Vessel Design Course Notes

Embed Size (px)

Citation preview

  • 8/15/2019 Vessel Design Course Notes

    1/29

    Cairo University

    Facul ty of Engineer ing

    Chemical Engineer ing Department

    Prof. Dr . Mohamed Hanafy

    Eng. Hadir Wahid

    Eng. Fady Gamal

    2010 –  2011

  • 8/15/2019 Vessel Design Course Notes

    2/29

     

    Design of Vessels under Internal Pressure

    (Pin > Pout)

    1. Design of Spheri cal Vessels:

    C  P  E 

     R P t 

    d all 

    id 

     sp 

    *2.0*2

    *

       

    Where:

      tsp: Thickness of the spherical vessel, inch.

      Pd : Design pressure, Pd = 1.1 Pmax

      Pmax: Maximum internal pressure (gauge not absolute), psi

     

    R i: Vessel internal radius, inch.

      σall: Maximum allowable strength of the material of construction of the vessel,

     psi

      E: Welding efficiency, usually taken 0.8 (if not given)

      C: Corrosion allowance,

    C = 1/16" for mi ld corr osion

    C = 1/8" for severe corrosion

    2. 

    Design of Cylindr ical Vessels:

    2.1. Design of Shell :

    C  P  E 

     R P t 

    d all 

    id 

     sh 

    *6.0*

    *

       

    Where:

      tsh: Thickness of the shell of the vessel, inch.

    2.2. Design of H ead:

    2.2.1.   Hemispherical Head:

    C  E 

     D P t 

    all 

    ishd 

    *4

    *

      

    Where:

      th: Head thickness, inch.

     

    Dish: Shell inside diameter, inch.

  • 8/15/2019 Vessel Design Course Notes

    3/29

     2

    2.2.2.   Elliptical Head:

    C  K  E 

     D P t 

    all 

    ishd 

    h    **4

    *

       

    Where:

      K: Constant depends on the ratio of head height to the diameter and

    can be obtained from the following table:

    K 6 4.2 3 2 1.5 1

    h/D 0.14 0.162 0.193 0.25 0.33 0.5

    Note:

    We will take the value of h/D = 0.25 to get K = 2. This value will give

    a head thickness near or equal to that of the shell to avoid "welding 

    bridge" between them.

    2.2.3.   Dished Head:

    C  K  E 

     R P t 

    all 

    h    **2

    *

       

    Where:

      R: Crown radius, R ≤ Dish (Take R = Dish), inch.

      K: Constant depends on the ratio between the knuckle radius 'r' and the

    crown radius and can be obtained from the following table:

    r/R 0.06 0.1 0.2

    K 1.75 1.5 1.7

    2.2.4.   Flat Head:

    C  E 

     P  Dt 

    all 

    ishh 

    *

    5.0

       

    2.2.5. 

    Conical Bottom:

    C  E 

     D P t 

    all 

    ishd 

          cos**2

  • 8/15/2019 Vessel Design Course Notes

    4/29

     3

      Where:

      tc: Thickness of the conical bottom, inch.

      2α: Apex angle. 

    To get 'α' (if not given):

    h

     Dish

    2tan      

    Where:

      h: Conical bottom height, inch.

    2.2.5.1.  Special Parts for Conical Bottom:

    a) 

    Compression ring (  If α ≤ 30° ):

    We should get the dimensions of the ring: b, h

    )1(*8

    tan*

    *

    **

    2

     

      

     

     E 

     D P hb A

    all 

    ishd ring   

    Where:

      Aring: Area of the ring, inch.2

      δ: An angle and can be obtained from the following table:

     E  P 

    all 

    d * 

     0.001 0.002 0.003 0.004 0.006

    δ  13 18 22 25 30

    Note:  

    The minimum dimensions for the ring is 1" * 1" so, we assume one

    of them [b or h] and get the other from 'Aring':

  • 8/15/2019 Vessel Design Course Notes

    5/29

     4

     If the calculated dimension   "1  take it 1".

     If the calculated dimension   "1  take it as it is.  

    b)   Intermediate Part (If 30° < α ≤ 75°) 

    C  K  E 

     D P t all 

    oshd i     *

    *2

    *

       

    Where:

      ti: Thickness of the intermediate part, inch. 

