 DISCHRGE TIME, the drive will shutdown.

0.00�10000.00 KPa 0.00�10000.00 PSI

Setting range. 1 = 1 KPa 1 = 1 psi

73 PUMP SETUP Underload and thermal protection.

73.01 UNDERLOAD FUNC Enables the underload functionality. Underload allows for a custom curve to be entered by the customer using parameters 73.02�73.07. The curve consists of both rod torque and rod speed to create the X-Y coordinates of a chart (see chart below). Actual rod torque and speed are used to compare to the custom curve created. If the actual rod torque/speed point falls below the curve for a period of time specified by 73.08 U-LOAD ACT TIME, then the underload function is triggered. When the underload function is triggered, the drive will enter the shutdown process and display a warning message �UNDERLOAD�; when rod torque and speed reach zero, then the fault message �UNDERLOAD� will be displayed.Example:

73.02 = 100 lbft73.03 = 500 rpm73.04 = 250 lbft73.05 = 1000 rpm73.06 = 300 lbft73.07 = 1500 rpmRod Torque = 200 lbft (05.04)Rod Speed = 900 rpm (05.05)

The solid points along the curve make up the defined underload curve; the hollow point represents the actual rod torque/speed plot.Note: 71.02 PUMP ENABLE must be active before underload fault will shutdown the drive.

NO Function is inactive. 1

UNDERLOAD Function is active. 2

73.02 ROD TORQUE 1 Rod torque 1 value used for the �Y� position of the first X-Y plot to create the user defined underload curve for the system.

0.00�10000.00 Nm /0.00�10000.00 lbft

Setting range. 1 = 1 Nm /1 = 1 lbft

73.03 ROD SPEED 1 Rod speed 1 value used for the �X� position of the first X-Y plot to create the user defined underload curve for the system.

-3600.00�3600.00 rpm Setting range. 1 = 1 rpm

No. Name/Value Description FbEq

lbft300

100

0 500 1000 1500rpm

200

Underload Curve

Actual signals and parameters

Page 534: VFD Documents

90

73.04 ROD TORQUE 2 Rod torque 2 value used for the �Y� position of the second X-Y plot to create the user defined underload curve for the system.

0.00�10000.00 Nm /0.00�10000.00 lbft

Setting range. 1 = 1 Nm /1 = 1 lbft

73.05 ROD SPEED 2 Rod speed 2 value used for the �X� position of the second X-Y plot to create the user defined underload curve for the system.

-3600.00�3600.00 rpm Setting range. 1 = 1 rpm

73.06 ROD TORQUE 3 Rod torque 3 value used for the �Y� position of the third X-Y plot to create the user defined underload curve for the system.

0.00�10000.00 Nm /0.00�10000.00 lbft

Setting range. 1 = 1 Nm /1 = 1 lbft

73.07 ROD SPEED 3 Rod speed 3 value used for the �X� position of the third X-Y plot to create the user defined underload curve for the system.

-3600.00�3600.00 rpm Setting range. 1 = 1 rpm

73.08 U-LOAD ACT TIME On delay time that underload conditions must be present before the underload fault is triggered.

0.00�100000.00 s Underload fault delay. 1 = 1 s

73.09 THERM PROT FUNC Selects the functionality of the thermal fault protection for the PCP and ESP macros.Note: 71.02 PUMP ENABLE must be active before a thermal protection fault will shut down the drive.

NO Function is inactive. However, the Pt100 feedback temperature can still be monitored on the keypad at 05.11 MEASURED TEMP.

1

WARNING A warning message �OVERTEMP� is displayed on the keypad, but the drive will not enter the shutdown process. Warning is triggered when the 05.11 MEASURED TEMP becomes greater than 73.13 ALARM TEMP for 5 sec. or the Klixon digital input is 0 VDC.

2

FAULT A warning message �OVERTEMP� is displayed on the keypad, but the drive will not enter the shutdown process, if the 05.11 MEASURED TEMP becomes greater than 73.13 ALARM TEMP for 5 sec. but less than 73.14 FAULT TEMP. If 05.11 MEASURED TEMP becomes greater than 73.14 FAULT TEMP or the Klixon digital input reaches 0 VDC for 5 sec., then the drive will enter into the shutdown process. The warning message �OVERTEMP� is displayed during the shutdown process; when rod torque and speed reach zero, then the fault message �OVERTEMP� will be displayed.

3

73.10 TEMP FDBK TYPE Selects the type of temperature sensing device used as feedback.

KLIXON A Klixon is a contact closure device that is connected to 73.11 KLIXON DI SEL. The contact opens upon an overtemperature.

1

PT-100 A Pt100 is an analog device that changes its resistance as the temperature changes. The resistance increases as temperature increases, causing a larger voltage to be dropped across this resistance. The analog input of the drive measures this voltage drop and scales it to temperature. Note: Analog output AO2 automatically supplies a constant current to the Pt100 device and must be wired to operate properly.

2

73.11 KLIXON DI SEL Digital Input source for the Klixon device. See 73.09 THERM PROT FUNC and 73.10 TEMP FDBK TYPE.

DI1 Digital input DI1 is used for Klixon thermal protection. 1

No. Name/Value Description FbEq

Actual signals and parameters

Page 535: VFD Documents

91

DI2 See selection DI1. 2

DI3 See selection DI1. 3

DI4 See selection DI1. 4

DI5 See selection DI1. 5

DI6 See selection DI1. 6

XT DI1 See selection DI1. 7

XT DI2 See selection DI1. 8

XT DI3 See selection DI1. 9

XT DI4 See selection DI1. 10

73.12 PUMP PT100 AI SEL Analog input source for the Pt100 device. See 73.09 THERM PROT FUNC and 73.10 TEMP FDBK TYPE.Note: This is not the motor thermal protection feedback input selection.

NOT SELECT Thermal protection using Pt100 is inactive. 1

AI1 Analog input AI1 will be scaled to °C and written to 05.11 MEASURED TEMP.

2

XT AI1 See selection AI1. 3

XT AI2 See selection AI1. 4

73.13 ALARM TEMP Temperature at which a warning message �OVERTEMP� is displayed on the keypad.

0.00�200.00 °C Pt100 alarm trigger level. 1 = 1 °C

73.14 FAULT TEMP Temperature at which the drive will enter into the shutdown process, if 73.09 THERM PROT FUNC is set to fault.

0.00�200.00 °C Pt100 fault trigger level. 1 = 1 °C

83 ADAPT PROG CTRL Control of the Adaptive Program execution. For more information, see Adaptive Program Application Guide (code: 3AFE64527274 [English]).

83.01 ADAPT PROG CMD Selects the operation mode for the Adaptive Program.

STOP Stop. The program cannot be edited. 1

RUN Run. The program cannot be edited. 2

EDIT Stop to edit mode. Program can be edited. 3

83.02 EDIT COMMAND Selects the command for the block placed in the location defined by 83.03 EDIT BLOCK. The program must be in editing mode (see83.01 ADAPT PROG CMD).

NO Home value. The value automatically restores to NO after an editing command has been executed.

1

No. Name/Value Description FbEq

Actual signals and parameters

Page 536: VFD Documents

92

PUSH Shifts the block in location defined by 83.03 EDIT BLOCK and the following blocks one location up. A new block can be placed in the emptied location by programming the Block Parameter Set as usual.Example: A new block needs to be placed in between the current block number four (parameters 84.20�84.25) and five (parameters 84.25�84.29).In order to do this:- Shift the program to the editing mode by 83.01 ADAPT PROG CMD.- Select location number five as the desired location for the new block

by 83.03 EDIT BLOCK.- Shift the block in location number 5 and the following blocks one

location forward by 83.02 EDIT COMMAND (selection PUSH).- Program the emptied location number 5 by parameters

84.25�84.29 as usual.

2

DELETE Deletes the block in location defined by 83.03 EDIT BLOCK and shifts the following blocks one step down.

3

PROTECT Activation of the Adaptive Program protection. Activate as follows:- Ensure the Adaptive Program operation mode is RUN or STOP

83.01 ADAPT PROG CMD).- Set the passcode (83.05 PASSCODE).- Change 83.02 EDIT COMMAND to PROTECT.When activated:- All parameters in group 84 excluding the block output parameters

are hidden (read protected).- It is not possible to switch the program to the editing mode (83.01

ADAPT PROG CMD).- 83.05 PASSCODE is set to 0.

4

UNPROTECT Inactivation of the Adaptive Program protection. Inactivate as follows:- Ensure the Adaptive Program operation mode is RUN or STOP

(83.01 ADAPT PROG CMD).- Set the passcode (83.05 PASSCODE).- Change 83.02 EDIT COMMAND to UNPROTECT.Note: If the passcode is lost, it is possible to reset the protection also by changing the application macro setting (99.02 APPLICATION MACRO).

5

83.03 EDIT BLOCK Defines the block location number for the command selected by 83.02 EDIT COMMAND.

0�15 Block location number. 1 = 1

83.04 TIMELEVEL SEL Selects the execution cycle time for the Adaptive Program. The setting is valid for all blocks.

12 ms 12 milliseconds 1

100 ms 100 milliseconds 2

1000 ms 1000 milliseconds 3

83.05 PASSCODE Sets the passcode for the Adaptive Program protection. The passcode is needed at activation and inactivation of the protection. See 83.02 EDIT COMMAND.

No. Name/Value Description FbEq

Actual signals and parameters

Page 537: VFD Documents

93

0� Passcode. The setting restores to 0 after the protection is activated/inactivated. Note: When activating, write down the passcode and store it in a safe place.

1 = 1

84 ADAPTIVE PROGRAM - selections of the function blocks and their input connections.- diagnosticsFor more information, see Adaptive Program Application Guide (code: 3AFE64527274 [English]).

84.01 STATUS Shows the value of the Adaptive Program status word. The table below shows the alternative bit states and the corresponding values on the panel display.

1 = 1

84.02 FAULTED PAR Points out the faulted parameter in the Adaptive Program. -

84.05 BLOCK1 Selects the function block for Block Parameter Set 1. See Adaptive Program Application Guide (code: 3AFE64527274 [English]).

ABS 11

ADD 10

AND 2

BWISE 26

COMPARE 16

COUNT 21

DPOT 23

EVENT 20

FILTER 13

MASK-SET 24

MAX 17

MIN 18

MULDIV 12

NO 1

OR 3

PI 14

PI-BAL 15

PI-NEG 25

RAMP 22

SR 5

SW-CB 7

SW-IL 19

No. Name/Value Description FbEq

Bit Display Meaning0 1 Stopped1 2 Running2 4 Faulted3 8 Editing4 10 Checking5 20 Pushing6 40 Popping8 100 Initializing

Actual signals and parameters

Page 538: VFD Documents

94

TOFF 9

TON 8

TRIGG 6

WR-I 27

WR-PB 28

XOR 4

84.06 INPUT1 Selects the source for input I1 of Block Parameter Set 1.

-255.255.31�+255.255.31 / C.-32768�C.32767

Parameter index or a constant value:- Parameter pointer: Inversion, group, index and bit fields. The bit

number is effective only for blocks handling boolean inputs.- Constant value: Inversion and constant fields. Inversion field must

have value C to enable the constant setting.Example: The state of digital input DI2 is connected to Input 1 as follows:- Set the source selection parameter (84.06) to +.01.17.01. (The

control program stores the state of digital input DI2 to bit 1 of actual signal 01.17.)

- If you need an inverted value, switch the sign of the pointer value (-01.17.01.).

-

84.07 INPUT2 See 84.06 INPUT1.

-255.255.31�+255.255.31 / C.-32768�C.32767

See 84.06 INPUT1. -

84.08 INPUT3 See 84.06 INPUT1.

-255.255.31�+255.255.31 / C.-32768�C.32767

See 84.06 INPUT1. -

84.09 OUTPUT Stores and displays the output of Block Parameter Set 1. -

� �

84.79 OUTPUT Stores the output of Block Parameter Set 15. -

85 USER CONSTANTS Storage of the Adaptive Program constants and messages. For more information, see Adaptive Program Application Guide (code: 3AFE 64527274 [English])

85.01 CONSTANT1 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.02 CONSTANT2 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.03 CONSTANT3 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.04 CONSTANT4 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.05 CONSTANT5 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.06 CONSTANT6 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.07 CONSTANT7 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

No. Name/Value Description FbEq

Actual signals and parameters

Page 539: VFD Documents

95

85.08 CONSTANT8 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.09 CONSTANT9 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.10 CONSTANT10 Sets a constant for the Adaptive Program.

-8388608�8388607 Integer value. 1 = 1

85.11 STRING1 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE1 Message. -

85.12 STRING2 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE2 Message. -

85.13 STRING3 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE3 Message. -

85.14 STRING4 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE4 Message. -

85.15 STRING5 Stores a message to be used in the Adaptive Program (EVENT block).

MESSAGE5 Message. -

92 FIELDBUS OUTPUT Addresses of the parameters that are to be sent over the fieldbus.

92.01 DATASET2 OUTPUT1 Pointer for the parameter that�s value is sent over the fieldbus.

0�10000 Setting range. 1 = 1

92.02 DATASET2 OUTPUT2 Pointer for the parameter that�s value is sent over the fieldbus.

0�10000 Setting range. 1 = 1

92.03 DATASET2 OUTPUT3 Pointer for the parameter that�s value is sent over the fieldbus.

0�10000 Setting range. 1 = 1

95 HARDWARE SPECIFIC Fan speed control, sine filter application etc.

95.01 FAN SPD CTRL MODE Selects the speed control of the optional inverter cooling fan.

CONST 50 Hz Fan is running at constant frequency of 50 Hz when powered. 0

RUN/STOP Drive stopped: Fan is running at constant frequency of 10 Hz.Drive running: Fan is running at constant frequency of 50 Hz.

1

CONTROLLED The speed of the fan is determined from IGBT temperature vs. fan speed curve.

2

95.05 ENA INC SW FREQ Activates the minimum switching frequency limitation for Ex-motor applications.

NO Inactive. 0

YES Active. Minimum switching frequency limit is set to 2 kHz. Used with motors with an ATEX certification based on 2 kHz minimum switching frequency.

