91
VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE Dr RAJESH K F

VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

  • Upload
    colman

  • View
    42

  • Download
    0

Embed Size (px)

DESCRIPTION

VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE. Dr RAJESH K F. 10% of patients presenting with VT have no apparent structural heart disease VT in structurally normal hearts can be broadly considered under Non–life-threatening monomorphic VT - PowerPoint PPT Presentation

Citation preview

Page 1: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

VENTRICULAR TACHYCARDIAS IN THEABSENCE OF STRUCTURAL HEART DISEASE

Dr RAJESH K F

Page 2: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

10% of patients presenting with VT have no apparent structural heart disease VT in structurally normal hearts can be broadly considered under Non–life-threatening monomorphic VT Life-threatening polymorphic VT

Page 3: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

NON–LIFE-THREATENING (TYPICALLY MONOMORPHIC)

Classified on basis of site of origin Most common sites are ventricular outflow tracts and left ventricular fascicles

Page 4: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Idiopathic left VTLeft posterior fascicleLeft anterior fascicleHigh septal fascicle

OthersMitral annulusTricuspid annulusPapillary musclePerivascular epicardial

Outflow tract VTRight ventricular outflow- 80% Pulmonary arteryLeft ventricular outflow-10% Aortic sinus of Valsalva Aortic cusps Area of aortomitral continuity Superior basal septum near His bundle(Peri His bundle) Epicardial surface of outflow tracts

Page 5: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

OUTFLOW TRACT VT

Idiopathic VT originate most commonly in outflow tract area Nearly 80% of which originate from RVOTOther outflow tract sites are rare

Page 6: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Phenotypes are a continuum of the same focal cellular process Premature ventricular complexes (PVCs) Nonsustained,repetitive monomorphic VT(RMVT) Paroxysmal, exercise-induced sustained VT Considerable overlap observed among three phenotypes Ablating one phenotype at a discrete site eliminates other two Signature characteristic of sustained RVOT and LVOT istachycardia is termination by adenosine and verapamil

PHENOTYPES

Page 7: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

RVOT is bounded by pulmonary valve superiorly and superior aspect of tricuspid apparatus inferiorly RVOT is leftward and anterior to LVOTRVOT is a muscular infundibulum circumferentially

Upper part of septal wall is the conus arteriosus, bordered below by supraventricular crest

ANATOMIC CORRELATES

Page 8: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

LVOT is region of LV between anterior cusp of mitral valve and ventricular septumMuscular and fibrous parts Large of part of right and some part of left aortic sinuses of Valsalva overlie muscular LVOT Close proximity to AV node and His bundle -early activation in VT

Page 9: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Non-coronary cusp and posterior aspect of left coronary cusp are continuous with fibrous aortomitral continuityExplain lack of VT related to the non-coronary cusp

Page 10: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

VT from aortic sinuses of Valsalva arise from muscular extensions of the LVOT to areas above the base of the aortic valve cuspsThese muscle fibers often exhibit slow conduction and fractionated electrograms.

Page 11: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Localization of site of VT origin can be predicted using QRS morphology on surface ECG and anatomic relationships help to explain shared ECG patterns and subtle differences

Page 12: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

LBBB and inferior axis Right sided origin- LBBB pattern with transition from a small r-wave to a large R-wave at V3 to V4OT site - inferior axis

RVOT VT

Page 13: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

RVOT region can be divided into nine regions

Anterior sites demonstrate Q wave (Q or qR) in lead I and QS in lead aVL

Posterior sites demonstrate R wave in lead I and early precordial transition (R> S in V3)

Between anterior and posterior locations typically demonstrate a multiphasic QRS morphology in lead I

JADONATH AND COLLEAGUES

Page 14: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Differentiation of septal from free wall RVOT VT RVOT VTs originating from septum - taller,narrower monophasic R waves in inferior leads Free wall RVOT VT- typically broader QRS (>140ms) and R wave notching in inferior leads Later transition in precordial leads (>V4)

DIXIT AND COLLEAGUES

Page 15: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Anterior position of free wall relative to septum -Accounts for deeper S wave in lead V2 than RVOT septumSeptal site associated with a Q/q wave in lead I, whereas a free-wall site inscribes an R/r wave.