      Dosh: Outside diameter of the shell, inch. 

    Dosh = Dish + 2 tsh 

      K: Constant can be obtained from the following table: 

    α  30 45 60 70

    K 1.31 2.01 3.2 3.7

     cos

    *2   iosh

      t  D L   

    Where:

     

    2L: Intermediate part length, inch.

    Note:

    If you calculate 'α' from the beginning and find that: α > 75°,

    calculate the thickness of the conical bottom from the following

    equation:

     E 

     P  Dt t 

    all 

    ishh   c  

    *

    5.0

       

  • 8/15/2019 Vessel Design Course Notes

    6/29

     5

    Design of Vessels under Internal Pressure

    (Pout > Pin)

    1. Design of Shell :

    3' )(*ish

     shc

     D

    t  E  K  P  

     

    Where:

      Pc = The critical pressure, psi

    Pc = 4 Pact 

    Pact = Pout  –  Pin 

      E' = The modulus of elasticity of the material of construction, psi

      K = The collapse coefficient,

    ),( sh

    ish

    ish

     sh

     D

     D

     L f   K    

    & can be obtained from the following chart:

  • 8/15/2019 Vessel Design Course Notes

    7/29

     6

     

    1.1. Steps for calculating the shell thickness:

     

    Assume:"

    16

    2 sht   

     

    Calculate:ish

     sh

     sh

    ish

     D

     L

     D,  

     

    Get (K) from the chart. 

      Calculate Pc)cal. 

      If ..   ))  givccal c   P  P    , the thickness is o.k.,

    tsh = assumed thickness + corrosion allowance

     

    If  ..   ))  givccal c   P  P    , increase the thickness by"

    161 and repeat the above steps

    until ..   ))  givccal c   P  P    .

    1.2. 

     In case of tall vessels  )6(   m L :

    In this case:

      shcal c   t  P  K  L .)  

    So in order to avoid the large shell thickness, we put more than one ring

    [stiffening rings] around the tower to protect it from collapse and reduce the

    required shell thickness. In this case, the length used in the chart is the

    distance between the rings not the shell height:

    1

     N 

     Ll    shnew  

    Where:

      Lnew = The distance between rings, inch.

      Lsh = The shell height, inch.

       N = No. of stiffening rings.

    As the dimensions of the rings are required, we can calculate it as following:

    '

    .

    24

    **)

     E 

    l  D P  I 

      newosh givc 

    12

    4b I      Or

    12

    3bh I     [According to the shape of the ring]

  • 8/15/2019 Vessel Design Course Notes

    8/29

     7

      Where:

      I = Moment of inertia.

    (Calculate (I) and from it calculate the ring dimensions)

    2. 

    Design of heads:2.1. Hemispherical head:

    2' )2

    (2.1ish

    hc

     D

    t  E  P  

     

    2.2. Dished head:

    2'

    )(2.1  R

     E  P   h

    c    Where:

      R = Crown radius, ish D R   (Take R = Dish).

    2.3. El li ptical head:

    2

    43

    ' )*

    (2.1ish

    hc

     D

    t  E  P  

     

    2.4. Conical bottom:

    3' )(*ish

    cc

     D

    t  E  K  P  

     

    As the above rule contains the coefficient (K), the procedure of calculating the

    thickness of the conical is the same as that of the shell. In this case the value of

    L/D used in the chart depends on the apex angle:i.  If 452  :

    ish D

    h

     D

     L  

    ii.  If   120245     :

    1 D

     L 

    iii. 

    If 1202  :

  • 8/15/2019 Vessel Design Course Notes

    9/29

     8

      Get the thickness of the conical bottom from:

    C  E 

     P  Dt 

    all 

    act ishc  

    *

    *162.0 .

       

  • 8/15/2019 Vessel Design Course Notes

    10/29

     9

    Design of Openings

    (Pipes & Manholes)

    1. I n Case of Vessels Under I nternal Pressure:

    1.1. Design of Neck:

    C  P  E 

     R P t 

    d all 

    id neck   

    6.0*

    *

       

    Where:

      tneck  = Thickness of pipe or manhole, inch.