65535

No. Name/Value Description FbEq

Actual signals and parameters

Page 540: VFD Documents

96

95.06 LCU Q POW REF Defines the reference value for the line-side converter reactive power generation. Line-side converter can generate reactive power to the supply network. This reference is written into line-side converter unit 24.02 Q POWER REF2. For more information, see IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (English)]. Example 1: When 24.03 Q POWER REF2 SEL is set to PERCENT, value 10000 of 24.02 Q POWER REF2 equals to value 100% of 24.01 Q POWER REF (i.e. 100% of the converter nominal power given in 04.06 CONV NOM POWER).Example 2: When 24.03 Q POWER REF2 SEL is set to kVAr, value 1000 of 24.02 Q POWER REF2 equals to 24.01 Q POWER REF value calculated with the following equation: 100 · (1000 kVAr divided by converter nominal power in kVAr)%.Example 3: When 24.03 Q POWER REF2 SEL is set to PHI, value 3000 of 24.02 POWER REF2 equals approximately to 24.01 Q POWER REF value calculated with the following equation:

24.03 Q POWER REF2 SEL values are converted to degrees by the line-side converter control program: -3000�30000 -30°�30°. Value -10000/10000 equals to -30°/30°, since the range is limited to -3000/3000.

-10000�10000 Reference value. 1 = 1

95.07 LCU DC REF [V] Defines the intermediate circuit DC voltage reference for the line-side converter. This reference is written into line-side converter 23.01 DC VOLT REF. For more information, see IGBT Supply Control Program 7.x Firmware manual [3AFE68315735 (English)].

0�1100 V Voltage 1 = 1 V

95.08 LCU PAR1 SEL Selects the line-side converter address from which 07.06 LCU ACT SIGNAL 1 is read.

0�9999 Line-side converter parameter index. 1 = 1

95.09 LCU PAR 2 SEL Selects the line-side converter address from which 07.07 LCU ACT SIGNAL 2 is read.

0�9999 Line-side converter parameter index. 1 = 1

95.10 TEMP INV AMBIENT Defines the ambient temperature for the Enhanced drive temperaturemonitoring function. See Enhanced drive temperature monitoring for ACS800-U2, -U4 and -U7, frame sizes R7 and R8 on page 41.Note: If ambient temperature exceeds 40 oC, the drive load capacity decreases. See the derating instructions in the appropriate hardware manual.

20�50oC Temperature 10 = 1 oC

No. Name/Value Description FbEq

30( )cos PS---- P

P2 Q2+------------------------==

SQ

PPositive reference 30° denotes capacitive load. Negative reference 30° denotes inductive load.

30°

P = signal 01.09 POWER value

Actual signals and parameters

Page 541: VFD Documents

97

98 OPTION MODULES Activation of the optional I/O extension modules and fieldbus adapter. For more information on option modules, see the module manuals.These parameter settings will remain the same even if the macro is changed.

98.01 ENCODER MODULE Activates the communication to the optional pulse encoder module.

NTAC Communication active. Module type: NTAC module. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 16. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY58919730 [English]).

0

NO Inactive. 1

RTAC-SLOT1 Communication active. Module type: RTAC. Connection interface: Option slot 1 of the drive.

2

RTAC-SLOT2 Communication active. Module type: RTAC. Connection interface: Option slot 2 of the drive.

3

RTAC-DDCS Communication active. Module type: RTAC. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 16. For directions, see User�s Manual for RDIO Module (Code: 3AFE64485733 [English]).

4

RRIA-SLOT1 Communication active. Module type: RRIA. Connection interface: option slot 1 of the drive.

5

RRIA-SLOT2 Communication active. Module type: RRIA. Connection interface: option slot 2 of the drive.

6

RRIA-DDCS Communication active. Module type: RRIA. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link.Note: Module node number must be set at 16. For directions, see RRIA-01 Resolver Interface Module User�s Manual [3AFE68570760 (English)].

7

RTAC03-SLOT1 Communication active. Module type: RTAC. Connection interface: option slot 1 of the drive.

8

RTAC03-SLOT2 Communication active. Module type: RTAC. Connection interface: option slot 2 of the drive.

9

RTAC03-DDCS Communication active. Module type: RTAC. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link.Note: Module node number must be set at 16. For directions, see RRIA-01 Resolver Interface Module User�s Manual [3AFE68570760 (English)].

10

98.02 COMM MODULE Activates the external serial communication and selects the interface. See chapter Fieldbus control.

NO No communication. 1

FIELDBUS The drive communicates via a fieldbus adapter module in option slot 1 of the drive, or via CH0 on the RDCO board. See also group 51 MASTER ADAPTER.

2

ADVANT The drive communicates with an ABB Advant OCS system via CH0 on the RDCO board (optional). See also group 70 DDCS CONTROL.

3

No. Name/Value Description FbEq

Actual signals and parameters

Page 542: VFD Documents

98

STD MODBUS The drive communicates with a Modbus controller via the Modbus Adapter Module (RMBA) in option slot 1 of the drive. See also group 52 STANDARD MODBUS.

4

98.03 DI/O EXT MODULE 1 Activates the communication to the digital I/O extension module 1 (optional) and defines the type and connection interface of the module.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link. DI7 and DI8 are from this module. DI9 and DI10 are from a second module.Note: Module node number must be set to 2. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY58919730 [English]).

1

NO Inactive. 2

RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1 of the drive. DI7 through DI9 are from this module. DI10 is from a second module.

3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive. DI7 through DI9 are from this module. DI10 is from a second module.

4

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. DI7 through DI9 are from this module. DI10 is from a second module.Note: Module node number must be set to 2. For directions, see User�s Manual for RDIO Module (Code: 3AFE64485733 [English]).

5

98.04 DI/O EXT MODULE 2 Activates the communication to the digital I/O extension module 2 (optional) and defines the type and connection interface of the module.

NDIO Communication active. Module type: NDIO module. Connection interface: Fibre optic DDCS link. If 98.03 DI/O EXT MODULE 1 is an NDIO, DI9 and DI10 are from this module, otherwise only DI10 is.Note: Module node number must be set to 3. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY58919730 [English]).

1

NO Inactive. 2

RDIO-SLOT1 Communication active. Module type: RDIO. Connection interface: Option slot 1 of the drive.

3

RDIO-SLOT2 Communication active. Module type: RDIO. Connection interface: Option slot 2 of the drive.

4

RDIO-DDCS Communication active. Module type: RDIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 3. For directions, see User�s Manual for RDIO Module (Code: 3AFE64485733 [English]).

5

No. Name/Value Description FbEq

Actual signals and parameters

Page 543: VFD Documents

99

98.06 AI/O EXT MODULE 1 Activates the communication to an optional Analog I/O Extension Module. Note: Before setting the drive parameters, ensure the module hardware settings are OK: - The module node number is set to 5. - The input signal type selections matches the actual signals (mA/V). - The operation mode selection matches the applied input signals

(unipolar/bipolar).

NAIO Communication active. Module type: NAIO. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 5. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY58919730 [English]).

1

NO Communication inactive. 2

RAIO-SLOT1 Communication active. Module type: RAIO. Connection interface: Option slot 1 of the drive.

3

RAIO-SLOT2 Communication active. Module type: RAIO. Connection interface: Option slot 2 of the drive.

4

RAIO-DDCS Communication active. Module type: RAIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 5. For directions, see User�s Manual for RAIO Module (Code: 3AFE64484567 [English]).

5

98.07 AI/O EXT MODULE 2 Activates the communication to an optional Analog I/O Extension Module. Note: Before setting the drive parameters, ensure the module hardware settings are OK: - The module node number is set to 6.- The input signal type selections matches the actual signals (mA/V). - The operation mode selection matches the applied input signals

(unipolar/bipolar).

NAIO Communication active. Module type: NAIO. Connection interface: Fibre optic DDCS link.Note: Module node number must be set to 5. For directions, see Installation and Start-up Guide for NTAC-0x/NDIO-0x/NAIO-0x Modules (Code: 3AFY58919730 [English]).

1

NO Communication inactive. 2

RAIO-SLOT1 Communication active. Module type: RAIO. Connection interface: Option slot 1 of the drive.

3

RAIO-SLOT2 Communication active. Module type: RAIO. Connection interface: Option slot 2 of the drive.

4

RAIO-DDCS Communication active. Module type: RAIO. Connection interface: Optional I/O module adapter (AIMA) that communicates with the drive through a fibre optic DDCS link. Note: Module node number must be set to 6. For directions, see User�s Manual for RAIO Module (Code: 3AFE64484567 [English]).

5

98.09 DI DEBOUNCE FILT Digital input de-bounce filter. Prevents unwanted ON/OFF switching of the digital inputs.

0�1000 ms Setting range. 1 = 1 ms

No. Name/Value Description FbEq

Actual signals and parameters

Page 544: VFD Documents

100

98.10 AI/O EXT AI1 FUNC Defines the signal type for input 1 of the first analog I/O extension module. The setting must match the signal connected to the module. Note: The communication must be activated by 98.06 AI/O EXT MODULE 1.

UNIPOL XTAI1 Unipolar. 1

BIPOL XTAI1 Bipolar. 2

98.11 AI/O EXT AI2 FUNC Defines the signal type for input 2 of the first analog I/O extension module. The setting must match the signal connected to the module. Note: The communication must be activated by 98.06 AI/O EXT MODULE 1.

UNIPOL XTAI2 Unipolar. 1

BIPOL XTAI2 Bipolar. 2

98.12 AI/O EXT AI3 FUNC Defines the signal type for input 1 of the second analog I/O extension module. The setting must match the signal connected to the module. Note: The communication must be activated by 98.07 AI/O EXT MODULE 2.

UNIPOL XTAI3 Unipolar. 1

BIPOL XTAI3 Bipolar. 2

98.13 AI/O EXT AI4 FUNC Defines the signal type for input 2 of the second analog I/O extension module. The setting must match the signal connected to the module. Note: The communication must be activated by 98.07 AI/O EXT MODULE 2.

UNIPOL XTAI4 Unipolar. 1

BIPOL XTAI4 Bipolar. 2

99 START-UP DATA Drive set-up

99.01 LANGUAGE Selects the display language.

ENGLISH British English 0

ENGLISH (AM) American English. If selected, the unit of power used is Hp instead of kW.

1

DEUTSCH German 2

ITALIANO Italian 3

ESPANOL Spanish 4

PORTUGUES Portuguese 5

NEDERLANDS Dutch 6

FRANCAIS French 7

DANSK Danish 8

SUOMI Finnish 9

SVENSKA Swedish 10

CESKY Czech 11

POLSKI / LOC1 Polish 12

PO RUS / LOC2 Russian 13

No. Name/Value Description FbEq

Actual signals and parameters

Page 545: VFD Documents

101

99.02 APPLICATION MACRO Selects the application macro. See chapter Application macros for more information.Note: When you change the default parameter values of a macro, the new settings becomes valid immediately and stay valid even if the power of the drive is switched off and on. However, backup of the default parameter settings (factory settings) of each standard macro is still available. See 99.03 APPLIC RESTORE.

FACTORY Enables the factory application. 1

PCP Enables the PCP application. 2

ESP Enables the ESP application. 3

99.03 APPLIC RESTORE Restores the original settings of the active application macro (99.02 APPLICATION MACRO).Exceptions: Group 99 parameters and motor model remain unchanged.

NO No restoring. 0

YES Restoring. 65535

99.04 MOTOR CTRL MODE Selects the motor control mode.

DTC Direct Torque Control mode is suitable for most applications. Note: Not available in ESP.

0

SCALAR Scalar control is suitable in cases where the DTC cannot be applied.The scalar mode is recommended:- for multi-motor drives with variable number of motors.- when the nominal current is less than 1/6 of the nominal output

current of the drive (inverter).Note: Not available in PCP.

65535

99.05 MOTOR NOM VOLTAGE Defines the nominal motor voltage. Must be equal to the value on the motor rating plate.

½�2 x UN Voltage. Allowed range is 1/2�2 · UN of the drive. 1 = 1 V

99.06 MOTOR NOM CURRENT Defines the nominal motor current. Must be equal to the value on the motor rating plate.Note: Correct motor run requires that the magnetizing current of the motor does not exceed 90 percent of the nominal current of the inverter.

1/6�2 x I2hd Allowed range: 1/6�2 · I2hd of ACS800. 10 = 1 A

99.07 MOTOR NOM FREQ Defines the nominal motor frequency.

8�300 Hz Nominal frequency (50 or 60 Hz typically). 100 = 1 Hz

99.08 MOTOR NOM SPEED Defines the nominal motor speed. Must be equal to the value on the motor rating plate. The motor synchronous speed or another approximate value must not be given instead!Note: If the value of 99.08 is changed, the speed limits in group 20 LIMITS change automatically as well.

1�18000 rpm Nominal motor speed. 1 = 1 rpm

99.09 MOTOR NOM POWER Defines the nominal motor power. Set exactly as on the motor rating plate.

0�9000 kW0�12064 Hp

Nominal motor power. 10 = 1 kW10 = 1 Hp

No. Name/Value Description FbEq

Actual signals and parameters

Page 546: VFD Documents

102

99.10 MOTOR ID RUN Selects the type of the motor identification. During the identification, the drive will identify the characteristics of the motor for optimum motor control. The ID Run Procedure is described in chapter Start-up.Note: The ID Run (STANDARD) should be selected.

NO No ID Run. The motor model is calculated at first start by magnetizing the motor for 20 to 60 sec. at zero speed.

1

STANDARD Standard ID Run. Guarantees the best possible control accuracy. The ID Run takes about one minute.Note: The motor must be de-coupled from the driven equipment.Note: Check the direction of rotation of the motor before starting the ID Run. During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50�80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

2

REDUCED Reduced ID Run. Should be selected instead of the Standard ID Run: - If mechanical losses are higher than 20% (i.e. the motor cannot be

de-coupled from the driven equipment)- If flux reduction is not allowed while the motor is running (i.e. in case

of a motor with an integrated brake supplied from the motor terminals).

Note: Check the direction of rotation of the motor before starting the ID Run. During the run, the motor will rotate in the forward direction.