Caudal (> 2 cm from PV) Versus CranialVT arising >2 cm of the pulmonary valve near His bundle virtually always has a negative QRS in lead aVL

Page 16: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Approximately 1 cm above pulmonic valveAssociated with a precordial transition in leads V3 or V4(PA is located leftward of and anterior to RVOT)qR configuration in lead I Larger Q wave in lead aVL than in AvrLocation superior to RVOT results in a relatively greater R wave amplitude in inferior leadsMapping RVOT area -low-voltage atrial or local ventricular potential of <1-mV amplitude RF ablation performed on PA requires more attention

PULMONARY ARTERY VT

Page 17: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Atriofascicular fibers (Mahaim fibers)AVRT using Rt-sided accessory pathwayVT after repair of TOFARVD

DIFFERENTIAL DIAGNOSIS OF RVOT VT

Page 18: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ECG during VT shows S wave in lead I R-wave transition in lead V1or V2(Earlier precordial transition zone) More rightward axes Taller R waves in inferior leads

LVOT VT

S wave in LI and R-wave transition in V1 suggest LVOT VT. R:S amplitude ratio of 30% and R:QRS duration ratio of 50% Presence of an S wave in leads V5 and V6 suggests an

infravalvular origin of the tachycardia.

Page 19: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Shows one of the following depending on site of origina)Basal left interventricular or septal origin is suggested by LBBB morphology with an early precordial transition in lead V2 or V3,S wave in lead V6 (due to activation of the left bundle Purkinje system) and relatively narrow QRS complex b)VT from region of left fibrous trigone (aortomitral valve continuity) is associated with RBBB morphology in V1 and broad monophasic R-waves across precordium

Page 20: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

May originate from supravalvular or infravalvular endocardial region of coronary cusp of aortic valve Distinction is important –RF ablation Absence of an S wave in V5 or V6 -supravalvular S wave in leads V5 and V6-infravalvular

LVOT VT

Page 21: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Depending on site of origin from right or left coronary cusp-LBBB or RBBB morphology

AORTIC CUSP VT

LBBB morphology with transition by V3, tall R waves in the inferior leads, and an s wave in lead I suggest the VPC from left coronary cusp.

Page 22: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Most VTs arise from left cusp and specifically from junction of left and right cuspsVT originating from LCC or aortomitral continuity often demonstrate terminal S wave in lead I

Page 23: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

RVOT VT Vs aortic cusp VT

R wave duration and R/S wave amplitude ratio in leads V1 and V2 were greater in tachycardias originating from cusp compared with RVOT

Precordial lead transition earlier in cusp VT occurring before lead V3

Absence of an S wave in V5 or V6 -specificity of 88% for cusp VT compared with RVOT VT

OUYANG AND COLLEAGUES

Page 24: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Proximity of RCC to RVOT- ECG based differentiating algorithms may not be consistently accurate Must be based on the earliest intracardiac activation or on pace mapping

Page 25: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Aortic valve lies to right of and posterior to RVOT-VT originating from sinuses of Valsalva has longer R wave duration and greater amplitude in leads V1 or V2 than RVOT tachycardia (R/QRS duration greater than 50% and R/S amplitude greater than 30%)Relatively large R waves inscribed in inferior leads owing to subepicardial location of focusEarlier precordial R wave transition L sinus: “w” pattern in V1, QRS negative in IR sinus: small r in V1, broad r wave in V2NCC sinus: unusual (over atrial myocardium)

VT FROM THE SINUSES OF VALSALVA

Page 26: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

OTVT originate from epicardial locations9%–13% of idiopathic VT Cluster along the course of the anterior interventricular vein and at its junction with great cardiac veinShow catecholamine and adenosine sensitivity

EPICARDIAL FOCI OF VA

Q wave in lead I and terminal S wave in V2(Paper speed 100 mm/s).