      R i = Radius of pipe or man hole, inch.

     Note: take the diameter of man hole = 70 cm (if not given).

      σall = Allowable tensile strength of the material of construction of

     pipe or man hole (the same value of the shell and its heads), psi.

      C = Corrosion allowance (the same value used for shell and heads),

    inch.

      Pd = Design pressure, psi. Pd = 1.1 Pmax (Pmax is the internal pressure

    inside the vessel).

     

    E = Welding efficiency (the same value used for shell and heads).

    1.2. Design of Gasket:

    The gasket type is chosen according to temperature and pressure as shown in

    the following table:

    Gasket typem

    (Gasket factor)

    y

    (Seating

     pressure, psi)

    Working

    temperature

    (°C)

    Working

     pressure (atm.)

    Rubber flat 1 200

    < 100 < 10Rubber with

    cotton fabric

    flat

    1.2 400

    Steel metal flat 5.5 18000

    > 350 > 20Aluminum

    metal flat4 88000

    Ring steel 5.5 18000

  • 8/15/2019 Vessel Design Course Notes

    11/29

     1

    Stainless steel 6.5 26000 > 350 > 20

    Corrugated

    metal

    aluminum

    2.3 2000

    > 350

  • 8/15/2019 Vessel Design Course Notes

    12/29

     

     y

    b

    d Q

     P mbd  P bd Q

     g 

     g  g 

    mb

    mmb

    *2**

    *****)*(

    "

    maxmax

    2

    32

    4

    '

      

        

     

    Where:

      Q' b = Sealing load, lbf  

      Q'' b = Seating load, lbf  

     Note: you will calculate the sealing load and the seating load, take the

    largest one and substitute in the following equation to get the number

    of bolts:

    bolt all inb

    b

    bbbolts

    C d   f  

      f  

    Qor Qn

    )*)(

    )()(

    2

    4

    "'

        

     

    Where:

      n bolts = The required number of bolts [4 –  8 –  12 –  16 –  20].

      f  b = The force exerted by one bolt, lbf  

      din = The diameter of the bolt, inch. [Take it 1/2" or 1"].

      C = Corrosion allowance of bolt [Take it 1/16"].

      σall) bolt = The allowable tensile strength of bolt [Take it 12000 psi].

    1.4. Design of F lange:

    bolt all inb

    act bolt bb

    d   f  

    n  f  Q  f  

    )**

    )*

    2

    4

    '

    '

        

     

    Where:

      Q bf  = The actual load on flange, lbf  

      f' b = The same as f  b but without corrosion allowance.

    "4opi s

      D D   if   atm P    6  

    "7opi s

      D D   if   atm P    256    

  • 8/15/2019 Vessel Design Course Notes

    13/29

     2

      Where:

      Ds = The bolt circle diameter, inch.

     E  D D  so  f   *2  Where:

      Dof  = The outside diameter of the flange, inch.

      E = the edge distance, inch. "E" can be obtained from the next table:

    din (inch.) E (inch.)

    1/2 5/8

    1 17/16

    2 2

    2

    )*2(

    *2

    **

    6**

    '

    '

    h D D

    h D D

    C  D

    l Qt 

      f  

      f  

      f  

    i s

    i  f  

    all   f  

    b

      f  

          

     

    Where:

      tf = The thickness of flange, inch.

      Dif  = The inside diameter of flange, inch.)(

    op g  f    iii  D D D    

      h' can be calculated from the following equation:

    all i

    i sb

    act h D

    h D DQ

    h

     f 

     f 

     f 

         )(

    22*4.2

    '

    '

    '

      

        

     

    To get h':

    -  Assume h' = 1" and get h'act.

    -  If h'act ≤ h', so your assumption is correct and take h' = 1". 

    If h'act > h', assume new value for h' [e.g. 1.5"] and get h'act and so on.

  • 8/15/2019 Vessel Design Course Notes

    14/29

     3

    1.5. Design of F lat Cover: (in case of man hole only):

    C  P 

     Dt all 

    d  sC   f    

      

    *162.0..  

    Where:

      tf.c. = The flat cover thickness, inch.