WARNING! The motor will run at up to approximately 50�80% of the nominal speed during the ID Run. ENSURE THAT IT IS SAFE TO RUN THE MOTOR BEFORE PERFORMING THE ID RUN!

3

99.11 CALC MOTOR TORQUE Nominal motor torque. Automatically calculated from Group 99 parameters.

10 = 1 Nm10 = 1 lbft

No. Name/Value Description FbEq

Actual signals and parameters

Page 547: VFD Documents

103

Fieldbus control

Chapter overviewThe chapter describes how the drive can be controlled by external devices over a communication network.

System overviewThe drive can be connected to an external control system � usually a fieldbus controller � via an adapter module. The drive can be set to receive all of its control information through the external control interface, or the control can be distributed between the external control interface and other available sources, for example digital and analog inputs. The following diagram shows the control interfaces and I/O connections of the drive.

Fieldbus

Otherdevices

Fieldbuscontroller

Slot 1 or 2

References

Data Flow

Status Word (SW)Actual values

Parameter R/W requests/responses

ACS800

Slot 1

RDCO comm.module

RM

IO b

oard

RMBA-01 adapterstd. Modbus link

Fieldbus adapter

Process I/O (cyclic)

Service messages (acyclic)

Rxxx

(*

(*

Control Word (CW)

(* Either an Rxxx or Nxxx, and an RMBA-01 adapter can be connected to the drive simultaneously.

CH1(DDCS)

CH0(DDCS)

(*

or

Fieldbus adapterNxxx

Advantcontroller(e.g. AC 800M, AC 80)

I/O adapterRTAC/RDIO/RAIO

Modbus

Controller

AIMA-01 I/Oadapter module

Fieldbus control

Page 548: VFD Documents

104

Redundant fieldbus control

It is possible to connect two fieldbuses to the drive with the following adapter configuration:

� Type Rxxx fieldbus adapter module (not RMBA-01) is installed in drive slot 1.

� RMBA-01 Modbus Adapter module is installed in drive slot 2.

The control (i.e. the Main Reference data set, see section The fieldbus control interface on page 111) is activated by setting parameter 98.02 to FIELDBUS or STD MODBUS.

In case there is a communication problem with one fieldbus, the control can be switched to the other fieldbus. Switching between the buses can be controlled e.g. with adaptive programming. Parameters and signals can be read by both fieldbuses, but simultaneous cyclical writing to the same parameter is forbidden.

Slot 2

RMBA-01 adapterstd. Modbus link

RPBA-01 adapterPROFIBUS-DP link

Slot 1

E.g. PROFIBUS Modbus

ACS800RMIO board

Fieldbus control

Page 549: VFD Documents

105

Setting up communication through a fieldbus adapter moduleFieldbus adapters for several communication protocols are available (e.g. PROFIBUS and Modbus). Rxxx type fieldbus adapter modules are mounted in expansion slot 1 of the drive. Nxxx type fieldbus adapter modules are connected to channel CH0 of the RDCO module.

Note: For instructions on setting up an RMBA-01 module, see section Setting up communication through the Standard Modbus Link on page 107.

Before configuring the drive for fieldbus control, the adapter module must be mechanically and electrically installed according to the instructions given in the hardware manual of the drive, and the module manual.

The following table lists the parameters which need to be defined when setting up communication through a fieldbus adapter.

Parameter Alternative Settings

Setting forFieldbus Control

Function/Information

COMMUNICATION INITIALISATION

98.02 NOFIELDBUS ADVANT STD MODBUS

FIELDBUS Initializes communication between drive and fieldbus adapter module. Activates module set-up parameters (Group 51).

ADAPTER MODULE CONFIGURATION

51.01 MODULE TYPE

� � Displays the type of the fieldbus adapter module.

51.02 (FIELDBUS PARAMETER 2)�51.26 (FIELDBUS PARAMETER 26)

These parameters are adapter module-specific. For more information, see the module manual. Note that not all of these parameters are necessarily visible.

51.27 FBA PAR REFRESH*

(0) DONE (1) REFRESH

� Validates any changed adapter module configuration parameter settings. After refreshing, the value reverts automatically to DONE.

51.28 FILE CPI FW REV*

xyz (binary coded decimal

� Displays the required CPI firmware revision of the fieldbus adapter as defined in the configuration file stored in the memory of the drive. The CPI firmware version of the fieldbus adapter (refer to 51.32) must contain the same or a later CPI version to be compatible.

x = major revision number; y = minor revision number;z = correction number.

Example: 107 = revision 1.07.

51.29 FILE CONFIG ID*

xyz (binary coded decimal)

� Displays the fieldbus adapter module configuration file identification stored in the memory of the drive. This information is drive control program-dependent.

Fieldbus control

Page 550: VFD Documents

106

After the module configuration parameters in group 51 have been set, the drive control parameters (section The fieldbus control interface on page 111) must be checked and adjusted where necessary.

The new settings will take effect when the drive is next powered up, or when parameter 51.27 is activated.

51.30 FILE CONFIG REV*

xyz (binary coded decimal)

� Displays the fieldbus adapter module configuration file revision stored in the memory of the drive.

x = major revision number; y = minor revision number;z = correction number.

Example: 1 = revision 0.01.

51.31 FBA STATUS*

(0) IDLE (1) EXEC. INIT (2) TIME OUT (3) CONFIG

ERROR (4) OFF-LINE (5) ON-LINE (6) RESET

� Displays the status of the adapter module.IDLE = Adapter not configured.EXEC. INIT = Adapter initialising.TIME OUT = A time out has occurred in the communication between the adapter and the drive.CONFIG ERROR = Adapter configuration error. The major or minor revision code of the CPI program revision in the drive is not the revision required by the module (refer to 51.32) or configuration file upload has failed more than five times.OFF-LINE = Adapter is off-line.ON-LINE = Adapter is on-line.RESET = Adapter performing a hardware reset.

51.32 FBA CPI FW REV*

� � Displays the CPI program revision of the module inserted in slot 1.

x = major revision number; y = minor revision number;z = correction number.

Example: 107 = revision 1.07.

51.33 FBA APPL FW REV*

� � Displays the control program revision of the module inserted in slot 1.

x = major revision number; y = minor revision number;z = correction number.

Example: 107 = revision 1.07.

*Parameters 51.27 to 51.33 are only visible when type Rxxx fieldbus adapter is installed.

Parameter Alternative Settings

Setting forFieldbus Control

Function/Information

Fieldbus control

Page 551: VFD Documents

107

Setting up communication through the Standard Modbus LinkAn RMBA-01 Modbus Adapter installed in slot 1 or 2 of the drive forms an interface called the Standard Modbus Link. The Standard Modbus Link can be used for external control of the drive by a Modbus controller (RTU protocol only).

Before configuring the drive for Modbus control, the adapter module must be mechanically and electrically installed according to the instructions given in the hardware manual of the drive, and the module manual.

The following table lists the parameters, which need to be defined when setting up communication through the standard Modbus link.

After the communication parameters in group 52 have been set, the drive control parameters (section The fieldbus control interface on page 111) must be checked and adjusted where necessary.

Parameter Alternative Settings

Setting for Control through Standard Modbus Link

Function/Information

COMMUNICATION INITIALIZATION

98.02 NOFIELDBUS ADVANTSTD MODBUS

STD MODBUS Initialises communication between drive (Standard Modbus Link) and Modbus-protocol controller. Activates communication parameters in group 52.

COMMUNICATION PARAMETERS

52.01 1�247 � Specifies the station number of the drive on the Standard Modbus Link.

52.02 600120024004800960019200

� Defines the communication speed for the Standard Modbus Link.

52.03 ODDEVEN NONE1STOPBIT NONE2STOPBIT

� Selects the parity setting for the Standard Modbus Link.

Fieldbus control

Page 552: VFD Documents

108

Modbus addressing

In the Modbus controller memory, the Control Word, the Status Word, the references, and the actual values are mapped as follows:

More information on Modbus communication is available from the Modicon website http://www.modicon.com.

Data from Fieldbus Controller to Drive Data from Drive to Fieldbus Controller

Address Contents Address Contents

40001 Control Word 40004 Status Word

40002 Reference 1 40005 Actual 1

40003 Reference 2 40006 Actual 2

40007 Reference 3 40010 Actual 3

40008 Reference 4 40011 Actual 4

40009 Reference 5 40012 Actual 5

Fieldbus control

Page 553: VFD Documents

109

Setting up communication through Advant controllerThe Advant controller is connected via DDCS link to channel CH0 of the RDCO module.

AC 800M Advant Controller

DriveBus connection

CI858 DriveBus Communication Interface required. See CI858 DriveBus Communication Interface User�s Manual, [3AFE 68237432 (English)].

Optical ModuleBus connection

TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required. See table below.

For more information, see AC 800M Controller Hardware Manual [3BSE027941 (English)], AC 800M/C Communication, Protocols and Design Manual [3BSE028811 (English),] ABB Industrial Systems, Västerås, Sweden.

AC 80 Advant Controller

Optical ModuleBus connection

TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required. See table below.

CI810A Fieldbus Communication Interface (FCI)

Optical ModuleBus connection

TB811 (5 MBd) or TB810 (10 MBd) Optical ModuleBus Port Interface required.

The TB811 Optical ModuleBus Port Interface is equipped with 5 MBd optical components and the TB810 is equipped with 10 MBd components. All optical components on a fibre optic link must be of the same type since 5 MBd components do not match with 10 MBd components. The choice between TB810 and TB811 depends on the equipment it is connected to. With RDCO Communication Option Module, the Interface is selected as follows:

If branching unit NDBU-85/95 is used with CI810A, TB810 Optical ModuleBus Port Interface must be used.

Optional ModuleBus PortInterface

DDCS Communication Option Module

RDCO-01 RDCO-02 RDCO-03

TB811 × ×

TB810 ×

Fieldbus control

Page 554: VFD Documents

110

The following table lists the parameters which need to be defined when setting up communication between the drive and Advant controller.

Table 1 Setting up communication

After the communication initialization parameters have been set, the drive control parameters must be checked and adjusted where necessary.

In an Optical ModuleBus connection, channel 0 address (parameter 70.01) is calculated from the value of the POSITION terminal in the appropriate database element (for the AC 80, DRISTD) as follows:

1. Multiply the hundreds of the value of POSITION by 16.

2. Add the tens and ones of the value of POSITION to the result.

For example, if the POSITION terminal of the DRISTD database element has the value of 110 (the tenth drive on the Optical ModuleBus ring), parameter 70.01 must be set to 16 × 1 + 10 = 26.

Parameter Alternative Settings

Setting for Control Through CH0

Function/Information

COMMUNICATION INITIALIZATION

98.02 NOFIELDBUSADVANTSTD MODBUS

ADVANT Initializes communication between drive (fibre optic channel CH0) and Advant controller. The transmission speed is 4 Mbit/s.

70.01 0�254 AC 800M ModuleBus 1�125AC 80 ModuleBus 17�125FCI (CI810A) 17�125

Defines the node address for DDCS channel CH0.

Fieldbus control

Page 555: VFD Documents

111

The fieldbus control interfaceThe communication between a fieldbus system and the drive employs data sets. One data set (abbreviated DS) consists of three 16-bit words called data words (DW). The Winder Program supports the use of six data sets, three in each direction.

Table 2 Default connections for the cyclical fieldbus communication.

* The index number is required when data word allocation to process data is defined via the fieldbus parameters at group 51. The function is dependent on the type of the fieldbus adapter

The Control Word and the Status Word

The Control Word (CW) is the principal means of controlling the drive from a fieldbus system. It is effective when the active control location is set to FIELDBUS.

The Control Word is sent by the fieldbus controller to the drive. The drive switches between its states according to the bit-coded instructions of the Control Word.

The Status Word (SW) is a word containing status information, sent by the drive to the fieldbus controller.

See section Communication profiles on page 113 for information on the composition of the Control Word and the Status Word.

References

References (REF) are 16-bit signed integers. A negative reference (indicating reversed direction of rotation) is formed by calculating the two�s complement from the corresponding positive reference value.

Data from Fieldbus Controller to Drive Data from Drive to Fieldbus Controller

*Index Word Contents Selector Scaling *Index Word Contents Selector

Main Reference Data Set DS1 Main Actual Signal Data Set DS2

1 1st word Command Word

(Fixed) See Table 3 on page 113.

4 1st word Actual 1 92.01

2 2nd word Ext ref1 (Fixed) 20000 = 11.04 EXT REF1 MAXIMUM

5 2nd word Actual 2 92.02

3 3rd word Ext2 ref 2 (Fixed) 20000 = 11.07 EXT REF2 MAXIMUM

6 3rd word Actual 3 92.03

Auxiliary Reference Data Set DS3 Auxiliary Actual Signal Data Set DS4

7 1st word Pump Command

(Fixed) 10 1st word Not used

8 2nd word Not used (Fixed) 11 2nd word Not used

9 3rd word Not used (Fixed) 12 3rd word Not used

Fieldbus control

Page 556: VFD Documents

112

Reference handling

The control of rotation direction is configured using the parameters in group 10. Fieldbus references are bipolar, i.e. they can be negative or positive.

Notes:

� 100% reference is defined by parameter 11.04 and 11.07.

� External reference scaling parameter 11.03 and 11.06 are also in effect.

Actual Values

Actual Values (ACT) are 16-bit words containing information on selected operations of the drive. The functions to be monitored are selected with the parameters in group 92. The scaling of the integers sent to the master as Actual Values depends on the selected function; please refer to chapter Actual signals and parameters.