Page 27: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Psuedodelta wave:Interval from the earliest QRS activation to the earliest fast deflection in the precordial leads. ( > 34 ms)Intrinsicoid deflection time (ID):Interval from the earliest ventricular activation to the peak of the R wave in Lead V2. ( > 85 ms)

Page 28: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Precordial maximum deflection indexBeginning of QRS to earliest maximal deflection in any precordial leads / QRS duration. (> 0.55) (sensitivity of 100%, specificity of 98%)

Shortest precordial complex:Interval from earliest ventricular activation to the 1st S wave in any precordial lead. (> 121 ms)

DANIELS AND COLLEAGUES

Page 29: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Epicardial compared with RV endocardial or LV endocardial R wave amplitude significantly greater in inferior leads Lead I had an S wave as part of an rS or QS patternQ wave amplitude greater in aVL compared with aVR (ratio >1.4) Q wave in lead I LV epicardial group had a distinct R wave in V1 with a greater amplitude than in RV endocardial group and significant S waves in V1 (>1.2 mV) and V2. Not reliable

TADA AND COLLEAGUES

Page 30: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

MITRAL ANNULUS,TRICUSPID ANNULUSPAPILLARY MUSCLEPERIVASCULAR EPICARDIAL ECTOPY

Page 31: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

MITRAL ANNULAR VT

ECG of ventricular complexes originating from mitral annulus may show significant slurring of QRS complex onset resembling a delta-waveRegardless of where along circumference of mitral annulus VT originates ECG shows RBBB pattern across precordium and an S wave in lead V6.More lateral site- more likely is the presence of S wave in lead I and of notching in inferior leadsIn contrast with other mitral annular sites, posterior focus will have superior axis.

Page 32: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

PVCs or VT also originate from RVOT along region of tricuspid annulus Most common site is para-HisianCharacteristic ECG findings are Inscription of an R wave in lead I and Avl Relatively small R wave in inferior leads QS wave in V1 Precordial transition in V2 to V4Sites of successful ablation record an atrial and a ventricular potential

PARA-HISIAN

Page 33: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ELECTROPHYSIOLOGIC MECHANISM

Outflow tract VT is due to triggered activity Secondary to cyclic AMP mediated DADExample-Exertion results in increased cyclic AMP due to beta receptor stimulationRelease of calcium from sarcoplasmic reticulum and DAD Mutations in signal transduction pathways involving cAMP may be etiology for VT in some patientsTachycardia may terminate with Valsalva maneuvers, adenosine, BB or CCB

Page 34: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE
Page 35: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

CLINICAL FEATURES

20 and 40 years,Slight female preponderance May be asymptomatic but often present with palpitations, chest pain, dyspnea, presyncope and even syncope Occur more frequently with exertion or emotional stressCircadian variation- peaks at 7 AM and between 5 and 6 PMWomen-symptoms related to changes in hormonal statusTruly idiopathic OTVT is benignSmall percentage of patients with very frequent VT –TCMRare reports of cardiac arrest and PMVT

Page 36: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

TREATMENT

May respond acutely to carotid sinus massage, Valsalva maneuvers or intravenous adenosine or verapamilLong-term oral therapy with either BB or CCB Nonresponders (33%)- class I or III antiarrhythmic agents

Page 37: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

RFA

When medical therapy is ineffective or not tolerated High success rate (>80%) Ablation of epicardial or aortic sinuses of Valsalva sites is highly effective Technically challenging and carries higher risks -proximity to coronary arteries

Page 38: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Tachycardia localization

12-lead ECG Intracardiac activationPace mapping

Page 39: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

BIPOLAR ACTIVATION MAPPING

Because these arrhythmias are mediated by triggered activity, electrogram at site of origin typically precedes onset of QRS by approximately 20 msec Exception -cusp VT, prepotentials (50 msec) may be seen during VPCs that correspond to late potentials during sinus rhythm