    1.6. Design of Reinforcement Ring: (for openings diameters > 2" )

    30

    2

    321321   *)(***   t  D Dt t t t t  Dt  neck neck    bo    Where:

     

    t1 = The shell thickness.

      t2 = The opening thickness.

      t3 = The ring thickness, Take it 1".

      D b = The outside diameter of the ring.

    2. I n Case of Vessels Under External Pressure:

    2.1. Design of Neck:

    The thickness of opening (pipe or man hole) is calculated from the following

    equation:

    3

    '*)

     

     

     

     

    neck i

    neck 

    cal c D

    t  E  K  P 

     

    Calculate tneck from the above equation in the same way used in calculating

    tshell of vessel under external pressure and using the same chart of "K". In this

    "K" will be function of:

     

      

     

    neck n eck    i

    neck 

    i

    neck 

     D

     D

    l ,

     

    If "lneck " is not given take it in the range: 50 –  70 cm.

    2.2. Design of Gasket:

    Take the gasket type the same as the material of construction of the

    shell.

  • 8/15/2019 Vessel Design Course Notes

    15/29

     4

    -  In the equation of "Dog" previously mentioned, put "Pact" instead of

    "Pmax".

    2.3. Design of Bolts:

    The diameter of the bolt (din) will be always 1/2".- 

    Calculate Q" b only as it will has the largest value.

    2.4. Design of F lange:

    - For calculating "Ds" we will always use the equation:

    "4opi s

      D D  

    2.5. Design of F lat Cover:

    -  In calculating the thickness of flat cover (tf.c.

    ), put "Pact

    " instead of

    "Pmax" in the equation.

  • 8/15/2019 Vessel Design Course Notes

    16/29

     5

    Design of Tall Vertical Vessels

    (L > 6 m)

    After calculating the shell thickness from previous design methods for vessels

    under internal and external pressures, we should check that this thickness will

    withstand the loads applied on it. This check is done on three cases: operation,

    shutdown and erection.

    1. Check for Operation:

    The following conditions should be achieved:

     External  Internal 

     y

     External  Internal 

     E 

     p Ld wdw st comb

    all  Ld wuw st comb

    "",""

    3)

    "",""

    )

    ..

    ..

        

         

     

     E C t 

     D P 

     sh

    mshd  L

    )(4     

     

    Where:

      Dmsh = The shell mean diameter, Dmsh = (Dish+Dosh) / 2.

      "Pd" is used in case of vessels under internal pressures, and replaced by

    "Pact" in case of vessels under external pressures.

     E C t  D

     L L D P 

     shmsh

    oinsw

    w

    *)(**

    2*)**7.0*(

    2

    4

    .

     

      

    Where:

      Doins. = The outside diameter of insulation, Doins. = Dosh + 2*tins. 

    (If there is no insulation, put Doins.= Dosh)

      L = Shell length, inch.

      Pw = The wind pressure, psi. The wind pressure can be obtained from

    the following table:

  • 8/15/2019 Vessel Design Course Notes

    17/29

     6

    Shell Height, inch.Wind Pressure (Pw, psi)

    Internal Region Coastal Region

    0 - < 360 0.138 0.2

    360 - < 600 0.174 0.27600 - < 1200 0.2 0.347

    1200 - < 6000 0.27 0.42

     E C t  D

    wt 

     shmsh

    d *)(**

    1.1

      

       

    liqiiiconiconconical 

    coninliq

    iiiconiconconical iioconoconconical conical 

    linilinolinlining 

    ishtray

    trays

    trays

    liqishliq

    insiinsoinsins

     spish sp

    headshh sphead 

     sh ell ishosh sh ell 

    traysliqinsheads sh ell 

    d d  D D H wt 

    d d  D D H d d  D D H wt 

     L D Dwt 

     L Dareaunit wt  L

     N wt 

     L Dwt 

     L D Dwt 

     Dished  Rd elliptical  Dd 

     N t d wt 

     L D Dwt 

    wt wt wt wt wt wt 

       

      

      

      

      

      

      

     

     

     

    *12

    )(*)

    28.0*12

    *

    12

    *)

    **)()

    ***).)()

    )

    **)

    *)()

    ,

    *)***()

    *)()

    ...)))))

    2

    .

    2

    ....

    2

    .