Fieldbus control

Page 557: VFD Documents

113

Communication profiles

Table 3 DataSet 1 Word 1 - Command Word (Actual Signal 06.01)

Table 4 DataSet 3 Word 1 - Pump Command (Actual Signal 06.04)

Bit Name STATE/Description

0 DRIVE ENABLE See chapter Actual signals and parameters, parameter 10.04.

1 Reserved

2 Reserved

3 START COMMAND See chapter Actual signals and parameters, parameters 10.01 and 10.02.

4 DIRECTION See chapter Actual signals and parameters, parameter 10.03.

5 CONSTANT SPD 1 ACT See chapter Actual signals and parameters, parameter 12.01.

6 CONSTANT SPD 2 ACT See chapter Actual signals and parameters, parameter 12.01.

7 FAULT RESET See chapter Actual signals and parameters, parameter 16.01.

8 Reserved

9 Reserved

10 REMOTE CMD (Profibus only)

11 Reserved

12 Reserved

13 Reserved

14 COMM HEARTBEAT

15 Reserved

Bit Name Description

0 EXT1 / EXT2 SELECTION See chapter Actual signals and parameters, parameter 11.01.

1 PUMP ENABLE See chapter Actual signals and parameters, parameter 71.02.

2 PUMP FAULT RESET See chapter Actual signals and parameters, parameter 71.08.

3 RUNTIME RESET See chapter Actual signals and parameters, parameter 71.09.

4 FLUID LEVEL PI ENABLE See chapter Actual signals and parameters, parameter 72.19.

5�15 Reserved

Fieldbus control

Page 558: VFD Documents

114

Table 5 Main Status Word (Actual Signal 08.01)

Bit Name Value STATE/Description0 RDY_ON 1 READY TO SWITCH ON.

0 NOT READY TO SWITCH ON.

1 RDY_RUN 1 READY TO OPERATE.

0 OFF1 ACTIVE.

2 RDY_REF 1 OPERATION ENABLED.

0 OPERATION INHIBITED.

3 TRIPPED 1 FAULT.

0 No fault.

4 OFF_2_STA 1 OFF2 inactive.

0 OFF2 ACTIVE.

5 OFF_3_STA 1 OFF3 inactive.

0 OFF3 ACTIVE.

6 SWC_ON_INHIB 1 SWITCH-ON INHIBITED.

0

7 ALARM 1 Warning/Alarm.

0 No Warning/Alarm.

8 AT_SETPOINT 1 OPERATING. Actual value equals reference value (= is within tolerance limits).

0 Actual value differs from reference value (= is outside tolerance limits).

9 REMOTE 1 Drive control location: REMOTE (EXT1 or EXT2).

0 Drive control location: LOCAL.

10 ABOVE_LIMIT 1 Actual frequency or speed value equals or is greater than supervision limit. Valid in both rotation directions regardless of limit value.

0 Actual frequency or speed value is within supervision limit.

11 FAULT-1

Inverse of bit 31 No fault

0 Fault active

12 EXT RUN ENABLE 1 External Run Enable signal received.

0 No External Run Enable received.

13EXT CTRL LOC 1 External Control Location 2 (EXT2) selected.

0 External Control Location 1 (EXT1) selected.

14HEARTBEAT 1 500 ms square wave.

0 (send back on Main Cmd Word bit 14)

15 Reserved

Fieldbus control

Page 559: VFD Documents

115

Table 6 Pump Status Word 4 (Actual Signal 08.02)

Bit Name Description

0 HIGH PRESSURE See chapter Actual signals and parameters, parameter 72.01.

1 HIGH DISCHARGE PRESS See chapter Actual signals and parameters, parameter 72.06.

2 ROD TORQUE 1 LIMIT See chapter Actual signals and parameters, parameter 72.08.

3 ROD TORQUE 2 LIMIT See chapter Actual signals and parameters, parameter 72.13.

4 ROD TORQUE 2 SPD ACT See chapter Actual signals and parameters, parameter 72.16.

5 BACKSPIN LIMIT See chapter Actual signals and parameters, parameter 71.03.

6 UNDERLOAD See chapter Actual signals and parameters, parameter 73.01.

7 HIGH PUMP TEMP See chapter Actual signals and parameters, parameter 73.09.

8 ACS800 UNDERTEMP ACS800 cabin undertemp limit reached

9 MOTOR STALL WARNING Motor stall active; shutdown process will occur

10 EXTERNAL FAULT See chapter Actual signals and parameters, parameter 30.25.

11 AI<MIN See chapter Actual signals and parameters, parameter 30.23.

12 KEYPAD LOSS See chapter Actual signals and parameters, parameter 30.24.

13 RELAY OUT 1 STATUS Relay output 1 active

14 RELAY OUT 2 STATUS Relay output 2 active

15 RELAY OUT 3 STATUS Relay output 3 active

Fieldbus control

Page 560: VFD Documents

116

Table 7 Fault Word 1 (Actual Signal 09.01).

Table 8 Fault Word 2 (Actual Signal 09.02)

Bit Name Description

0 SHORT CIRCUIT For possible causes and remedies, see chapter Fault tracing.

1 OVERCURRENT

2 DC OVERVOLT

3 ACS800 TEMP

4 EARTH FAULT

5 MOT TEMP

6 MOTOR TEMP

7 SYSTEM FAULT

8 UNDERLOAD

9 OVER FREQUENCY

10 LINE CONVERTER

11 CH2 COMM LOSS

12�15

Reserved

Bit Name Description

0 SUPPLY FAULT For possible causes and remedies, see chapter Fault tracing.

1 NO MOTOR DATA

2 DC UNDERVOLT

3 EXTERNAL FAULT

4 RUN DISABLE

5 ENCODER FAULT

6 IO FAULT

7 CABIN TEMP FAULT

8 AI<MIN

9 OVER SWITCH FREQ

10 KEYPAD LOSS FAULT

11 PPCC LINK FAULT

12 CH0 COMM LOSS

13 PANEL LOSS FAULT

14 MOTOR STALL

15 MOTOR PHASE FAULT

Fieldbus control

Page 561: VFD Documents

117

Table 9 Alarm Word 1 (Actual Signal 09.03).

Bit Name Description

0 Reserved

1 LIMITING For the possible causes and remedies, see chapter Fault tracing.

2 MOT TEMP

3 Reserved

4 UNDER TEMP For the possible causes and remedies, see chapter Fault tracing.

5 AI<MIN WARN

6 TEMP MEAS WARN

7 I/O ALARM

8 KEYPAD LOSS WARN

9 EXT DIO1 ALM

10 EXT DIO2 ALM

11 EXT AIO1 ALM

12 EXT AIO2 ALM

13 EXT AIO3 ALM

14 EARTH FAULT

15 Reserved

Fieldbus control

Page 562: VFD Documents

118

Table 10 Limit Word (Actual Signal 09.04).

Bit Name Description

0 TORQ MOTOR LIM Pull-out torque limit.

1 SPD_TOR_MIN_LIM Speed control torque at MIN limit.

2 SPD_TOR_MAX_LIM Speed control torque at MAX limit.

3 TORQ_USER_CURR_LIM User-defined current limit.

4 TORQ_INV_CUR_LIM Internal current limit.

5 TORQ_MIN_LIM Inclusive torque MIN limit.

6 TORQ_MAX_LIM Inclusive torque MAX limit.

7 TREF_TORQ_MIN_LIM Torque reference at MIN limit.

8 TREF_TORQ_MAX_LIM Torque reference at MAX limit.

9 FLUX_MIN_LIM Flux reference at MIN limit.

10 FREQ_MIN_LIMIT Speed/Frequency at MIN limit.

11 FREQ_MAX_LIMIT Speed/Frequency at MAX limit.

12 DC_UNDERVOLT DC Bus < Under-voltage limit.

13 DC_OVERVOLT DC Bus > Over-voltage limit.

14 TORQUE LIMIT Inclusive torque limit (MAX or MIN).

15 FREQ_LIMIT Inclusive speed/frequency limit (MAX or MIN).

Fieldbus control

Page 563: VFD Documents

119

Fault tracing

Chapter overviewThe chapter lists all warning and fault messages including the possible cause and corrective actions.

Safety

WARNING! Only qualified electricians are allowed to maintain the drive. The Safety Instructions on the first pages of the appropriate hardware manual must be read before you start working with the drive.

Warning and fault indicationsA warning or fault message on the panel display indicates abnormal drive status. Most warning and fault causes can be identified and corrected using this information. If not, an ABB representative should be contacted.

If the drive is operated with the control panel detached, the red LED in the panel mounting platform indicates the fault condition. (Note: Some drive types are not fitted with the LEDs as standard).

The four digit code number in brackets after the message is for the fieldbus communication. (See chapter Fieldbus control.)

How to resetThe drive can be reset either by pressing the keypad RESET key, by digital input or fieldbus, or switching the supply voltage off for a while. When the fault has been removed, the motor can be restarted.

Fault historyWhen a fault is detected, it is stored in the Fault History. The latest faults and warnings are stored together with the time stamp at which the event was detected.

The fault logger collects 64 of the latest faults. When the drive power is switched off, 16 of the latest faults are stored.

See chapter Control panel for more information.

Fault tracing

Page 564: VFD Documents

120

Warning messages generated by the drive

Warning Cause What to Do

ACS800 TEMP(4210)09.03 AW 1 bit 04

Drive IGBT temperature is excessive. Fault trip limit is 100%.

Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

BACKSPN LIM08.02 PUMP STATUS WORDbit 05

Motor speed is less than limit and drive is modulating, due to stopping condition.

Check settings in parameter 71.03.

BACKUP USED(FFA3)

PC stored backup of drive parameters is downloaded into use.

Wait until download is completed.

BATT FAILURE(5581)

APBU branching unit memory backup battery error caused by- incorrect APBU switch S3 setting- too low battery voltage.

With parallel connected inverters, enable backup battery by setting actuator 6 of switch S3 to ON.Replace backup battery.

BC OVERHEAT(7114)

Brake chopper overload Stop drive. Let chopper cool down.Check parameter settings of resistor overload protection function.Check that braking cycle meets allowed limits.Check that drive supply AC voltage is not excessive.

BR OVERHEAT(7112)

Brake resistor overload Stop drive. Let resistor cool down. Check parameter settings of resistor overload protection function.Check that braking cycle meets allowed limits.

CALIBRA DONE(FF37)

Calibration of output current transformers is completed.

Continue normal operation.

CALIBRA REQ(FF36)

Calibration of output current transformers is required. Displayed at start if drive is in scalar control and scalar fly start feature is on.

Calibration starts automatically. Wait for a while.

COMM MODULE(7510)09.03 AW 1 bit 12(programmableFault Function 70.03�70.04)

Cyclical communication between drive and master is lost.

Check status of fieldbus communication. See chapter Fieldbus control, or appropriate fieldbus adapter manual.Check parameter settings:- group 51 MASTER ADAPTER (for fieldbus

adapter)- group 52 STANDARD MODBUS (for

Standard Modbus Link).Check Fault Function parameters.Check cable connections. Check if master can communicate.

Fault tracing

Page 565: VFD Documents

121

CUR UNBAL xx(2330)09.03 AW1 bit 14 (programmable Fault Function 30.20)

Drive has detected excessive output current unbalance in inverter unit of several parallel connected inverter modules. This can be caused by external fault (ground fault, motor, motor cabling, etc.) or internal fault (damaged inverter component). xx (2�12) refers to inverter module number.

Check there are no power factor correction capacitors or surge absorbers in motor cable.Check that there is no ground fault in motor or motor cables: measure insulation resistances of motor and motor cable.If no earth fault can be detected, contact your local ABB representative.

DC BUS LIM(3211)

Drive limits torque due to too high or too low intermediate circuit DC voltage.

Informative alarmCheck Fault Function parameters.

DISCHARG FLT08.02 PUMP STATUS WORDbit 01

Discharge pressure has exceeded the limit. Check for problem in discharge pipe.Check fault function setting in parameter 72.05.

ENC CABLE(7310)

Pulse encoder phase signal is missing. Check pulse encoder and its wiring.Check pulse encoder interface module and its wiring.

ENCODER A<>B(7302)

Pulse encoder phasing is wrong: Phase A is connected to terminal of phase B and vice versa.

Interchange connection of pulse encoder phases A and B.

ENCODER ERR(7301)09.03 AW 1 bit 05

Communication fault between pulse encoder and pulse encoder interface module and between module and drive

Check pulse encoder and its wiring, pulse encoder interface module and its wiring, parameter group 50 PULSE ENCODER settings.

EXT FAULT08.02 PUMP STATUS WORDbit 10

Fault in external device. Check external device(s) for fault(s).Check fault function setting in parameter 30.25.

FAN OTEMP(FF83)

Excessive temperature of drive output filter fan. Supervision is in use in step-up drives.

Stop drive. Let it cool down. Check ambient temperature. Check fan rotates in correct direction and air flows freely.

HIGH PRESS08.02 PUMP STATUS WORDbit 00

High pressure switch input is open, or the discharge pressure has exceeded the limit.

Check for problem in measurement device.Check for high gas content.Check fault function setting in parameter 72.01.

HW RECONF RQ(FF38)

Inverter type (e.g. sr0025_3) has been changed. Inverter type is usually changed at factory or during drive implementation.

Wait until alarm POWEROFF! activates and switch control board power off to validate inverter type change.

ID DONE(FF32)

Drive has performed motor identification magnetization and is ready for operation. This warning belongs to normal start-up procedure.

Continue drive operation.

ID MAGN(FF31)

Motor identification magnetization is on. This warning belongs to normal start-up procedure.

Wait until drive indicates that motor identification is completed.

Warning Cause What to Do

Fault tracing

Page 566: VFD Documents

122

ID MAGN REQ(FF30)

Motor identification is required. This warning belongs to normal start-up procedure. Drive expects user to select how motor identification should be performed: By Identification Magnetization or by ID Run.

Start Identification Magnetization by pressing Start key, or select ID Run and start (parameter 99.10).

ID N CHANGED(FF68)

Drive ID number has been changed from 1. Change ID number back to 1. See chapter Control panel.

ID RUN(FF35)

Motor identification Run is on. Wait until drive indicates that motor identification Run is completed.

ID RUN SEL(FF33)

Motor Identification Run is selected, and drive is ready to start ID Run. This warning belongs to ID Run procedure.

Press Start key to start Identification Run.

IN CHOKE TEMP(FF81)

Excessive input choke temperature Stop drive. Let it cool down.Check ambient temperature. Check that fan rotates in correct direction and air flows freely.

INV CUR LIM(2212)

Internal inverter current or power limit has been exceeded.