Page 40: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

PACE MAPPING

Useful because typically site of origin is focal and because underlying tissue is normalPerformed with a low outputResult in a small discrete area of depolarizationMapping performed at site of origin of clinical arrhythmia, ECG should mimic clinical arrhythmia perfectly (12/12, including notches)

Page 41: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ELECTROANATOMIC RE-CREATION OF 3D ANATOMY

Helpful for catheter mapping and localization of site of origin Incessant VT- 3D anatomy should ideally be created during tachycardia which should be able to localize earliest site to a small region (<5 mm) with centrifugal activationTypically pace mapping from this region should achieve a perfect match

Page 42: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Predictors for successful ablation

Single VT morphologyAccurate pace mapsAbsence of a deltalike wave at beginning of QRS during tachycardiaAbility to use pace mapping and activation mapping

Page 43: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Some tachycardias arise from epicardium, necessitate ablation from great cardiac vein or epicardium itself using pericardial puncture technique Coronary angiography is performed before ablation on epicardium or in aortic sinus

Page 44: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Complications during outflow tract VT ablation are rareRBBB (1%)Cardiac perforationDamage to the coronary artery (LAD) - cusp region ablationOverall recurrence rate is approximately 10%

Page 45: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

IDIOPATHIC LEFT VT

Three varieties left posterior fascicular VT -RBBB and LAD (90%)left anterior fascicular VT -RBBB and RAD high septal fascicular VT -relatively narrow QRS and normal axis

Page 46: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

15 to 40 years More in men (60%) Most occur at restUsually paroxysmalIncessant forms leading to TCM are described

Page 47: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Re-entrant mechanism Orthodromic limb -zone of slow, decremental conduction in intraventricular left septum proceeding from base to apex Lower turnaround point is toward the apexRetrograde limb is formed by Purkinje network

ELECTROPHYSIOLOGIC MECHANISM

Page 48: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

During VT two distinct potentials can be observed before ventricular electrogramPurkinje potential (PP or P2)-activation of LPF or Purkinje fiber near LPFRelative activation time of PP to onset of QRS complex 5-25 msBrief, sharp, high-frequency potential preceding onset of QRS during tachycardia

Nakagawa and colleagues

Page 49: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Pre Purkinje potential (Pre-PP or P1) Represents excitation at entrance to specialized zone in ventricular septum which has decremental properties and is sensitive to verapamilRelative activation times of pre-PP to onset of QRS complex is 30-70 msPre-PP is a dull, lower frequency potential preceding the PP during tachycardia

Page 50: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Reentrant circuit of fascicular tachycardia is completed by a zone of slow conduction between Pre PP and PP areas in basal interventricular septumUpper turn around point of circuit Located close to the main trunk of LBB

Nakagawa and colleagues

Page 51: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Area is captured antidromically during tachycardia and at higher pacing rates-pre-PP precedes PP during tachycardia. Captured orthodromically in sinus rhythm and at relatively lower pacing rates- pre PP follows ventricular complex

Nakagawa and colleagues

Page 52: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

DDSupraventricular tachycardia with aberrancy VA dissociation, EP-Rapid atrial pacing during tachycardia can demonstrate AV dissociation Interfascicular VT(typical RBBB morphology and left or right axis deviation ) Commonly seen in patients with an anterior infarction and either left anterior or posterior hemi fascicular block. EP -ventricular depolarization is preceded by His bundle depolarization in interfascicular VT which is not seen in fascicular VTIdiopathic mitral annulus VT(RBBB morphology with right axis deviation ) Further definition of this rare tachycardia is needed to clearly differentiate it from fascicular VT.

Page 53: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

VT originates from a false tendon extends from posteroinferior left ventricle to basal septum Resection of tendon or ablation at septal insertion site eliminate tachycardia Exact role tendon is unclear Specificity is low

Gallagher JJet al. AJCardiol 1988;61(2):27A–44AMerliss AD, Seifert MJ, Collins RF, etal Electrophysiol 1996;19(12 Pt 1):2144–6.Thakur RK, Klein GJ, Sivaram CA, et al.Circulation 1996;93(3):497–501.