    22

    .

    2

    .

    .

    2

    .

    2

    .4

    2

    4

    .

    2

    4.

    .

    2

    .

    2

    .4.

    43

    2

    21

    22

    4

    .

     

     

      

       

     

      

       

     

    2. Check for Shutdown:

    3))

    ))

    ..

    ..

     p sh u td o wnd wd w st comb

    a ll  sh u td o wnd wu w st comb

     y

     E 

          

            

     

    Note: in case of shutdown, σd is calculated from the same equation of operation

     but don't put the weight of liquid in Σwt.

  • 8/15/2019 Vessel Design Course Notes

    18/29

     7

    3. Check for Erection:

    3))

    ))

    ..

    ..

     perectiond wd w st comb

    a ll erectiond wu w st comb

     y

     E 

          

            

     

     Note: in this case we only put the weight of shell [or shell + one head] in Σwt. in

    the equation of σd.

      Design of Skir t Support:

    Assume: Disk  = 0.95 Dish

    Dosk = 1.05 Dosh 

    2isk osk 

     sk  D Dt     

    Where:

    -  Disk = The inside diameter of skirt support.

    Dosk = The outside diameter of skirt support.

    -  tsk  = The thickness of the skirt.

    Check on the thickness of the skirt:

    3))

    ))

    ..

    ..

     poperationd wd w st comb

    a ll erectiond wu w st comb

     y

     E 

          

            

     

     E C t  D

    l  L D P 

     sk msk 

     sk osk w

    w )(*

    )2

    (*7.0**

    .2

    .4

    2

    .

      

      

     

    Where:

    -  lsk = The height of skirt support, lsk  = 2 –  2.5 m

     E C t  D

    wt wt wt 

     sk msk 

     skirt head  sh ell erectiond 

    *)(**

    ))))

      

       

  • 8/15/2019 Vessel Design Course Notes

    19/29

     8

     E C t  D

    wt wt 

     sk msk 

     skirt operationd 

    *)(**

    )1.1)

      

       

      Design of Bearing Plate:

    Assume: Dib = 0.8 Disk

    Dob = 1.2 Dosk

     psioperationd wdw st comb   525))..             

     

     

     

     

    2

    *

    )2

    (*7.0**

    44

    64

    2

    ob

    ibob

     sk osk w

    w

     D D D

    l  L D P 

      

       

     

    )(

    )1.1)

    22

    4   ibob

     skirt operationd 

     D D

    wt wt 

      

       

     D D

    t all 

     st combibob   dw

     

      .).3

    2  

    Where:

    -  t = The thickness of the bearing plate.

      Design of Anchor Bolts:

    erectiond wtension   ))max             

    Where:

    σw is that calculated above in the bearing plate.-  σd is calculated from:

    )(

    ))))

    22

    4   ibob

     skirt head  sh ell operationd 

     D D

    wt wt wt 

      

       

    If σtension) max = - ve value: the number of bolts equal 4 used for fixation.

  • 8/15/2019 Vessel Design Course Notes

    20/29

     9

      If σtension) max = + ve value: the number of bolts calculated from the

    following equation:

    boltsall in

    ibobtensionbolts

    C d  D D N 

    .

    2

    4

    22

    4

    *)(*)

     

      

     

    Where:

    -  σall).bolts = 12000 psi.

  • 8/15/2019 Vessel Design Course Notes

    21/29

     21

    Design of Shor t Vertical Vessels

    (L < 6m)

    In designing short vessels, we firstly calculate the thickness of shell and heads

    according to the operating pressure [i.e. internal or external]. In this case we will not

    do checks on the thickness as done in tall vessels so, we will design the support

    directly.

      Design of Lug support:

     N  D

    h H  D P 

     N 

    wt  f 

    bolt 

    ow s

    *

    7.0*****4.*1.1  '

     

     

    Where:

    -  f s = The maximum compressive / support, lbf .

    -   N = Number of supports (lugs). Minimum No. of lugs = 4 [Take it 4 if

    not given].

    -  Pw = Wind pressure, psi.

    -  D'o = The biggest diameter in the vessel, inch.

    D'o = Dosh (If there is no insulation)

    D'o = Doins. (If there is insulation)

    -  H = The shell length (tangent to tangent), inch.