Reduce load or increase ramp time.Limit inverter actual power or decrease line-side converter reactive power generation reference value (parameter 95.06).Check Fault Function parameters.

INV DISABLED(3200)

Optional DC switch has opened while unit was stopped.

Close DC switch.Check AFSC-0x Fuse Switch Controller unit.

INV OVERTEMP(4290)

Converter module temperature is excessive. Check ambient temperature. If it exceeds 40°C, ensure that load current does not exceed derated load capacity of drive. See appropriate hardware manual.Check that ambient temperature setting is correct (parameter 95.10).Check converter module cooling air flow and fan operation.Cabinet installation: Check cabinet air inlet filters. Change when necessary. See appropriate hardware manual.Modules installed in cabinet by user: Check that cooling air circulation in cabinet has been prevented with air baffles. See module installation instructions.Check inside of cabinet and heatsink of converter module for dust pick-up. Clean when necessary.

IO CONF Input or output of optional I/O extension or fieldbus module has been selected as signal interface in the control program but communication to appropriate I/O extension module has not been set accordingly.

Check Fault Function parameters.Check parameter group 98 OPTION MODULES.

Warning Cause What to Do

Fault tracing

Page 567: VFD Documents

123

MACRO CHANGE(FF69)

Macro is restoring or User macro is being saved.

Wait until drive has finished task.

MOD BOARD T(FF88)

Overtemperature in AINT board of inverter module.

Check inverter fan.Check ambient temperature.

MOD CHOKE T(FF89)02.17 AW 3 bit 13

Overtemperature in choke of liquid cooled R8i inverter module.

Check inverter fan.Check ambient temperature.Check liquid cooling system.

MOT CUR LIM(2300)

Drive limits motor current according to current limit defined by parameter 20.04.

Reduce load or increase ramp time.Increase parameter 20.04 value.Check Fault Function parameters.

MOTOR STALL08.02 PUMP STATUS WORDbit 09

Motor is operating in stall region due to e.g. excessive load or insufficient motor power.

Check motor load and drive ratings.Check Fault Function parameters.

MOTOR STARTS(FF34)

Motor Identification Run starts. This warning belongs to ID Run procedure.

Wait until drive indicates that motor identification is completed.

MOTOR TEMP(4310)09.03 AW 1 bit 03 (programmable Fault Function 30.01�30.12)

Motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

Check motor ratings, load and cooling.Check start-up data.Check Fault Function parameters.

MOTOR 1 TEMP(4312)

Measured motor temperature has exceeded alarm limit set by parameter 30.04.

Check value of alarm limit.Check that actual number of sensors corresponds to value set by parameter. Let motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

OVERTEMP08.02 PUMP STATUS WORDbit 07

Pump temperature has exceeded the limit, or the Klixon input is open.

Check for problem in measurement device.Check for problem in temperature measurement circuit.Check well and discharge pressures (excessive pressure can cause heating).Check fault function setting in parameters 73.09�73.14.

PANEL LOSS(5300)

Control panel selected as active control location for drive has ceased communicating.

Check panel connection (see appropriate hardware manual).Check control panel connector.Replace control panel in mounting platform.Check Fault Function parameters.

POINTER ERROR(FFD0)

Source selection (pointer) parameter points to non existing parameter index.

Check source selection (pointer) parameter settings.

Warning Cause What to Do

Fault tracing

Page 568: VFD Documents

124

->POWEROFF!(FF39)

Inverter type (e.g. sr0025_3) has been changed. Inverter type is usually changed at factory or during drive implementation.

Switch control board power off to validate inverter type change.

PP OVERLOAD(5482)

Excessive IGBT junction to case temperature. This can be caused by excessive load at low frequencies (e.g. fast direction change with excessive load and inertia).

Increase ramp time.Reduce load.

REPLACE FAN(4280)

Running time of inverter cooling fan has exceeded its estimated life time.

Replace fan. Reset fan run time counter.

ROD TORQ LIM08.02 PUMP STATUS WORDbit 02

Motor load and speed is too low, or motor load is too high and speed is too low due to, for example, binding in the driven equipment.

Check for problem in driven equipment.Check fault function setting in parameter 72.08.

SLEEP MODE Sleep function has entered sleeping mode. Check fault function setting in parameter 71.11.

START INHIBI(FF7A)09.03 AW 1 bit 0

Optional start inhibit hardware logic is activated.

Check start inhibit circuit (AGPS board).

START INTERL(FF8D)

No Start Interlock signal received. Check circuit connected to Start Interlock input on RMIO board.

SYNCRO SPEED(FF87)

Value of motor nominal speed set to parameter 99.08 is not correct: Value is too near synchronous speed of motor. Tolerance is 0.1%. This warning is active only in DTC mode.

Check nominal speed from motor rating plate and set parameter 99.08 exactly accordingly.

TEMP DIF xx y(4380)

Excessive temperature difference between several parallel connected inverter modules. xx (1�12) refers to inverter module number and y refers to phase (U, V, W).Alarm is indicated when temperature difference is 15 °C. Fault is indicated when temperature difference is 20 °C.Excessive temperature can be caused e.g. by unequal current sharing between parallelconnected inverters.

Check cooling fan.Replace fan.Check air filters.

THERMISTOR(4311)02.15 AW 1 bit 02 (programmableFault Function 30.02�30.01)

Motor temperature is excessive. Motor thermal protection mode selection is THERMISTOR.

Check motor ratings and load.Check start-up data.Check thermistor connections to digital input DI6.

TORQ 2 SPD08.02 PUMP STATUS WORDbit 04

Motor load is too low due to, for example, a release mechanism in driven equipment, ortoo high due to, for example, the well having �sanded in.�

Check for problem in driven equipment.Check that the pump is not �sanded in.�Check fault function setting in parameter 72.13.

Warning Cause What to Do

Fault tracing

Page 569: VFD Documents

125

Warning messages generated by the control panel

TORQ 2 LIM08.02 PUMP STATUS WORDbit 03

Drive has entered TORQ 2 SPD condition too frequently within 2 hours.

Check for problem in driven equipment.Check that the pump is not �sanded in.�Check fault function setting in parameters 72.13 and 72.18.

T MEAS ALM(FF91)02.15 AW 1 bit 06

Motor temperature measurement is out of acceptable range.

Check connections of motor temperature measurement circuit. See chapter Program features for circuit diagram.

UNDRLOAD08.02 PUMP STATUS WORDbit 06

Motor load is too low due to, for example, a release mechanism in the driven equipment.

Check for problem in driven equipment.Check for problem in rod string.Check fault function setting in parameter 73.01.

UNDERTEMP LIM08.02 PUMP STATUS WORDbit 0809.03 AW 1 bit 04

Drive IGBT temperature is excessively low (too cold).

Check ambient conditions.

Warning Cause What to Do

DOWNLOADING FAILED

Download function of panel has failed. No data has been copied from panel to drive.

Make sure panel is in local mode.Retry (there might be interference on link).Contact ABB representative.

DRIVE IS RUNNING DOWNLOADING NOT POSSIBLE

Downloading is not possible while motor is running.

Stop motor. Perform downloading.

NO COMMUNICATION (X)

Cabling problem or hardware malfunction on Panel Link

Check Panel Link connections.Press RESET key. Panel reset may take up to half a minute, please wait.

(4) = Panel type not compatible with drive control program version

Check panel type and drive control program version. Panel type is printed on panel cover. Control program version is stored in 04.07 APPL SW VERSION.

NO FREE ID NUMBERS ID NUMBER SETTING NOT POSSIBLE

Panel Link already includes 31 stations. Disconnect another station from link to free ID number.

NOT UPLOADED DOWNLOADING NOT POSSIBLE

No upload function has been performed. Perform upload function before downloading. See chapter Control panel.

UPLOADING FAILED

Upload function of panel has failed. No data has been copied from drive to panel.

Retry (there might be interference on link).Contact ABB representative.

Warning Cause What to Do

Fault tracing

Page 570: VFD Documents

126

WRITE ACCESS DENIED PARAMETER SETTING NOT POSSIBLE

Certain parameters do not allow changes while motor is running. If tried, no change is accepted, and warning is displayed.

Stop motor, then change parameter value.

Parameter lock is on. Open parameter lock (see parameter 16.02).

Warning Cause What to Do

Fault tracing

Page 571: VFD Documents

127

Fault messages generated by the drive

Fault Cause What to Do

ACS800 TEMP(4210)09.01 FW 1 bit 03

Drive IGBT temperature is excessive. Fault trip limit is 100%.

Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

ACS TEMP xx y(4210)09.01 FW 1 bit 03

Excessive internal temperature in inverter unit of several parallel connected inverter modules. xx (1�12) refers to inverter module number and y refers to phase (U, V, W).

Check ambient conditions.Check air flow and fan operation.Check heatsink fins for dust pick-up.Check motor power against unit power.

BACKUP ERROR(FFA2)

Failure when restoring PC stored backup of drive parameters.

Retry.Check connections. Check that parameters are compatible with drive.

BC OVERHEAT(7114)

Brake chopper overload Let chopper cool down. Check parameter settings of resistor overload protection function.Check that braking cycle meets allowed limits.Check that drive supply AC voltage is not excessive.

BC SHORT CIR(7113)

Short circuit in brake chopper IGBT(s) Replace brake chopper.Ensure brake resistor is connected and not damaged.

BR BROKEN(7110)

Brake resistor is not connected or it is damaged.Resistance rating of brake resistor is too high.

Check resistor and resistor connection.Check that resistance rating meets specifications. See appropriate drive hardware manual.

BR OVERHEAT(7112)

Brake resistor overload Let resistor cool down. Check parameter settings of resistor overload protection function.Check that braking cycle meets allowed limits.Check that drive supply AC voltage is not excessive.

BR WIRING(7111)

Wrong connection of brake resistor Check resistor connection.Ensure brake resistor is not damaged.

CHOKE OTEMP(FF82)

Excessive temperature of drive output filter. Supervision is in use in step-up drives.

Let drive cool down. Check ambient temperature.Check filter fan rotates in correct direction and air flows freely.

Fault tracing

Page 572: VFD Documents

128

COMM MODULE(7510)09.02 FW 2 bit 12 (programmableFault Function 70.03�70.04)

Cyclical communication between drive and master is lost.

Check status of fieldbus communication. See chapter Fieldbus control, or appropriate fieldbus adapter manual.Check parameter settings:- group 51 MASTER ADAPTER (for fieldbus

adapter), or- group 52 STANDARD MODBUS (for

Standard Modbus Link).Check Fault Function parameters.Check cable connections. Check if master can communicate.

CTRL B TEMP(4110)09.02 FW 2 bit 07

Control board temperature is above 88°C. Check ambient conditions.Check air flow.Check main and additional cooling fans.

CURR MEAS(2211)

Current transformer failure in output current measurement circuit

Check current transformer connections to Main Circuit Interface Board, INT.

CUR UNBAL xx(2330)09.01 FW 1 bit 04 (programmable Fault Function 30.20)

Drive has detected excessive output current unbalance in inverter unit of several parallel connected inverter modules. This can be caused by external fault (earth fault, motor, motor cabling, etc.) or internal fault (damaged inverter component). xx (1�12) refers to inverter module number.

Check there are no power factor correction capacitors or surge absorbers in motor cable.Check that there is no earth fault in motor or motor cables: measure insulation resistances of motor and motor cable.If no earth fault can be detected, contact your local ABB representative.

DC HIGH RUSH(FF80)

Drive supply voltage is excessive. When supply voltage is over 124% of unit voltage rating (415, 500 or 690 V), motor speed rushes to trip level (40% of nominal speed).

Check supply voltage level, drive rated voltage and allowed voltage range of drive.

DC OVERVOLT(3210)09.01 FW 1 bit 02

Excessive intermediate circuit DC voltage. DC overvoltage trip limit is 1.3 · U1max, where U1max is maximum value of mains voltage range. For:

400 V units, U1max is 415 V500 V units, U1max is 500 V.

Actual voltage in intermediate circuit corresponding to mains voltage trip level is:

728 VDC for 400 V units and 877 VDC for 500 V units.

Check that overvoltage controller is on (see parameter 30.22).Check mains for static or transient overvoltage.Check brake chopper and resistor (if used).Check deceleration time.Use coast-to-stop function (if applicable).Retrofit frequency converter with brake chopper and brake resistor.

Fault Cause What to Do

Fault tracing

Page 573: VFD Documents

129

DC UNDERVOLT(3220)09.02 FW 2 bit 02

Intermediate circuit DC voltage is not sufficient due to missing mains phase, blown fuse or rectifier bridge internal fault.DC undervoltage trip limit is 0.6 · U1min, where U1min is minimum value of mains voltage range. For:

400 V and 500 V units, U1min is 380 V690 V units, U1min is 525 V.

Actual voltage in intermediate circuit corresponding to mains voltage trip level is:

307 VDC for 400 V and 500 V units, and 425 VDC for 690 V units.

Check mains supply and fuses.

DISCHARG FLT08.02 PUMP STATUS WORDbit 01

Discharge pressure has exceeded the limit. Check for problem in discharge pipe.Check fault function setting in parameter 72.05.

ENCODER A<>B(7302)

Pulse encoder phasing is wrong: Phase A is connected to terminal of phase B and vice versa.

Interchange connection of pulse encoder phases A and B.

ENCODER ERR(7301)09.01 FW 2 bit 05

Communication fault between pulse encoder and pulse encoder interface module and between module and drive

Check pulse encoder and its wiring, pulse encoder interface module and its wiring and group 50 PULSE ENCODER settings.

EXT FAULT08.02 PUMP STATUS WORDbit 10

Fault in external device. Check external device(s) for fault(s).Check fault function setting in parameter 30.25.

GD DISABLED(FF53)

AGPS power supply of parallel connected R8i inverter module has been switched off during run. X (1�12) refers to inverter module number.

Check Prevention of Unexpected Start-up circuit.Replace AGPS board of R8i inverter module.

GROUND FAULT(2330)09.01 FW 1 bit 4 (programmable Fault Function 30.20)

Drive has detected load unbalance typically due to ground fault in motor or motor cable.