Page 54: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Baseline 12-lead ECG is normal in most patientsExit near the area of the left posterior fascicle RBBB + left superior frontal plane axis Relatively narrow QRS duration (<140 msec) RS interval <80 msec Exit near the area of the left anterior fascicle RBBB+ right frontal plane axis

Page 55: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Long-term prognosis is very goodPatients who have incessant tachycardia may develop a tachycardia related cardiomyopathy Intravenous verapamil is effective in acutely terminating VTMild to moderate symptoms oral –verapamilBB and class I and III antiarrhythmic agents useful in some Medical therapy is often ineffective in patients who have severe symptoms

Page 56: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

RADIOFREQUENCY ABLATIONAssociated with significant symptoms or who are intolerant or resistant to medical therapy Strategies employed to identify the ideal site for ablation Pace mapping Endocardial activation mapping Identifying diastolic Purkinje potentials (MC approach) Identifying late diastolic potentials When VT is noninducible-ablation during sinus rhythm using electroanatomic mapping may be considered

Page 57: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ABLATION DURING TACHYCARDIA

Ablation sites as being marked by areas of high frequency Purkinje potentials that precede the earliest ventricular activation during tachycardia May be located away from site of earliest ventricular activationAblation at such an area terminates VT and prevents re-induction These potentials are not always seen during VT

Page 58: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Ablation at pre Purkinje potential sitepre-PP is recordable in three fourth of the patients during VTRecorded within a small area proximal to earliest PP recording site Activated from basal to apical septum toward earliest PP siteAfter successful ablation pre PP appears after QRS complex during sinus rhythm. Performance of ablation at this site carries risk of causing AV block or LBBB

Page 59: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ABLATION DURING SINUS RHYTHM

Pace mappingPace mapping is more useful in mapping focal tachycardias whereas outcomes in reentrant tachycardia ablation are less favourable. Mapping Identifies the circuit exitPerfect pace map is not essential for success

Activation mappingIdentifies more proximal portions of the circuit

Page 60: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Ablation of this arrhythmia in sinus rhythm.Chen et alEnSite 3000 System Create a 3D endocardial geometry of LV and conduction system in LV during sinus rhythmHis bundle area, left bundle branch, fascicles and sinus breakout point mapped in detail and tagged as special landmarks Linear lesion perpendicular to wave front propagation direction of LPF 1 cm above the sinus breakout point12-lead ECG after linear lesion shows a significant shift of QRS axis to right, deep Q waves in inferior leads and deep S waves in lateral leads without the morphology of real LPHB

ELECTRO ANATOMIC MAPPING

Page 61: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Lin et al

CARTO eletroanatomic mapping

Created a linear lesion midway between the apex and base of the septum with Purkinje potentials as an additional guide

Ouyang et al

CARTO map for anatomical localization and tagging areas having pre PP

Performed ablation during sinus rhythm at these sites

Page 62: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

LIFE-THREATENING(TYPICALLY POLYMORPHIC VT)

Rare Generally occurs with genetic ion channel disorders Unlike monomorphic VT associated with SCD Abnormalities exist at molecular level

Page 63: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Genetic syndromes

Long QTBrugada SyndromeCPVTShort QT

LIFE-THREATENING(TYPICALLY POLYMORPHIC VT)

Page 64: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

LONG QT SYNDROME

Corrected QT interval 440 ms in men and 460 ms in women with or without morphological abnormalities of the T waves Decrease in outward potassium currents or increase in inward sodium currents Prolongs repolarization phase of cardiac action potentialResult in prolongation of QT interval Predisposition to EAD and torsade de pointes VT

Page 65: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Twelve different genes described LQT1, LQT2, and LQT3 account for 90%LQT1 and LQT2 -mutations of KCNQ1 and KCNH2 genes that encode subunits of IKs and Ikr potassium channels, respectively LQT3 -mutations of SCN5A gene that encode subunits of INa sodium channels Approximately 25% not have identifiable gene mutations