    -  h = The length from the point at which wind effect appears to the end

    of the lug length, inch.

    h = h' + 0.25 H

    -  h' = The lug support height, inch.

    h' ≥ 0.25 H + 2m [Use this rule only when h' is not given]

    D bolt = The diameter of the circle passed through bolts, inch.

    D bolt = D'o + 20"

    After calculating f s, you should select the dimension of pipe (lug) and check on

    your selected dimensions [i.e. check if the lug supports will withstand the load applied

    on it]. Following are the steps used to select the suitable pipe dimensions:

    1.  From the following table, assume nominal diameter to get the inside

    and outside diameter of the pipe:

  • 8/15/2019 Vessel Design Course Notes

    22/29

     2

     

    Begin your assumption with nominal diameter = 2" [always take the

    Schedule number = 80].

    2.  Calculate the radius of gyration (r) from the following equation:

    22

    4

    44

    64.

     p p

     p p

    io pipe

    iocal 

     pipe

     D D A

     D D I 

     A

     I r 

       

       

     

  • 8/15/2019 Vessel Design Course Notes

    23/29

     22

    Where:

    -  Dop = The outside diameter of the pipe, inch.

    Dip = The inside diameter of the pipe, inch.

    -  Ical = Moment of inertia, inch4.

    -  A pipe = The area of the pipe, inch2.

    3.  Calculate the value ofr 

    h' .

    4.  Make the check on the selected pipe dimensions according to the value

    ofr 

    h'. Those values are summarized in the following table:

    h'  60

    '

    h  200

    '60  

    h  200

    '

    The Check

    Relation  pipeall 

     pipe

     s

     A

     f   

     

    2

    .

    .

    '*

    11  

     

      

     

    h A

     f  

     pipe

     pipe

    all 

    all 

     pipe

     s

     

     

     

    ..min

    .min

    '2

    '

    **

    *5

    cal 

    critical 

     scritical 

     I  I 

    h

     I  E  F 

     f  F 

     

     

     Note:

    Take  psi p ipeall   15000.       if not given.

    5.  If the corresponding check is not correct, assume another nominal

    diameter [greater than 2"] and repeat the above steps.

    Note:

    I f you increase the nominal diameter several times [for

    example til l 20" ] and the check i s stil l not veri f ied, increase

    the number of lug supports [6, 8,…]. 

  • 8/15/2019 Vessel Design Course Notes

    24/29

     23

      Design of Bearing Plate:

    Assume:

      p

     p p

     p p

    beffective

    bb

    ob

     A A

     D A

     D D

    8.07.0

    )(

    *2

    2

    4

       

     

    Where:

    -  D bp = The diameter of the bearing plate, inch.

    -  A bp = The area of the bearing plate, inch2.

    -  Aeffective = The effective area of the bearing plate, inch2.

    In order to check on this assumption, use the following formula:

     N  D A

    h H  D P 

     A

    wt  N 

    wt 

     psi

    bolt effective

    ow

    w

    effective

    lug 

    wd compcomb

    **

    **7.0***4

    .).1.1

    525

    '

    .). max

      

      

          

     

    If the check is not correct, increase the D bp till the check become correct.

    Note:

    I f you increase the diameter of bearing plate several times [f or

    example til l 6D op  ] and the check is sti l l not veri f ied, increase

    the number of lug supports [6, 8,… ] or make more than plate

    instead of one plate. Those plates are in the form of layers as

    shown in the fi gure:

  • 8/15/2019 Vessel Design Course Notes

    25/29

     24

     

    This wil l distribute the stress on the plates instead of being

    concentrated on only one plate.

      Design of Anchor Bolts:

    erectiond wtension   ))max             

    Where:

    -  σw is that calculated above in the bearing plate.

    -  σd is calculated from:

    effective

     Lu g head  sh ell 

    operationd  A

    wt  N 

    wt wt  ).))

    )

       

    If σtension) max = - ve value: the number of bolts equal 4 used for fixation.

    If σtension) max = + ve value: the number of bolts calculated from the

    following equation:

    boltsall in

    effectivetension

    boltsC d 

     A N 

    .