Check there are no power factor correction capacitors or surge absorbers in motor cable.Check that there is no ground fault in motor or motor cables: measure insulation resistances of motor and motor cable.If no ground fault can be detected, contact your local ABB representative.

HIGH PRESS08.02 PUMP STATUS WORDbit 00

High pressure switch input is open, or the discharge pressure has exceeded the limit.

Check for problem in measurement device.Check for high gas content.Check fault function setting in parameter 72.01.

ID RUN FAIL(FF84)

Motor ID Run is not completed successfully. Check maximum speed (20.02). It should be at least 80% of motor nominal speed (99.08).

Fault Cause What to Do

Fault tracing

Page 574: VFD Documents

130

IN CHOKE TEMP(FF81)

Excessive input choke temperature Stop drive. Let it cool down.Check ambient temperature. Check that fan rotates in correct direction and air flows freely.

INT CONFIG(5410)

Number of inverter modules is not equal to original number of inverters.

Check status of inverters. Check fibre optic cables between APBU and inverter modules.

INV DISABLED(3200)

Optional DC switch has opened while unit was running or start command was given.

Close DC switch.Check AFSC-0x Fuse Switch Controller unit.

INV OVERTEMP(4290)

Converter module temperature is excessive. Check ambient temperature. If it exceeds 40°C, ensure that load current does not exceed derated load capacity of drive. See appropriate hardware manual.Check that ambient temperature setting is correct (parameter 95.10).Check converter module cooling air flow and fan operation.Cabinet installation: Check cabinet air inlet filters. Change when necessary. See appropriate hardware manual.Modules installed in cabinet by user: Check that cooling air circulation in cabinet has been prevented with air baffles. See module installation instructions.Check inside of cabinet and heatsink of converter module for dust pick-up. Clean when necessary.Reset and restart after problem is solved and let converter module cool down.

I/O COMM ERR(7000)09.02 FW 2 bit 06

Communication error on control board, channel CH1Electromagnetic interference

Check connections of fibre optic cables on channel CH1.Check all I/O modules (if present) connected to channel CH1.Check for proper earthing of equipment. Check for highly emissive components nearby.

LINE CONV(FF51)

Fault on line side converter Shift panel from motor side converter control board to line side converter control board. See line side converter manual for fault description.

MOD BOARD T(FF88)

Overtemperature in AINT board of inverter module.

Check inverter fan.Check ambient temperature.

MOD CHOKE T(FF89)

Overtemperature in choke of liquid cooled R8i inverter module.

Check inverter fan.Check ambient temperature.Check liquid cooling system.

Fault Cause What to Do

Fault tracing

Page 575: VFD Documents

131

MOTOR PHASE(FF56)09.02 FW 2 bit 15 (programmable Fault Function 30.19)

One of motor phases is lost due to fault in motor, motor cable, thermal relay (if used) or internal fault.

Check motor and motor cable.Check thermal relay (if used).Check Fault Function parameters. Disable this protection.

MOTOR STALL08.02 PUMP STATUS WORDbit 09

Motor is operating in stall region due to e.g. excessive load or insufficient motor power.

Check motor load and drive ratings.Check Fault Function parameters.

MOTOR TEMP(4310)09.01 FW 1 bit 06 (programmableFault Function 30.01�30.12)

Motor temperature is too high (or appears to be too high) due to excessive load, insufficient motor power, inadequate cooling or incorrect start-up data.

Check motor ratings and load.Check start-up data.Check Fault Function parameters.

MOTOR 1 TEMP(4312)

Measured motor temperature has exceeded fault limit set by parameter 30.05.

Check value of fault limit. Let motor cool down. Ensure proper motor cooling: Check cooling fan, clean cooling surfaces, etc.

NO MOT DATA(FF52)09.02 FW 2 bit 01

Motor data is not given or motor data does not match with inverter data.

Check motor data parameters 99.05�99.09.

OVERCURR xx(2310)09.01 FW 1 bit 01

Overcurrent fault in inverter unit of several parallel connected inverter modules. xx (1�12) refers to inverter module number.

Check motor load.Check acceleration time.Check motor and motor cable (including phasing).Check encoder cable (including phasing).Check motor nominal values from group 99 START-UP DATA to confirm that motor model is correct.Check that there are no power factor correction or surge absorbers in motor cable.

OVERCURRENT(2310)09.01 FW 1 bit 01

Output current exceeds trip limit. Check motor load.Check acceleration time.Check motor and motor cable (including phasing).Check that there are no power factor correction capacitors or surge absorbers in motor cable.Check encoder cable (including phasing).

Fault Cause What to Do

Fault tracing

Page 576: VFD Documents

132

OVERFREQ(7123)09.01 FW 1 bit 09

Motor is turning faster than highest allowed speed due to incorrectly set minimum/maximum speed, insufficient braking torque or changes in load when using torque reference. Trip level is 40 Hz over operating range absolute maximum speed limit (Direct Torque Control mode active) or frequency limit (Scalar Control active). Operating range limits are set by 20.01 and 20.02 (DTC mode active) or 29.03 and 29.02 (Scalar Control active).

Check minimum/maximum speed settings.Check adequacy of motor braking torque.Check applicability of torque control.Check need for brake chopper and resistor(s).

OVER SWFREQ(FF55)09.02 FW 2 bit 09

Switching frequency is too high. Check motor parameter settings (parameter group 99 START-UP DATA)Ensure that ID run has been completed successfully.

OVERTEMP08.02 PUMP STATUS WORDbit 07

Pump temperature has exceeded the limit, or the Klixon input is open.

Check for problem in measurement device.Check for problem in temperature measurement circuit.Check well and discharge pressures (excessive pressure can cause heating).Check fault function setting in parameters 73.09�73.14.

PANEL LOSS(5300)09.02 FW 2 bit 13

Control panel or DriveWindow selected as active control location for drive has ceased communicating.

Check panel connection (see appropriate hardware manual).Check control panel connector.Replace control panel in mounting platform.Check Fault Function parameters.Check DriveWindow connection.

PARAM CRC(6320)

CRC (Cyclic Redundancy Check) error Switch control board power off and on again.Reload firmware to control board.Replace control board.

POWERFAIL(3381)

INT board powerfail in several inverter units of parallel connected inverter modules.

Check that INT board power cable is connected.Check that POW board is working correctly.Replace INT board.

POWERF INV xx(3381)

INT board powerfail in inverter unit of several parallel connected inverter modules. xx (1�12) refers to inverter module number.

Check that INT board power cable is connected.Check that POW board is working correctly.Replace INT board.

PPCC LINK(5210)09.02 FW 2 bit 11

Fibre optic link to INT board is faulty. Check fibre optic cables or galvanic link. With frame sizes R2-R6 link is galvanic.If RMIO is powered from external supply, ensure that supply is on.

PPCC LINK xx(5210)09.02 FW 2 bit 11

INT board fibre optic connection fault in inverter unit of several parallel connected inverter modules. xx refers to inverter module number.

Check connection from inverter module Main Circuit Interface Board, INT to PPCC Branching Unit, PBU. (Inverter module 1 is connected to PBU INT1 etc.)

Fault Cause What to Do

Fault tracing

Page 577: VFD Documents

133

PP OVERLOAD(5482)

Excessive IGBT junction to case temperature. This fault protects IGBT(s) and it can be activated by short circuit at output of long motor cables.

Check motor cables.

ROD TORQ LIM08.02 PUMP STATUS WORDbit 02

Motor load and speed is too low, or motor load is too high and speed is too low due to, for example, binding in the driven equipment.

Check for problem in driven equipment.Check fault function setting in parameter 72.08.

RUN DISABLED(FF54)09.02 FW 2 bit 04

No Run enable signal received. Check setting of parameter 10.04. Switch on signal or check wiring of selected source.

SC INV xx y(2340)09.01 FW 1 bit 04.

Short circuit in inverter unit of several parallel connected inverter modules. xx (1�12) refers to inverter module number and y refers to phase (U, V, W).

Check motor and motor cable.Check power semiconductors (IGBTs) of inverter module.

SHORT CIRC(2340)09.01 FW 1 bit 00

Short-circuit in motor cable(s) or motor Check motor and motor cable.Check there are no power factor correction capacitors or surge absorbers in motor cable.

Output bridge of converter unit is faulty. Contact ABB representative.

SLOT OVERLAP(FF8A)

Two option modules have same connection interface selection.

Check connection interface selections in group 98 OPTION MODULES.

START INHIBI(FF7A)

Optional start inhibit hardware logic is activated.

Check start inhibit circuit (AGPS board).

SUPPLY PHASE(3130)09.02 FW 2 bit 00

Intermediate circuit DC voltage is oscillating due to missing mains phase, blown fuse or rectifier bridge internal fault.Trip occurs when DC voltage ripple is 13% of DC voltage.

Check mains fuses.Check for mains supply imbalance.

TEMP DIF xx y(4380)

Excessive temperature difference between several parallel connected inverter modules. xx (1�12) refers to inverter module number and y refers to phase (U, V, W).Alarm is indicated when temperature difference is 15 °C. Fault is indicated when temperature difference is 20 °CExcessive temperature can be caused e.g. by unequal current sharing between parallel connected inverters.

Check cooling fan.Replace fan.Check air filters.

THERMAL MODE(FF50)

Motor thermal protection mode is set to DTC for high-power motor.

See parameter 30.01.

Fault Cause What to Do

Fault tracing

Page 578: VFD Documents

134

THERMISTOR(4311)09.01 FW 1 bit 05 (programmableFault Function 30.02�30.01)

Motor temperature is excessive. Motor thermal protection mode selection is THERMISTOR.

Check motor ratings and load.Check start-up data.Check thermistor connections to digital input DI6.

TORQ 2 LIM08.02 PUMP STATUS WORDbit 03

Drive has entered TORQ 2 SPD condition too frequently within 2 hours.

Check for problem in driven equipment.Check that the pump is not �sanded in.�Check fault function setting in parameters 72.13 and 72.18.

UNDRLOAD08.02 PUMP STATUS WORDbit 06

Motor load is too low due to, for example, a release mechanism in the driven equipment.

Check for problem in driven equipment.Check for problem in rod string.Check fault function setting in parameter 73.01.

USER MACRO(FFA1)

No User Macro saved or file is defective. Create User Macro.

Fault Cause What to Do

Fault tracing

Page 579: VFD Documents

135

Additional data: actual signals and parameters

Chapter overviewThis chapter lists the actual signal and parameter lists with some additional data. For the descriptions, see chapter Actual signals and parameters.

Terms and abbreviations

Fieldbus addresses

Rxxx adapter modules (such as RPBA-01, RDNA-01, etc.)

See the appropriate fieldbus adapter module User�s Manual.

Nxxx adapter modules (such as NPBA-12, NDNA-02, etc.)

NPBA-12 Profibus Adapter:

All versions

� see column PB in the tables below.

Version 1.5 or later

� see NPBA-12 PROFIBUS Adapter Installation and Start-Up Guide [3BFE64341588 (English)].

NIBA-01 InterBus-S Adapter:

� xxyy · 100 + 12288 converted into hexadecimal, where xxyy = drive parameter numberExample: The index number for drive parameter 13.09 is 1309 + 12288 = 13597 (dec) = 351D (hex)

NMBP-01 ModbusPlus Adapter and NMBA-01 Modbus Adapter:

� 4xxyy, where xxyy = drive parameter number

Term Definition

PB Parameter address for the fieldbus communication through a Profibus link (Add 4000 in FMS Mode).

FbEq Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication.

Absolute Maximum Frequency Value of 29.02 MAXIMUM FREQ, or 29.03 MINIMUM FREQ if the absolute value of the minimum limit is greater than the maximum limit.

Absolute Maximum Speed Value of parameter 20.02 MAXIMUM SPEED, or 20.01 MINIMUM SPEED if the absolute value of the minimum limit is higher than the maximum limit.

Additional data: actual signals and parameters

Page 580: VFD Documents

136

Actual signalsIndex Name Short Name FbEq Unit Range PB01 ACTUAL SIGNALS01.01 MOTOR SPEED FILT SPD FILT 200 = 1% rpm 101.02 SPEED ESTIMATED SPD ESTI 200 = 1% rpm 201.03 SPEED MEASURED SPD MEAS 200 = 1% rpm 301.04 ACTUAL MTR FLUX ACT FLUX 10 = 1% % 401.05 FREQUENCY FREQ 100 = 1 Hz Hz 501.06 MOTOR CURRENT CURRENT 10 = 1 A A 601.07 MOTOR TORQUE FILT TORQFILT 100 = 1% % 701.08 MOTOR TORQUE TORQUE 100 = 1% % 801.09 MOTOR POWER POWER 10 = 1% % 901.10 DC BUS VOLTAGE DC VOLT 1 = 1 VDC VDC 1001.11 MOTOR VOLTAGE MTR VOLT 1 = 1 VAC VAC 1101.12 ACS800 TEMP ACS TEMP 1 = 1 °C °C 1201.13 OP HOUR COUNTER OP HOUR 1 = 1 h h 1301.14 KILOWATT HOURS KW hrs 1 = 100 kWh kWh 1401.15 MOTOR 1 TEMP MTR1 TMP 10 = 1 °C °C 1501.16 MOTOR 2 TEMP MTR2 TMP 10 = 1 °C °C 1601.17 MOTOR TEMP EST TEMP EST 1 = 1 °C °C 1701.18 DI6-1 STATUS DI6-1 0�65535 (Decimal) 1801.19 R03-1 STATUS R03-1 0�65535 (Decimal) 1901.20 AI1 [V] AI1 [V] 1000 = 1 V V 2001.21 AI2 [mA] AI2 [mA] 1000 = 1 mA mA 2101.22 AI3 [mA] AI3 [mA] 1000 = 1 mA mA 2201.23 AO1 [mA] AO1 [mA] 1000 = 1 mA mA 2301.24 AO2 [mA] AO2 [mA] 1000 = 1 mA mA 2401.25 XTDI6-1 STATUS XTDI6-1 0�65535 (Decimal) 2501.26 XTRO6-1 STATUS XTRO6-1 0�65535 (Decimal) 2601.27 XT AI1 [V] XT AI1 100 = 1 V V 2701.28 XT AI2 [V] XT AI2 100 = 1 V V 2801.29 XT AO1 [mA] XT AO1 1000 = 1 mA mA 2901.30 XT AO2 [mA] XT AO2 1000 = 1 mA mA 3001.31 CTRL LOCATION CTRL LOC 0 = EXT1