Page 66: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Mean age of symptom onset is 12 yearsPresent with syncope, seizures, or cardiac arrest. Clinical presentation and ECG repolarization (ST-T) patterns have been correlated to genotype

Page 67: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

LQT1 -often have broad-based T waves and frequently experience events during physical activity (especially swimming).LQT2- T-wave is often notched in multiple leads.Triggers for LQT2 include startling auditory stimuli (e.g., from an alarm clock) and emotional upset.LQT3- often demonstrate long ST segmentsMost LQT3 events occur at rest or sleep.

Page 68: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE
Page 69: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

MANAGEMENT

Avoid trigger events and medications prolong QT interval Risk stratification schemes based on degree of QT prolongation, genotype, and sex Corrected QT interval exceeding 500 ms poses a high risk for cardiac events Patients who have LQT2 and LQT3 may be at higher risk for SCD compared with patients who have LQT1

Page 70: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

BB are indicated for all patients with syncope and for asymptomatic patients with significant QT prolongation Role of BB in asymptomatic patients with normal or mildly prolonged QT intervals remains uncertain.BB are highly effective in LQT1, but less effective in other LQTSRole of BBs in LQT3 is not established. Because LQT3 is a minority of all LQTS,symptomatic patients who have not undergone genotyping should receive BBs

Page 71: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ICD are indicated for secondary prevention of cardiac arrest and for patients with recurrent syncope despite BB therapy Less defined therapiesGene-specific therapy with mexiletine , flecainide , or ranolazine for some LQT3 patientsPPI for bradycardia-dependent torsade depointesSurgical left cardiac sympathetic denervation for recurrent arrhythmias resistant to BB therapy Catheter ablation of triggering PVCs-abolish recurrent VT/VF

Page 72: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

BRUGADA SYNDROME

Characterized by coving ST-segment elevation in V1 to V3 2 mm in 2 of these 3 leads are diagnosticComplete or incomplete RBBB patternPattern can be spontaneously present or provoked by sodium-channel– blocking agents such as ajmaline,flecainide, or procainamide Typical ECG pattern can be transient and may only be detected during long-term ECG monitoring.

Page 73: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

CLINICAL PRESENTATION

Syncope or cardiac arrestPredominantly in men in third and fourth decadeAlso been linked to SCD in young men in Southeast Asia and has several local names,including Lai Tai (“died during sleep”) in Thailand Prone to atrial fibrillation and sinus node dysfunction

Page 74: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ELECTROPHYSIOLOGY STUDY Induction of VAs has inconsistent predictive value Fragmented QRS interval -predict poor prognosis

Page 75: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

TREATMENTNo well-validated preventive medical therapy Patients who don’t have cardiac arrest risk stratified on the basis of spontaneous ECG pattern and syncopeLowdose quinidine may be used to treat frequent VAs in patients who already have an ICDQuinidine and isoproterenol may be useful in patients having VT storms Catheter ablation of triggering PVCs and ablation of RV outflow epicardial musculature successful in abolishing recurrent VT/VF in a small number of patients

Page 76: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ICD

ICD are effective in preventing SCD and are indicated for cardiac arrest survivors Major management dilemma arises in decision to place prophylactically an ICD based on patient’s perceived risk of SCD

Page 77: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Patients with spontaneous ECG pattern and syncope are at high risk and ICD insertion is generally recommended for primary prophylaxisAsymptomatic patients with spontaneous ECG pattern are at intermediate risk, and their best therapeutic options may need to be individualizedAsymptomatic patients without spontaneous ECG pattern are at low risk and may be followed up clinically Family history of SCD and specific genotypes do not predict events

Page 78: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

7 different genes involved SCN5A gene mutations (BrS1) - loss of function of cardiac sodium channel (NaV 1.5) account for majority of genotyped cases Typical Brugada syndrome ECG pattern- a positive genotype is obtained only in 13% BrS1 and LQT3 share SCN5A mutations Overlapping phenotypes of Brugada syndrome and LQT3 have been reported

Page 79: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Disorder of myocardial calcium homeostasisClinically manifested as exertional syncope and SCD due to exercise induced VT Often polymorphic or bidirectional

CATECHOLAMINERGIC PMVT.