    2

    4  *)(*

    *)

      

      

      

     

    Where:

    -  σall).bolts = 12000 psi.

    Lug Support

  • 8/15/2019 Vessel Design Course Notes

    26/29

     25

    Design of Horizontal Vessels

    Like short vessels, in designing horizontal vessels, we firstly calculate the thickness

    of shell and heads according to the operating pressure [i.e. internal or external]. Here

    also we will not do checks on the thickness as done in tall vessels so, we will design

    the support directly.

      Design of Saddle Support:

    The horizontal vessel is supported on at least 2 saddles supports. The saddle

    support consists of sheet and rabbles:

    Rabbles are used to reinforce the sheet and prevent its bending.

    The distance between the two saddles "c" can be obtained from the following

    equation:

    al c   2'   Or bl c   2'  Where:

    -  l' = Lsh + h

    Lsh = The shell length, inch.

    h = The height of one head, inch.

    In case of elliptical or dished head: h / Dish = 0.25 → get h.

    -  a = b = The distance from each support to the end of the shell, inch.

    '*207.0   l ba    

    You should check if the distance between the supports "c" is sufficient or not.

    The following are the two checks on the distance "c":

    Sheet

    Sheet

    RabbleBearing

    Plate

  • 8/15/2019 Vessel Design Course Notes

    27/29

     26

     External  Internal  E 

     External  Internal 

     y

    all  L M TenComb

     P  L M CompComb

    "",""

    *

    "",""

    3

    ...

    ..

        

         

     

     E C t  D

     Moment  Max

     E C t 

     D P 

     sho M 

     sh

    md 

     L

     sh

     sh

    )(**

    .

    )(4

    *

    24  

        

      

     

    Where:

    -  Dmsh = The mean diameter of the shell, inch.

    2

     sh sh

     sh

    oi

    m

     D D D

     

    In case of vessels under external pressure, put "Pact." Instead of "Pd"

    the equation of "σL".

    -  Max. Moment can be calculated from:

    '

    .

    '**.   2471

    wt q

    l q Moment  Max

     

    Where:

    -  q = The maximum weight / unit length, lbf  / inch.

    Note:

    I f the above 2 checks are satisfied, the distance between the two

    suppor ts is o.k. and if not we can decrease the distance between

    the two supports or put a third saddle suppor t in between the

    other two suppor ts or we can increase the thickness of shel l [by

    1 / 16" ].

  • 8/15/2019 Vessel Design Course Notes

    28/29

     27

      Now, we should choose the dimensions of the sheet:

    Assume:

    "*

    "2"5.1

    l t  Area

     sh eet  sh eet 

     sh eet 

     

    Where:

    -  tsheet = the sheet thickness, inch.

    -  l" = The sheet width, inch.

    180120*"

     shi Dl  

     

    To check on this assumption:

     N 

    wt  f  

     y

     Area

     f  

     s

     p

     sh eet 

     s

    .

    3

     

    Where:

    -   N = No. of saddles.

     

    Design of Bearing Plate:

    Rabble

    Anchor BoltBearing Plate

    Sheet

  • 8/15/2019 Vessel Design Course Notes

    29/29

    The dimensions of the bearing plate are:

    Width = 12" –  15"

    Length = l" + 6"

    Assume:

    )6"(*12     l  A pb  

    Where:

    -  A bp = The area of the bearing plate, inch2.

    Check on this assumption:

     psi A

    wt  f 

     pb

     saddle s

    525

    .)

     

    Where:

     steel rabblesrabbles

     steel  sadd le sheet  sheet 

    rabbles sheet  saddle

     N wt 

    ht l wt 

    wt wt wt 

      

      

    **10*3*5.0*.)

    **"*.)

    .).).)

    41

     

    -  hsaddle = The height of saddle, inch. [Take it 1.5 –  2m if not given].

     Nrabbles = No. of rabbles = 8.

    Note:

    I f the check is not satisfied, increase the area of the bearing plate

    [i.e. increase the width to 13" or 14" …. Or the length to l"+8 or

    l " +9 Or increase both the width and the length].

      Design of Anchor Bolts:

    As the wind has no effect on horizontal vessels, the number of bolts required

    is 4 bolts only for fixation.