1 = EXT2EXT1, EXT2 31

02 ACTUAL SIGNALS02.01 SPEED REF 2 S REF 2 200 = 1% rpm 5102.02 SPEED REF 3 S REF 3 200 = 1% rpm 5202.03 SPEED REF 4 S REF 4 200 = 1% rpm 5302.04 TORQUE REF 1 TQ REF 1 100 = 1% % 5402.05 TORQUE REF 2 TQ REF 2 100 = 1% % 5502.06 TORQUE REF 3 TQ REF 3 100 = 1% % 5602.07 TORQUE REF 4 TQ REF 4 100 = 1% % 5702.08 TORQUE REF 5 TQ REF 5 100 = 1% % 5802.09 TORQUE USED TQ USED 100 = 1% % 5902.10 SPEED USED REF SP USED 200 = 1% rpm 6004 INFORMATION04.01 SW PACKAGE VER PCKG VER -04.07 APPLIC SW VERSION APPL VER -04.09 APPLIC RELEASE DATE APPL REL -04.10 BOARD TYPE -05 PUMP ACTUALS05.01 MOTOR T0RQUE MTR TORQ 1 = 1 Nm

1 = 1 lbftNmlbft

-

05.02 MAX MOTOR TORQUE MAX TORQ 1 = 1 Nm1 = 1 lbft

Nmlbft

-

05.03 POWER POWER 1 = 1 kW1 = 1 Hp

kW Hp

-

Additional data: actual signals and parameters

Page 581: VFD Documents

137

05.04 ROD TORQUE ROD TORQ 1 = 1 Nm1 = 1 lbft

Nmlbft

-

05.05 ROD SPEED ROD SPD 1 = 1 rpm rpm -05.06 RUNTIME HOURS RUNTIME 1 = 1 h h -05.07 BACKSPIN SPD REF BSPN REF 1 = 1 rpm rpm -05.08 BACKSPIN OPERATION BACKSPIN 0 = INACTIVE

1 = ACTIVEINACTIVE, ACTIVE -

05.09 WELL FLUID LEVEL WELL LVL 10 = 1 m10 = 1 JNTS

mJNTS

-

05.10 DISCHARGE PRESSURE DCHRG PR 1 = 1 kPa1 = 1 psi

kPapsi

-

05.11 MEASURED TEMP MSD TEMP 1 = 1 °C °C -05.12 ROD SPD REF ROD REF 10 = 1 Prpm Prpm -06 CH0 DATASETS IN06.01 COMMAND WORD CMD WRD - 32768�32767 -06.02 SPEED REF1 SPD REF1 - 32768�32767 -06.03 SPEED REF2 SPD REF2 - 32768�32767 -06.04 PUMP COMMAND PMP CMD - 32768�32767 -0707.01 AI1 SCALED AI1 SCAL 2000 = 1 V 0�2000 -07.02 AI2 SCALED AI2 SCAL 1000 = 1 mA 0�2000 -07.03 AI3 SCALED AI3 SCAL 1000 = 1 mA 0�2000 -07.04 AI5 SCALED AI5 SCAL 1000 = 1 mA 0�2000 -07.05 AI6 SCALED AI6 SCAL 1000 = 1 mA 0�2000 -07.06 LCU ACT SIGNAL1 -07.07 LCU ACT SIGNAL2 -08 STATUS WORDS08.01 MAIN STATUS WORD MN STAT 0�65535 (Decimal) -08.02 PUMP STATUS WORD PMP STAT 0�65535 (Decimal) -09 ACTUAL SIGNALS09.01 FAULT WORD 1 FLT WRD1 0�65535 (Decimal) -09.02 FAULT WORD 2 FLT WRD2 0�65535 (Decimal) -09.03 ALARM WORD 1 ALM WRD1 0�65535 (Decimal) -09.04 LIMIT WORD LIM WORD 0�65535 (Decimal) -

Index Name Short Name FbEq Unit Range PB

Additional data: actual signals and parameters

Page 582: VFD Documents

138

ParametersIndex Name/Selection FACTORY PCP ESP PB10 START/STOP/DIR10.01 START / STOP 1 DI1 DI1 DI1 10110.02 START / STOP 2 NOT SELECT NOT SELECT NOT SELECT 10210.03 DIRECTION FORWARD FORWARD FORWARD 10310.04 RUN ENABLE YES YES YES 10410.05 EMERG STOP INPUT NOT SELECT NOT SELECT NOT SELECT 10510.06 STRT/STP 1 PTR +.000.000.00 +.000.000.00 +.000.000.00 10610.07 STRT/STP 2 PTR +.000.000.00 +.000.000.00 +.000.000.00 10710.08 RUN ENABLE PTR +.000.000.00 +.000.000.00 +.000.000.00 10810.09 E-STOP PTR +.000.000.00 +.000.000.00 +.000.000.00 10911 REFERENCE SELECT11.01 EXT1 EXT2 SEL NOT SELECT NOT SELECT NOT SELECT 12611.02 EXT REF1 SELECT AI1 AI1 AI1 12711.03 EXT REF1 MINIMUM 0.0 rpm 0.0 rpm 0.0 Hz 12811.04 EXT REF1 MAXIMUM 1500.0 rpm 1500.0 rpm 50.0 Hz 12911.05 EXT REF2 SELECT AI1 AI1 AI1 13011.06 EXT REF2 MINIMUM 0.0 rpm 0.0 rpm 0.0 Hz 13111.07 EXT REF2 MAXIMUM 1500.0 rpm 1500.0 rpm 50.0 Hz 13211.08 EXT1/EXT2 PTR +.000.000.00 +.000.000.00 +.000.000.00 13311.09 EXT1 REF1 PTR +.000.000.00 +.000.000.00 +.000.000.00 13411.10 EXT1 REF2 PTR +.000.000.00 +.000.000.00 +.000.000.00 13512 CONSTANT SPEEDS12.01 RAMPED SPEED SEL NOT SELECT NOT SELECT NOT SELECT 15112.02 RAMPED SPD 1 0.0 rpm 0.0 rpm 0.0 rpm 15212.03 RAMPED SPD 2 0.0 rpm 0.0 rpm 0.0 rpm 15313 ANALOG INPUTS13.01 MINIMUM AI1 0 V 0 V 0 V 17613.02 SCALE AI1 100 100 100 17713.03 FILTER AI1 ms 100 100 100 17813.04 MINIMUM AI2 0 mA 0 mA 0 mA 17913.05 SCALE AI2 100 100 100 18013.06 FILTER AI2 ms 100 100 100 18113.07 MINIMUM AI3 0 mA 0 mA 0 mA 18213.08 SCALE AI3 100 100 100 18313.09 FILTER AI3 ms 100 100 100 18413.10 ZERO XT AI1 0 V 0 V 0 V 18513.11 SCALE XT AI1 100 100 100 18613.12 FILTER XT AI1 ms 100 100 100 18713.13 ZERO XT AI2 0 V 0 V 0 V 18813.14 SCALE XT AI2 100 100 100 18913.15 FILTER XT AI2 ms 100 100 100 19013.16 SCALE XT AI3 100 100 100 19113.17 SCALE XT AI4 100 100 100 19214 RELAY OUTPUTS14.01 RO1 POINTER +.008.001.01 +.008.001.01 +.008.001.01 20114.03 RO1 TON DELAY 0.01 s 0.01 s 0.01 s 20314.04 RO1 TOFF DELAY 0.01 s 0.01 s 0.01 s 20414.05 RO2 POINTER +.008.001.02 +.008.001.02 +.008.001.02 20514.07 RO2 TON DELAY 0.01 s 0.01 s 0.01 s 20714.08 RO2 TOFF DELAY 0.01 s 0.01 s 0.01 s 20814.09 RO3 POINTER +.008.001.03 +.008.001.03 +.008.001.03 20914.11 RO3 TON DELAY 0.01 s 0.01 s 0.01 s 21114.12 RO3 TOFF DELAY 0.01 s 0.01 s 0.01 s 21214.13 XTRO1 POINTER +.008.001.01 +.008.001.01 +.008.001.01 21314.14 XTRO2 POINTER +.008.001.02 +.008.001.02 +.008.001.02 21414.15 XTRO3 POINTER +.008.000.00 +.008.000.00 +.008.000.00 215

Additional data: actual signals and parameters

Page 583: VFD Documents

139

14.16 XTRO4 POINTER +.000.000.00 +.000.000.00 +.000.000.00 21615 ANALOG OUTPUTS15.01 ANALOG OUTPUT 1 +.001.006.00 +.001.006.00 +.001.006.00 22615.03 MINIMUM A01 0 mA 0 mA 0 mA 22815.04 FILTER AO1 ms 500 500 500 22915.05 SCALE AO1 20000 20000 20000 23015.06 ANALOG OUTPUT 2 +.001.001.00 +.001.001.00 +.001.001.00 23115.08 MINIMUM AO2 0 mA 0 mA 0 mA 23315.09 FILTER AO2 ms 500 500 500 23415.10 SCALE AO2 20000 20000 20000 23515.11 XT ANALOG OUTPUT 1 +.001.006.00 +.001.006.00 +.001.006.00 23615.13 MINIMUM XT AO1 0 mA 0 mA 0 mA 23815.14 FILTER XT AO1 ms 500 500 500 23915.15 SCALE XT AO1 20000 20000 20000 24015.16 XT ANALOG OUTPUT 2 +.001.001.00 +.001.001.00 +.001.001.00 24115.18 MINIMUM XT AO2 0 mA 0 mA 0 mA 24315.19 FILTER XT AO2 ms 500 500 500 24415.20 SCALE XT AO2 20000 20000 20000 24516 SYSTEM CTR INPUTS16.01 FAULT RESET SEL NOT SELECT NOT SELECT NOT SELECT 25116.02 PARAMETER LOCK OPEN OPEN OPEN 25216.03 PASS CODE 0 0 0 25316.04 LOCAL LOCK OFF OFF OFF 25416.05 PARAMETER SAVE DONE DONE DONE 25517 DC HOLD17.01 DC HOLD ACTIVE NO NO (not visible) 27617.02 DC HOLD SPEED 5 rpm 5 rpm (not visible) 27717.03 DC HOLD CURRENT 30.0% 30.0% (not visible) 27820 LIMITS20.01 MINIMUM SPEED -1500 rpm -1500 rpm -1500 rpm 35120.02 MAXIMUM SPEED 1500 rpm 1500 rpm 1500 rpm 35220.04 MAXIMUM CURRENT 200.0% 200.0% 200.0% 35420.05 SPC TORQMAX 100% 100% 100% 35520.06 SPC TORQMIN -100% 0.0% 0.0% 35620.07 FREQ TRIP MARGIN 50.00 Hz 50.00 Hz 50.00 Hz 35721 START/STOP21.01 START FUNCTION AUTO AUTO AUTO 37621.02 CONST MAGN TIME 500.0 ms 500.0 ms 500.0 ms 37721.03 FREE DIRECT MAGN OFF OFF OFF 37821.04 STOP FUNCTION RAMP STOP RAMP STOP COAST STOP 37921.05 EME STOP MODE STOP RAMPING STOP RAMPING STOP RAMPING 38021.06 ESTOP COAST DELAY 5 s 5 s 5 s 38122 ACCEL/DECEL22.01 ACCEL TIME 20.00 s 20.00 s 20.00 s 40122.02 DECEL TIME 20.00 s 20.00 s 20.00 s 40222.03 EM STOP RAMP TIME 1.0 s 1.0 s 1.0 s 40322.04 RAMP SHAPE TIME 0.00 s 0.00 s 0.00 s 40423 SPEED REFERENCES23.01 SPEED REF 0.0 rpm 0.0 rpm 0.0 Hz 42624 SPEED CTRL TUNE24.01 PI TUNE OFF OFF OFF 45124.02* DAMPENING COEF 2 2 2 45224.03 P-GAIN 10.0 10.0 10.0 45324.04* P-GAIN MIN 10 10 10 45424.05* P-GAIN WEAKPOINT 0% 0% 0% 45524.06* P-GAIN WP FILT TIME 100 ms 100 ms 100 ms 45624.09 INTEGRATION TIME 2.50 s 2.50 s 2.50 s 459