Page 80: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Autosomal dominant form involves mutation of cardiac ryanodine receptor (RyR2 gene) in approximately 50% of patients Autosomal recessive form, accounting for only 3% to 5% of genotyped cases-mutations of calsequestrin 2 gene (CASQ2)

Page 81: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Ryanodine receptor spans membrane of sarcoplasmic reticulum and releases calcium triggered by calcium entry into cell through L-type calcium channelsCalsequestrin is a protein that sequestrates calcium ions within the sarcoplasmic reticulumRyR2 and CASQ2 mutations cause intracellular calcium overload and DAD -basis of arrhythmogenesis

Page 82: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Resting ECG is unremarkable Typical VT patterns are reproducible with exercise or catecholamine infusion VAs typically appear during sinus tachycardia rates of 120 beats/min to 130 beats/min, with progressive frequency of PVCs followed by bursts of polymorphic or bidirectional VT Mean age for presentation with syncope is 7.8 4 yearsElectrophysiology study is not helpful in risk stratification

Page 83: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Mainstay of medical management is BB therapy46% may have recurrent events while receiving therapyCCB may have limited effectiveness as adjunctive therapyFlecainide blocks RyR2 receptor and shows promise as a medical therapy

Page 84: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ICD insertion is appropriate for patients who had cardiac arrest and with life-threatening VA despite maximal medical therapy Recurrent ICD shocks may occur and an initial shock with its accompanying pain and anxiety may trigger further VAsSurgical left cardiac sympathetic denervation -resistant cases

Page 85: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

SHORT QT SYNDROME

Rare disorder characterized by short QT intervals of 300 to 320 ms. Diagnostic criteria involving corrected QT interval, clinical history, and genotypingSyndrome is associated with SCD and atrial fibrillationPatients may present early in childhood

Page 86: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

Mutations leading to gain of function of 3 genes encodingfor repolarizing potassium currents (IKr, IKs, and IK1)

Page 87: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

ICD implantation for secondary and primary prevention Preliminary observations suggest quinidine might be useful

Page 88: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

IDIOPATHIC PROPRANOLOL-SENSITIVE VT (IPVT)

Usually occurs by fifth decade of life Can arise from LV or RVMorphology may be monomorphic or polymorphicNot inducible with programmed stimulationIsoproterenol infusion usually inducesBeta-blockers are effective in terminating tachycardia.

Page 89: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

TREATMENT OF IPVT

BBs Effective in acute situations Insufficient information available regarding long-term management Survivors of sudden cardiac death may receive ICD

Page 90: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

REFERENCES

ZIPES 5th EDITIONBRAUNWALD 9TH EDITIONHURST 13TH EDITIONVENTRICULAR ARRHYTHMIAS IN NORMAL HEARTS,SHUAIB LATIF, MD Cardiol Clin 26 (2008) 367–380VENTRICULAR TACHYCARDIA IN STRUCTURALLY NORMAL HEARTS:RECOGNITION AND MANAGEMENT,P NATHANI Supplement of JAPI • April 2007 • vol. 55VENTRICULAR TACHYCARDIA IN THE ABSENCE OF STRUCTURAL HEART DISEASE KOMANDOOR SRIVATHSAN, MD, IPEJ (ISSN 0972-6292), 5(2): 106-121 (2005) VENTRICULAR ARRHYTHMIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE ERIC N. PRYSTOWSKY, MD, Vol. 59, No. 20, 2012 ISSN 0735-1097 JACC

Page 91: VENTRICULAR TACHYCARDIAS IN THE ABSENCE OF STRUCTURAL HEART DISEASE

THANK U