23
V ariational Quantum Eigensolver TQCI | November 14, 2019 | Bruyères-le-Châtel Identification & validation of use-cases Elvira SHISHENINA | Henri CALANDRA | Charles MOUSSA | Yuan YAO

Variational Quantum Eigensolver - Teratec · Variational Quantum Eigensolver TQCI | November 14, 2019 | Bruyères-le-Châtel Identification & validation of use-cases Elvira SHISHENINA

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Variational Quantum Eigensolver

    TQCI | November 14, 2019 | Bruyères-le-Châtel

    Identification & validation of use-cases

    Elvira SHISHENINA | Henri CALANDRA | Charles MOUSSA | Yuan YAO

  • Computing the ground state energy with VQE

    A.Peruzzo et al. A variational eigenvalue solver on a quantum processor (2014). arXiv:1304.3061

    TQCI | November 14, 2019

  • VQE | electronic Schrödinger equation

    Finding the ground state energy = solving an eigenvalue problem

    intractable problem in general!

    TQCI | November 14, 2019

  • I. Fermionic Hamiltonian

    II. Second quantization

    III. Mapping from fermions to qubits – qubit Hamiltonian(Jordan-Wigner or Bravyi-Kitaev transformation)

    VQE | from fermions to qubits

    ,

    TQCI | November 14, 2019

  • VQE | from fermions to qubits• open source library for compiling and analyzing quantum algorithms to simulate fermionic

    systems, including quantum chemistry.

    • plugins available for electronic structure computation (Psi4, PySCF)

    https://github.com/quantumlib/OpenFermion

    TQCI | November 14, 2019

  • VQE | design

    CPU

    TQCI | November 14, 2019

    fermionic problem qubit Hamiltonian

    prepare trial state

    measure expectation value

    calculate energy

    adjust parameters

    QPU

    optim

    ize

    solution

  • VQE | optimization loop

    initial guess

    ansatz qubit Hamiltonian

    QPU

    state preparation

    … ……… …+

    +

    measurement

    ENER

    GY

    CPU

    QPU

    TQCI | November 14, 2019

    updated parameter

  • VQE | designVQE library

    TQCI | November 14, 2019

  • VQE | benchmarking

    TQCI | November 14, 2019

    H2

  • H2

    VQE | benchmarking

    TQCI | November 14, 2019

  • ground state energies

    LiH BeH H2O CH4 O2 CO2

    VQE Total -7.75927010033 -14.4365668914 -72.9137048216 -38.9700162812 -144.2795640017 -179.930380621

    VQE Atos -7.79160864682 -14.6002137511 -73.1510280024 -39.1240178446 -144.1520719862 -180.918374772

    FCI OpenFermion -7.86613635619 -14.9569336087 -74.9908117277 -39.8060539918 -147.7434954566 -185.231532228

    VQE | benchmarking

    TQCI | November 14, 2019

  • 1 - 3 % error

    VQE | benchmarking

    ground state energies

    LiH BeH H2O CH4 O2 CO2

    VQE Total -7.75927010033 -14.4365668914 -72.9137048216 -38.9700162812 -144.2795640017 -179.930380621

    VQE Atos -7.79160864682 -14.6002137511 -73.1510280024 -39.1240178446 -144.1520719862 -180.918374772

    FCI OpenFermion -7.86613635619 -14.9569336087 -74.9908117277 -39.8060539918 -147.7434954566 -185.231532228

    TQCI | November 14, 2019

  • configuration

    LiH BeH H2O CH4 O2 CO2

    num_orbitals 6 6 7 9 10 15

    num_qubit 12 12 14 18 20 30

    VQE | benchmarking

    TQCI | November 14, 2019

  • VQE | freezing orbitals

    TQCI | November 14, 2019

    CO

    O

    1s

    CCarbon

    6

    OOxygen

    8

    1s 2s 2p

    1s 2s 2p

    OOxygen

    8 1s 2s 2p

  • VQE | freezing orbitals

    TQCI | November 14, 2019

    CO

    O

    1s

    CCarbon

    6

    OOxygen

    8

    1s 2s 2p

    1s 2s 2p

    OOxygen

    8 1s 2s 2p

    reduced from 30 to 24 qubits

  • TQCI | November 14, 2019

    chemical value chain

    excess renewable energy

    CO2

    +H2 HCO2H

    H2CO

    H3COH

    CH4

    +H2

    -H2O

    +H2

    +H2

    -H2O

    carbon dioxide

    acids, esters

    aldehydes alcohols, amineshydro-

    carbons

    ener

    gy c

    onte

    nt

    -179.9303

    -186.2908

    -112.4542

    -113.5732

    -38.9700

    -72.9137

    -72.9137

    -1.1719

    -1.1719

    -1.1719

    -1.1719

    VQE | freezing orbitalsKlankermayer J, Leitner W. 2016

  • VQE | noisy QPU

    TQCI | November 14, 2019

    1. Hardware model

    2. Simulation method

    H2 COBYLA noisy qpuCOBYLA

    FCI OpenFermion

  • VQE | further steps

    • Investigating the scalability of VQE

    • Benchmarking against Imaginary Time Evolution (ITE)

    • Extending VQE in order to estimate the rest of excited states

    • Exploring more complex use-cases

    TQCI | November 14, 2019

  • TQCI | November 14, 2019

    Fe protein MoFe protein

    F cluster P cluster M cluster

    B.Hoffman et al. Mechanism of nitrogen fixation by nitrogenase (2014). dx.doi.org/10.1021/cr400641x

    Iron sulfide clusters (Fe_S_) of different sizes

    Molybdenum nitrogenase

    Afterwards

  • Fe protein MoFe protein

    F cluster P cluster M cluster

    TQCI | November 14, 2019

    B.Hoffman et al. Mechanism of nitrogen fixation by nitrogenase (2014). dx.doi.org/10.1021/cr400641x

    Iron sulfide clusters (Fe_S_) of different sizes

    Molybdenum nitrogenase

    Simulating F cluster is at the limit of

    classical computers! (IBM Research, 2018)

    Afterwards

  • TQCI | November 14, 2019

    4Fe - 4S

    4 x 26 + 4 x 16 = 168 electrons

    ~ 10^50 permutationsF cluster

    Afterwards

  • TQCI | November 14, 2019

    Afterwards

    4Fe - 4S

    4 x 26 + 4 x 16 = 168 electrons

    ~ 10^50 permutations

    ~ 192 qubits( 3-5 years )

    F cluster

  • Thank You!

    TQCI | November 14, 2019