Index Name/Selection FACTORY PCP ESP PB

Additional data: actual signals and parameters

Page 584: VFD Documents

140

24.10 INTEG INIT VALUE 0.00% 0.00% 0.00% 46024.11 DROOP RATE 0.0% 0.0% 0.0% 46124.12 DERIVATION TIME 0.0 ms 0.0 ms 0.0 ms 46224.13 DERIV FILT TIME 8.0 ms 8.0 ms 8.0 ms 46324.14 ACC COMP DERV 0.00 s 0.00 s 0.00 s 46424.15 ACC COMP FILT 8.00 ms 8.00 ms 8.00 ms 46524.16 SLIP GAIN 100.0% 100.0% 100.0% 46624.17* KPS TIS MIN FREQ 5 Hz 5 Hz 5 Hz 46724.18* KPS TIS MAX FREQ 11.7 Hz 11.7 Hz 11.7 Hz 46824.19* KPS VAL MIN FREQ 100% 100% 100% 46924.20* TIS VAL MIN FREQ 100% 100% 100% 47024.21 SPEED FDBK FILT 8.0 ms 8.0 ms 8.0 ms 47127 FLUX CONTROL27.01 FLUX OPTIMIZATION NO NO NO 52627.02 FLUX BRAKING YES YES YES 52727.03 FLUX REFERECE 100% 100% 100% 52827.04 FS METHOD OFF OFF OFF 52929 SCALAR CONTROL29.01 FREQUENCY REF (not visible) (not visible) 0.00 Hz 57629.02 MAXIMUM FREQ (not visible) (not visible) 50.00 Hz 57729.03 MINIMUM FREQ (not visible) (not visible) -50.00 Hz 57829.04 IR COMPENSATION (not visible) (not visible) 0.0% 57930 FAULT FUNCTIONS30.01 MOT THERM P MODE DTC DTC DTC 60130.02 MOTOR THERM PROT NO NO NO 60230.03 MOT1 TEMP AI1 SEL NOT IN USE NOT IN USE NOT IN USE 60330.04 MOT1 TEMP ALM 110 110 110 60430.05 MOT1 TEMP FLT 120 120 120 60530.09 MOTOR THERM TIME x.x s x.x s x.x s 60930.10 MOTOR LOAD CURVE 100.0% 100.0% 100.0% 61030.11 ZERO SPEED LOAD 74.0% 74.0% 74.0% 61130.12 BREAK POINT 45.0 Hz 45.0 Hz 45.0 Hz 61230.13 STALL FUNCTION NO NO NO 61330.14 STALL FREQ HI 20.0 Hz 20.0 Hz 20.0 Hz 61430.15 STALL TIME 20.00 s 20.00 s 20.00 s 61530.19 MOTOR PHASE LOSS NO NO NO 61930.20 GROUND FAULT FAULT FAULT FAULT 62030.21 UNDERVOLTAGE ON ON ON 62130.22 OVERVOLTAGE ON ON ON 62230.23 AI<MIN FUNC NO NO NO 62330.24 KEYPAD LOSS FUNC FAULT FAULT FAULT 62430.25 EXTERNAL FAULT NOT SELECT NOT SELECT NOT SELECT 62534 AUTO FILT RESET34.01 OVERVOLTAGE CTRL OFF OFF OFF 70134.02 UNDERVOLTAGE CTRL OFF OFF OFF 70234.03 ROD TORQ CTRL OFF OFF OFF 70334.04 AI<MIN CTRL OFF OFF OFF 70434.05 UNDERLOAD CTRL OFF OFF OFF 70534.06 NUMBER OF TRIALS 0 0 0 70634.07 OFF DELAY TIME 5.0 s 5.0 s 5.0 s 70734.08 TRIAL TIME 3600.0 s 3600.0 s 3600.0 s 70834.09 PRESS SWITCH CTRL OFF OFF OFF 70934.10 LINE CONV CTRL OFF OFF OFF 71050 PULSE ENCODER50.01 ENCODER PULSE NR 2048 2048 2048 100150.02 SPEED MEAS MODE A_-_B_-_ A_-_B_-_ A_-_B_-_ 100250.03 SPEED FDBK SEL INTERNAL INTERNAL INTERNAL 1003

Index Name/Selection FACTORY PCP ESP PB

Additional data: actual signals and parameters

Page 585: VFD Documents

141

50.04 ENCODER FAULT ALARM ALARM ALARM 100450.05 NTAC FILTER 2 ms 2 ms 2 ms 100551 FIELDBUS DATA52 STANDARD MODBUS52.01 STATION NUMBER 1 1 1 105152.02 BAUDRATE 9600 9600 9600 105252.03 PARITY ODD ODD ODD 105370 DDCS CONTROL70.01 CH0 NODE ADDR 1 1 1 137570.02 CH0 BAUD RATE 1 Mbit / s 1 Mbit / s 1 Mbit / s 137670.03 CH0 TIMEOUT 0 ms 0 ms 0 ms 137770.04 CH0 COM LOSS CONTROL NO ERR CHK NO ERR CHK NO ERR CHK 137870.12 CHANNEL 3 ADDR 1 1 1 138671 PUMP CONTROLS71.01 MAX MOTOR TORQUE (not visible) (calculated) (calculated) 139371.02 PUMP ENABLE (not visible) DISABLE DISABLE 139471.03 BACKSPIN LIMIT (not visible) -100.00 rpm -100.00 rpm 139571.04 ROD TORQ STOP LIM (not visible) 2.0 lbft 2.0 lbft 139671.05 BACKSPIN ACCEL TIME (not visible) 3.00 s 3.00 s 139771.06 BACKSPIN SPEED RANGE (not visible) 0.00% 0.00% 139871.07 REDUCTION RATIO (not visible) 1.00:1 1.00:1 139971.08 PUMP FLT RST SEL (not visible) PANEL RESET PANEL RESET 140071.09 RUNTIME RESET (not visible) NOT SELECT NOT SELECT 140171.10 SLEEP FUNCTION (not visible) NOT SELECT NOT SELECT 140271.11 SLEEP AI SEL (not visible) AI1 AI1 140371.12 SLEEP DELAY TIME (not visible) 10.00 s 10.00 s 140471.13 SLEEP LEVEL (not visible) 0.00% 0.00% 140571.14 WAKE-UP LEVEL (not visible) 0.00% 0.00% 140671.15 TORQUE UNITS (not visible) lbft lbft 140771.16 PRESSURE UNITS (not visible) psi psi 140871.17 DEPTH UNITS (not visible) JOINTS JOINTS 140971.18 POWER UNITS (not visible) KW KW 141071.19 SPEED REFERENCE (not visible) MOTOR SPEED MOTOR SPEED -72 PUMP SETUP72.01 HIGH PRESSURE SEL (not visible) NOT SELECT NOT SELECT 141172.02 PRESSURE LATCH (not visible) LATCHING LATCHING 141272.03 DISCHRG FLT ENA (not visible) DISABLED DISABLED 141372.04 DISCHRG PRESS (not visible) 300.00 psi 300.00 psi 141472.05 DISCHRG PRESS SEL (not visible) NOT SELECT NOT SELECT 141572.06 HIGH DISCHRG TIME (not visible) 10.00 s 10.00 s 141672.07 ROD TORQ TIME ENA (not visible) DISABLED DISABLED 141772.08 ROD TORQ 1 FUNC (not visible) NO NO 141872.09 ROD TORQ 1 LIM (not visible) 100.00 lbft 100.00 lbft 141972.10 ROD TORQ1 SPD LIM (not visible) 5 rpm 5 rpm 142072.11 ROD TORQ 1 TIME (not visible) 15.00 s 15.00 s 142172.12 ROD TORQ 2 SPD ENA (not visible) DISABLED DISABLED 142272.13 ROD TORQ 2 FUNC (not visible) NO NO 142372.14 ROD TORQ 2 LIMIT (not visible) 100.00 lbft 100.00 lbft 142472.15 ROD TORQ 2 TIME (not visible) 15.00 s 15.00 s 142572.16 ROD TORQ 2 SPEED (not visible) 0.00 rpm 0.00 Hz 142672.17 ROD TQ2 SPD TIME (not visible) 15.00 s 15.00 s 142772.18 ROD TQ2 LIM COUNT (not visible) 0 0 142872.19 LEVEL CTRL ENABLE (not visible) DISABLE DISABLE -72.20 FLUID LEVEL MAX (not visible) 1000.00 JNTS 1000.00 JNTS -72.21 FLUID LEVEL SET (not visible) 850.00 JNTS 850.00 JNTS -72.22 FLUID LEVEL SEL (not visible) NOT SELECT NOT SELECT -72.23 FLUID LEVEL P_GAIN (not visible) 1.00 1.00 -

Index Name/Selection FACTORY PCP ESP PB

Additional data: actual signals and parameters

Page 586: VFD Documents

142

72.24 LEVEL INTEG TIME (not visible) 10.00 s 10.00 s -72.25 LEVEL CTRL INVERT (not visible) INVERT_PI INVERT_PI -72.26 DSCH PRS TRIP LVL (not visible) 300.00 psi 300.00 psi -73 PUMP SETUP73.01 UNDERLOAD FUNC (not visible) NO NO 142973.02 ROD TORQUE 1 (not visible) 15.00 lbft 15.00 lbft 143073.03 ROD SPEED 1 (not visible) 1000.00 rpm 1000.00 rpm 143173.04 ROD TORQUE 2 (not visible) 15.00 lbft 15.00 lbft 143273.05 ROD SPEED 2 (not visible) 1000.00 rpm 1000.00 rpm 143373.06 ROD TORQUE 3 (not visible) 15.00 lbft 15.00 lbft 143473.07 ROD SPEED 3 (not visible) 1000.00 rpm 1000.00 rpm 143573.08 U-LOAD ACT TIME (not visible) 10.00 s 10.00 s 143673.09 THERM PROT FUNC (not visible) NO NO 143773.10 TEMP FDBK TYPE (not visible) KLIXON KLIXON 143873.11 KLIXON DI SEL (not visible) XT DI2 XT DI2 143973.12 PUMP PT100 AI SEL (not visible) NOT SELECT NOT SELECT 144073.13 ALARM TEMP (not visible) 100.00 °C 100.00 °C 144173.14 FAULT TEMP (not visible) 120.00 °C 120.00 °C 144283 ADAPT PROG CTRL83.01 ADAPT PROG CMD EDIT EDIT EDIT 160983.02 EDIT COMMAND NO NO NO 161083.03 EDIT BLOCK 0 0 0 161183.04 TIMELEVEL SEL 100 ms 100 ms 100 ms 161283.05 PASSCODE 0 0 0 161384 ADAPTIVE PROGRAM84.01 STATUS 162884.02 FAULTED PAR 162984.05 BLOCK1 NO NO NO 163084.06 INPUT1 0 0 0 163184.07 INPUT2 0 0 0 163284.08 INPUT3 0 0 0 163384.09 OUTPUT 0 0 0 1634� � �

164484.79 OUTPUT 0 0 0 -85 USER CONSTANTS85.01 CONSTANT1 0 0 0 164585.02 CONSTANT2 0 0 0 164685.03 CONSTANT3 0 0 0 164785.04 CONSTANT4 0 0 0 164885.05 CONSTANT5 0 0 0 164985.06 CONSTANT6 0 0 0 165085.07 CONSTANT7 0 0 0 165185.08 CONSTANT8 0 0 0 165285.09 CONSTANT9 0 0 0 165385.10 CONSTANT10 0 0 0 165485.11 STRING1 MESSAGE1 MESSAGE1 MESSAGE1 165585.12 STRING2 MESSAGE2 MESSAGE2 MESSAGE2 165685.13 STRING3 MESSAGE3 MESSAGE3 MESSAGE3 165785.14 STRING4 MESSAGE4 MESSAGE4 MESSAGE4 165885.15 STRING5 MESSAGE5 MESSAGE5 MESSAGE5 165992 FIELDBUS OUTPUT92.01 DATASET2 OUTPUT1 801 801 801 177192.02 DATASET2 OUTPUT2 102 102 102 177292.03 DATASET2 OUTPUT3 107 107 107 177395 HARDWARE SPECIFIC95.01 FAN SPD CTRL MODE controlled controlled controlled 1825

Index Name/Selection FACTORY PCP ESP PB

Additional data: actual signals and parameters

Page 587: VFD Documents

143

* Indicates parameters that are visible only after entering proper code in 16.03 PASS CODE.

95.05 ENA INC SW FREQ 0 0 0 182995.06 LCU Q POW REF 0 0 0 183095.07 LCU DC REF [V] 0 0 0 183195.08 LCU PAR 1 SEL 106 106 106 183295.09 LCU PAR 2 SEL 110 110 110 183395.10 TEMP INV AMBIENT 40 oC 40 oC 40 oC 183498 OPTION MODULES98.01 ENCODER MODULE NO NO NO 190198.02 COMM MODULE NO NO NO 190298.03 DI/O EXT MODULE 1 NO NO NO 190398.04 DI/O EXT MODULE 2 NO NO NO 190498.06 AI/O EXT MODULE 1 NO NO NO 190698.07 AI/O EXT MODULE 2 NO N/A NO 190798.09 DI DEBOUNCE FILT 50 50 50 190998.10 AI/O EXT AI1 FUNC UNIPOL XTAI1 UNIPOL XTAI1 UNIPOL XTAI1 191098.11 AI/O EXT AI2 FUNC UNIPOL XTAI2 UNIPOL XTAI2 UNIPOL XTAI2 191198.12 AI/O EXT AI3 FUNC UNIPOL XTAI3 UNIPOL XTAI3 UNIPOL XTAI3 191298.13 AI/O EXT AI4 FUNC UNIPOL XTAI4 UNIPOL XTAI4 UNIPOL XTAI4 191399 START-UP DATA99.01 LANGUAGE ENGLISH ENGLISH ENGLISH 192699.02 APPLICATION MACRO FACTORY PCP ESP 192799.03 APPLIC RESTORE NO NO NO 192899.04 MOTOR CTRL MODE DTC DTC SCALAR 193099.05 MOTOR NOM VOLTAGE 0 0 0 193099.06 MOTOR NOM CURRENT 0 0 0 193199.07 MOTOR NOM FREQ 50 50 50 193299.08 MOTOR NOM SPEED 0 0 0 193399.09 MOTOR NOM PROWER 0 0 0 193499.10 MOTOR ID RUN NO NO NO 193599.11 CALC MOTOR TORQUE (calculated) (calculated) (calculated) 1936

Index Name/Selection FACTORY PCP ESP PB

Additional data: actual signals and parameters

Page 588: VFD Documents

144

Additional data: actual signals and parameters

Page 589: VFD Documents

145

Appendix A: Software One-Line Diagrams

Figure A-1 SPD/TQ Chain

Appendix A: Software One-Line Diagrams

Page 590: VFD Documents

146

Appendix A: Software One-Line Diagrams

Page 591: VFD Documents
Page 592: VFD Documents

3AU

A000

0005

224

/ 3A

FE68

6092

59 R

ev B

/ E

NE

FFE

CTI

VE

: 04/

14/2

008

ABB OyAC DrivesP.O. Box 184FI-00381 HELSINKiFINLANDTelephone +358 10 22 211Telefax +358 10 22 22681Internet www.abb.com

ABB Inc.Automation TechnologiesDrives & Motors16250 West Glendale DriveNew Berlin, WI 53151USATelephone 262 785-3200

800-HELP-365Fax 262 780-5135

ABB Beijing Drive Systems Co. Ltd.No. 1, Block D, A-10 Jiuxianqiao BeiluChaoyang DistrictBeijing, P.R. China, 100015Telephone +86 10 5821 7788Fax +86 10 5821 7618Internet www.abb.com